[go: up one dir, main page]

CN116813350B - 一种激光冲击高压煤制金刚石膜的制备方法 - Google Patents

一种激光冲击高压煤制金刚石膜的制备方法 Download PDF

Info

Publication number
CN116813350B
CN116813350B CN202310529679.2A CN202310529679A CN116813350B CN 116813350 B CN116813350 B CN 116813350B CN 202310529679 A CN202310529679 A CN 202310529679A CN 116813350 B CN116813350 B CN 116813350B
Authority
CN
China
Prior art keywords
laser
coal
film
diamond
diamond film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202310529679.2A
Other languages
English (en)
Other versions
CN116813350A (zh
Inventor
臧浠凝
张政和
魏媛孔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Original Assignee
Tsinghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University filed Critical Tsinghua University
Priority to CN202310529679.2A priority Critical patent/CN116813350B/zh
Publication of CN116813350A publication Critical patent/CN116813350A/zh
Application granted granted Critical
Publication of CN116813350B publication Critical patent/CN116813350B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • C04B35/528Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite obtained from carbonaceous particles with or without other non-organic components
    • C04B35/532Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite obtained from carbonaceous particles with or without other non-organic components containing a carbonisable binder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/12Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
    • B01J19/121Coherent waves, e.g. laser beams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J3/00Processes of utilising sub-atmospheric or super-atmospheric pressure to effect chemical or physical change of matter; Apparatus therefor
    • B01J3/06Processes using ultra-high pressure, e.g. for the formation of diamonds; Apparatus therefor, e.g. moulds or dies
    • B01J3/065Presses for the formation of diamonds or boronitrides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J3/00Processes of utilising sub-atmospheric or super-atmospheric pressure to effect chemical or physical change of matter; Apparatus therefor
    • B01J3/06Processes using ultra-high pressure, e.g. for the formation of diamonds; Apparatus therefor, e.g. moulds or dies
    • B01J3/08Application of shock waves for chemical reactions or for modifying the crystal structure of substances
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/073Shaping the laser spot
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/12Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure
    • B23K26/122Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure in a liquid, e.g. underwater
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/352Working by laser beam, e.g. welding, cutting or boring for surface treatment
    • B23K26/356Working by laser beam, e.g. welding, cutting or boring for surface treatment by shock processing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/29Producing shaped prefabricated articles from the material by profiling or strickling the material in open moulds or on moulding surfaces
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62218Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining ceramic films, e.g. by using temporary supports
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Electromagnetism (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明公开了一种激光冲击高压煤制金刚石膜的制备方法。本发明采用低成本煤作为金刚石制备的前驱体材料,通过加热预烧结为煤膜,进而在水下激光辐照诱发高能等离子体,水对等离子体形成约束层并隔绝空气,进而在一定温度和冲击压力下将煤转变为金刚石,采用衍射光学元件对激光整形或者激光阵列方式结合卷对卷生产方式,实现大尺寸金刚石膜的批量化制备,显著提升金刚石膜的制备效率,且激光精准定位辐照,有效保障金刚石膜的结构均质性,获得高性能金刚石膜。

Description

一种激光冲击高压煤制金刚石膜的制备方法
技术领域
本发明涉及金刚石领域,尤其是一种激光冲击高压煤制金刚石膜的制备方法,属于高性能膜材料加工成型领域。
背景技术
金刚石是自然界中硬度最高的物质,其热导率是目前已知物质中最高的,同时是一种宽禁带材料,电绝缘体,具备极好的抗腐蚀性,在高频、高功率电子器件等尖端领域具有极为重要的应用前景。金刚石膜是金刚石的二维状态存在模式,其摩擦系数较低、高模量、极高的热导率、化学稳定性优异、禁带宽度较大以及介电常数较小,在切削刀具、微机电系统、生物医学、航空航天、核能等高新技术领域有着非常广阔的应用前景。
目前,金刚石膜多采用化学气相沉积方式缓慢生长而成,通常以甲烷、乙炔等碳氢化合物为原料,用热灯丝裂解、微波等离子体气相淀积、电子束离子束轰击镀膜等技术,在硅、碳化硅、碳化钨、氧化铝、石英、玻璃、钼、钨、钽等各种基板上反应生长而成,生长缓慢,成本高昂。公告号为CN112779599B的专利《亚微米级金刚石膜的化学气相沉积方法及装置》,公告号为CN112779599B的专利《亚微米级金刚石膜的化学气相沉积方法及装置》,提出了一种采用微波等离子体化学气相沉积制备金刚石的方法,采用金刚石籽晶衬底,通过微波作用生长气氛,在金刚石籽晶表面逐步生长沉积金刚石层。但是该方法受限制于金刚石衬底及气相生长空间的限制,仅做出10mm×10mm尺寸的金刚石膜,如制备较大尺寸金刚石膜,需要投入大尺寸的金刚石衬底,该类化学气相沉积方法难以保证金刚石膜的均匀性、工艺成本及制备效率与质量。
发明内容
为解决金刚石膜制备效率低、尺寸受限等瓶颈问题,本发明提出一种激光冲击高压煤制金刚石膜的制备方法。
本发明一种激光冲击高压煤制金刚石膜制备装置及方法,制备方法如下:
第一步:将煤粉和含碳粘结剂物料以一定配比( (10-15):1)投入到转子密炼机中进行充分混合30分钟,转子转速设置为20-40转/分钟;
第二步;在煤粉和含碳粘结剂物料充分混合后投入螺杆挤出机内在螺杆转动输送下(螺杆转速设置为60-90 转/分钟)将混合的煤粉和含碳粘结剂物料输送到传送带口模处,在刮刀和传送带的流延作用下形成煤膜,刮刀和传送带的间距(1-5mm)及传送带转速(100-120转/分钟)可以调节煤膜的厚度(100-1000 μm);
第三步:流延后的煤膜在导向辊一和导向辊二转动导向下进入加热预烧结装置,将氮气通过氮气进气孔通入预烧结装置内部,并在气帘密封处持续通氮气,对加热线圈通电进而对进入加热预烧结装置的煤膜进行加热碳化(加热区间设置为200℃,450℃,1000℃,450℃,200℃,每个温区停留时间为10分钟),制备为煤基碳膜;
第四步:加热碳化的煤基碳膜在导向辊二和导向辊一转动导向下进入水下激光冲击装置,向水槽通入去离子水,水离子水没过煤基碳膜(煤基碳膜距离水面高度在1-2mm),衍射光学元件整形的激光器发出激光(激光功率密度在30~40 MW·m-2,光斑大小为160×160 mm,离焦量为0~1mm)辐照在去离子水下的煤基碳膜(煤基碳膜的运行速率为1 mm/s)时形成等离子体,进而在一定冲击高压下形成金刚石结构,经过导向辊传输并最终卷绕收集成型的金刚石膜。
本发明一种激光冲击高压煤制金刚石膜的制备方法,采用如下制备装置制备,主要包括转子密炼机,螺杆挤出机,刮刀,烘干装置,传送带,加热预烧结装置和水下激光冲击部分。转子密炼机用于混合煤粉和含碳粘结剂,螺杆挤出机设置在转子密炼机的下顶栓处用于接收混炼物料并传输物料。在螺杆挤出机的口模出口处安置刮刀,并与传送带共同作用对煤粉和含碳粘结剂物料进行流延成膜,在传送带的输运下经过烘干装置的下方受热而定型为煤膜,进而在导向辊一和导向辊二的转动下进入加热预烧结装置。加热预烧结装置包括气帘密封,氮气进气孔和加热线圈,其中,气帘密封设置在煤膜进入和离开加热预烧结装置的两端,以防止外界空气进入加热预烧结装置,氮气进气孔设置在靠近气帘密封的部位,加热线圈缠绕固定在预烧结装置上,通电对加热预烧结装置进行加热。水下激光冲击装置包括衍射光学元件整形的激光器和水槽,水槽的两端设置有进水口和出水口,通过在水槽内设置阻尼实现去离子水匀速流过水槽的激光辐照平台表面,衍射光学元件整形的激光器安置在水槽的激光辐照平台表面上方,当衍射光学元件整形的激光器发出激光辐照在去离子水下的煤基碳膜时形成等离子体,进而在一定冲击高压下形成金刚石结构,经过导向辊传输并最终卷绕收集成型的金刚石膜。
本发明一种激光冲击高压煤制金刚石膜的制备方法,衍射光学元件整形的激光器可以替换为激光器阵列模式,实现大尺寸光斑激光。也可以采用单个脉冲激光扫描方式实现大面积激光辐照,通过调控水下激光冲击部分两端的导向辊转动,间歇式转动,跟进激光扫描速度,实现大尺寸金刚石薄膜制备。本发明一种激光冲击高压煤制金刚石膜制备装置及方法,通过调控导向辊的转速可以调控煤基碳膜的张力,结合激光光斑尺寸、激光功率密度和激光辐照处理时间调控,调控碳微结构演变及制备金刚石膜的幅宽和厚度。
本发明一种激光冲击高压煤制金刚石膜的制备方法,当采用高功率脉冲激光时,可以将水下激光冲击部分的水槽替换为惰性气体氛围激光冲击装置,在激光辐照下冲击在煤基碳膜表面形成更高能量的等离子体,完成煤基碳膜向煤基金刚石膜的结构转变。
本发明的有益效果为:
(1)煤的核心组分是无定型碳,且以芳香碳为主,其分子结构与炭材料的结构具有天然相似性,是优质的碳材料前驱体,且煤炭资源丰富,价廉,将煤转化为金刚石产品可以实现其高附加值利用;
(2)采用水下激光冲击高压方式实现金刚石膜的制备,相比较于气相方法制备,金刚石膜的制备效率大幅提升,避免含碳气体因混入氧气爆炸的极大风险,生产过程安全稳定;
(3)采用水下激光冲击高压方式可以通过水对等离子形成约束层,快速作用煤基碳膜形成冲击高压,且水可以隔绝空气,防止高温下煤基碳膜的烧蚀,且在激光辐照后材料可以极速冷却,避免金刚石晶粒尺寸增大,可以制备纳米金刚石;
(4)常规气相生长制备金刚石膜方法需要在密闭空间通入含碳气体缓慢生长,受限制于金刚石籽晶的尺寸及结构均匀性,难以制备大尺寸金刚石膜,本方法可以通过激光整形为大光斑,或者多个激光共同辐照,实现大尺寸金刚石膜的卷对卷批量化制备;
(5)通过调控导向辊的转速可以调控煤基碳膜的张力,结合激光功率密度和激光辐照辐照处理时间,进而在水下激光冲击煤基碳结构转变为金刚石结构过程中可以调控碳微结构演变,制备高性能金刚石膜。
附图说明
图1为一种激光冲击高压煤制金刚石膜制备装置示意图;
图2为采用两面激光辐照方式制备煤基金刚石膜的装置示意图;
图3为采用间接分段方式制备煤基金刚石膜的装置示意图。
图4为在惰性气体保护下激光辐照制备煤基金刚石膜的装置示意图。
图中,1-转子密炼机;2-螺杆挤出机;3-刮刀;4-烘干装置;5-传送带;6-导向辊一;7-导向辊二;8-加热预烧结装置;9-气帘密封;10-氮气进气孔;11-加热线圈;12-水下激光冲击装置;13-衍射光学元件整形的激光器;14-去离子水;15-等离子体;16-水槽;17-成型的金刚石膜;18-阻尼;19-水槽的激光辐照平台;20-下顶栓;21-口模;22-惰性气体氛围激光冲击装置;23-去离子水通入口;24-去离子水流出口;25-惰性气体通入口;26-惰性气体流出口。
具体实施方式
本发明一种激光冲击高压煤制金刚石膜制备装置及方法,制备方法如下:
第一步:将煤粉和含碳粘结剂物料以一定配比( (10-15):1)投入到转子密炼机1中进行充分混合30分钟,转子转速设置为20-40转/分钟;
第二步;在煤粉和含碳粘结剂物料充分混合后投入螺杆挤出机2内在螺杆转动输送下(螺杆转速设置为60-90 转/分钟)将混合的煤粉和含碳粘结剂物料输送到传送带口模21处,在刮刀3和传送带5的流延作用下形成煤膜,刮刀3和传送带5的间距(1-5mm)及传送带转速(100-120转/分钟)可以调节煤膜的厚度(100-1000 μm);
第三步:流延后的煤膜在导向辊一6和导向辊二7转动导向下进入加热预烧结装置8,将氮气通过氮气进气孔10通入预烧结装置8内部,并在气帘密封9处持续通氮气,对加热线圈11通电进而对进入加热预烧结装置的煤膜进行加热碳化(加热区间设置为200℃,450℃,1000℃,450℃,200℃,每个温区停留时间为10分钟),制备为煤基碳膜;
第四步:加热碳化的煤基碳膜在导向辊二7和导向辊一6转动导向下进入水下激光冲击装置12,向水槽16通入去离子水14,去离子水14的流速设置为(5-20mm/s),水离子水14没过煤基碳膜(煤基碳膜距离水面高度在1-2mm),衍射光学元件整形的激光器13发出激光(激光功率密度在30~40 MW·m-2,光斑大小为160×160 mm,离焦量为0~1mm)辐照在去离子水14下的煤基碳膜(煤基碳膜的运行速率为1 mm/s)时形成等离子体15,进而在一定冲击高压下形成金刚石结构,经过导向辊8传输并最终卷绕收集成型的金刚石膜17。
本发明一种激光冲击高压煤制金刚石膜的制备方法,如图1所示,采用如下制备装置制备,主要包括转子密炼机1,螺杆挤出机2,刮刀3,烘干装置4,传送带5,加热预烧结装置8和水下激光冲击装置12。转子密炼机1用于混合煤粉和含碳粘结剂,螺杆挤出机2设置在转子密炼机1的下顶栓20处用于接收混炼物料并传输物料。在螺杆挤出机2的口模21处安置刮刀3,并与传送带5共同作用对煤粉和含碳粘结剂物料进行流延成膜,在传送带5的输运下经过烘干装置4的下方受热而定型为煤膜,进而在导向辊一6和导向辊二7的转动下进入加热预烧结装置8。加热预烧结装置8包括气帘密封9,氮气进气孔10和加热线圈11,其中,气帘密封设置在煤膜进入和离开加热预烧结装置8的两端,以防止外界空气进入加热预烧结装置8,氮气进气孔10设置在靠近气帘密封9的部位,加热线圈11缠绕固定在预烧结装置8上,通电对加热预烧结装置8进行加热。水下激光冲击装置12包括衍射光学元件整形的激光器13和水槽16,水槽16的两端设置有进水口和出水口,通过在水槽16内设置阻尼18实现去离子水14匀速流过水槽的激光辐照平台19表面,从去离子水通入口23通入去离子水14,从去离子水流出口24流出去离子水14通过调控去离子水注入水槽16的流量控制去离子水14流过煤基碳膜的流速,衍射光学元件整形的激光器13安置在水槽的激光辐照平台19表面上方,当衍射光学元件整形的激光器13发出激光辐照在去离子水14下的煤基碳膜时形成等离子体15,进而在一定冲击高压下形成金刚石结构,经过导向辊8传输并最终卷绕收集成型的金刚石膜17。
本发明一种激光冲击高压煤制金刚石膜的制备方法,衍射光学元件整形的激光器13可以替换为激光器阵列模式,实现大尺寸光斑激光。
本发明一种激光冲击高压煤制金刚石膜的制备方法,可以采用单个脉冲激光(1064nm波长的红外皮秒激光,功率为30W,离焦量为0~1mm)扫描方式实现大面积激光辐照,通过调控水下激光冲击部分两端的导向辊转动,间歇式转动,跟进激光扫描速度(1-5 mm·s-1),实现大尺寸金刚石薄膜制备。
本发明一种激光冲击高压煤制金刚石膜的制备方法,通过调控导向辊的转速可以调控煤基碳膜的张力,结合激光功率密度和激光辐照处理时间,进而在水下激光冲击煤基碳结构转变为金刚石结构过程中可以调控碳微结构演变,制备高性能金刚石膜。
本发明一种激光冲击高压煤制金刚石膜制备装置及方法,如图2所示,当制备金刚石膜的厚度较大,可以采用两面激光辐照方式制备煤基金刚石膜,在煤基碳膜经过水下单面辐照后,经过导向翻转后,将煤基碳膜的另一面经过水下辐照,通过两面激光辐照方式制备煤基金刚石膜,从而制备得厚金刚石膜。
本发明一种激光冲击高压煤制金刚石膜制备装置及方法,如图3所示,当煤膜的流延制备速度与煤膜的预碳化烧结速度及水下激光冲击制备金刚石膜的速度不匹配时,可以对这三部分分离,即间接分段方式制备煤基金刚石膜,在煤粉和碳基粘结剂混炼、螺杆挤出机输运流延成型膜后卷绕收集,然后对收集的煤膜进行加热预碳化处理后卷绕收集煤基碳膜,进而将煤基碳膜在水下激光辐照冲击高压制备金刚石膜。
本发明一种激光冲击高压煤制金刚石膜制备装置及方法,如图4所示,当采用高功率脉冲激光时,可以将水下激光冲击部分的水槽16替换为惰性气体氛围激光冲击装置,在激光辐照下冲击在煤基碳膜表面形成更高能量的等离子体,完成煤基碳膜向煤基金刚石膜的结构转变。
本发明一种激光冲击高压煤制金刚石膜制备装置及方法,一种实施例如下:
将煤粉、煤焦油以一定配比( (10-15):1)投入到转子密炼机1中进行充分混合30分钟;在煤粉和煤焦油充分混合后投入螺杆挤出机2内在螺杆转动输送下将混合的煤粉和含碳粘结剂物料输送到传送带口模21处,在刮刀3和传送带5(传送带的转速为60-120 rpm)的流延作用下形成煤膜,根据刮刀3和传送带5的间距(1-5mm)及传送带转速可以调节煤膜的厚度(100-1000 μm);流延后的煤膜在导向辊一6和导向辊二7转动导向下进入加热预烧结装置8,将氮气通过氮气进气孔10通入预烧结装置8内部,并在气帘密封9处持续通氮气,对加热线圈11通电进而对进入加热预烧结装置的煤膜进行加热(温度在800-1000 °C)碳化,制备为煤基碳膜;加热碳化的煤基碳膜在导向辊二7和导向辊一6转动导向下进入水下激光冲击装置12,向水槽16通入去离子水14,去离子水14的流速设置为(5-20mm/s),水离子水没过煤基碳膜(煤基碳膜距离水面高度在1-2mm),衍射光学元件整形的激光器13发出激光(激光功率密度在30~40 MW·m-2,光斑大小为160×160 mm,离焦量为0~1mm)辐照在去离子水14下的煤基碳膜(煤基碳膜传输速度为1 mm/s)时形成等离子体15,进而在一定冲击高压下形成金刚石结构,经过导向辊8传输并最终卷绕收集成型的金刚石膜17(金刚石膜厚度10-20 μm)。制备金刚石膜的幅宽可以根据流延成型、加热预氧化装置和水下激光辐照装置进行协同设计,实现较大幅宽的金刚石膜制备。
以上所述为本发明的具体设备及工艺情况,配合各图予以说明。但是本发明并不局限于以上所述的具体设备及工艺过程,任何基于上述所说的对于相关设备修改或替换,任何基于上述所说的对于相关工艺的局部调整,只要在本发明的涉及领域范围内,均属于本发明。

Claims (4)

1.一种激光冲击高压煤制金刚石膜的制备方法,其特征在于:制备方法如下:
第一步:将煤粉和含碳粘结剂物料以(10-15):1的配比投入到转子密炼机中进行充分混合30分钟,转子转速设置为20-40转/分钟;
第二步;在煤粉和含碳粘结剂物料充分混合后投入螺杆挤出机内在螺杆转动输送下将混合的煤粉和含碳粘结剂物料输送到传送带口模处,螺杆转速设置为60-90转/分钟,在刮刀和传送带的流延作用下形成煤膜,刮刀和传送带的间距设置为1-5mm及传送带转速设置为100-120转/分钟,调节煤膜的厚度为100-1000μm;
第三步:流延后的煤膜在导向辊一和导向辊二转动导向下进入加热预烧结装置,将氮气通过氮气进气孔通入预烧结装置内部,并在气帘密封处持续通氮气,对加热线圈通电进而对进入加热预烧结装置的煤膜进行加热碳化,加热区间设置为200℃,450℃,1000℃,450℃,200℃,每个温区停留时间为10分钟,制备为煤基碳膜;
第四步:加热碳化的煤基碳膜在导向辊二和导向辊一转动导向下进入水下激光冲击装置,向水槽通入去离子水,去离子水流速设置为5-20mm/s,水离子水没过煤基碳膜,煤基碳膜距离水面高度设置为1-2mm,衍射光学元件整形的激光器发出激光,激光功率密度设置为30~40MW/m2,光斑大小设置为160×160mm,离焦量设置为0~1mm,煤基碳膜的运行速率设置为1mm/s,辐照在去离子水下的煤基碳膜时形成等离子体,进而在冲击高压下形成金刚石结构,经过导向辊传输并最终卷绕收集成型的金刚石膜;
上述激光冲击高压煤制金刚石膜的制备方法采用如下制备装置,主要包括转子密炼机,螺杆挤出机,刮刀,烘干装置,传送带,加热预烧结装置和水下激光冲击部分,转子密炼机用于混合煤粉和含碳粘结剂,螺杆挤出机设置在转子密炼机的下顶栓处用于接收混炼物料并传输物料,在螺杆挤出机的口模出口处安置刮刀,并与传送带共同作用对煤粉和含碳粘结剂物料进行流延成膜,在传送带的输运下经过烘干装置的下方受热而定型为煤膜,进而在导向辊一和导向辊二的转动下进入加热预烧结装置,加热预烧结装置包括气帘密封,氮气进气孔和加热线圈,其中,气帘密封设置在煤膜进入和离开加热预烧结装置的两端,防止外界空气进入加热预烧结装置,氮气进气孔设置在靠近气帘密封的部位,加热线圈缠绕固定在预烧结装置上,通电对加热预烧结装置进行加热,水下激光冲击装置包括衍射光学元件整形的激光器和水槽,水槽的两端设置有进水口和出水口,通过在水槽内设置阻尼实现去离子水匀速流过水槽的激光辐照平台表面,衍射光学元件整形的激光器安置在水槽的激光辐照平台表面上方,当衍射光学元件整形的激光器发出激光辐照在去离子水下的煤基碳膜时形成等离子体,进而在冲击高压下形成金刚石结构,经过导向辊传输并最终卷绕收集成型的金刚石膜。
2.根据权利要求1所述的一种激光冲击高压煤制金刚石膜的制备方法,其特征在于:激光器为波长为808nm的半导体连续激光器、波长为1064nm的红外皮秒脉冲激光器、波长为355nm的紫外纳秒脉冲器激光中的一种,激光器发出的激光通过衍射光学元件方式整形为大光斑激光,或者通过多个激光发射器构建激光阵列方式实现大光斑激光。
3.根据权利要求2所述的一种激光冲击高压煤制金刚石膜的制备方法,其特征在于:采用1064nm波长的红外皮秒激光扫描方式实现大面积激光辐照,所述1064nm波长的红外皮秒激光的功率设置为30W,离焦量设置为0~1mm,激光扫描速度设置为1-5mm/s,通过调控水下激光冲击部分两端的导向辊转动,间歇式转动,跟进激光扫描速度,实现大尺寸金刚石膜制备。
4.根据权利要求1所述的一种激光冲击高压煤制金刚石膜的制备方法,其特征在于:当煤膜的流延制备速度与煤膜的预碳化烧结速度及水下激光冲击制备金刚石膜的速度不匹配时,对这三部分分离,即间接分段方式制备煤基金刚石膜,在煤粉和碳基粘结剂混炼、螺杆挤出机输运流延成型膜后卷绕收集,然后对收集的煤膜进行加热预碳化处理后卷绕收集煤基碳膜,进而将煤基碳膜在水下激光辐照冲击高压制备金刚石膜。
CN202310529679.2A 2023-05-11 2023-05-11 一种激光冲击高压煤制金刚石膜的制备方法 Active CN116813350B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310529679.2A CN116813350B (zh) 2023-05-11 2023-05-11 一种激光冲击高压煤制金刚石膜的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310529679.2A CN116813350B (zh) 2023-05-11 2023-05-11 一种激光冲击高压煤制金刚石膜的制备方法

Publications (2)

Publication Number Publication Date
CN116813350A CN116813350A (zh) 2023-09-29
CN116813350B true CN116813350B (zh) 2024-06-28

Family

ID=88141953

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310529679.2A Active CN116813350B (zh) 2023-05-11 2023-05-11 一种激光冲击高压煤制金刚石膜的制备方法

Country Status (1)

Country Link
CN (1) CN116813350B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102409291A (zh) * 2011-11-18 2012-04-11 江苏大学 掺杂超细纳米结构金属粒子的金刚石薄膜制备方法与装置
CN110482482A (zh) * 2019-07-24 2019-11-22 北京科技大学 一种绝缘图形化高导热金刚石散热器件的制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3819566B2 (ja) * 1997-10-28 2006-09-13 日本放送協会 ダイヤモンド膜またはダイヤモンド状炭素膜の成膜方法
CN1673075A (zh) * 2005-03-07 2005-09-28 骆乃光 一种用煤炭制取金刚石膜的方法
CN101086614B (zh) * 2007-07-03 2010-11-10 西安交通大学 一种微米级特征的三维辊压模具及其制造方法
CN103409729B (zh) * 2013-08-27 2015-11-18 江苏大学 一种强激光辐照制备类金刚石薄膜的方法
RU2685665C1 (ru) * 2017-11-17 2019-04-22 федеральное государственное бюджетное образовательное учреждение высшего образования "Алтайский государственный университет" Способ получения тонких алмазных пленок
CN114717534B (zh) * 2022-03-29 2022-12-30 北京科技大学 一种大面积超高硬度金刚石膜的制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102409291A (zh) * 2011-11-18 2012-04-11 江苏大学 掺杂超细纳米结构金属粒子的金刚石薄膜制备方法与装置
CN110482482A (zh) * 2019-07-24 2019-11-22 北京科技大学 一种绝缘图形化高导热金刚石散热器件的制备方法

Also Published As

Publication number Publication date
CN116813350A (zh) 2023-09-29

Similar Documents

Publication Publication Date Title
TWI498206B (zh) 連續式合成碳薄膜或無機材料薄膜之設備與方法
US11923176B2 (en) Temperature-controlled chemical processing reactor
US6830007B2 (en) Apparatus and method for forming low dielectric constant film
CN113964313B (zh) 硅基负极材料和锂离子电池
US20150353363A1 (en) Method and System to Produce Large Size Diamonds
TW201311551A (zh) 前處理方法及奈米碳管的形成方法
CN116813350B (zh) 一种激光冲击高压煤制金刚石膜的制备方法
CN113005512B (zh) 一种碳化硅单晶锭生长设备及方法
JP2014502424A (ja) 半導体層の変換方法
KR101172625B1 (ko) 레이저를 이용한 반도체 소자 제조방법, 이에 의하여 제조된 그래핀 반도체 및 그래핀 트랜지스터
CN101205060B (zh) 碳纳米管阵列的制备方法
Qiu et al. Sulfur‐Supplemented Vapor Transport Deposition of Sb2S3 and Sb2 (S, Se) 3 for High‐Performance Hydrogen Evolution Photocathodes
US20060237398A1 (en) Plasma-assisted processing in a manufacturing line
JP2010116287A (ja) アモルファスカーボン半導体及びその製造方法
JP2020105040A (ja) 基板上のグラフェン膜の直接成膜法及び走査型プローブ顕微鏡用カンチレバー
CN100434573C (zh) 等离子体焰流生长大尺寸氮化铝晶体的方法
US9802826B2 (en) Apparatus for producing silicon nanoparticle using inductive coupled plasma
Tsega et al. Growth and green defect emission of ZnPbO nanorods by a catalyst-assisted thermal evaporation-oxidation method
CN114574955B (zh) 一种催化剂双辅助的二维过渡金属硫族化合物薄膜的制备方法
Doshi et al. Plasma Jet Printing of Diamond and Silicon
KR20070099381A (ko) 평판 표시 소자 제조용 열처리로, 이를 포함하는 평판 표시소자 제조장치, 이의 제조방법, 및 이를 이용한 평판 표시소자
CN103952681B (zh) 一种锂氮共掺杂金刚石薄膜的制备方法
CN114908338A (zh) 自支撑薄膜上沉积碳纳米管泡沫的设备与方法
TWI535887B (zh) 合成高品質碳薄膜或無機材料薄膜之設備與方法
CN110937592A (zh) 碳纳米管批量连续化生产设备及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant