[go: up one dir, main page]

CN116790650A - 一种利用混合碳源生产2′-岩藻糖基乳糖的方法及其应用 - Google Patents

一种利用混合碳源生产2′-岩藻糖基乳糖的方法及其应用 Download PDF

Info

Publication number
CN116790650A
CN116790650A CN202310914970.1A CN202310914970A CN116790650A CN 116790650 A CN116790650 A CN 116790650A CN 202310914970 A CN202310914970 A CN 202310914970A CN 116790650 A CN116790650 A CN 116790650A
Authority
CN
China
Prior art keywords
gene
fucosyllactose
carbon source
glucose
glycerol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310914970.1A
Other languages
English (en)
Inventor
张岩峰
曹嘉誉
陈永丽
潘朝智
顾丽红
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Upfo Biotech Co ltd
Original Assignee
Shenzhen Upfo Biotech Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Upfo Biotech Co ltd filed Critical Shenzhen Upfo Biotech Co ltd
Priority to CN202310914970.1A priority Critical patent/CN116790650A/zh
Publication of CN116790650A publication Critical patent/CN116790650A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/24Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Enterobacteriaceae (F), e.g. Citrobacter, Serratia, Proteus, Providencia, Morganella, Yersinia
    • C07K14/245Escherichia (G)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0006Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • C12N9/1241Nucleotidyltransferases (2.7.7)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • C12N9/1288Transferases for other substituted phosphate groups (2.7.8)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • C12N9/2468Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1) acting on beta-galactose-glycoside bonds, e.g. carrageenases (3.2.1.83; 3.2.1.157); beta-agarase (3.2.1.81)
    • C12N9/2471Beta-galactosidase (3.2.1.23), i.e. exo-(1-->4)-beta-D-galactanase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/90Isomerases (5.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/01Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
    • C12Y101/01132GDP-mannose 6-dehydrogenase (1.1.1.132)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/01Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
    • C12Y101/01271GDP-L-fucose synthase (1.1.1.271)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y207/00Transferases transferring phosphorus-containing groups (2.7)
    • C12Y207/07Nucleotidyltransferases (2.7.7)
    • C12Y207/07013Mannose-1-phosphate guanylyltransferase (2.7.7.13)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y207/00Transferases transferring phosphorus-containing groups (2.7)
    • C12Y207/08Transferases for other substituted phosphate groups (2.7.8)
    • C12Y207/08031Undecaprenyl-phosphate glucose phosphotransferase (2.7.8.31)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/01Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
    • C12Y302/01023Beta-galactosidase (3.2.1.23), i.e. exo-(1-->4)-beta-D-galactanase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y504/00Intramolecular transferases (5.4)
    • C12Y504/02Phosphotransferases (phosphomutases) (5.4.2)
    • C12Y504/02008Phosphomannomutase (5.4.2.8)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/185Escherichia
    • C12R2001/19Escherichia coli

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

本发明提供了一种利用混合碳源生产2′‑岩藻糖基乳糖的方法,以经过基因工程操作的大肠杆菌为出发菌株,以葡萄糖和甘油质量比为1:4作为混合碳源,使得2′‑岩藻糖基乳糖产量达到了78.8g/L,实现了2′‑岩藻糖基乳糖在大肠杆菌中的高效从头合成。

Description

一种利用混合碳源生产2′-岩藻糖基乳糖的方法及其应用
技术领域
本发明涉及一种利用混合碳源生产2′-岩藻糖基乳糖的方法及其应用,属于微生物代谢工程和食品发酵技术领域。
背景技术
人乳寡糖(Human milk oligosaccharides,HMOs)是人乳中仅次于脂肪和乳糖的第三大固体成分,在牛乳及其他哺乳动物乳液中含量极低。其主要分为中性岩藻糖基(neutral fucosylated)、中性非岩藻糖基(neutral non-fucosylated)、唾液酸(sialylated)和其他HMOs,包括但不限于2′-岩藻糖基乳糖(2′-FL)、乳酰-N-岩藻戊糖I(LNFP I)、3-岩藻糖基乳糖(3-FL)、乳酰-N-新四糖(LNnT)、乳酰-N-四糖(LNT)和6′-唾液酸乳糖(6′-SL)。其中,2′-岩藻糖基乳糖在人乳中含量最为丰富,约占总HMOs的30%。2′-岩藻糖基乳糖具有调节肠道菌群、抵抗病原菌的黏附、促进神经系统发育和修复以及增强免疫调节水平等生理活性。
目前生产2′-岩藻糖基乳糖主要有化学合成法、全细胞合成法和酶法合成三种。但是,上述方法均存在弊端:化学合成法步骤冗长、反应条件苛刻、得率低,还需要用到大量有机试剂等问题;全细胞合成法专一性好,但反应底物需使用岩藻糖作为岩藻糖基供体,成本较高;酶法合成同全细胞合成一样,缺乏成本较低的岩藻糖基供体,同时反应效率和产量低。鉴于以上情况,利用微生物发酵法合成2′-岩藻糖基乳糖成为研究的热点。大肠杆菌由于具有遗传背景清晰、操作简单、表达稳定等特点,已经成为了一种研究产业化工程菌的理想模式生物。目前,现有技术披露了大肠杆菌全细胞催化生产2′-岩藻糖基乳糖的两条途径,分别是:从头合成途径和补救途径,其中从头合成途径需要磷酸甘露糖变位酶(ManB)、甘露糖-1-磷酸鸟嘌呤基转移酶(ManC)、GDP-甘露糖-6-脱氢酶(Gmd)、GDP-岩藻糖合成酶(WcaG)系列酶催化合成2′-岩藻糖基乳糖前体GDP-岩藻糖,GDP-岩藻糖在α-1,2-岩藻糖基转移酶(FucT2)的作用下,将岩藻糖基团转移至乳糖,合成2′-岩藻糖基乳糖。现有技术中2′-岩藻糖基乳糖的全细胞催化生产除了对上述酶进行过表达外,还对乳糖通透酶LacY进行了过表达以增加乳糖进胞,并且对GDP-岩藻糖合酶和乳糖的代谢旁路UDP-葡萄糖脂质载体转移酶基因wcaJ和β-半乳糖苷酶基因lacZ进行了敲除。但是,现有技术中大多利用单一碳源如:葡萄糖、甘油,或者混合碳源如:葡萄糖/岩藻糖混合碳源、甘油/岩藻糖混合碳源进行生产2′-岩藻糖基乳糖。
发明内容
[技术问题]
本发明要解决的技术问题是现有菌株无法同时利用甘油和葡萄糖为碳源高效生产2′-岩藻糖基乳糖的问题。
[技术方案]
为满足2′-岩藻糖基乳糖工业化需求,本发明提供了一种利用合成生物学手段改造大肠杆菌的方法,敲除了2′-岩藻糖基乳糖合成途径中的旁路基因,强化了关键酶的表达,同时改造了PTS系统,使大肠杆菌能同时利用葡萄糖和甘油,高效生产2′-岩藻糖基乳糖。
本发明的第一个目的是提供一种葡萄糖和甘油作为混合碳源进行发酵生产2′-岩藻糖基乳糖的方法,所述方法主要包括以下步骤:
(1)提供一种重组菌株,该重组菌株能够以乳糖为底物,以葡萄糖和/或甘油为碳源,合成2′-岩藻糖基乳糖;
(2)以步骤(1)的菌株作为表达菌株,以葡萄糖和甘油作为混合碳源进行发酵生产2′-岩藻糖基乳糖。
在本发明的一种实施方式中,所述重组菌株为大肠杆菌BL21(DE3)。
在本发明的一种实施方式中,对重组菌株的β-半乳糖苷酶基因lacZ、UDP-葡萄糖脂质载体转移酶基因wcaJ和PTS系统中负责编码合成葡萄糖转运及磷酸化载体蛋白的基因ptsG进行了基因敲除。
在本发明的一种实施方式中,将磷酸甘露糖变位酶ManB基因、甘露糖-1-磷酸鸟嘌呤基转移酶ManC基因、GDP-甘露糖-6-脱氢酶Gmd基因、GDP-岩藻糖合成酶WcaG基因、α-1,2岩藻糖基转移酶FucT2基因和乳糖通透酶LacY基因分别构建至质粒上,转化至重组菌株中进行过表达。
在本发明的一种实施方式中,所述β-半乳糖苷酶的登录号为:QZI62628.1;所述UDP-葡萄糖脂质载体转移酶的登录号为:QZI62770.1;所述编码合成葡萄糖转运及磷酸化载体蛋白的登录号为:CAQ31622.1。
在本发明的一种实施方式中,所述磷酸甘露糖变位酶ManB的登录号为:QZI63054.1;所述甘露糖-1-磷酸鸟嘌呤基转移酶ManC的登录号为:ACT43784.1;所述GDP-甘露糖-6-脱氢酶Gmd的登录号为:QZI62765.1;所述GDP-岩藻糖合成酶WcaG的登录号为:QZI62766.1;所述α-1,2岩藻糖基转移酶FucT2的登录号为:AAC99764.1;所述乳糖通透酶LacY的登录号为:CAQ30818.2。
在本发明的一种实施方式中,所述过表达是将磷酸甘露糖变位酶基因manB,甘露糖-1-磷酸鸟嘌呤基转移酶基因manC以及GDP-甘露糖-6-脱氢酶基因gmd,GDP-岩藻糖合成酶基因wcaG连接至质粒pRSFDuet-1上后,转化至基因敲除过的重组菌株中。
在本发明的一种实施方式中,所述过表达是将岩藻糖基转移酶基因fucT2和乳糖通透酶基因lacY连接至质粒pETDuet-1上后,转化至基因敲除过的重组菌株中。
在本发明的一种实施方式中,所述发酵生产是将所述重组菌株接种到发酵培养基中,以葡萄糖和甘油为混合碳源,进行发酵生产。
在本发明的一种实施方式中,所述发酵培养基组成为:10-15g/L KH2PO4、2-6g/L(NH4)2HPO4、1-3g/L柠檬酸、1-3g/L MgSO4·7H2O、8-12ml/L微量元素溶液、0.5-2g/L酵母粉、对应浓度抗生素溶液(其中,卡那霉素工作浓度为40-60μg/mL,氨苄霉素工作浓度为10-40μg/mL)、10-30g/L葡萄糖甘油混合碳源。
在本发明的一种实施方式中,所述微量元素的组成包括:8-12g/L Fe(III)citrate、1-3g/L ZnSO4·7H2O、0.5-1.5g/L CuSO4·5H2O、0.1-0.5g/L MnSO4·H2O、0.1-0.5g/L Na2B4O7·10H2O、0.05-0.2g/L(NH4)6Mo7O24、1-3g/L CaCl2·2H2O。
在本发明的一种实施方式中,所述发酵为分批补料发酵。
在本发明的一种实施方式中,所述分批补料发酵的补料阶段的补料培养基为40-60%(w/v)的葡萄糖和甘油混合碳源。
在本发明的一种实施方式中,所述混合碳源中葡萄糖:甘油(w/w)比例为1:(0.0625-16);优选的,所述葡萄糖:甘油(w/w)比例为1:4。
本发明的第二个目的是提供所述方法在制备含2′-岩藻糖基乳糖的产品中的应用。
本发明的有益效果:
本发明提供了一种利用混合碳源生产2′-岩藻糖基乳糖的方法,以葡萄糖和甘油质量比为1:4作为混合碳源时,使得2′-岩藻糖基乳糖产量达到了78.8g/L,实现了2′-岩藻糖基乳糖在大肠杆菌中的高效从头合成。
附图说明
图1:大肠杆菌中2′-岩藻糖基乳糖从头合成途径;
图2:验证lacZ基因敲除琼脂糖凝胶电泳图及测序结果;
图3:验证wcaJ基因敲除琼脂糖凝胶电泳图;
图4:验证ptsG基因敲除琼脂糖凝胶电泳图;
图5:菌株BLHM在不同碳源下的生长曲线;
图6:菌株BLHM在不同碳源下的生物量及2′-岩藻糖基乳糖的产量;
图7:不同碳源比例下细胞生物量及2′-岩藻糖基乳糖的产量;
图8:菌株BLHM发酵生长、碳源消耗及2′-岩藻糖基乳糖产物合成时间曲线图。
具体实施方式
(1)本发明所使用的质粒提取试剂盒、通用DNA纯化回收试剂盒、高保真DNA聚合酶、Taq酶等均购买自北京博迈德基因技术有限公司,货号分别为:DP101-02、DH107-01、MT203-02、MT201-04,具体操作按照对应试剂盒说明书进行。
(2)LB培养基:10g/L NaCl、10g/L蛋白胨和5g/L酵母粉,余量为水,0.1Mpa压力121℃下灭菌20min。
发酵培养基:13.5g/L KH2PO4、4.0g/L(NH4)2HPO4、1.7g/L柠檬酸、1.4g/L MgSO4·7H2O、10ml/L微量元素溶液、1.0g/L酵母粉、对应浓度抗生素溶液(其中,卡那霉素工作浓度为50μg/mL,氨苄霉素工作浓度为25μg/mL),20g/L葡萄糖甘油混合碳源;其中,抗生素在培养基灭菌后单独加入,葡萄糖甘油混合碳源在115℃单独灭菌后加入;微量元素的组成包括:10g/L Fe(III)citrate、2.25g/L ZnSO4·7H2O、1.0g/L CuSO4·5H2O、0.35g/L MnSO4·H2O、0.23g/L Na2B4O7·10H2O、0.11g/L(NH4)6Mo7O24、2.0g/L CaCl2·2H2O。
补料培养基:50%的葡萄糖和甘油混合碳源,葡萄糖:甘油(w/w)比例为1:4。。
(3)2′-岩藻糖基乳糖的测定方法:
使用HPLC测定:1mL发酵液于100℃煮沸5min,12000rpm离心1min,取上清液,用0.22μm膜过滤处理,利用HPLC检测乳糖的消耗量以及2′-岩藻糖基乳糖的生成量。HPLC检测条件:示差折光检测器;色谱柱为Rezex ROA-organic acid(Phenomenex,USA),柱温为50℃;流动相为5mM H2SO4水溶液,流速为0.6mL/min;进样量为10μL。
实施例1基因敲除重组菌株的构建
基因敲除的具体步骤如下(涉及到的引物序列见表1):
(1)敲除DonorDNA的构建
以大肠杆菌BL21(DE3)(或其基因组)为模板,分别利用引物lacZ-UF/lacZ-UR和lacZ-DF/lacZ-DR扩增待敲除基因lacZ上下游同源臂;利用引物wcaJ-UF/wcaJ-UR和wcaJ-DF/wcaJ-DR扩增待敲除基因wcaJ上下游同源臂;利用引物ptsG-UF/ptsG-UR和ptsG-DF/ptsG-DR扩增待敲除基因ptsG上下游同源臂。纯化回收后分别利用引物lacZ-UF/lacZ-DR、wcaJ-UF/wcaJ-DR、ptsG-UF/ptsG-DR进行重叠延伸PCR(overlap PCR)根据测序结果判断是否获得条带大小及碱基正确的条带。
(2)构建靶向质粒
以pTargetF质粒为模板,分别利用引物pTF-lacZ-F/pTF-lacZ-R、pTF-wcaJ-F/pTF-wcaJ-R、pTF-ptsG-F/pTF-ptsG-R进行反向PCR,纯化回收后化转感受态细胞,37℃培养16h(或过夜培养),挑单菌落进行菌落PCR,阳性结果送测,根据测序结果保菌及提质粒备用,质粒分别命名为pTargetF-lacZ、pTargetF-wcaJ、pTargetF-ptsG。
(3)构建带pCas质粒的底盘细胞
将pCas质粒通过电转化或化学转化法导入BL21(DE3)感受态细胞中,涂卡那霉素抗性平板,30℃培养。
(4)lacZ基因的敲除
加入200ng pTargetF-lacZ质粒及800ng DonorDNA,共转化BL21(DE3)::pCas电转感受态细胞,30℃,200rpm复苏45-60min后,重悬,涂卡那霉素+壮观霉素双抗平板,30℃过夜培养。挑取单菌落进行菌落PCR,选择条带正确的样品进行测序,确定已敲除目的基因的菌株,lacZ基因敲除PCR验证如图2所示。
(5)工具质粒的丢失
将上述获得的正确的敲除子接卡那LB培养基,加入0.5mM IPTG诱导,30℃过夜培养。稀释涂卡那抗性平板,挑单菌落进行影印筛选(分别涂卡那平板和卡那+壮观霉素双抗平板,30℃培养),挑选在卡那平板上生长且不在双抗平板上生长的菌株,该菌株即为已经丢失掉pTargetF-lacZ的菌株,可用于后续连续基因编辑,保菌,命名为BL21(DE3)ΔlacZ::pCas。
(6)丢失pCas质粒
将BL21(DE3)ΔlacZ::pCas甘油菌接无抗LB培养基,42℃过夜培养。稀释涂无抗平板(37℃培养),挑单菌落进行影印筛选(分别涂无抗平板和卡那平板,37℃培养),挑选在无抗平板上生长且不在卡那平板上生长的菌株,该菌株即为已经丢失掉pCas的菌株,此时已获得成功敲除目的基因且无抗性的底盘菌株,保菌,命名为BHM1。
(7)wcaJ基因的敲除
按照实施例1步骤(4)-(6),在BL21(DE3)ΔlacZ基础上对wcaJ基因进行敲除,wcaJ基因敲除PCR验证如图3所示,敲除成功的菌株命名为BHM2。
(8)ptsG基因的敲除
按照实施例1步骤(4)-(6),在BL21(DE3)ΔlacZΔwcaJ基础上对ptsG基因进行敲除,ptsG基因敲除PCR验证如图4所示,敲除成功的菌株命名为BHM3。
表1本发明中基因敲除所用引物
实施例2高产2′-岩藻糖基乳糖的工程菌株的构建
(1)重组表达质粒构建,具体步骤如下(涉及到的引物序列见表2)
1)构建GDP-L-岩藻糖合成模块质粒
以大肠杆菌BL21(DE3)为模板,分别利用引物CB-F/CB-R和GW-F/GW-R扩增磷酸甘露糖变位酶基因manB,甘露糖-1-磷酸鸟嘌呤基转移酶基因manC以及GDP-甘露糖-6-脱氢酶基因gmd,GDP-岩藻糖合成酶基因wcaG。同时,以pRSFDuet-1为模板,利用引物pRSF-vec-F/pRSF-vec-R扩增线性化载体,利用同源重组酶构建获得质粒pRSF-CB及pRSF-GW。以质粒pRSF-CB为模板,通过引物pRSF-vec-F/pRSF-CB-vec-R扩增获得线性化载体,以质粒pRSF-GW为模板,通过引物pRSF-GW-vec-F/GW-R扩增带有gmd和wcaG基因的片段,再通过同源重组酶构建获得GDP-L-岩藻糖合成模块质粒pRSF-CBGW。
2)构建α-1,2-岩藻糖基转移酶fucT2和乳糖通透酶lacY共表达模块
fucT2基因由人工全合成,直接构建在pETDuet-1载体上,形成表达质粒pET-fucT2。然后分别以该质粒及大肠杆菌BL21(DE3)为模板,利用引物pETC-vec-F/pETC-vec-R和lacY-F/lacY-R扩增得到带有fucT2基因的线性化载体及乳糖通透酶基因lacY片段,最后利用同源重组酶构建获得质粒pET-CY。
表2本发明中构建过表达载体所用引物及核苷酸序列
(2)重组大肠杆菌的构建,具体步骤如下(涉及到的菌株及引物序列见表3)
制备2′-岩藻糖基乳糖工程菌株BHM3的电转感受态细胞,将步骤(1)中构建好的质粒pRSF-CBGW及质粒pET-CY共转入电转感受态细胞,复苏后涂双抗性(卡那霉素和氨苄霉素,工作浓度均为50μg/mL)LB平板,37℃过夜培养,挑取单菌落进行测序,正确的菌株命名为BLHM。
表3本发明中涉及到的质粒及菌株
实施例3摇瓶发酵验证不同碳源对菌株BLHM制备2′-岩藻糖基乳糖的影响
在5mL LB培养基(卡那霉素及氨苄霉素双抗性)中接入50μL BLHM甘油菌,37℃220rpm过夜培养。将活化后的菌株按1%接种量转入装有20mL LB培养基(卡那霉素及氨苄霉素双抗性)的锥形瓶中,37℃220rpm进行培养。待OD600达到0.6后,离心收集菌体,使用20mL发酵培养基重悬,加入卡那霉素及氨苄霉素双抗,碳源分别为葡萄糖、甘油、葡萄糖/甘油预混液(质量比为1:1),碳源浓度为10g/L。加入终浓度为0.1mM的IPTG诱导,30℃220rpm诱导24h。
测定发酵过程中菌体OD600(图5),诱导结束后取1mL发酵液煮沸10min,12000rpm离心5min,取上清液并用0.22μm膜处理,利用HPLC检测2′-岩藻糖基乳糖的生成量(图6)。结果显示,仅利用甘油为单一碳源时,细胞生长缓慢;利用葡萄糖为单一碳源时,细胞生长正常,但产量较其他两组实验较低;在利用葡萄糖/甘油为混合碳源时,细胞生长情况虽不如利用葡萄糖作为单一碳源,但其2’-岩藻糖基乳糖产量最高,达到1.62g/L,相较于葡萄糖和甘油分别单独作为碳源,葡萄糖/甘油混合碳源的2’-岩藻糖基乳糖产量分别提升了141.79%和14.08%。
实施例4摇瓶发酵验证碳源中葡萄糖与甘油比例对菌株BLHM制备2′-岩藻糖基乳糖的影响
同实施例3,区别在于,碳源为不同质量比例(16/1、8/1、4/1、2/1、1/1、1/2、1/4、1/8、1/16)的葡萄糖/甘油预混液,预混液浓度为10g/L。加入终浓度为0.1mM的IPTG诱导,30℃220rpm诱导24h。
诱导结束后取样并测定菌体OD600,取1mL发酵液煮沸10min,12000rpm离心5min,取上清液并用0.22μm膜处理,利用HPLC检测2′-岩藻糖基乳糖的生成量(图7)。结果显示,碳源比例对菌株合成2′-岩藻糖基乳糖具有不同程度的影响,当葡萄糖:甘油(w/w)=1:4时,2′-岩藻糖基乳糖的产量最高,可达1.98g/L。
实施例5重组菌分批补料发酵
发酵条件:发酵培养基,接种量10%,两段式发酵(诱导前37℃培养,诱导后30℃培养),发酵全程使用氨水控制pH,使其维持在7.0。待初始碳源消耗完全后,开始补加补料培养基,当OD600达到40时,加入终浓度为0.1mM的IPTG进行诱导,同时流加200g/L的乳糖,使其浓度维持在5g/L左右,直至发酵结束。发酵过程通过级联控制,通过调节转速、通气量,使溶氧维持在25%。发酵全程定时取样并测定菌体OD600,样品处理方式同实施例3,利用HPLC检测2′-岩藻糖基乳糖的生成量。结果如图8所示,发酵结束后(共发酵96小时),产物2′-岩藻糖基乳糖的浓度可达78.8g/L。
以上对本发明做了示例性的描述,应该说明的是,在不脱离本发明的核心的情况下,任何简单的变形、修改或者其他本领域技术人员能够不花费创造性劳动的等同替换均落入本发明的保护范围。

Claims (10)

1.一种利用混合碳源生产2′-岩藻糖基乳糖的方法,包括以下步骤:
(1)提供一种重组菌株,该重组菌株能够以乳糖为底物,以葡萄糖和/或甘油为碳源,合成2′-岩藻糖基乳糖;
(2)以步骤(1)的菌株作为生产菌株,以混合碳源进行发酵生产2′-岩藻糖基乳糖;
所述混合碳源为葡萄糖和甘油。
2.根据权利要求1所述的方法,其特征在于,所述混合碳源中,以重量比计,葡萄糖:甘油的比例为1:(0.0625-16)。
3.根据权利要求1所述的方法,其特征在于,生产过程中还流加了底物乳糖。
4.根据权利要求3所述的方法,其特征在于,所述乳糖终浓度为2-8g/L。
5.根据权利要求1所述的方法,其特征在于,所述重组菌株包括大肠杆菌BL21(DE3)。
6.根据权利要求5所述的方法,其特征在于,所述大肠杆菌敲除了乳糖通透酶基因lacZ、UDP-葡萄糖脂质载体转移酶基因wcaJ和编码合成葡萄糖转运及磷酸化载体蛋白基因ptsG。
7.根据权利要求6所述的方法,其特征在于,所述大肠杆菌表达了磷酸甘露糖变位酶基因manB、甘露糖-1-磷酸鸟嘌呤基转移酶基因manC、GDP-甘露糖-6-脱氢酶基因gmd和GDP-岩藻糖合成酶基因wcaG。
8.根据权利要求7所述的方法,其特征在于,所述大肠杆菌表达了α-1,2-岩藻糖基转移酶基因fucT2和乳糖通透酶基因lacY。
9.根据权利要求8所述的方法,其特征在于,所述manB、manC、gmd、wcaG的表达与所述fucT2、lacY的表达是在不同的质粒上进行的。
10.权利要求1所述方法在制备含2′-岩藻糖基乳糖的产品中的应用。
CN202310914970.1A 2023-07-24 2023-07-24 一种利用混合碳源生产2′-岩藻糖基乳糖的方法及其应用 Pending CN116790650A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310914970.1A CN116790650A (zh) 2023-07-24 2023-07-24 一种利用混合碳源生产2′-岩藻糖基乳糖的方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310914970.1A CN116790650A (zh) 2023-07-24 2023-07-24 一种利用混合碳源生产2′-岩藻糖基乳糖的方法及其应用

Publications (1)

Publication Number Publication Date
CN116790650A true CN116790650A (zh) 2023-09-22

Family

ID=88040354

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310914970.1A Pending CN116790650A (zh) 2023-07-24 2023-07-24 一种利用混合碳源生产2′-岩藻糖基乳糖的方法及其应用

Country Status (1)

Country Link
CN (1) CN116790650A (zh)

Similar Documents

Publication Publication Date Title
CN112342176A (zh) 产2’-岩藻糖基乳糖的基因工程菌及其应用
CN114480240B (zh) 一种产岩藻糖基乳糖的基因工程菌及生产方法
CN109402158B (zh) 一种产岩藻糖基乳糖的重组表达质粒载体、代谢工程菌及生产方法
CN114774343B (zh) 一种生产2’-岩藻糖基乳糖的大肠杆菌工程菌株及应用
CN109790559A (zh) 改良的用于产生岩藻糖基化寡糖的方法
CN113136357B (zh) 一种产乳酰-n-新四糖的基因工程菌及生产方法
CN114806991B (zh) 一种提高岩藻糖基乳糖产量的工程大肠杆菌及生产方法
CN109536428A (zh) 一种产l-异亮氨酸的基因工程菌及其构建方法和应用
CN110699394A (zh) 一种生产1,5-戊二胺的生物转化法
WO2023099680A1 (en) Cells with tri-, tetra- or pentasaccharide importers useful in oligosaccharide production
US20240417766A1 (en) IDENTIFICATION OF AN alpha-1,2-FUCOSYLTRANSFERASE FOR THE IN VIVO PRODUCTION OF PURE LNFP-I
CN113832092A (zh) 一种提高乳酰-n-岩藻五糖产量的基因工程菌及其生产方法
CN113684163A (zh) 一种提高乳酰-n-四糖产量的基因工程菌及其生产方法
CN116064345A (zh) 高效生产岩藻糖基乳糖的无抗基因工程菌及其应用
CN116676243A (zh) 产2'-岩藻糖基乳糖的重组大肠杆菌的构建方法及其应用
CN107674855A (zh) 一种产γ‑氨基丁酸的谷氨酸棒杆菌及其构建方法和应用
CN116478894B (zh) 一种提高唾液酸乳糖产量的基因工程菌及其生产方法
CN116769808B (zh) 一种专一生产2′-岩藻糖基乳糖的菌株及应用
CN116790650A (zh) 一种利用混合碳源生产2′-岩藻糖基乳糖的方法及其应用
CN113957027A (zh) 一种提高乳酰-n-岩藻六糖产量的基因工程菌及其生产方法
CN119161416B (zh) 一种高效合成四氢嘧啶的基因工程菌及其构建方法
DK181991B1 (en) Combined fermentation process for producing one or more human milk oligosaccharide(s) (hmo(s)) in escherichia coli
CN119390795B (zh) 一种转录调节因子MarR突变体及在人乳寡糖生产中的应用
CN119220475B (zh) 一种高效合成乳糖-n-岩藻糖基五糖i的重组大肠杆菌的构建方法及应用
CN116042684B (zh) 大肠杆菌及其在催化合成阿洛酮糖中的应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination