[go: up one dir, main page]

CN116818941A - Bean flour identification method based on lipidomic - Google Patents

Bean flour identification method based on lipidomic Download PDF

Info

Publication number
CN116818941A
CN116818941A CN202310770709.9A CN202310770709A CN116818941A CN 116818941 A CN116818941 A CN 116818941A CN 202310770709 A CN202310770709 A CN 202310770709A CN 116818941 A CN116818941 A CN 116818941A
Authority
CN
China
Prior art keywords
cer
dgga
hexcer
lipid
mgdg
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202310770709.9A
Other languages
Chinese (zh)
Other versions
CN116818941B (en
Inventor
陈颖
何磊
于宁
张九凯
邢冉冉
邓婷婷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chinese Academy of Inspection and Quarantine CAIQ
Original Assignee
Chinese Academy of Inspection and Quarantine CAIQ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chinese Academy of Inspection and Quarantine CAIQ filed Critical Chinese Academy of Inspection and Quarantine CAIQ
Priority to CN202310770709.9A priority Critical patent/CN116818941B/en
Publication of CN116818941A publication Critical patent/CN116818941A/en
Application granted granted Critical
Publication of CN116818941B publication Critical patent/CN116818941B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • G01N30/14Preparation by elimination of some components
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/62Detectors specially adapted therefor
    • G01N30/72Mass spectrometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/86Signal analysis
    • G01N30/8651Recording, data aquisition, archiving and storage
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/86Signal analysis
    • G01N30/8675Evaluation, i.e. decoding of the signal into analytical information
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/86Signal analysis
    • G01N30/8675Evaluation, i.e. decoding of the signal into analytical information
    • G01N30/8679Target compound analysis, i.e. whereby a limited number of peaks is analysed
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86
    • G01N2030/8809Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Library & Information Science (AREA)
  • Medicines Containing Plant Substances (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

The application relates to a soybean powder identification method based on lipidomic, which is used for detecting different types of soybean powder samples based on a non-targeted lipidomic technology of ultra-high performance liquid chromatography-time-of-flight mass spectrometry, obtaining lipidomic data of different types of soybean powder, carrying out semi-quantitative analysis on lipid components by combining a standard substance, and then screening characteristic difference lipid components of different types of soybean powder by using a chemometric method so as to be used for identifying soybean powder. The method can accurately identify the bean type of the bean powder and prevent the bean powder from being counterfeited.

Description

一种基于脂质组学的豆粉鉴别方法A soybean powder identification method based on lipidomics

技术领域Technical Field

本发明涉及食品检测领域,具体涉及一种豆粉的鉴别方法。The invention relates to the field of food detection, and in particular to a method for identifying bean powder.

背景技术Background Art

豆类指双子叶植物中离瓣植物豆科的泛称,因而概称为豆科植物,也称豆子。豆子包含多种类型,如大豆、绿豆、鹰嘴豆、豌豆、蚕豆、豇豆、红小豆、芸豆等。豆类中富含膳食蛋白质、必需氨基酸、膳食纤维、维生素和矿物质等营养物质,是健康饮食的重要组成部分。此外,豆类中还含有多种生物活性成分,具有多种营养功效。如大豆中的异黄酮类物质可以增强体质和机体的抗病能力,还有降血压和减肥的功效;绿豆具有清热解毒、消肿等功效;鹰嘴豆富含异黄酮、鹰嘴豆芽素等活性成分,有降血糖、治疗支气管炎、预防糖尿病等功效;芸豆含有皂苷、尿素酶等活性成分,具有提高人体自身的免疫能力,抑制肿瘤细胞的发展等作用。各类型的豆子品质和营养组成存在明显差异,开展豆粉鉴别研究对了解市售豆粉真伪情况尤为重要,可以预防假冒伪劣产品进入市场,为消费者提供优质的豆粉产品。Legumes refer to the general term for the legumes in the dicotyledonous plants, so they are generally called legumes, also known as beans. There are many types of beans, such as soybeans, mung beans, chickpeas, peas, broad beans, cowpeas, red beans, kidney beans, etc. Beans are rich in nutrients such as dietary protein, essential amino acids, dietary fiber, vitamins and minerals, and are an important part of a healthy diet. In addition, beans also contain a variety of bioactive ingredients and have a variety of nutritional benefits. For example, the isoflavones in soybeans can enhance the body's physical fitness and disease resistance, and have the effects of lowering blood pressure and losing weight; mung beans have the effects of clearing heat and detoxifying, reducing swelling, etc.; chickpeas are rich in isoflavones, chickpea sprouts and other active ingredients, which have the effects of lowering blood sugar, treating bronchitis, and preventing diabetes; kidney beans contain saponins, urease and other active ingredients, which have the effects of improving the body's own immunity and inhibiting the development of tumor cells. There are obvious differences in the quality and nutritional composition of various types of beans. Conducting research on soybean powder identification is particularly important for understanding the authenticity of commercially available soybean powder. This can prevent counterfeit and inferior products from entering the market and provide consumers with high-quality soybean powder products.

非靶向脂质组学技术可以同时对上千种已知和未知脂质组分进行分析,具有完整的数据库,其中收录了超过8大类、300种亚类、170万种脂质分子的谱图,近年来越来越多的研究利用该技术进行食品和农产品真伪鉴别研究。Non-targeted lipidomics technology can analyze thousands of known and unknown lipid components at the same time. It has a complete database that includes spectra of more than 8 major categories, 300 subcategories, and 1.7 million lipid molecules. In recent years, more and more studies have used this technology to conduct authenticity identification research on food and agricultural products.

目前尚未见基于非靶向脂质组学技术进行豆粉鉴别研究的相关报道。为了弥补这一领域的技术空白,有必要建立一种基于脂质组学的豆粉鉴别研究。At present, there is no report on soybean powder identification based on non-targeted lipidomics technology. In order to fill the technical gap in this field, it is necessary to establish a soybean powder identification based on lipidomics.

发明内容Summary of the invention

本发明的目的在于提供一种基于特征差异脂质组分的豆粉鉴别方法,该方法基于非靶向脂质组学分析技术,利用超高效液相色谱-飞行时间质谱采集不同类型豆子豆粉的脂质组分数据,通过化学计量学筛选各类型豆子豆粉特征差异脂质组分,用于区分各类型豆子的豆粉。The object of the present invention is to provide a bean powder identification method based on characteristic differential lipid components. The method is based on non-targeted lipidomics analysis technology, utilizes ultra-high performance liquid chromatography-time-of-flight mass spectrometry to collect lipid component data of different types of bean powder, and screens the characteristic differential lipid components of each type of bean powder through chemometrics to distinguish the bean powder of each type of bean.

为了实现以上目的,本发明采取如下技术方案:In order to achieve the above purpose, the present invention adopts the following technical solutions:

本发明的第一方面提供一种基于特征差异脂质组分的豆粉鉴别方法,包括以下步骤:The first aspect of the present invention provides a soybean powder identification method based on characteristic difference lipid components, comprising the following steps:

(1)收集不同类型的豆类样品,分别去除杂质,研磨至粉末,加入提取液,通过涡旋振荡提取后离心,收集上清液,氮气吹干,加入复溶溶液,复溶后过滤,得到待测样品滤液;(1) collecting different types of bean samples, removing impurities from each sample, grinding them into powder, adding an extracting solution, extracting by vortex oscillation and then centrifuging, collecting the supernatant, drying with nitrogen gas, adding a re-dissolving solution, re-dissolving and filtering to obtain a filtrate of the sample to be tested;

(2)采用超高效液相色谱串联飞行时间质谱仪对步骤(1)得到的不同类型豆子豆粉的待测样品滤液进行非靶向脂质组学分析,获得不同类型豆子豆粉样本的脂质数据,通过质谱数据分析软件对脂质数据进行处理;(2) performing non-targeted lipidomics analysis on the sample filtrate of different types of bean powder obtained in step (1) using ultra-high performance liquid chromatography-tandem time-of-flight mass spectrometry to obtain lipid data of the different types of bean powder samples, and processing the lipid data using mass spectrometry data analysis software;

(3)使用LIPID MAPS数据库对所有鉴定到的脂质组分进行定性鉴别,利用软件进行分子预测,确定筛选出的脂质组分结构,然后再通过脂质同位素内标,对脂质成分进行半定量分析;(3) All identified lipid components were qualitatively identified using the LIPID MAPS database, and the software was used for molecular prediction to determine the structure of the screened lipid components. The lipid components were then semi-quantitatively analyzed using lipid isotope internal standards.

(4)采用正交偏最小二乘判别分析(OPLS-DA)对不同类型豆子豆粉样本的脂质数据进行分析,构建OPLS-DA模型;根据OPLS-DA模型的VIP值以及ANOVA的p值,筛选出不同类型豆子豆粉的特征差异脂质组分。(4) Orthogonal partial least squares discriminant analysis (OPLS-DA) was used to analyze the lipid data of different types of bean flour samples and an OPLS-DA model was constructed. Based on the VIP value of the OPLS-DA model and the p-value of ANOVA, the characteristic differential lipid components of different types of bean flour were screened out.

优选的,所述步骤(1)中的豆类样品选自芸豆、蚕豆、黑大豆、红小豆、豇豆、绿豆、豌豆或鹰嘴豆。Preferably, the bean sample in step (1) is selected from kidney beans, broad beans, black soybeans, red beans, cowpeas, mung beans, peas or chickpeas.

优选的,所述步骤(1)中使用的提取液是体积比为1:2的甲醇和甲基叔丁基醚的混合溶剂。Preferably, the extracting solution used in step (1) is a mixed solvent of methanol and methyl tert-butyl ether in a volume ratio of 1:2.

优选的,所述步骤(1)中使用的复溶溶液是体积比为1:1的二氯甲烷和甲醇的混合溶剂。Preferably, the reconstitution solution used in step (1) is a mixed solvent of dichloromethane and methanol in a volume ratio of 1:1.

优选的,所述步骤(2)中采用超高效液相色谱串联飞行时间质谱仪检测的色谱条件如下:色谱柱为Phenomenex Kinetex C18色谱柱;流动相A为含5mM醋酸铵的体积比为1:1:1的水、甲醇和乙腈的混合溶液,流动相B为含5mM醋酸铵的体积比为5:1的异丙醇和乙腈混合溶液;流速为0.4mL/min;梯度洗脱程序如下:Preferably, the chromatographic conditions for detection by ultra-high performance liquid chromatography tandem time-of-flight mass spectrometry in step (2) are as follows: the chromatographic column is a Phenomenex Kinetex C18 chromatographic column; the mobile phase A is a mixed solution of water, methanol and acetonitrile in a volume ratio of 1:1:1 containing 5 mM ammonium acetate, and the mobile phase B is a mixed solution of isopropanol and acetonitrile in a volume ratio of 5:1 containing 5 mM ammonium acetate; the flow rate is 0.4 mL/min; and the gradient elution program is as follows:

时间time 流动相AMobile phase A 流动相BMobile phase B 0-0.5min0-0.5min 80%80% 20%20% 0.5-1.5min0.5-1.5min 80%-60%80%-60% 20%-40%20%-40% 1.5-3.0min1.5-3.0min 60%-40%60%-40% 40%-60%40%-60% 3.0-13min3.0-13min 40%-2%40%-2% 60%-98%60%-98% 13.0-13.1min13.0-13.1min 2%-80%2%-80% 98%-20%98%-20% 13.1-17.0min13.1-17.0min 80%80% 20%20%

.

优选的,所述步骤(2)中采用超高效液相色谱串联飞行时间质谱仪检测的质谱条件如下:采用电喷雾电离离子源ESI,分别在正离子和负离子模式下采集数据,离子源温度600℃,碰撞能量为35eV,正离子模式喷雾电压+5500V,负离子模式-4500V。Preferably, the mass spectrometry conditions for detection by ultra-high performance liquid chromatography tandem time-of-flight mass spectrometer in step (2) are as follows: using an electrospray ionization ion source ESI, collecting data in positive ion and negative ion modes respectively, the ion source temperature is 600°C, the collision energy is 35eV, the positive ion mode spray voltage is +5500V, and the negative ion mode is -4500V.

优选的,所述步骤(3)中利用MS-DIAL、MS-FINDER软件和PeakView软件进行分子预测。Preferably, in step (3), MS-DIAL, MS-FINDER and PeakView software are used to perform molecular prediction.

优选的,所述步骤(4)中根据OPLS-DA模型的VIP值以及ANOVA的p值,选择VIP>1及p<0.05的代谢物作为区分不同豆粉的特征差异脂质组分。Preferably, in step (4), based on the VIP value of the OPLS-DA model and the p value of ANOVA, metabolites with VIP>1 and p<0.05 are selected as characteristic differential lipid components for distinguishing different soybean powders.

更优选的,所述步骤(4)中选择VIP>1.1及p<0.05的代谢物作为区分不同豆粉的特征差异脂质组分。More preferably, in step (4), metabolites with VIP>1.1 and p<0.05 are selected as characteristic differential lipid components for distinguishing different soybean powders.

进一步优选的,所述步骤(4)中选择VIP>1.2及p<0.05的代谢物作为区分不同豆粉的特征差异脂质组分。Further preferably, in step (4), metabolites with VIP>1.2 and p<0.05 are selected as characteristic differential lipid components for distinguishing different soy flours.

优选的,所述步骤(4)中筛选出的特征差异脂质组分选自DGGA 34:2,DGGA 34:3,DGGA 36:2,DGGA 36:3,DGGA 36:4,DGGA 36:6,HexCer 31:3;O2,HexCer 32:1;O4,HexCer32:2;O3,HexCer 32:3;O2,HexCer 34:1;O4,HexCer 44:1;O4,PA36:2,PC 30:2,PC 32:2,PC 33:2,PC 36:0,PC 37:1,PC 37:2,PC 38:1,PC 38:2,PC 38:3,PC 40:2,PC 41:1,PE32:2,PE 34:2,PE 36:2,PE 37:1,PE 37:2,PE 37:3,PE 37:4,PE 38:1,PE 38:2,PE 38:3,PE 39:2,PE 40:2,PE 41:1,PE 41:2,PE 42:2,PG 31:1,PG 34:0,PI 32:0,PI 32:3,PI33:1,PI 33:2,PI 39:2,PI 40:2,PI 41:2,PI 41:3,SM 34:1;O2,SM 37:6;O2,MGDG 36:2,MGDG 36:3,MGDG 36:5,DGDG 35:2,DGDG 36:3,DGDG 36:4,DG 33:1,DG 36:0,DG 36:2,DG36:3,DG 38:0,DG 40:0,DG 40:1,DG 42:0,DG 42:3,DG 44:2,TG 46:0,TG 46:1,TG 46:2,TG 46:3,TG 47:2,TG 48:1,TG 48:4,TG 49:0,TG 49:1,TG 49:2,TG 49:3,TG 50:3,TG50:6,TG 51:3,TG 51:4,TG 51:6,TG 51:7,TG 52:4,TG 53:5,TG 53:6,TG 54:0,TG 54:6,TG 55:2,TG 55:3,TG 55:5,TG 55:6,TG 55:7,TG 56:1,TG 56:2,TG 56:4,TG 56:5,TG56:6,TG 56:7,TG 57:2,TG 57:4,TG 58:1,TG 58:2,TG 58:3,TG 58:5,TG 58:6,TG 58:7,TG 59:2,TG 59:3,TG 59:5,TG 60:1,TG 60:2,TG 60:3,TG 60:4,TG 60:7,TG 61:0,TG61:4,TG 61:6,TG 63:4,TG 64:1,TG 64:2,TG 64:3,TG 64:6,TG 65:3,TG 66:2,TG 66:3,TG 66:4,TG 72:4,TG 72:5,TG 74:5,Cer 31:1;O3,Cer 32:2;O3,Cer 32:3;O2,Cer 33:1;O3,Cer 34:0;O3,Cer 34:1;O3,Cer 34:1;O4,Cer 34:2;O2,Cer 36:0;O3,Cer 36:1;O3,Cer 39:0;O3,Cer 40:0;O4,Cer 40:1;O2,Cer 40:1;O3,Cer 40:1;O4,Cer 40:2;O2,Cer41:0;O4,Cer 41:1;O3,Cer 41:1;O4,Cer 41:2;O2,Cer 42:0;O3,Cer 42:1;O2,Cer 42:2;O2,Cer 43:0;O3,Cer 43:0;O4,Cer 43:3;O4,Cer 44:4;O3,FA25:0,FA28:0,FA29:0,FA34:1,FA 36:0,FA 36:1,FA 36:2,FA 38:0,FA40:0,FA40:1,FA40:2,FA42:1中的两种或两种以上。Preferably, the characteristic difference lipid components screened out in step (4) are selected from DGGA 34:2, DGGA 34:3, DGGA 36:2, DGGA 36:3, DGGA 36:4, DGGA 36:6, HexCer 31:3; O2, HexCer 32:1; O4, HexCer32:2; O3, HexCer 32:3; O2, HexCer 34:1; O4, HexCer 44:1; O4, PA36:2, PC 30:2, PC 32:2, PC 33:2, PC 36:0, PC 37:1, PC 37:2, PC 38:1, PC 38:2, PC 38:3, PC 40:2, PC 41:1, PE32:2, PE 34:2, PE 36:2, PE 37:1, PE 37:2, PE 37:3, PE 37:4, PE 38:1, PE 38:2, PE 38:3, PE 39:2, PE 40:2, PE 41:1, PE 41:2, PE 42:2, PG 31:1, PG 34:0, PI 32:0, PI 32:3, PI33:1 , PI 33:2, PI 39:2, PI 40:2, PI 41:2, PI 41:3, SM 34:1; O2, SM 37:6; O2, MGDG 36:2, MGDG 36:3, MGDG 36:5, DGDG 35:2, DGDG 36:3, DGDG 36:4, DG 33:1, DG 36:0, DG 36:2, DG36:3, DG 38:0, DG 40:0, DG 40:1, DG 42:0, DG 42:3, TG 44:2, TG 46:0, TG 46:1, TG 46:2, TG 46:3, TG 47:2, TG 48:1, TG 48:4, TG 49:0, TG 49:1 , TG 49:2, TG 49:3, TG 50:3, TG50:6, TG 51:3, TG 51:4, TG 51:6, TG 51:7, TG 52:4, TG 53:5, TG 53:6, TG 54:0, TG 54:6, TG 55:2, TG 55:3, TG 55:5, TG 55:6, TG 55:7, TG 56:1, TG 56:2, TG 56:4, TG 56:5, TG56:6, TG 56:7, TG 57:2, TG 57:4, TG 58:1, TG 58:2, TG 58:3, TG 58:5, TG 58:6, TG 58:7, TG 59:2, TG 59:3 , TG 59:5, TG 60:1, TG 60:2, TG 60:3, TG 60:4, TG 60:7, TG 61:0, TG61:4, TG 61:6, TG 63:4, TG 64:1, TG 64:2, TG 64:3, TG 64:6, TG 65:3, TG 66:2, TG 66:3, TG 66:4, TG 72:4, TG 72:5, TG 74:5, Cer 31:1; O3, Cer 32:2; O3, Cer 32:3; O2, Cer 33:1; O3, Cer 34:0; O3, Cer 34:1; O3, Cer 34:1; O3, Cer 36:1; O3, Cer 39:0; O3, Cer 40:0; O4, Cer 40:1; O2, Cer 40:1; O3, Cer 40:1; O4, Cer 40:2; O2, Cer41:0; O4, Cer 41:1; 41:2; O2, Cer 42:0; O3, Cer 42:1; O2, Cer 42:2; O2, Cer 43:0; O3, Cer 43:0; O4, Cer 43:3; O4, Cer 44:4; O3, FA25:0, FA28:0, FA29:0, FA34:1, FA 36:0, FA 36:1, FA 36:2, FA 38:0, FA40:0, FA40:1, FA40:2, FA42:1 or more.

优选的,所述步骤(4)中筛选出的特征差异脂质组分为HexCer 34:1;O4,PC 38:3,PE 39:2,PE 41:2,PE 42:2,PG 31:1,PI 41:2,TG 56:6,TG 56:7,Cer 34:0;O3,Cer 34:1;O3,Cer 36:0;O3,Cer 39:0;O3,Cer 40:0;O4,Cer 40:1;O3,Cer 41:0;O4,Cer 43:0;O4,Cer 43:3;O4,FA28:0和FA29:0的组合。Preferably, the characteristic differential lipid components screened out in step (4) are HexCer 34:1; O4, PC 38:3, PE 39:2, PE 41:2, PE 42:2, PG 31:1, PI 41:2, TG 56:6, TG 56:7, Cer 34:0; O3, Cer 34:1; O3, Cer 36:0; O3, Cer 39:0; O3, Cer 40:0; O4, Cer 40:1; O3, Cer 41:0; O4, Cer 43:0; O4, Cer 43:3; O4, a combination of FA28:0 and FA29:0.

优选的,所述步骤(4)中筛选出的特征差异脂质组分为DGGA 36:6,HexCer 32:3;O2,HexCer 34:1;O4,HexCer 44:1;O4,PC 32:2,PC 33:2,PC 37:1,PC 38:1,PC 38:2,PC38:3,PC 40:2,PE 34:2,PE 37:1,PE 37:2,PE 37:4,PE 38:1,PE 38:2,PE 39:2,PE 40:2,PE 41:1,PE 41:2,PE 42:2,PG 31:1,PI 41:2,MGDG 36:2,MGDG 36:5,DG 40:0,DG 40:1,DG 42:0,DG 42:3,TG 48:4,TG 50:3,TG 53:6,TG 55:7,TG 56:4,TG 56:5,TG 56:6,TG56:7,TG 57:2,TG 58:1,TG 58:5,TG 60:4,TG 60:7,TG 64:2,TG 66:2,TG 66:3,TG 72:4,TG 72:5,Cer 34:0;O3,Cer 34:1;O3,Cer 34:1;O4,Cer 36:0;O3,Cer39:0;O3,Cer 40:0;O4,Cer 40:1;O2,Cer 40:1;O3,Cer 40:1;O4,Cer 40:2;O2,Cer 41:0;O4,Cer 41:1;O3,Cer 41:1;O4,Cer 41:2;O2,Cer 42:1;O2,Cer 42:2;O2,Cer 43:0;O3,Cer 43:0;O4,Cer43:3;O4,FA28:0,FA29:0,FA 36:1,FA40:0和FA42:1的组合。Preferably, the characteristic differential lipid components screened out in step (4) are DGGA 36:6, HexCer 32:3; O2, HexCer 34:1; O4, HexCer 44:1; O4, PC 32:2, PC 33:2, PC 37:1, PC 38:1, PC 38:2, PC38:3, PC 40:2, PE 34:2, PE 37:1, PE 37:2, PE 37:4, PE 38:1, PE 38:2, PE 39:2, PE 40:2, PE 41:1, PE 41:2, PE 42:2, PG 31:1, PI 41:2, MGDG 36:2, MGDG 36:5, DG 40:0, DG 40:1, DG 42:0, TG 48:4, TG 50:3, TG 53:6, TG 55:7, TG 56:4, TG 56:5, TG 56:6, TG56:7, TG 57:2, TG 58:1, TG 58:5, TG 60:4, TG 60:7, TG 64:2, TG 66:2, TG 66:3 , TG 72:4, TG 72:5, Cer 34:0; O3, Cer 34:1; O3, Cer 34:1; O4, Cer 36:0; O3, Cer39:0; O3, Cer 40:0; O4, Cer 40:1; O2, Cer 40:1; O3, Cer 40:1; O4, Cer 40:2; O2, Cer 41:0; O4, Cer 41:1; O3, Cer 41:1; O4, Cer 41:2; O2, Cer 42:1; O2, Cer 42:2; O2, Cer 43:0; O3, Cer 43:0; O4, Cer43:3; O4, FA28:0, FA29:0, FA 36:1, a combination of FA40:0 and FA42:1.

优选的,所述步骤(4)中筛选出的特征差异脂质组分为DGGA 34:2,DGGA 34:3,DGGA 36:2,DGGA 36:3,DGGA 36:4,DGGA 36:6,HexCer 31:3;O2,HexCer 32:1;O4,HexCer32:2;O3,HexCer 32:3;O2,HexCer 34:1;O4,HexCer 44:1;O4,PA 36:2,PC 30:2,PC 32:2,PC 33:2,PC 36:0,PC 37:1,PC 37:2,PC 38:1,PC 38:2,PC 38:3,PC 40:2,PC 41:1,PE32:2,PE 34:2,PE 36:2,PE 37:1,PE 37:2,PE 37:3,PE 37:4,PE 38:1,PE 38:2,PE 38:3,PE 39:2,PE 40:2,PE 41:1,PE 41:2,PE 42:2,PG 31:1,PG 34:0,PI 32:0,PI 32:3,PI33:1,PI 33:2,PI 39:2,PI 40:2,PI 41:2,PI 41:3,SM 34:1;O2,SM 37:6;O2,MGDG 36:2,MGDG 36:3,MGDG 36:5,DGDG 35:2,DGDG 36:3,DGDG 36:4,DG 33:1,DG 36:0,DG 36:2,DG36:3,DG 38:0,DG 40:0,DG 40:1,DG 42:0,DG 42:3,DG 44:2,TG 46:0,TG 46:1,TG 46:2,TG 46:3,TG 47:2,TG 48:1,TG 48:4,TG 49:0,TG 49:1,TG 49:2,TG 49:3,TG 50:3,TG50:6,TG 51:3,TG 51:4,TG 51:6,TG 51:7,TG 52:4,TG 53:5,TG 53:6,TG 54:0,TG 54:6,TG 55:2,TG 55:3,TG 55:5,TG 55:6,TG 55:7,TG 56:1,TG 56:2,TG 56:4,TG 56:5,TG56:6,TG 56:7,TG 57:2,TG 57:4,TG 58:1,TG 58:2,TG 58:3,TG 58:5,TG 58:6,TG 58:7,TG 59:2,TG 59:3,TG 59:5,TG 60:1,TG 60:2,TG 60:3,TG 60:4,TG 60:7,TG 61:0,TG61:4,TG 61:6,TG 63:4,TG 64:1,TG 64:2,TG 64:3,TG 64:6,TG 65:3,TG 66:2,TG 66:3,TG 66:4,TG 72:4,TG 72:5,TG 74:5,Cer 31:1;O3,Cer 32:2;O3,Cer 32:3;O2,Cer 33:1;O3,Cer 34:0;O3,Cer 34:1;O3,Cer 34:1;O4,Cer 34:2;O2,Cer 36:0;O3,Cer 36:1;O3,Cer 39:0;O3,Cer 40:0;O4,Cer 40:1;O2,Cer 40:1;O3,Cer 40:1;O4,Cer 40:2;O2,Cer41:0;O4,Cer 41:1;O3,Cer 41:1;O4,Cer 41:2;O2,Cer 42:0;O3,Cer 42:1;O2,Cer 42:2;O2,Cer 43:0;O3,Cer 43:0;O4,Cer 43:3;O4,Cer 44:4;O3,FA25:0,FA28:0,FA29:0,FA34:1,FA 36:0,FA 36:1,FA 36:2,FA 38:0,FA40:0,FA40:1,FA40:2和FA42:1的组合。Preferably, the characteristic difference lipid components screened out in step (4) are DGGA 34:2, DGGA 34:3, DGGA 36:2, DGGA 36:3, DGGA 36:4, DGGA 36:6, HexCer 31:3; O2, HexCer 32:1; O4, HexCer32:2; O3, HexCer 32:3; O2, HexCer 34:1; O4, HexCer 44:1; O4, PA 36:2, PC 30:2, PC 32:2, PC 33:2, PC 36:0, PC 37:1, PC 37:2, PC 38:1, PC 38:2, PC 38:3, PC 40:2, PC 41:1, PE32:2, PE 34:2, PE 36:2, PE 37:1, PE 37:2, PE 37:3, PE 37:4, PE 38:1, PE 38:2, PE 38:3, PE 39:2, PE 40:2, PE 41:1, PE 41:2, PE 42:2, PG 31:1, PG 34:0, PI 32:0, PI 32:3, PI33:1 , PI 33:2, PI 39:2, PI 40:2, PI 41:2, PI 41:3, SM 34:1; O2, SM 37:6; O2, MGDG 36:2, MGDG 36:3, MGDG 36:5, DGDG 35:2, DGDG 36:3, DGDG 36:4, DG 33:1, DG 36:0, DG 36:2, DG36:3, DG 38:0, DG 40:0, DG 40:1, DG 42:0, DG 42:3, TG 44:2, TG 46:0, TG 46:1, TG 46:2, TG 46:3, TG 47:2, TG 48:1, TG 48:4, TG 49:0, TG 49:1 , TG 49:2, TG 49:3, TG 50:3, TG50:6, TG 51:3, TG 51:4, TG 51:6, TG 51:7, TG 52:4, TG 53:5, TG 53:6, TG 54:0, TG 54:6, TG 55:2, TG 55:3, TG 55:5, TG 55:6, TG 55:7, TG 56:1, TG 56:2, TG 56:4, TG 56:5, TG56:6, TG 56:7, TG 57:2, TG 57:4, TG 58:1, TG 58:2, TG 58:3, TG 58:5, TG 58:6, TG 58:7, TG 59:2, TG 59:3 , TG 59:5, TG 60:1, TG 60:2, TG 60:3, TG 60:4, TG 60:7, TG 61:0, TG61:4, TG 61:6, TG 63:4, TG 64:1, TG 64:2, TG 64:3, TG 64:6, TG 65:3, TG 66:2, TG 66:3, TG 66:4, TG 72:4, TG 72:5, TG 74:5, Cer 31:1; O3, Cer 32:2; O3, Cer 32:3; O2, Cer 33:1; O3, Cer 34:0; O3, Cer 34:1; O3, Cer 34:1; O3, Cer 36:1; O3, Cer 39:0; O3, Cer 40:0; O4, Cer 40:1; O2, Cer 40:1; O3, Cer 40:1; O4, Cer 40:2; O2, Cer41:0; O4, Cer 41:1; 41:2; O2, Cer 42:0; O3, Cer 42:1; O2, Cer 42:2; O2, Cer 43:0; O3, Cer 43:0; O4, Cer 43:3; O4, Cer 44:4; O3, FA25:0, FA28:0, FA29:0, FA34:1, FA 36:0, FA 36:1, FA 36:2, FA 38:0, FA40:0, FA40:1, a combination of FA40:2 and FA42:1.

优选的,所述步骤(4)中的特征差异脂质组分的名称根据LIPID MAPS数据库中的脂质分类和命名系统确定。Preferably, the names of the characteristic difference lipid components in step (4) are determined according to the lipid classification and naming system in the LIPID MAPS database.

本发明的第二方面提供一种用于豆粉鉴别的包含特征差异脂质组分的组合物,所述特征差异脂质组分选自DGGA 34:2,DGGA 34:3,DGGA 36:2,DGGA 36:3,DGGA 36:4,DGGA36:6,HexCer 31:3;O2,HexCer 32:1;O4,HexCer 32:2;O3,HexCer 32:3;O2,HexCer34:1;O4,HexCer 44:1;O4,PA 36:2,PC 30:2,PC 32:2,PC 33:2,PC 36:0,PC 37:1,PC 37:2,PC38:1,PC 38:2,PC 38:3,PC 40:2,PC 41:1,PE 32:2,PE 34:2,PE 36:2,PE 37:1,PE 37:2,PE 37:3,PE 37:4,PE 38:1,PE 38:2,PE 38:3,PE 39:2,PE 40:2,PE 41:1,PE 41:2,PE42:2,PG 31:1,PG 34:0,PI 32:0,PI 32:3,PI 33:1,PI 33:2,PI 39:2,PI 40:2,PI 41:2,PI 41:3,SM 34:1;O2,SM 37:6;O2,MGDG 36:2,MGDG 36:3,MGDG 36:5,DGDG 35:2,DGDG36:3,DGDG 36:4,DG 33:1,DG 36:0,DG 36:2,DG 36:3,DG 38:0,DG 40:0,DG 40:1,DG 42:0,DG 42:3,DG 44:2,TG 46:0,TG 46:1,TG 46:2,TG 46:3,TG 47:2,TG 48:1,TG 48:4,TG49:0,TG 49:1,TG 49:2,TG 49:3,TG 50:3,TG 50:6,TG 51:3,TG 51:4,TG 51:6,TG 51:7,TG 52:4,TG 53:5,TG 53:6,TG 54:0,TG 54:6,TG 55:2,TG 55:3,TG 55:5,TG 55:6,TG55:7,TG 56:1,TG 56:2,TG 56:4,TG 56:5,TG 56:6,TG 56:7,TG 57:2,TG 57:4,TG 58:1,TG 58:2,TG 58:3,TG 58:5,TG 58:6,TG 58:7,TG 59:2,TG 59:3,TG 59:5,TG 60:1,TG60:2,TG 60:3,TG 60:4,TG 60:7,TG 61:0,TG 61:4,TG 61:6,TG 63:4,TG 64:1,TG 64:2,TG 64:3,TG 64:6,TG 65:3,TG 66:2,TG 66:3,TG 66:4,TG 72:4,TG 72:5,TG 74:5,Cer31:1;O3,Cer 32:2;O3,Cer 32:3;O2,Cer 33:1;O3,Cer 34:0;O3,Cer 34:1;O3,Cer 34:1;O4,Cer 34:2;O2,Cer 36:0;O3,Cer 36:1;O3,Cer 39:0;O3,Cer 40:0;O4,Cer 40:1;O2,Cer 40:1;O3,Cer 40:1;O4,Cer 40:2;O2,Cer 41:0;O4,Cer 41:1;O3,Cer 41:1;O4,Cer41:2;O2,Cer 42:0;O3,Cer 42:1;O2,Cer 42:2;O2,Cer 43:0;O3,Cer 43:0;O4,Cer 43:3;O4,Cer 44:4;O3,FA25:0,FA28:0,FA29:0,FA 34:1,FA 36:0,FA 36:1,FA 36:2,FA 38:0,FA40:0,FA40:1,FA40:2和FA42:1中的两种或两种以上。The second aspect of the present invention provides a composition comprising characteristic differential lipid components for soybean powder identification, wherein the characteristic differential lipid components are selected from DGGA 34:2, DGGA 34:3, DGGA 36:2, DGGA 36:3, DGGA 36:4, DGGA36:6, HexCer 31:3; O2, HexCer 32:1; O4, HexCer 32:2; O3, HexCer 32:3; O2, HexCer34:1; O4, HexCer 44:1; O4, PA 36:2, PC 30:2, PC 32:2, PC 33:2, PC 36:0, PC 37:1, PC 37:2, PC38:1, PC 38:2, PC 38:3, PC 40:2, PC 41:1, PE 32:2, PE 34:2, PE 36:2, PE 37:1, PE 37:2, PE 37:3, PE 37:4, PE 38:1, PE 38:2, PE 38:3, PE 39:2, PE 40:2, PE 41:1, PE 41:2, PE42:2, PG 31:1, PG 34:0, PI 32:0, PI 32:3 , PI 33:1, PI 33:2, PI 39:2, PI 40:2, PI 41:2, PI 41:3, SM 34:1; O2, SM 37:6; O2, MGDG 36:2, MGDG 36:3, MGDG 36:5, DGDG 35:2, DGDG36:3, DGDG 36:4, DG 33:1,DG 36:0,DG 36:2,DG 36:3,DG 38:0,DG 40:0,DG 40:1,DG 42:0,DG 42:3,DG 44:2,TG 46:0,TG 46:1,TG 46:2,TG 46:3,TG 47:2,TG 48:1,TG 48:4,TG49:0 , TG 49:1, TG 49:2, TG 49:3, TG 50:3, TG 50:6, TG 51:3, TG 51:4, TG 51:6, TG 51:7, TG 52:4, TG 53:5, TG 53:6, TG 54:0, TG 54:6, TG 55:2, TG 55:3, TG 55:5, TG 55:6, TG 55:7, TG 56:1, TG 56:2, TG 56:4, TG 56:5, TG 56:6, TG 56:7, TG 57:2, TG 57:4, TG 58:1, TG 58:2, TG 58:3, TG 58:5, TG 58:6, TG 58:7, TG 59:2 , TG 59:3, TG 59:5, TG 60:1, TG60:2, TG 60:3, TG 60:4, TG 60:7, TG 61:0, TG 61:4, TG 61:6, TG 63:4, TG 64:1, TG 64:2, TG 64:3, TG 64:6, TG 65:3, TG 66:2, TG 66:3, TG 66:4, TG 72:4, TG 72:5, TG 74:5, Cer31:1; O3, Cer 32:2; O3, Cer 32:3; O2, Cer 33:1; O3, Cer 34:0; O3, Cer 34:1; O3, Cer 36:1; O3, Cer 39:0; O3, Cer 40:0; O4, Cer 40:1; O2, Cer 40:1; O3, Cer 40:1; O4, Cer 40:2; O2, Cer 41:0; O4, Cer 41:1; O3, Cer 41:1; O4, Cer41:2; O2, Cer 42:0; O3, Cer 42:1; O2, Cer 42:2; O2, Cer 43:0; O3, Cer 43:0; O4, Cer 43:3; O4, Cer 44:4; O3, FA25:0, FA28:0, FA29:0, FA 34:1, FA 36:0, FA 36:1, FA 36:2, FA 38:0, FA40:0, FA40:1, FA40:2 and FA42:1.

优选的,所述特征差异脂质组分为HexCer 34:1;O4,PC 38:3,PE 39:2,PE 41:2,PE 42:2,PG 31:1,PI 41:2,TG 56:6,TG 56:7,Cer 34:0;O3,Cer 34:1;O3,Cer 36:0;O3,Cer 39:0;O3,Cer 40:0;O4,Cer 40:1;O3,Cer 41:0;O4,Cer 43:0;O4,Cer 43:3;O4,FA28:0和FA29:0的组合。Preferably, the characteristic differential lipid components are HexCer 34:1; O4, PC 38:3, PE 39:2, PE 41:2, PE 42:2, PG 31:1, PI 41:2, TG 56:6, TG 56:7, Cer 34:0; O3, Cer 34:1; O3, Cer 36:0; O3, Cer 39:0; O3, Cer 40:0; O4, Cer 40:1; O3, Cer 41:0; O4, Cer 43:0; O4, Cer 43:3; O4, a combination of FA28:0 and FA29:0.

优选的,所述特征差异脂质组分为DGGA 36:6,HexCer 32:3;O2,HexCer 34:1;O4,HexCer 44:1;O4,PC 32:2,PC 33:2,PC 37:1,PC 38:1,PC 38:2,PC 38:3,PC 40:2,PE 34:2,PE 37:1,PE 37:2,PE 37:4,PE 38:1,PE 38:2,PE 39:2,PE 40:2,PE 41:1,PE 41:2,PE42:2,PG 31:1,PI 41:2,MGDG 36:2,MGDG 36:5,DG 40:0,DG 40:1,DG 42:0,DG 42:3,TG48:4,TG 50:3,TG 53:6,TG 55:7,TG 56:4,TG 56:5,TG 56:6,TG 56:7,TG 57:2,TG 58:1,TG 58:5,TG 60:4,TG 60:7,TG 64:2,TG 66:2,TG 66:3,TG 72:4,TG 72:5,Cer 34:0;O3,Cer 34:1;O3,Cer 34:1;O4,Cer 36:0;O3,Cer 39:0;O3,Cer 40:0;O4,Cer 40:1;O2,Cer40:1;O3,Cer 40:1;O4,Cer 40:2;O2,Cer 41:0;O4,Cer 41:1;O3,Cer 41:1;O4,Cer 41:2;O2,Cer 42:1;O2,Cer 42:2;O2,Cer 43:0;O3,Cer 43:0;O4,Cer 43:3;O4,FA28:0,FA29:0,FA 36:1,FA40:0和FA42:1的组合。Preferably, the characteristic difference lipid components are DGGA 36:6, HexCer 32:3; O2, HexCer 34:1; O4, HexCer 44:1; O4, PC 32:2, PC 33:2, PC 37:1, PC 38:1, PC 38:2, PC 38:3, PC 40:2, PE 34:2, PE 37:1, PE 37:2, PE 37:4, PE 38:1, PE 38:2, PE 39:2, PE 40:2, PE 41:1, PE 41:2, PE42:2, PG 31:1, PI 41:2, MGDG 36:2, MGDG 36:5, DG 40:0, DG 40:1, DG 42:0, DG 42:3, TG48:4, TG 50:3, TG 53:6, TG 55:7, TG 56:4, TG 56:5, TG 56:6, TG 56:7, TG 57:2, TG 58:1, TG 58:5, TG 60:4, TG 60:7, TG 64:2, TG 66:2, TG 66:3, TG 72:4 , TG 72:5, Cer 34:0; O3, Cer 34:1; O3, Cer 34:1; O4, Cer 36:0; O3, Cer 39:0; O3, Cer 40:0; O4, Cer 40:1; O2, Cer40:1; O3, Cer 40:1; O4, Cer 40:2; O2, Cer 41:0; O4, Cer 41:1; O3, Cer 41:1; O4, Cer 41:2; O2, Cer 42:1; O2, Cer 42:2; O2, Cer 43:0; O3, Cer 43:0; O4, Cer 43:3; O4, FA28:0, FA29:0, FA 36:1, FA40:0 and FA42:1.

优选的,所述特征差异脂质组分为DGGA 34:2,DGGA 34:3,DGGA 36:2,DGGA 36:3,DGGA 36:4,DGGA 36:6,HexCer 31:3;O2,HexCer 32:1;O4,HexCer 32:2;O3,HexCer32:3;O2,HexCer 34:1;O4,HexCer 44:1;O4,PA 36:2,PC 30:2,PC 32:2,PC 33:2,PC 36:0,PC37:1,PC 37:2,PC 38:1,PC 38:2,PC 38:3,PC 40:2,PC 41:1,PE 32:2,PE 34:2,PE 36:2,PE 37:1,PE 37:2,PE 37:3,PE 37:4,PE 38:1,PE 38:2,PE 38:3,PE 39:2,PE 40:2,PE41:1,PE 41:2,PE 42:2,PG 31:1,PG 34:0,PI 32:0,PI 32:3,PI 33:1,PI 33:2,PI 39:2,PI 40:2,PI 41:2,PI 41:3,SM 34:1;O2,SM 37:6;O2,MGDG 36:2,MGDG 36:3,MGDG 36:5,DGDG 35:2,DGDG 36:3,DGDG 36:4,DG 33:1,DG 36:0,DG 36:2,DG 36:3,DG 38:0,DG 40:0,DG 40:1,DG 42:0,DG 42:3,DG 44:2,TG 46:0,TG 46:1,TG 46:2,TG 46:3,TG 47:2,TG48:1,TG 48:4,TG 49:0,TG 49:1,TG 49:2,TG 49:3,TG 50:3,TG 50:6,TG 51:3,TG 51:4,TG 51:6,TG 51:7,TG 52:4,TG 53:5,TG 53:6,TG 54:0,TG 54:6,TG 55:2,TG 55:3,TG55:5,TG 55:6,TG 55:7,TG 56:1,TG 56:2,TG 56:4,TG 56:5,TG 56:6,TG 56:7,TG 57:2,TG 57:4,TG 58:1,TG 58:2,TG 58:3,TG 58:5,TG 58:6,TG 58:7,TG 59:2,TG 59:3,TG59:5,TG 60:1,TG 60:2,TG 60:3,TG 60:4,TG 60:7,TG 61:0,TG 61:4,TG 61:6,TG 63:4,TG 64:1,TG 64:2,TG 64:3,TG 64:6,TG 65:3,TG 66:2,TG 66:3,TG 66:4,TG 72:4,TG72:5,TG 74:5,Cer 31:1;O3,Cer 32:2;O3,Cer 32:3;O2,Cer 33:1;O3,Cer 34:0;O3,Cer34:1;O3,Cer 34:1;O4,Cer 34:2;O2,Cer 36:0;O3,Cer 36:1;O3,Cer 39:0;O3,Cer 40:0;O4,Cer 40:1;O2,Cer 40:1;O3,Cer 40:1;O4,Cer 40:2;O2,Cer 41:0;O4,Cer 41:1;O3,Cer 41:1;O4,Cer 41:2;O2,Cer 42:0;O3,Cer 42:1;O2,Cer 42:2;O2,Cer 43:0;O3,Cer43:0;O4,Cer 43:3;O4,Cer 44:4;O3,FA25:0,FA28:0,FA29:0,FA 34:1,FA 36:0,FA 36:1,FA 36:2,FA 38:0,FA40:0,FA40:1,FA40:2和FA42:1的组合。Preferably, the characteristic difference lipid components are DGGA 34:2, DGGA 34:3, DGGA 36:2, DGGA 36:3, DGGA 36:4, DGGA 36:6, HexCer 31:3; O2, HexCer 32:1; O4, HexCer 32:2; O3, HexCer32:3; O2, HexCer 34:1; O4, HexCer 44:1; O4, PA 36:2, PC 30:2, PC 32:2, PC 33:2, PC 36:0, PC37:1, PC 37:2, PC 38:1, PC 38:2, PC 38:3, PC 40:2, PC 41:1, PE 32:2, PE 34:2, PE 36:2, PE 37:1, PE 37:2, PE 37:3, PE 37:4, PE 38:1, PE 38:2, PE 38:3, PE 39:2, PE 40:2, PE41:1, PE 41:2, PE 42:2, PG 31:1, PG 34:0, PI 32:0, PI 32:3, PI 33:1, PI 33:2 , PI 39:2, PI 40:2, PI 41:2, PI 41:3, SM 34:1; O2, SM 37:6; O2, MGDG 36:2, MGDG 36:3, MGDG 36:5, DGDG 35:2, DGDG 36:3, DGDG 36:4, DG 33:1, DG 36:0, DG 36:2, DG 36:3, DG 38:0, DG 40:0, DG 40:1, DG 42:0, DG 42:3, DG 44:2, TG 46:0, TG 46:1, TG 46:2, TG 46:3, TG 47:2, TG48:1, TG 48:4, TG 49:0, TG 49:1 , TG 49:2, TG 49:3, TG 50:3, TG 50:6, TG 51:3, TG 51:4, TG 51:6, TG 51:7, TG 52:4, TG 53:5, TG 53:6, TG 54:0, TG 54:6, TG 55:2, TG 55:3, TG55:5, TG 55:6, TG 55:7, TG 56:1, TG 56:2, TG 56:4, TG 56:5, TG 56:6, TG 56:7, TG 57:2, TG 57:4, TG 58:1, TG 58:2, TG 58:3, TG 58:5, TG 58:6, TG 58:7, TG 59:2, TG 59: 3, TG59:5, TG 60:1, TG 60:2, TG 60:3, TG 60:4, TG 60:7, TG 61:0, TG 61:4, TG 61:6, TG 63:4, TG 64:1, TG 64:2, TG 64:3, TG 64:6, TG 65:3, TG 66:2, TG 66:3, TG 66:4, TG 72:4, TG 72:5, TG 74:5, Cer 31:1; O3, Cer 32:2; O3, Cer 32:3; O2, Cer 33:1; O3, Cer 34:0; O3, Cer 34:1; O3, Cer 34:1; O4, Cer 34:2; O2, Cer 36:0; O3 , Cer 36:1; O3, Cer 39:0; O3, Cer 40:0; O4, Cer 40:1; O2, Cer 40:1; O3, Cer 40:1; O4, Cer 40:2; O2, Cer 41:0; O4, Cer 41:1; O3, Cer 41:1; O4, Cer 41:2; O2, Cer 42:0; O3, Cer 42:1; O2, Cer 42:2; O2, Cer 43:0; O3, Cer43:0; O4, Cer 43:3; O4, Cer 44:4; O3, FA25:0, FA28:0, FA29:0, FA 34:1, FA 36:0, FA 36:1, FA 36:2, FA 38:0, FA40:0, FA40:1, a combination of FA40:2 and FA42:1.

优选的,所述特征差异脂质组分的名称根据LIPID MAPS数据库中的脂质分类和命名系统确定。Preferably, the name of the characteristic difference lipid component is determined according to the lipid classification and naming system in the LIPID MAPS database.

优选的,所述豆粉为由芸豆、蚕豆、黑大豆、红小豆、豇豆、绿豆、豌豆或鹰嘴豆制备的豆粉。Preferably, the bean flour is bean flour prepared from kidney beans, broad beans, black soybeans, adzuki beans, cowpeas, mung beans, peas or chickpeas.

本发明的第三方面提供一种包含特征差异脂质组分的组合物在豆粉鉴别方面的应用,所述特征差异脂质组分选自DGGA 34:2,DGGA 34:3,DGGA 36:2,DGGA 36:3,DGGA 36:4,DGGA 36:6,HexCer 31:3;O2,HexCer 32:1;O4,HexCer 32:2;O3,HexCer 32:3;O2,HexCer 34:1;O4,HexCer 44:1;O4,PA 36:2,PC 30:2,PC 32:2,PC 33:2,PC 36:0,PC 37:1,PC 37:2,PC 38:1,PC 38:2,PC 38:3,PC 40:2,PC 41:1,PE 32:2,PE 34:2,PE 36:2,PE37:1,PE 37:2,PE 37:3,PE 37:4,PE 38:1,PE 38:2,PE 38:3,PE 39:2,PE 40:2,PE 41:1,PE 41:2,PE 42:2,PG 31:1,PG 34:0,PI 32:0,PI 32:3,PI 33:1,PI 33:2,PI 39:2,PI40:2,PI 41:2,PI 41:3,SM 34:1;O2,SM 37:6;O2,MGDG 36:2,MGDG 36:3,MGDG 36:5,DGDG35:2,DGDG 36:3,DGDG 36:4,DG 33:1,DG 36:0,DG 36:2,DG 36:3,DG 38:0,DG 40:0,DG40:1,DG 42:0,DG 42:3,DG 44:2,TG 46:0,TG 46:1,TG 46:2,TG 46:3,TG 47:2,TG 48:1,TG 48:4,TG 49:0,TG 49:1,TG 49:2,TG 49:3,TG 50:3,TG 50:6,TG 51:3,TG 51:4,TG51:6,TG 51:7,TG 52:4,TG 53:5,TG 53:6,TG 54:0,TG 54:6,TG 55:2,TG 55:3,TG 55:5,TG 55:6,TG 55:7,TG 56:1,TG 56:2,TG 56:4,TG 56:5,TG 56:6,TG 56:7,TG 57:2,TG57:4,TG 58:1,TG 58:2,TG 58:3,TG 58:5,TG 58:6,TG 58:7,TG 59:2,TG 59:3,TG 59:5,TG 60:1,TG 60:2,TG 60:3,TG 60:4,TG 60:7,TG 61:0,TG 61:4,TG 61:6,TG 63:4,TG64:1,TG 64:2,TG 64:3,TG 64:6,TG 65:3,TG 66:2,TG 66:3,TG 66:4,TG 72:4,TG 72:5,TG 74:5,Cer 31:1;O3,Cer 32:2;O3,Cer 32:3;O2,Cer 33:1;O3,Cer 34:0;O3,Cer 34:1;O3,Cer 34:1;O4,Cer 34:2;O2,Cer 36:0;O3,Cer 36:1;O3,Cer 39:0;O3,Cer 40:0;O4,Cer 40:1;O2,Cer 40:1;O3,Cer 40:1;O4,Cer 40:2;O2,Cer 41:0;O4,Cer 41:1;O3,Cer41:1;O4,Cer 41:2;O2,Cer 42:0;O3,Cer 42:1;O2,Cer 42:2;O2,Cer 43:0;O3,Cer 43:0;O4,Cer 43:3;O4,Cer 44:4;O3,FA25:0,FA28:0,FA29:0,FA 34:1,FA 36:0,FA 36:1,FA36:2,FA 38:0,FA40:0,FA40:1,FA40:2和FA42:1中的两种或两种以上。The third aspect of the present invention provides an application of a composition comprising a characteristic difference lipid component in soybean powder identification, wherein the characteristic difference lipid component is selected from DGGA 34:2, DGGA 34:3, DGGA 36:2, DGGA 36:3, DGGA 36:4, DGGA 36:6, HexCer 31:3; O2, HexCer 32:1; O4, HexCer 32:2; O3, HexCer 32:3; O2, HexCer 34:1; O4, HexCer 44:1; O4, PA 36:2, PC 30:2, PC 32:2, PC 33:2, PC 36:0, PC 37:1, PC 37:2, PC 38:1, PC 38:2, PC 38:3, PC 40:2, PC 41:1, PE 32:2, PE 34:2, PE 36:2, PE 37:1, PE 37:2, PE 37:3, PE 37:4, PE 38:1, PE 38:2, PE 38:3, PE 39:2, PE 40:2, PE 41:1, PE 41:2, PE 42:2, PG 31:1, PG 34:0, PI 32:0 , PI 32:3, PI 33:1, PI 33:2, PI 39:2, PI40:2, PI 41:2, PI 41:3, SM 34:1; O2, SM 37:6; O2, MGDG 36:2, MGDG 36:3, MGDG 36:5, DGDG35:2, DGDG 36:3, DGDG 36:4, DG 33:1, DG 36:0, DG 36:2, DG 36:3, DG 38:0, DG 40:0, DG40:1, DG 42:0, DG 42:3, DG 44:2, TG 46:0, TG 46:1, TG 46:2, TG 46:3, TG 47:2, TG 48:1, TG 48:4 , TG 49:0, TG 49:1, TG 49:2, TG 49:3, TG 50:3, TG 50:6, TG 51:3, TG 51:4, TG51:6, TG 51:7, TG 52:4, TG 53:5, TG 53:6, TG 54:0, TG 54:6, TG 55:2, TG 55:3, TG 55:5, TG 55:6, TG 55:7, TG 56:1, TG 56:2, TG 56:4, TG 56:5, TG 56:6, TG 56:7, TG 57:2, TG57:4, TG 58:1, TG 58:2, TG 58:3, TG 58:5, TG 58:6, TG 58:7 , TG 59:2, TG 59:3, TG 59:5, TG 60:1, TG 60:2, TG 60:3, TG 60:4, TG 60:7, TG 61:0, TG 61:4, TG 61:6, TG 63:4, TG64:1, TG 64:2, TG 64:3, TG 64:6, TG 65:3, TG 66:2, TG 66:4, TG 72:4, TG 72:5, TG 74:5, Cer 31:1; O3, Cer 32:2; O3, Cer 32:3; O2, Cer 33:1; O3, Cer 34:0; O3, Cer 34:1; O3, Cer 34:1; O4, Cer 34 :2; O2, Cer 36:0; O3, Cer 36:1; O3, Cer 39:0; O3, Cer 40:0; O4, Cer 40:1; O2, Cer 40:1; O3, Cer 40:1; O4, Cer 40:2; O2, Cer 41:0; O4, Cer 41:1; O3, Cer41:1; O4, Cer 41:2; O2, Cer 42:0; O3, Cer 42:1; O2, Cer 42:2; O2, Cer 43:0; O3, Cer 43:0; O4, Cer 43:3; O4, Cer 44:4; O3, FA25:0, FA28:0, FA29:0, FA 34:1, FA 36:0, FA 36:1, FA36:2, FA 38:0, FA40:0, FA40:1, FA40:2 and FA42:1.

优选的,所述特征差异脂质组分为HexCer 34:1;O4,PC 38:3,PE 39:2,PE 41:2,PE 42:2,PG 31:1,PI 41:2,TG 56:6,TG 56:7,Cer 34:0;O3,Cer 34:1;O3,Cer 36:0;O3,Cer 39:0;O3,Cer 40:0;O4,Cer 40:1;O3,Cer 41:0;O4,Cer 43:0;O4,Cer 43:3;O4,FA28:0和FA29:0的组合。Preferably, the characteristic differential lipid components are HexCer 34:1; O4, PC 38:3, PE 39:2, PE 41:2, PE 42:2, PG 31:1, PI 41:2, TG 56:6, TG 56:7, Cer 34:0; O3, Cer 34:1; O3, Cer 36:0; O3, Cer 39:0; O3, Cer 40:0; O4, Cer 40:1; O3, Cer 41:0; O4, Cer 43:0; O4, Cer 43:3; O4, a combination of FA28:0 and FA29:0.

优选的,所述特征差异脂质组分为DGGA 36:6,HexCer 32:3;O2,HexCer 34:1;O4,HexCer 44:1;O4,PC 32:2,PC 33:2,PC 37:1,PC 38:1,PC 38:2,PC 38:3,PC 40:2,PE 34:2,PE 37:1,PE 37:2,PE 37:4,PE 38:1,PE 38:2,PE 39:2,PE 40:2,PE 41:1,PE 41:2,PE42:2,PG 31:1,PI 41:2,MGDG 36:2,MGDG 36:5,DG 40:0,DG 40:1,DG 42:0,DG 42:3,TG48:4,TG 50:3,TG 53:6,TG 55:7,TG 56:4,TG 56:5,TG 56:6,TG 56:7,TG 57:2,TG 58:1,TG 58:5,TG 60:4,TG 60:7,TG 64:2,TG 66:2,TG 66:3,TG 72:4,TG 72:5,Cer 34:0;O3,Cer 34:1;O3,Cer 34:1;O4,Cer 36:0;O3,Cer 39:0;O3,Cer 40:0;O4,Cer 40:1;O2,Cer40:1;O3,Cer 40:1;O4,Cer 40:2;O2,Cer 41:0;O4,Cer 41:1;O3,Cer 41:1;O4,Cer 41:2;O2,Cer 42:1;O2,Cer 42:2;O2,Cer 43:0;O3,Cer 43:0;O4,Cer 43:3;O4,FA28:0,FA29:0,FA 36:1,FA40:0和FA42:1的组合。Preferably, the characteristic difference lipid components are DGGA 36:6, HexCer 32:3; O2, HexCer 34:1; O4, HexCer 44:1; O4, PC 32:2, PC 33:2, PC 37:1, PC 38:1, PC 38:2, PC 38:3, PC 40:2, PE 34:2, PE 37:1, PE 37:2, PE 37:4, PE 38:1, PE 38:2, PE 39:2, PE 40:2, PE 41:1, PE 41:2, PE42:2, PG 31:1, PI 41:2, MGDG 36:2, MGDG 36:5, DG 40:0, DG 40:1, DG 42:0, DG 42:3, TG48:4, TG 50:3, TG 53:6, TG 55:7, TG 56:4, TG 56:5, TG 56:6, TG 56:7, TG 57:2, TG 58:1, TG 58:5, TG 60:4, TG 60:7, TG 64:2, TG 66:2, TG 66:3, TG 72:4 , TG 72:5, Cer 34:0; O3, Cer 34:1; O3, Cer 34:1; O4, Cer 36:0; O3, Cer 39:0; O3, Cer 40:0; O4, Cer 40:1; O2, Cer40:1; O3, Cer 40:1; O4, Cer 40:2; O2, Cer 41:0; O4, Cer 41:1; O3, Cer 41:1; O4, Cer 41:2; O2, Cer 42:1; O2, Cer 42:2; O2, Cer 43:0; O3, Cer 43:0; O4, Cer 43:3; O4, FA28:0, FA29:0, FA 36:1, FA40:0 and FA42:1.

优选的,所述特征差异脂质组分为DGGA 34:2,DGGA 34:3,DGGA 36:2,DGGA 36:3,DGGA 36:4,DGGA 36:6,HexCer 31:3;O2,HexCer 32:1;O4,HexCer 32:2;O3,HexCer32:3;O2,HexCer 34:1;O4,HexCer 44:1;O4,PA 36:2,PC 30:2,PC 32:2,PC 33:2,PC 36:0,PC37:1,PC 37:2,PC 38:1,PC 38:2,PC 38:3,PC 40:2,PC 41:1,PE 32:2,PE 34:2,PE 36:2,PE 37:1,PE 37:2,PE 37:3,PE 37:4,PE 38:1,PE 38:2,PE 38:3,PE 39:2,PE 40:2,PE41:1,PE 41:2,PE 42:2,PG 31:1,PG 34:0,PI 32:0,PI 32:3,PI 33:1,PI 33:2,PI 39:2,PI 40:2,PI 41:2,PI 41:3,SM 34:1;O2,SM 37:6;O2,MGDG 36:2,MGDG 36:3,MGDG 36:5,DGDG 35:2,DGDG 36:3,DGDG 36:4,DG 33:1,DG 36:0,DG 36:2,DG 36:3,DG 38:0,DG 40:0,DG 40:1,DG 42:0,DG 42:3,DG 44:2,TG 46:0,TG 46:1,TG 46:2,TG 46:3,TG 47:2,TG48:1,TG 48:4,TG 49:0,TG 49:1,TG 49:2,TG 49:3,TG 50:3,TG 50:6,TG 51:3,TG 51:4,TG 51:6,TG 51:7,TG 52:4,TG 53:5,TG 53:6,TG 54:0,TG 54:6,TG 55:2,TG 55:3,TG55:5,TG 55:6,TG 55:7,TG 56:1,TG 56:2,TG 56:4,TG 56:5,TG 56:6,TG 56:7,TG 57:2,TG 57:4,TG 58:1,TG 58:2,TG 58:3,TG 58:5,TG 58:6,TG 58:7,TG 59:2,TG 59:3,TG59:5,TG 60:1,TG 60:2,TG 60:3,TG 60:4,TG 60:7,TG 61:0,TG 61:4,TG 61:6,TG 63:4,TG 64:1,TG 64:2,TG 64:3,TG 64:6,TG 65:3,TG 66:2,TG 66:3,TG 66:4,TG 72:4,TG72:5,TG 74:5,Cer 31:1;O3,Cer 32:2;O3,Cer 32:3;O2,Cer 33:1;O3,Cer 34:0;O3,Cer34:1;O3,Cer 34:1;O4,Cer 34:2;O2,Cer 36:0;O3,Cer 36:1;O3,Cer 39:0;O3,Cer 40:0;O4,Cer 40:1;O2,Cer 40:1;O3,Cer 40:1;O4,Cer 40:2;O2,Cer 41:0;O4,Cer 41:1;O3,Cer 41:1;O4,Cer 41:2;O2,Cer 42:0;O3,Cer 42:1;O2,Cer 42:2;O2,Cer 43:0;O3,Cer43:0;O4,Cer 43:3;O4,Cer 44:4;O3,FA25:0,FA28:0,FA29:0,FA 34:1,FA 36:0,FA 36:1,FA 36:2,FA 38:0,FA40:0,FA40:1,FA40:2和FA42:1的组合。Preferably, the characteristic difference lipid components are DGGA 34:2, DGGA 34:3, DGGA 36:2, DGGA 36:3, DGGA 36:4, DGGA 36:6, HexCer 31:3; O2, HexCer 32:1; O4, HexCer 32:2; O3, HexCer32:3; O2, HexCer 34:1; O4, HexCer 44:1; O4, PA 36:2, PC 30:2, PC 32:2, PC 33:2, PC 36:0, PC37:1, PC 37:2, PC 38:1, PC 38:2, PC 38:3, PC 40:2, PC 41:1, PE 32:2, PE 34:2, PE 36:2, PE 37:1, PE 37:2, PE 37:3, PE 37:4, PE 38:1, PE 38:2, PE 38:3, PE 39:2, PE 40:2, PE41:1, PE 41:2, PE 42:2, PG 31:1, PG 34:0, PI 32:0, PI 32:3, PI 33:1, PI 33:2 , PI 39:2, PI 40:2, PI 41:2, PI 41:3, SM 34:1; O2, SM 37:6; O2, MGDG 36:2, MGDG 36:3, MGDG 36:5, DGDG 35:2, DGDG 36:3, DGDG 36:4, DG 33:1, DG 36:0, DG 36:2, DG 36:3, DG 38:0, DG 40:0, DG 40:1, DG 42:0, DG 42:3, DG 44:2, TG 46:0, TG 46:1, TG 46:2, TG 46:3, TG 47:2, TG48:1, TG 48:4, TG 49:0, TG 49:1 , TG 49:2, TG 49:3, TG 50:3, TG 50:6, TG 51:3, TG 51:4, TG 51:6, TG 51:7, TG 52:4, TG 53:5, TG 53:6, TG 54:0, TG 54:6, TG 55:2, TG 55:3, TG55:5, TG 55:6, TG 55:7, TG 56:1, TG 56:2, TG 56:4, TG 56:5, TG 56:6, TG 56:7, TG 57:2, TG 57:4, TG 58:1, TG 58:2, TG 58:3, TG 58:5, TG 58:6, TG 58:7, TG 59:2, TG 59: 3, TG59:5, TG 60:1, TG 60:2, TG 60:3, TG 60:4, TG 60:7, TG 61:0, TG 61:4, TG 61:6, TG 63:4, TG 64:1, TG 64:2, TG 64:3, TG 64:6, TG 65:3, TG 66:2, TG 66:3, TG 66:4, TG 72:4, TG 72:5, TG 74:5, Cer 31:1; O3, Cer 32:2; O3, Cer 32:3; O2, Cer 33:1; O3, Cer 34:0; O3, Cer 34:1; O3, Cer 34:1; O4, Cer 34:2; O2, Cer 36:0; O3 , Cer 36:1; O3, Cer 39:0; O3, Cer 40:0; O4, Cer 40:1; O2, Cer 40:1; O3, Cer 40:1; O4, Cer 40:2; O2, Cer 41:0; O4, Cer 41:1; O3, Cer 41:1; O4, Cer 41:2; O2, Cer 42:0; O3, Cer 42:1; O2, Cer 42:2; O2, Cer 43:0; O3, Cer43:0; O4, Cer 43:3; O4, Cer 44:4; O3, FA25:0, FA28:0, FA29:0, FA 34:1, FA 36:0, FA 36:1, FA 36:2, FA 38:0, FA40:0, FA40:1, a combination of FA40:2 and FA42:1.

优选的,所述特征差异脂质组分的名称根据LIPID MAPS数据库中的脂质分类和命名系统确定。Preferably, the name of the characteristic difference lipid component is determined according to the lipid classification and naming system in the LIPID MAPS database.

优选的,所述豆粉为由芸豆、蚕豆、黑大豆、红小豆、豇豆、绿豆、豌豆或鹰嘴豆制备的豆粉。Preferably, the bean flour is bean flour prepared from kidney beans, broad beans, black soybeans, adzuki beans, cowpeas, mung beans, peas or chickpeas.

本发明的有益效果:Beneficial effects of the present invention:

本发明提供的基于特征差异脂质组分的豆粉鉴别方法,可以全面获得不同类型豆子豆粉的脂质组分信息,利用正交偏最小二乘判别分析可以筛选不同类型豆子豆粉的特征差异脂质组分,基于特征差异脂质组分可以很好的区分不同类型豆子的豆粉,为市售豆粉的鉴别提供了一种优良的检测方法。The bean powder identification method based on characteristic difference lipid components provided by the present invention can comprehensively obtain lipid component information of bean powder of different types, and can screen the characteristic difference lipid components of bean powder of different types by orthogonal partial least squares discriminant analysis. The bean powder of different types of beans can be well distinguished based on the characteristic difference lipid components, thereby providing an excellent detection method for the identification of commercially available bean powder.

附图说明BRIEF DESCRIPTION OF THE DRAWINGS

图1为区分不同豆粉的OPLS-DA得分图(A)和置换检验图(B),其中(AB)表示红小豆、(BS)表示黑大豆、(C)表示豇豆、(CP)表示鹰嘴豆、(FB)表示蚕豆、(KB)表示芸豆、(MB)表示绿豆、(P)表示豌豆;Figure 1 shows the OPLS-DA score diagram (A) and permutation test diagram (B) for distinguishing different bean flours, where (AB) represents adzuki beans, (BS) represents black soybeans, (C) represents cowpeas, (CP) represents chickpeas, (FB) represents broad beans, (KB) represents kidney beans, (MB) represents mung beans, and (P) represents peas;

图2为基于特征差异脂质组分的层次聚类分析图,其中(AB)表示红小豆、(BS)表示黑大豆、(C)表示豇豆、(CP)表示鹰嘴豆、(FB)表示蚕豆、(KB)表示芸豆、(MB)表示绿豆、(P)表示豌豆。Figure 2 is a hierarchical cluster analysis diagram based on characteristic differential lipid components, where (AB) represents adzuki bean, (BS) represents black soybean, (C) represents cowpea, (CP) represents chickpea, (FB) represents broad bean, (KB) represents kidney bean, (MB) represents mung bean, and (P) represents pea.

具体实施方式DETAILED DESCRIPTION

下面结合具体实施例进一步阐明发明,应理解这些实施例仅用于说明本发明而不用于限制本发明的范围,在阅读了本发明之后,本领域技术人员对本发明的各种等价形式的修改均落于本申请所附权利要求所限定的范围。The invention is further explained below in conjunction with specific examples. It should be understood that these examples are only used to illustrate the invention and are not used to limit the scope of the invention. After reading the invention, various equivalent modifications of the invention by those skilled in the art all fall within the scope defined by the claims attached to this application.

实施例1、基于脂质组学的豆粉鉴别方法Example 1. Soybean powder identification method based on lipidomics

1、试验方法1. Test methods

步骤1:收集八种豆子(芸豆、蚕豆、黑大豆、红小豆、豇豆、绿豆、豌豆、鹰嘴豆),每种豆子选取3个不同的瓶中,共计24份样品(各种豆子的产地、品种及年份参见下表1),每份样品均清洗去除杂质,冻干72小时。冻干后的豆子样品研磨至粉末,粉末置于-20℃冰箱中储存备用。Step 1: Collect eight kinds of beans (kidney beans, broad beans, black soybeans, red beans, cowpeas, mung beans, peas, chickpeas), select three different bottles for each bean, a total of 24 samples (the origin, variety and year of various beans are shown in Table 1 below), each sample is washed to remove impurities, and freeze-dried for 72 hours. The freeze-dried bean samples are ground into powder, and the powder is stored in a -20℃ refrigerator for later use.

表124份豆子样品的品种Table 1 Varieties of 24 bean samples

准确称取不同产地的绿豆粉末样品0.5g,置于15mL的离心管中,加入5mL的甲醇:甲基叔丁基醚(1:2,v/v)提取液,涡旋震荡1h,接着在4℃条件下,5000rpm离心10分钟,收集上清液,氮气吹干,加入1mL二氯甲烷:甲醇(50:50,v/v)提取液复溶。复溶液用0.22μm的亲水聚四氟乙烯滤膜过滤,得到滤液,即为上机检测样品。质量控制QC样品为所有样品的提取物等量混合制备而成。Accurately weigh 0.5g of mung bean powder samples from different origins, place them in a 15mL centrifuge tube, add 5mL of methanol: methyl tert-butyl ether (1:2, v/v) extract, vortex and shake for 1h, then centrifuge at 5000rpm for 10 minutes at 4℃, collect the supernatant, blow dry with nitrogen, and add 1mL of dichloromethane: methanol (50:50, v/v) extract to re-dissolve. The re-solution was filtered with a 0.22μm hydrophilic polytetrafluoroethylene filter membrane to obtain the filtrate, which was the sample for machine detection. The quality control QC sample was prepared by mixing equal amounts of extracts from all samples.

步骤2:采用超高效液相色谱串联飞行时间质谱仪采集不同产地绿豆样品的质谱信息,所使用的条件如下:Step 2: Ultra-high performance liquid chromatography tandem time-of-flight mass spectrometry was used to collect mass spectrometric information of mung bean samples from different origins. The conditions used were as follows:

色谱条件:色谱柱为Phenomenex Kinetex C18色谱柱;流动相A为含5mM醋酸铵的体积比为1:1:1的水、甲醇和乙腈的混合溶液,流动相B为含5mM醋酸铵的体积比为5:1的异丙醇和乙腈混合溶液;流速为0.4mL/min;梯度洗脱程序如下:Chromatographic conditions: The chromatographic column was a Phenomenex Kinetex C18 column; the mobile phase A was a mixed solution of water, methanol, and acetonitrile in a volume ratio of 1:1:1 containing 5 mM ammonium acetate, and the mobile phase B was a mixed solution of isopropanol and acetonitrile in a volume ratio of 5:1 containing 5 mM ammonium acetate; the flow rate was 0.4 mL/min; the gradient elution program was as follows:

时间time 流动相AMobile phase A 流动相BMobile phase B 0-0.5min0-0.5min 80%80% 20%20% 0.5-1.5min0.5-1.5min 80%-60%80%-60% 20%-40%20%-40% 1.5-3.0min1.5-3.0min 60%-40%60%-40% 40%-60%40%-60% 3.0-13min3.0-13min 40%-2%40%-2% 60%-98%60%-98% 13.0-13.1min13.0-13.1min 2%-80%2%-80% 98%-20%98%-20% 13.1-17.0min13.1-17.0min 80%80% 20%20%

.

质谱条件:采用电喷雾电离离子源ESI,分别在正离子和负离子模式下采集数据,离子源温度600℃,碰撞能量为35eV,正离子模式喷雾电压+5500V,负离子模式-4500V。质谱采用全扫描模式,建立信息关联采集方法结合自动动态背景扣除。MS质量检测范围为m/z100-1000,MS/MS质量检测范围为m/z 50-1200。每采集5次样品后,利用自动校正液传输系统执行一次外部精确质量校正,保证质谱仪在数据采集过程中的高质量精度。Mass spectrometry conditions: Electrospray ionization (ESI) was used to collect data in positive and negative ion modes, respectively. The ion source temperature was 600°C, the collision energy was 35 eV, the spray voltage was +5500V in positive ion mode, and -4500V in negative ion mode. The mass spectrometer adopted full scan mode, and an information correlation acquisition method was established in combination with automatic dynamic background subtraction. The MS mass detection range was m/z100-1000, and the MS/MS mass detection range was m/z 50-1200. After every 5 samples were collected, an external accurate mass calibration was performed using the automatic calibration fluid transfer system to ensure the high mass accuracy of the mass spectrometer during data acquisition.

数据采集使用Analyst进行实时采集,采用MarkerView软件对质谱得到的原始数据进行解卷积、峰提取和峰对齐等数据处理,获得包含保留时间、质荷比和离子丰度信息的数据矩阵,用于后续化学计量学分析。Data acquisition was performed in real time using Analyst, and MarkerView software was used to perform deconvolution, peak extraction, peak alignment and other data processing on the raw data obtained from the mass spectrometry to obtain a data matrix containing retention time, mass-to-charge ratio and ion abundance information for subsequent chemometric analysis.

步骤3:使用LIPID MAPS数据库,通过比对脂质组分的精确质量数、同位素丰度分布和二级离子碎片信息,对鉴定到的脂质组分进行定性鉴别。利用MS-DIAL软件、MS-FINDER软件和PeakView软件进行分子预测。然后再通过脂质同位素内标,对脂质成分进行半定量分析。Step 3: Use the LIPID MAPS database to qualitatively identify the identified lipid components by comparing their accurate mass, isotope abundance distribution, and secondary ion fragment information. Use MS-DIAL, MS-FINDER, and PeakView software for molecular prediction. Then, use lipid isotope internal standards to semi-quantitatively analyze lipid components.

步骤4:采用正交偏最小二乘判别分析(OPLS-DA)对不同类型豆子豆粉的脂质组分数据进行分析,构建OPLS-DA模型。根据OPLS-DA模型的VIP值以及ANOVA的p值,选择VIP>1及p<0.05的代谢物作为区分不同类型豆子豆粉的特征脂质组分。Step 4: Orthogonal partial least squares discriminant analysis (OPLS-DA) was used to analyze the lipid component data of different types of bean flour and construct an OPLS-DA model. According to the VIP value of the OPLS-DA model and the p value of ANOVA, metabolites with VIP>1 and p<0.05 were selected as characteristic lipid components to distinguish different types of bean flour.

2、试验结果2. Test results

图1为不同类型豆子豆粉的OPLS-DA的得分图(A)和置换检验图(B)。从得分图可以看出,基于所有脂质组分的八类豆子豆粉能够较好的分开,置换检验中R2和Q2低于右边的原始点,而且Q2的回归直线与y轴的交点在负半轴,表明模型是有效和可靠的。Figure 1 shows the score graph (A) and permutation test graph (B) of OPLS-DA of different types of bean flour. From the score graph, it can be seen that the eight types of bean flour based on all lipid components can be well separated, and the R2 and Q2 in the permutation test are lower than the original point on the right, and the intersection of the regression line of Q2 and the y-axis is on the negative half axis, indicating that the model is effective and reliable.

根据OPLS-DA模型的VIP值以及ANOVA的p值,选择VIP>1及p<0.05的代谢物作为区分不同类型豆子豆粉的特征脂质组分,本实施例共筛选出170个差异代谢物(见表2,各脂质组分名称根据LIPID MAPS数据库中的脂质分类和命名系统确定)。According to the VIP value of the OPLS-DA model and the p value of ANOVA, metabolites with VIP>1 and p<0.05 were selected as characteristic lipid components for distinguishing different types of bean flour. In this example, a total of 170 differential metabolites were screened out (see Table 2, the names of the lipid components were determined according to the lipid classification and naming system in the LIPID MAPS database).

表2不同类型豆子豆粉特征差异脂质组分的VIP值Table 2 VIP values of lipid components of different types of bean flour

基于层次聚类分析获得的特征差异脂质组分,可以直观的看到八类豆子的豆粉可以明显区分(图2)。例如,21个脂质成分DGGA 36:6,FA 34:1,FA 29:0,DGGA 34:3,FA 36:2,FA 36:1,PC 40:2,PE 40:2,PI 41:2,FA28:0,Cer 42:2;O2,Cer 44:4;O3,Cer42:0;O3,Cer40:1;O3,Cer 40:2;O2,Cer 41:2;O2,Cer 41:1;O3,PE 39:2,PE 41:2,PE 42:2和PI 39:2在红小豆的豆粉中明显高于其他豆类;23个脂质成分TG 56:4,TG 64:2,Cer 42:1;O2,DG40:0,TG 64:1,TG 50:3,TG 49:0,DG 38:0,TG 54:0,DG 44:2,DG 40:1,TG 55:7,DG 42:3,TG 49:2,TG 66:2,TG 66:3,TG 58:6,TG 58:7,TG 59:5,TG 58:5,PI 32:0,FA 36:0和TG64:6在豇豆中含量最高;23个脂质成分Cer 40:1;O2,TG 46:0,PC 36:0,PG 34:0,SM 37:6;O2,PG 31:1,TG 60:7,Cer 39:0;O3,Cer 40:0;O4,Cer 43:3;O4,Cer 43:0;O4,TG 56:6,Cer 41:0;O4,TG 56:7,FA 38:0,Cer 43:0;O3,HexCer 44:1;O4,FA40:1,FA40:0,FA42:1,FA40:2,DG 36:0和Cer 32:2;O3在绿豆中含量最高。Based on the characteristic differential lipid components obtained by hierarchical clustering analysis, it can be intuitively seen that the bean flours of the eight types of beans can be clearly distinguished (Figure 2). For example, the 21 lipid components DGGA 36:6, FA 34:1, FA 29:0, DGGA 34:3, FA 36:2, FA 36:1, PC 40:2, PE 40:2, PI 41:2, FA28:0, Cer 42:2; O2, Cer 44:4; O3, Cer42:0; O3, Cer40:1; O3, Cer 40:2; O2, Cer 41:2; O2, Cer 41:1; O3, PE 39:2, PE 41:2, PE 42:2 and PI 39:2 were significantly higher in red bean flour than those in other beans; the 23 lipid components TG 56:4, TG 64:2, Cer 42:1; O2, DGGA 36:6, FA 34:1, FA 29:0 50:3, TG 49:0, DG 38:0, TG 54:0, DG 44:2, DG 40:1, TG 55:7, DG 42:3, TG 49:2, TG 66:2, TG 66:3, TG 58:6, TG 58:7, TG 59:5, TG 58:5, PI 32:0, FA 36:0 and TG64:6 were the highest in cowpea; 23 lipid components Cer 40:1; O2, TG 46:0, PC 36:0, PG 34:0, SM 37:6; O2, PG 31:1, TG 60:7, Cer 39:0; O3, Cer 40:0; O4, Cer 43:3; O4, Cer 43:0; O4, TG 56:6, Cer 41:0; O4, TG 56:7, FA 38:0, Cer 43:0; O3, HexCer 44:1; O4, FA40:1, FA40:0, FA42:1, FA40:2, DG 36:0 and Cer 32:2; O3 has the highest content in mung bean.

以上结果表明,本发明提供的基于脂质组学鉴定豆粉特征差异脂质组分的方法可以用于鉴别各类豆粉,该方法具有实验结果准确、可行性高等优点。本发明的鉴定方法利用非靶向脂质组学技术全面获得各类豆粉的脂质组分信息,结合化学计量学手段筛选出区分各个豆类豆粉的特征差异脂质组分,对于豆粉掺假的真伪鉴别具有重要参考意义。The above results show that the method for identifying characteristic differential lipid components of soybean powder based on lipidomics provided by the present invention can be used to identify various types of soybean powder, and the method has the advantages of accurate experimental results and high feasibility. The identification method of the present invention uses non-targeted lipidomics technology to comprehensively obtain lipid component information of various types of soybean powder, and combines chemometrics to screen out characteristic differential lipid components that distinguish soybean powders of various types, which has important reference significance for the authenticity identification of soybean powder adulteration.

虽然已经对本发明的具体实施方案进行了描述,但是本领域技术人员应认识到,在不偏离本发明的范围或精神的前提下可以对本发明进行多种改变与修饰。因而,本发明意欲涵盖落在附属权利要求书及其同等物范围内的所有这些改变与修饰。Although specific embodiments of the present invention have been described, it will be appreciated by those skilled in the art that various changes and modifications may be made to the present invention without departing from the scope or spirit of the present invention. Therefore, the present invention is intended to cover all such changes and modifications that fall within the scope of the appended claims and their equivalents.

Claims (10)

1. A method for identifying soybean flour based on characteristic difference lipid components, which is characterized by comprising the following steps:
(1) Collecting bean samples of different types, respectively removing impurities, grinding to powder, adding an extracting solution, extracting by vortex oscillation, centrifuging, collecting supernatant, drying by blowing nitrogen, adding a redissolution, redissolving, and filtering to obtain a filtrate of the sample to be detected;
(2) Performing non-targeted lipidomic analysis on the filtrate of the to-be-detected sample of the different types of bean powder obtained in the step (1) by adopting an ultra-high performance liquid chromatography tandem time-of-flight mass spectrometer to obtain lipid data of the different types of bean powder samples, and processing the lipid data by mass spectrometry data analysis software;
(3) Qualitative identification is carried out on all the identified lipid components by using a LIPID MAPS database, molecular prediction is carried out by using software, the structure of the screened lipid components is determined, and then semi-quantitative analysis is carried out on the lipid components by using a lipid isotope internal standard;
(4) Analyzing lipid data of bean powder samples of different types by adopting orthogonal partial least squares discriminant analysis (OPLS-DA) to construct an OPLS-DA model; and screening out characteristic differential lipid components of different types of bean flour according to the VIP value and the p value of ANOVA of the OPLS-DA model.
2. The method of claim 1, wherein the extracting solution used in the step (1) is a solution having a volume ratio of 1:2 and methyl tertiary butyl ether.
3. The method of claim 1, wherein the reconstitution solution used in step (1) is a solution having a volume ratio of 1:1, and methanol.
4. The method of claim 1, wherein the chromatographic conditions detected in step (2) using an ultra-high performance liquid chromatography tandem time-of-flight mass spectrometer are as follows: the chromatographic column is Phenomenex Kinetex C and 18; mobile phase A is a mixed solution of water, methanol and acetonitrile with the volume ratio of 5mM ammonium acetate being 1:1:1, and mobile phase B is a mixed solution of isopropanol and acetonitrile with the volume ratio of 5mM ammonium acetate being 5:1; the flow rate is 0.4mL/min; the gradient elution procedure was as follows:
Time mobile phase a Mobile phase B 0-0.5min 80% 20% 0.5-1.5min 80%-60% 20%-40% 1.5-3.0min 60%-40% 40%-60% 3.0-13min 40%-2% 60%-98% 13.0-13.1min 2%-80% 98%-20% 13.1-17.0min 80% 20%
5. The method of claim 1, wherein the mass spectrometry conditions detected in step (2) using an ultra-high performance liquid chromatography tandem time-of-flight mass spectrometer are as follows: and adopting an electrospray ionization ion source ESI to acquire data in positive ion mode and negative ion mode respectively, wherein the ion source temperature is 600 ℃, the collision energy is 35eV, the spray voltage in the positive ion mode is +5500V, and the negative ion mode is-4500V.
6. The method of claim 1, wherein in step (3) the molecular prediction is performed using MS-DIAL, MS-filter software, and PeakView software.
7. The method according to claim 1, wherein in the step (4), metabolites of VIP >1 and p <0.05 are selected as characteristic differential lipid components for distinguishing different soybean flour according to VIP value of OPLS-DA model and p value of ANOVA.
8. The method of claim 1, wherein the characteristic differential lipid component selected in step (4) is selected from DGGA 34:2,DGGA 34:3,DGGA 36:2,DGGA 36:3,DGGA 36:4,DGGA 36:6,HexCer 31:3; o2, hexCer 32:1; o4, hexCer 32:2; o3, hexCer32:3; o2, hexCer34:1; o4, hexCer 44:1; o4, PA36:2,PC 30:2,PC 32:2,PC 33:2,PC 36:0,PC 37:1,PC 37:2,PC 38:1,PC 38:2,PC 38:3,PC 40:2,PC 41:1,PE 32:2,PE 34:2,PE 36:2,PE 37:1,PE 37:2,PE 37:3,PE 37:4,PE 38:1,PE 38:2,PE 38:3,PE 39:2,PE 40:2,PE 41:1,PE 41:2,PE 42:2,PG 31:1,PG 34:0,PI 32:0,PI 32:3,PI 33:1,PI 33:2,PI 39:2,PI 40:2,PI 41:2,PI 41:3,SM 34:1; o2, SM 37:6; o2, MGDG 36:2,MGDG 36:3,MGDG 36:5,DGDG 35:2,DGDG 36:3,DGDG 36:4,DG 33:1,DG 36:0,DG 36:2,DG 36:3,DG 38:0,DG 40:0,DG 40:1,DG 42:0,DG 42:3,DG 44:2,TG 46:0,TG 46:1,TG 46:2,TG 46:3,TG 47:2,TG 48:1,TG 48:4,TG 49:0,TG 49:1,TG 49:2,TG 49:3,TG 50:3,TG 50:6,TG 51:3,TG 51:4,TG 51:6,TG 51:7,TG 52:4,TG 53:5,TG 53:6,TG 54:0,TG 54:6,TG 55:2,TG 55:3,TG 55:5,TG 55:6,TG 55:7,TG 56:1,TG 56:2,TG 56:4,TG 56:5,TG 56:6,TG 56:7,TG 57:2,TG 57:4,TG 58:1,TG 58:2,TG 58:3,TG 58:5,TG 58:6,TG 58:7,TG 59:2,TG 59:3,TG 59:5,TG 60:1,TG 60:2,TG 60:3,TG 60:4,TG 60:7,TG 61:0,TG 61:4,TG 61:6,TG 63:4,TG 64:1,TG 64:2,TG 64:3,TG 64:6,TG 65:3,TG 66:2,TG 66:3,TG 66:4,TG 72:4,TG 72:5,TG 74:5,Cer 31:1; o3, cer 32:2; o3, cer32:3; o2, cer 33:1; o3, cer 34:0; o3, cer34:1; o3, cer34:1; o4, cer 34:2; o2, cer 36:0; o3, cer 36:1; o3, cer39:0; o3, cer 40:0; o4, cer 40:1; o2, cer 40:1; o3, cer 40:1; o4, cer 40:2; o2, cer 41:0; o4, cer 41:1; o3, cer 41:1; o4, cer 41:2; o2, cer42:0; o3, cer 42:1; o2, cer 42:2; o2, cer 43:0; o3, cer 43:0; o4, cer 43:3; o4, cer 44:4; two or more of O3, FA25:0,FA28:0,FA29:0,FA 34:1,FA 36:0,FA 36:1,FA 36:2,FA38:0,FA40:0,FA40:1,FA40:2,FA42:1.
9. A composition for soybean meal identification comprising a characteristic differential lipid component, wherein the characteristic differential lipid component is selected from DGGA 34:2,DGGA 34:3,DGGA 36:2,DGGA 36:3,DGGA 36:4,DGGA 36:6,HexCer 31:3; o2, hexCer 32:1; o4, hexCer 32:2; o3, hexCer32:3; o2, hexCer34:1; o4, hexCer 44:1; o4, PA36:2,PC 30:2,PC 32:2,PC 33:2,PC 36:0,PC 37:1,PC 37:2,PC 38:1,PC 38:2,PC 38:3,PC 40:2,PC 41:1,PE 32:2,PE 34:2,PE 36:2,PE 37:1,PE 37:2,PE 37:3,PE 37:4,PE 38:1,PE 38:2,PE 38:3,PE 39:2,PE 40:2,PE 41:1,PE 41:2,PE 42:2,PG 31:1,PG 34:0,PI 32:0,PI 32:3,PI 33:1,PI 33:2,PI 39:2,PI 40:2,PI 41:2,PI 41:3,SM 34:1; o2, SM 37:6; o2, MGDG 36:2,MGDG 36:3,MGDG 36:5,DGDG 35:2,DGDG 36:3,DGDG 36:4,DG 33:1,DG 36:0,DG 36:2,DG 36:3,DG 38:0,DG 40:0,DG 40:1,DG 42:0,DG 42:3,DG 44:2,TG 46:0,TG 46:1,TG 46:2,TG 46:3,TG 47:2,TG 48:1,TG 48:4,TG 49:0,TG 49:1,TG 49:2,TG 49:3,TG 50:3,TG 50:6,TG 51:3,TG 51:4,TG 51:6,TG 51:7,TG 52:4,TG 53:5,TG 53:6,TG 54:0,TG 54:6,TG 55:2,TG 55:3,TG 55:5,TG 55:6,TG 55:7,TG 56:1,TG 56:2,TG 56:4,TG 56:5,TG 56:6,TG 56:7,TG 57:2,TG 57:4,TG 58:1,TG 58:2,TG 58:3,TG 58:5,TG 58:6,TG 58:7,TG 59:2,TG 59:3,TG 59:5,TG 60:1,TG 60:2,TG 60:3,TG 60:4,TG 60:7,TG 61:0,TG 61:4,TG 61:6,TG 63:4,TG 64:1,TG 64:2,TG 64:3,TG 64:6,TG 65:3,TG 66:2,TG 66:3,TG 66:4,TG 72:4,TG 72:5,TG 74:5,Cer 31:1; o3, cer 32:2; o3, cer32:3; o2, cer 33:1; o3, cer 34:0; o3, cer34:1; o3, cer34:1; o4, cer 34:2; o2, cer 36:0; o3, cer 36:1; o3, cer39:0; o3, cer 40:0; o4, cer 40:1; o2, cer 40:1; o3, cer 40:1; o4, cer 40:2; o2, cer 41:0; o4, cer 41:1; o3, cer 41:1; o4, cer 41:2; o2, cer42:0; o3, cer 42:1; o2, cer 42:2; o2, cer 43:0; o3, cer 43:0; o4, cer 43:3; o4, cer 44:4; two or more of O3, FA25:0,FA28:0,FA29:0,FA 34:1,FA 36:0,FA 36:1,FA 36:2,FA38:0,FA40:0,FA40:1,FA40:2 and FA 42:1.
10. Use of a composition comprising a characteristic differential lipid component selected from DGGA 34:2,DGGA 34:3,DGGA 36:2,DGGA 36:3,DGGA 36:4,DGGA 36:6,HexCer 31:3 for soybean meal identification; o2, hexCer 32:1; o4, hexCer 32:2; o3, hexCer32:3; o2, hexCer34:1; o4, hexCer 44:1; o4, PA36:2,PC 30:2,PC 32:2,PC 33:2,PC 36:0,PC 37:1,PC 37:2,PC 38:1,PC 38:2,PC 38:3,PC 40:2,PC 41:1,PE 32:2,PE 34:2,PE 36:2,PE 37:1,PE 37:2,PE 37:3,PE 37:4,PE 38:1,PE 38:2,PE 38:3,PE 39:2,PE 40:2,PE 41:1,PE 41:2,PE 42:2,PG 31:1,PG 34:0,PI 32:0,PI 32:3,PI 33:1,PI 33:2,PI 39:2,PI 40:2,PI 41:2,PI 41:3,SM 34:1; o2, SM 37:6; o2, MGDG 36:2,MGDG 36:3,MGDG 36:5,DGDG 35:2,DGDG 36:3,DGDG 36:4,DG 33:1,DG 36:0,DG 36:2,DG 36:3,DG 38:0,DG 40:0,DG 40:1,DG 42:0,DG 42:3,DG 44:2,TG 46:0,TG 46:1,TG 46:2,TG 46:3,TG 47:2,TG 48:1,TG 48:4,TG 49:0,TG 49:1,TG 49:2,TG 49:3,TG 50:3,TG 50:6,TG 51:3,TG 51:4,TG 51:6,TG 51:7,TG 52:4,TG 53:5,TG 53:6,TG 54:0,TG 54:6,TG 55:2,TG 55:3,TG 55:5,TG 55:6,TG 55:7,TG 56:1,TG 56:2,TG 56:4,TG 56:5,TG 56:6,TG 56:7,TG 57:2,TG 57:4,TG 58:1,TG 58:2,TG 58:3,TG 58:5,TG 58:6,TG 58:7,TG 59:2,TG 59:3,TG 59:5,TG 60:1,TG 60:2,TG 60:3,TG 60:4,TG 60:7,TG 61:0,TG 61:4,TG 61:6,TG 63:4,TG 64:1,TG 64:2,TG 64:3,TG 64:6,TG 65:3,TG 66:2,TG 66:3,TG 66:4,TG 72:4,TG 72:5,TG 74:5,Cer 31:1; o3, cer 32:2; o3, cer32:3; o2, cer 33:1; o3, cer 34:0; o3, cer34:1; o3, cer34:1; o4, cer 34:2; o2, cer 36:0; o3, cer 36:1; o3, cer39:0; o3, cer 40:0; o4, cer 40:1; o2, cer 40:1; o3, cer 40:1; o4, cer 40:2; o2, cer 41:0; o4, cer 41:1; o3, cer 41:1; o4, cer 41:2; o2, cer42:0; o3, cer 42:1; o2, cer 42:2; o2, cer 43:0; o3, cer 43:0; o4, cer 43:3; o4, cer 44:4; two or more of O3, FA25:0,FA28:0,FA29:0,FA 34:1,FA 36:0,FA 36:1,FA 36:2,FA38:0,FA40:0,FA40:1,FA40:2 and FA 42:1.
CN202310770709.9A 2023-06-28 2023-06-28 A soybean powder identification method based on lipidomics Active CN116818941B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310770709.9A CN116818941B (en) 2023-06-28 2023-06-28 A soybean powder identification method based on lipidomics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310770709.9A CN116818941B (en) 2023-06-28 2023-06-28 A soybean powder identification method based on lipidomics

Publications (2)

Publication Number Publication Date
CN116818941A true CN116818941A (en) 2023-09-29
CN116818941B CN116818941B (en) 2025-04-04

Family

ID=88115111

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310770709.9A Active CN116818941B (en) 2023-06-28 2023-06-28 A soybean powder identification method based on lipidomics

Country Status (1)

Country Link
CN (1) CN116818941B (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108680745A (en) * 2018-01-03 2018-10-19 湖州市中心医院 Application process of the serum lipids biomarker in NSCLC early diagnosis
KR20200056019A (en) * 2018-11-14 2020-05-22 이화여자대학교 산학협력단 Biomarker for the discrimination of geographical origins of the soybeans and method for discriminating of geographical origin using the same
CN113406246A (en) * 2021-03-31 2021-09-17 广州海关技术中心 Method for tracing producing areas of soybean and soybean oil by characterizing triglyceride based on LC-Q-TOF-MS
CN113820428A (en) * 2021-10-11 2021-12-21 中国农业科学院农业质量标准与检测技术研究所 Lipidome biomarkers of milk with different thermal processing methods and their screening methods and applications
CN115436539A (en) * 2022-09-20 2022-12-06 浙江工商大学 Tuna variety and part identification method based on lipidomics analysis method
CN115754073A (en) * 2022-11-25 2023-03-07 陕西师范大学 Method for Trace Identification of Giant Panda Milk Based on UPLC-Q-TOF-MS Labeled Lipids
CN116165299A (en) * 2023-01-12 2023-05-26 中南民族大学 A Method for Distinguishing Omniform japonicus and Pleurotus japonica using lipids

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108680745A (en) * 2018-01-03 2018-10-19 湖州市中心医院 Application process of the serum lipids biomarker in NSCLC early diagnosis
KR20200056019A (en) * 2018-11-14 2020-05-22 이화여자대학교 산학협력단 Biomarker for the discrimination of geographical origins of the soybeans and method for discriminating of geographical origin using the same
CN113406246A (en) * 2021-03-31 2021-09-17 广州海关技术中心 Method for tracing producing areas of soybean and soybean oil by characterizing triglyceride based on LC-Q-TOF-MS
CN113820428A (en) * 2021-10-11 2021-12-21 中国农业科学院农业质量标准与检测技术研究所 Lipidome biomarkers of milk with different thermal processing methods and their screening methods and applications
CN115436539A (en) * 2022-09-20 2022-12-06 浙江工商大学 Tuna variety and part identification method based on lipidomics analysis method
CN115754073A (en) * 2022-11-25 2023-03-07 陕西师范大学 Method for Trace Identification of Giant Panda Milk Based on UPLC-Q-TOF-MS Labeled Lipids
CN116165299A (en) * 2023-01-12 2023-05-26 中南民族大学 A Method for Distinguishing Omniform japonicus and Pleurotus japonica using lipids

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
李会梅;刘刚;马殿旭;欧全宏;于海超;刘艳;: "基于曲线拟合的6种豆的傅里叶变化红外光谱研究", 中国农学通报, no. 32, 31 December 2015 (2015-12-31), pages 1 - 2 *
赵新楠;王秀嫔;李培武;印南日;万立昊;王晓;张良晓: "基于超高效液相色谱-高分辨质谱法的油料作物脂质组学分析", 分析测试学报, vol. 39, no. 006, 31 December 2020 (2020-12-31) *

Also Published As

Publication number Publication date
CN116818941B (en) 2025-04-04

Similar Documents

Publication Publication Date Title
CN110057955B (en) Method for screening specific serum marker of hepatitis B
CN115015460B (en) Method for identifying cordyceps sinensis producing area by using wide-range targeted metabonomics technology
CN108593825B (en) Method for mining mass spectrum data of red ginseng and screening specific markers
CN111721857A (en) Method for identifying litchi varieties by using extensive targeted metabonomics technology
CN106855552B (en) A method of differentiating honey types using non-target metabonomic technology
CN105574474A (en) Mass spectrometry information-based biological characteristic image identification method
CN106645538B (en) A kind of method for differentiating the acacia honey place of production using non-target metabonomic technology
CN113406247B (en) Soybean origin tracing identification method based on combination of IRMS, LC-Q-TOF-MS and multi-element analysis
CN112986430B (en) Method for screening difference markers of Juansan milk powder and Holstein milk powder and application thereof
CN112903890A (en) Method for identifying traditional Chinese medicine components in food based on high-resolution mass spectrometry technology
CN111337586B (en) A method for evaluating honeysuckle characteristics based on marker flavonoids screened by metabolome
CN110646529B (en) Method for detecting chemical components in reed rhizome based on UPLC-QTOF/MS
CN111337614A (en) Metabonomics analysis method for components of garlic bulbs in different growth stages
CN107192770A (en) A kind of analysis method for differentiating chaste honey and the adulterated chaste honey of syrup
Lin et al. Rapid authentication of red wine by MALDI-MS combined with DART-MS
CN111798937B (en) Method for establishing metabonomics database of wolfberry tissue and application thereof
Meng et al. ASAP-MS combined with mass spectrum similarity and binary code for rapid and intelligent authentication of 78 edible flowers
CN114354772B (en) Screening method and application of characteristic polypeptide combination for detecting turtle shell and tortoise shell
CN116818941A (en) Bean flour identification method based on lipidomic
CN114441680B (en) Method for distinguishing traditional Chinese medicine fructus aurantii from garden incense based on high-resolution mass spectrometry technology
CN116381085A (en) Mung bean origin tracing method based on characteristic difference metabolites
CN111257436A (en) Method for identifying specific markers and differential markers of genuine medicinal materials and judging genuine medicinal materials by using mass spectrometry technology
CN114460189A (en) Method for screening difference markers of blueberry juice subjected to ultrahigh pressure treatment and blueberry juice subjected to heat treatment
CN114414673B (en) Method for identifying vegetable oil types
CN119827684A (en) Beijing white pear origin identification method based on metabonomics technology

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant