CN116763942A - 脑内生成gaba能神经元 - Google Patents
脑内生成gaba能神经元 Download PDFInfo
- Publication number
- CN116763942A CN116763942A CN202310531098.2A CN202310531098A CN116763942A CN 116763942 A CN116763942 A CN 116763942A CN 202310531098 A CN202310531098 A CN 202310531098A CN 116763942 A CN116763942 A CN 116763942A
- Authority
- CN
- China
- Prior art keywords
- neurons
- dlx2
- neurod1
- cells
- polypeptide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K48/00—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
- A61K48/005—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the 'active' part of the composition delivered, i.e. the nucleic acid delivered
- A61K48/0058—Nucleic acids adapted for tissue specific expression, e.g. having tissue specific promoters as part of a contruct
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/17—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- A61K38/1703—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
- A61K38/1709—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K48/00—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
- A61K48/0075—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the delivery route, e.g. oral, subcutaneous
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/0012—Galenical forms characterised by the site of application
- A61K9/0085—Brain, e.g. brain implants; Spinal cord
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/46—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
- C07K14/47—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
- C07K14/4701—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals not used
- C07K14/4702—Regulators; Modulating activity
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/85—Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
- C12N15/86—Viral vectors
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01K—ANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
- A01K2227/00—Animals characterised by species
- A01K2227/10—Mammal
- A01K2227/105—Murine
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01K—ANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
- A01K2267/00—Animals characterised by purpose
- A01K2267/03—Animal model, e.g. for test or diseases
- A01K2267/0306—Animal model for genetic diseases
- A01K2267/0318—Animal model for neurodegenerative disease, e.g. non- Alzheimer's
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2740/00—Reverse transcribing RNA viruses
- C12N2740/00011—Details
- C12N2740/10011—Retroviridae
- C12N2740/13011—Gammaretrovirus, e.g. murine leukeamia virus
- C12N2740/13041—Use of virus, viral particle or viral elements as a vector
- C12N2740/13043—Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2750/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssDNA viruses
- C12N2750/00011—Details
- C12N2750/14011—Parvoviridae
- C12N2750/14111—Dependovirus, e.g. adenoassociated viruses
- C12N2750/14141—Use of virus, viral particle or viral elements as a vector
- C12N2750/14143—Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2840/00—Vectors comprising a special translation-regulating system
- C12N2840/007—Vectors comprising a special translation-regulating system cell or tissue specific
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Genetics & Genomics (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Organic Chemistry (AREA)
- Biomedical Technology (AREA)
- Epidemiology (AREA)
- Molecular Biology (AREA)
- Biotechnology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Zoology (AREA)
- Biochemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Gastroenterology & Hepatology (AREA)
- Biophysics (AREA)
- Neurosurgery (AREA)
- Neurology (AREA)
- Wood Science & Technology (AREA)
- General Engineering & Computer Science (AREA)
- Marine Sciences & Fisheries (AREA)
- Immunology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Toxicology (AREA)
- Physics & Mathematics (AREA)
- Virology (AREA)
- Plant Pathology (AREA)
- Microbiology (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Psychology (AREA)
- Medicines Containing Material From Animals Or Micro-Organisms (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
Abstract
本文提供了用于在脑中生成GABA能神经元的方法和材料。例如,使用编码NeuroD1多肽的核酸和编码D1x2多肽的核酸以触发脑(例如,纹状体)内的神经胶质细胞(例如,NG2神经胶质细胞或星形胶质细胞)形成功能性整合于活体哺乳动物(例如,人)脑内的GABA能神经元(例如,与诸如DARPP32‑阳性GABA能神经元的中型多棘神经元类似的神经元)的方法和材料。
Description
本申请是申请日为2017年2月17日,申请号为201780012209.1,发明名称为“脑内生成GABA能神经元”的发明专利申请的分案申请。
技术领域
本文涉及用于在脑中生成GABA能神经元的方法和材料。例如,本文涉及使用编码NeuroD1多肽的核酸和编码D1x2多肽的核酸以触发脑(例如,纹状体)内的神经胶质细胞(例如,NG2神经胶质细胞或星形胶质细胞)形成功能性整合于活体哺乳动物(例如,人)脑内的GABA能神经元(例如与小清蛋白神经元或中型多棘神经元诸如DARPP32-阳性GABA能神经元类似的神经元)的方法和材料。
背景技术
亨延顿氏病主要由亨廷顿基因(HTT)内的突变引起,突变导致编码多聚谷氨酰胺的三核苷酸CAG重复扩增。当亨廷顿基因中CAG重复的数量超过36,其将引发疾病,并且纹状体中的GABA能中型多棘神经元特别容易受到这种多聚谷氨酰胺毒性的影响(Ross等,Lancet Neurol.,10:83-98(2011);以及Walker,Lancet,369:218-228(2007))。当前,尚无治愈亨廷顿氏病的有效治疗。
发明内容
本文提供了用于在脑中生成GABA能神经元的方法和材料。例如,本文提供了使用编码NeuroD1多肽的核酸和编码D1x2多肽的核酸以触发脑(例如,纹状体)内的神经胶质细胞(例如,NG2神经胶质细胞或星形胶质细胞)形成功能性整合于活体哺乳动物(例如,人)脑内的GABA能神经元(例如与小清蛋白神经元或中型多棘神经元诸如DARPP32-阳性GABA能神经元类似的神经元)的方法和材料。
如本文所述,设计成表达NeuroD1多肽的核酸和设计成表达D1x2多肽的核酸可以触发神经胶质细胞形成功能性的且整合的GABA能神经元的方式一起递送至哺乳动物脑(例如,纹状体)内的神经胶质细胞(例如,NG2神经胶质细胞或星状胶质细胞)。这些功能性整合GABA能神经元可以类似中型多棘神经元(例如,它们可以是DARPP32-阳性GABA能神经元)。使用本文所述方法和材料能够在活体哺乳动物脑的纹状体内形成新的GABA能神经元,这就使得医生和患者(例如,亨廷顿氏病患者)能够产生相较于无治疗亨廷顿氏病患者的脑结构与健康脑结构更加近似的脑结构,无治疗亨廷顿氏病患者的脑结构经历了严重的GABA能中型多棘神经元死亡或变性。这对亨廷顿氏病患者来说代表了向前迈出的重要一步,尽管目前尚且无法治愈这种疾病。在一些情况中,使用本文所述方法和材料能够对亨廷顿氏病进展期间死亡或变性的纹状体内GABA能中型多棘神经元进行补充,这使得医生和患者能够减慢、延缓或逆转亨廷顿氏病进展。
总体上,本文一方面涉及在活体哺乳动物脑的纹状体中形成GABA能神经元的方法。该方法包括或主要有以下所述组成:向纹状体内神经胶质细胞给予编码NeuroD1多肽的核酸和编码Dlx2多肽的核酸(或NeuroD1多肽和Dlx2多肽),其中NeuroD1多肽和Dlx2多肽由神经胶质细胞表达,并且,神经胶质细胞在纹状体内形成或转化成GABA能神经元。哺乳动物可以是人。神经胶质细胞可以是NG2神经胶质细胞或星形胶质细胞。GABA能神经元可以是小清蛋白-阳性或DARPP32-阳性。NeuroD1多肽可以是人NeuroD1多肽。Dlx2多肽可以是人Dlx2多肽。可以将编码NeuroD1多肽的核酸以病毒载体的形式给予神经胶质细胞。在这样的情况下,病毒载体可以是腺相关病毒载体(例如,腺相关病毒血清型2病毒载体、腺相关病毒血清型5病毒载体或腺相关病毒血清型9病毒载体)。可以将编码D1x2多肽的核酸以病毒载体的形式给予神经胶质细胞。在这样的情况下,病毒载体可以是腺相关病毒载体(例如,腺相关病毒血清型2病毒载体、腺相关病毒血清型5病毒载体或腺相关病毒血清型9病毒载体)。编码NeuroD1多肽的核酸和编码Dlx2多肽的核酸可以位于同一病毒载体上,并且该病毒载体可以被给予神经胶质细胞。在这样的情况下,病毒载体可以是腺相关病毒载体(例如,腺相关病毒血清型2病毒载体、腺相关病毒血清型5病毒载体或腺相关病毒血清型9病毒载体)。编码NeuroD1多肽的核酸和编码Dlx2多肽的核酸可以位于分开的病毒载体上,并且分开的病毒载体各自可以被给予神经胶质细胞。在这样的情况下,分开的病毒载体各自可以是腺相关病毒载体(例如,腺相关病毒血清型2病毒载体、腺相关病毒血清型5病毒载体或腺相关病毒血清型9病毒载体)。给予可以包括直接注射到活体哺乳动物脑的纹状体。给予可以包括腹膜内、颅内、静脉内、鼻内或经口给予。编码NeuroD1多肽的核酸可以操作性连接启动子序列;并且该启动子序列可以是组成型启动子序列。该组成型启动子序列可以包括NG2启动子序列,GFAP启动子序列,EF1a启动子序列,CMV启动子序列,Aldh1L1启动子序列,或CAG启动子序列。编码NeuroD1多肽的核酸可以操作性连接启动子序列;并且该启动子序列可以是神经胶质特异性启动子序列。神经胶质特异性启动子序列可以包括NG2启动子序列,GFAP启动子序列,Aldh1L1启动子序列,或Olig2启动子序列。编码Dlx2多肽的核酸可以操作性连接启动子序列;并且该启动子序列可以是组成型启动子序列。该组成型启动子序列可以包括NG2启动子序列,GFAP启动子序列,EF1a启动子序列,CMV启动子序列,Aldh1L1启动子序列,或CAG启动子序列。编码Dlx2多肽的核酸可以操作性连接启动子序列;并且该启动子序列可以是神经胶质特异性启动子序列。神经胶质特异性启动子序列可以包括NG2启动子序列,GFAP启动子序列,Aldh1L1启动子序列,或Olig2启动子序列。
在另一方面,本文涉及在活体哺乳动物脑的纹状体中形成GABA能神经元的组合物。该组合物包含或主要由以下所述组成:包括编码NeuroD1多肽的核酸序列和编码Dlx2多肽的核酸序列的核酸载体。该核酸载体可以是病毒载体,如腺相关病毒载体(例如,腺相关病毒血清型2病毒载体、腺相关病毒血清型5病毒载体或腺相关病毒血清型9病毒载体)。编码NeuroD1多肽的核酸序列可以操作性连接启动子序列;并且该启动子序列可以是组成型启动子序列。该组成型启动子序列可以包括NG2启动子序列,GFAP启动子序列,EF1a启动子序列,CMV启动子序列,Aldh1L1启动子序列,或CAG启动子序列。编码NeuroD1多肽的核酸序列可以操作性连接启动子序列;并且该启动子序列可以是神经胶质特异性启动子序列。神经胶质特异性启动子序列可以包括NG2启动子序列,GFAP启动子序列,Aldh1L1启动子序列,或Olig2启动子序列。编码Dlx2多肽的核酸序列可以操作性连接启动子序列;并且该启动子序列可以是组成型启动子序列。该组成型启动子序列可以包括NG2启动子序列,GFAP启动子序列,EF1a启动子序列,CMV启动子序列,Aldh1L1启动子序列,或CAG启动子序列。编码Dlx2多肽的核酸序列可以操作性连接启动子序列;并且该启动子序列可以是神经胶质特异性启动子序列。神经胶质特异性启动子序列可以包括NG2启动子序列,GFAP启动子序列,Aldh1L1启动子序列,或Olig2启动子序列。
具体地,本发明提供以下实施方案:
实施方案1.一种在活体哺乳动物脑的纹状体中形成GABA能神经元的方法,其中所述方法包括向所述纹状体内神经胶质细胞给予编码NeuroD1多肽的核酸和编码Dlx2多肽的核酸,其中所述NeuroD1多肽和所述Dlx2多肽通过所述神经胶质细胞表达,并且其中所述神经胶质细胞在所述纹状体内形成GABA能神经元。
实施方案2.如实施方案1所述的方法,其中所述哺乳动物是人。
实施方案3.如实施方案1-2中任一项所述的方法,其中所述细胞是NG2神经胶质细胞。
实施方案4.如实施方案1-3中任一项所述的方法,其中所述GABA能神经元呈DARPP32-阳性。
实施方案5.如实施方案1-4中任一项所述的方法,其中所述NeuroD1多肽是人NeuroD1多肽。
实施方案6.如实施方案1-5中任一项所述的方法,其中所述Dlx2多肽是人Dlx2多肽。
实施方案7.如实施方案1-6中任一项所述的方法,其中所述编码NeuroD1多肽的核酸以病毒载体的形式给予所述神经胶质细胞。
实施方案8.如实施方案7所述方法,其中所述病毒载体是腺相关病毒载体。
实施方案9.如实施方案7所述方法,其中所述病毒载体是腺相关病毒血清型2或5病毒载体。
实施方案10.如实施方案1-9中任一项所述的方法,其中所述编码Dlx2多肽的核酸以病毒载体的形式给予所述神经胶质细胞。
实施方案11.如实施方案10所述方法,其中所述病毒载体是腺相关病毒载体。
实施方案12.如实施方案10所述方法,其中所述病毒载体是腺相关病毒血清型2或5病毒载体。
实施方案13.如实施方案1-6中任一项所述的方法,其中所述编码NeuroD1多肽的核酸和所述编码Dlx2多肽的核酸位于同一病毒载体上,并且其中所述病毒载体给予所述神经胶质细胞。
实施方案14.如实施方案13所述方法,其中所述病毒载体是腺相关病毒载体。
实施方案15.如实施方案13所述方法,其中所述病毒载体是腺相关病毒血清型2或5病毒载体。
实施方案16.如实施方案1-6中任一项所述的方法,其中所述编码NeuroD1多肽的核酸和所述编码Dlx2多肽的核酸位于分开的病毒载体上,并且其中所述分开的病毒载体各自均被给予所述神经胶质细胞。
实施方案17.如实施方案16所述方法,其中所述分开的病毒载体各自是腺相关病毒载体。
实施方案18.如实施方案16所述方法,其中所述分开的病毒载体各自是腺相关病毒血清型2或5病毒载体。
实施方案19.如实施方案1-18中任一项所述的应用,其中所述给予包括直接注射到所述活体哺乳动物脑的纹状体。
实施方案20.如实施方案1-18中任一项所述的方法,其中所述给予包括腹膜内、静脉内、鼻内或经口给予。
实施方案21.如实施方案1-20中任一项所述的方法,其中所述编码NeuroD1多肽的核酸操作性连接启动子序列,其中所述启动子序列是组成型启动子序列。
实施方案22.如实施方案21所述的方法,其中所述组成型启动子序列包括NG2启动子序列,GFAP启动子序列,EF1a启动子序列,CMV启动子序列或CAG启动子序列。
实施方案23.如实施方案1-20中任一项所述的方法,其中所述编码NeuroD1多肽的核酸操作性连接启动子序列,其中所述启动子序列是神经胶质特异性启动子序列。
实施方案24.如实施方案23所述的方法,其中所述神经胶质特异性启动子序列包括NG2启动子序列,GFAP启动子序列或Olig2启动子序列。
实施方案25.如实施方案1-24中任一项所述的方法,其中所述编码Dlx2多肽的核酸操作性连接启动子序列,其中所述启动子序列是组成型启动子序列。
实施方案26.如实施方案25所述的方法,其中所述组成型启动子序列包括NG2启动子序列,GFAP启动子序列,EF1a启动子序列,CMV启动子序列或CAG启动子序列。
实施方案27.如实施方案1-24中任一项所述的方法,其中所述编码Dlx2多肽的核酸操作性连接启动子序列,其中所述启动子序列是神经胶质特异性启动子序列。
实施方案28.如实施方案27所述的方法,其中所述神经胶质特异性启动子序列包括NG2启动子序列,GFAP启动子序列或Olig2启动子序列。
实施方案29.一种用于在活体哺乳动物脑的纹状体中形成GABA能神经元的组合物,其中所述组合物包含载有编码NeuroD1多肽的核酸序列和编码Dlx2多肽的核酸序列的核酸载体。
实施方案30.如实施方案29所述的组合物,其中所述核酸载体是病毒载体。
实施方案31.如实施方案30所述组合物,其中所述病毒载体是腺相关病毒载体。
实施方案32.如实施方案30所述组合物,其中所述病毒载体是腺相关病毒血清型2或5病毒载体。
实施方案33.如实施方案29-32中任一项所述的组合物,其中所述编码NeuroD1多肽的核酸操作性连接启动子序列,其中所述启动子序列是组成型启动子序列。
实施方案34.如实施方案33所述的组合物,其中所述组成型启动子序列包括NG2启动子序列,GFAP启动子序列,EF1a启动子序列,CMV启动子序列或CAG启动子序列。
实施方案35.如实施方案29-32中任一项所述的组合物,其中所述编码NeuroD1多肽的核酸操作性连接启动子序列,其中所述启动子序列是神经胶质特异性启动子序列。
实施方案36.如实施方案35所述的组合物,其中所述神经胶质特异性启动子序列包括NG2启动子序列,GFAP启动子序列或Olig2启动子序列。
实施方案37.如实施方案29-36中任一项所述的组合物,其中所述编码Dlx2多肽的核酸操作性连接启动子序列,其中所述启动子序列是组成型启动子序列。
实施方案38.如实施方案37所述的组合物,其中所述组成型启动子序列包括NG2启动子序列,GFAP启动子序列,EF1a启动子序列,CMV启动子序列或CAG启动子序列。
实施方案39.如实施方案29-36中任一项所述的组合物,其中所述编码Dlx2多肽的核酸操作性连接启动子序列,其中所述启动子序列是神经胶质特异性启动子序列。
实施方案40.如实施方案39所述的组合物,其中所述神经胶质特异性启动子序列包括NG2启动子序列,GFAP启动子序列或Olig2启动子序列。
除非另外定义,本文使用的所有技术和科学术语的意义与本发明所属领域普通技术人员通常所理解的相同。虽然在本发明的实施或测试中可以采用类似于或等同于本文所述的那些方法和材料,但下文描述了合适的方法和材料。本文中述及的所有出版物、专利申请、专利和其他参考文献都通过引用全文纳入本文。在抵触的情况下,以本说明书(包括定义在内)为准。此外,材料、方法和实施例都仅是说明性的,并不意在构成限制。
从下文的详述和附图,以及所附权利要求中能够很容易地了解本发明的其他特征和优点。
附图说明
图1.培养的NG2细胞向功能性GABA能神经元转化。(A)对照逆转录病毒(NG2启动子下表达GFP)感染的NG2细胞在感染后3天(DPI)分化成未成熟的少突胶质细胞(CNP酶-阳性,红色)。(B)NG2::Dlx2逆转录病毒感染的NG2细胞重编程为神经元(NeuN-阳性,红色,7DPI)。(C)NG2转化的神经元由GABA能突触激活,据GABA能突触前蛋白GAD65检测显示(红色,14DPI)。(D)记录自NG2转化的神经元的代表性痕迹,其显示当维持在-20mV时自发性突触事件升高(14DPI)。注意,这些事件都受GABAA受体拮抗剂BIC(20μM)阻断,这表明它们是GABA能事件。(E-F)据Tuj1染色(E,14DPI)和GAD67染色(F,21DPI)所示,NeuroD1增强Dlx2诱导的转化效率。(G-H)定量数据,显示NeuroD1与Dlx2共表达后Tuj1阳性神经元(G)或GAD67阳性GABA能神经元(H)显著增加。数据表示为平均值±s.e.m。***P<0.001(斯氏t检验)。比例尺:对图A、B、E和F为40μm,对图C为10μm。
图2.小鼠NG2培养物的表征。(A-C)用对照逆转录病毒NG2::GFP感染小鼠NG2培养物后发现,小百分比的细胞呈星形胶质细胞标志物GFAP免疫阳性,而非小神经胶质细胞标志物Iba1或未成熟神经元标志物DCX阳性。比例尺:40μm。(D)定量数据,显示大部分的NG2细胞将分化成少突胶质细胞(CNP酶)(分化培养基中NG2::GFP感染后3天)。
图3.表达Dlx2后,NG2细胞未生成谷氨酸能神经元。NG2转化的神经元呈vGlut1免疫阴性,这表明在单独由Dlx2重编程NG2细胞后没有谷氨酸能神经元(n=4次重复,60个细胞)。比例尺:40μm。
图4.筛选用于NG2细胞高效转化为GABA能神经元的转录因子。(A)由神经转录因子(Dlx2、NeuroD1和Ascl1;14DPI)不同组合感染后NG2细胞转化所得GAD67-阳性神经元。(B)定量数据,显示Dlx2+NeuroD1和Dlx2+NeuroD1+Ascl1组中NG2细胞向GABA能神经元的高转化效率。.(C)代表性痕迹,显示记录自NG2转化神经元的不同转录因子感染后(感染后21天)GABA能事件升高。(D)GABA能事件频率的定量同样显示Dlx2+NeuroD1诱导NG2细胞向GABA能神经元的高转化率。
图5.培养物中NG2转化的GABA能神经元的分类。(A-E)NeuroD1+Dlx2逆转录病毒感染后(21DPI),用一系列的中间神经元亚型标志物(CR、SST、PV、CCK8和NPY)对NG2转化的神经元进行免疫染色。比例尺:40μm。(F)定量显示:许多NG2转化的神经元呈钙网膜蛋白(CR)、生长激素抑制素(SST)和小清蛋白(PV)免疫阳性,但较少CCK8或NPY免疫阳性。(G-H)代表性痕迹,显示NG2转化的神经元之中不同的行为动作电位放电模式(G,12.9Hz;H,38.9Hz)。注意,图H显示了快速达峰样放电模式的示例
图6.将NG2细胞体内重编程为功能性GABA能神经元。(A)显示NeuroD1/Dlx2-P2A-mCherry体系Cre介导的FLEx开关的示意图。(B)将NG2::Cre和FLEx-mCherry AAV体内注射至纹状体后检测到的NG2细胞。(C)AAV感染的纹状体区域的宏观图(21DPI)。(D)AAV注射后第21天,NeuroD1/Dlx2感染的NG2细胞显示神经元样形态学和NeuN染色(箭头,红色)。(E)定量数据,其显示了NeuroD1/Dlx2感染后,感染细胞中NG2细胞逐渐减少并且伴随着神经元的增加,这表明NG2细胞转化成神经元细胞。(F-G)纹状体中NG2转化的神经元(21DPI)呈GABA(F)和GAD67(G)免疫阳性。比例尺:对图A、D为40μm,对图F、H为20批m。(H)记录自NG2转化的神经元的自发性突触事件(31DPI)。
图7.将NG2细胞在NG2启动子的直接控制下重编程为神经元。(A)通过对照病毒NG2::GFP感染发现的纹状体中的NG2细胞。(B)NG2细胞在NG2::NeuroD1/Dlx2感染后变成NeuN-阳性神经元。比例尺:40μm。(C)显示NG2::GFP或NG2::NeuroD/Dlx2感染后神经元与NG2细胞的百分比的定量数据。在NG2启动子的直接控制下表达NeuroD1+Dlx2后,NG2细胞的大部分转化成神经元。
图8.纹状体中NG2转化的神经元的亚型表征。(A-E)NG2细胞(21DPI)中NeuroD1和Dlx2异位表达后,用一系列GABA能神经元亚型标志物(SST、PV、NPY、CCK8和DARPP32)在纹状体中进行免疫染色。比例尺:40μm。(F)定量数据显示:NeuroD1/Dlx2 AAV注入纹状体后,显著比例的神经元呈DARPP32和PV免疫阳性。(G-H)代表性痕迹,显示了记录自脑切片(n=20神经元)中NG2转化的神经元动作电位放电模式(31DPI)。一些神经元显示快速达峰样放电模式,频率范围70-200Hz。
图9.将皮质NG2细胞原位重编程为功能性GABA能神经元。(A)将NG2::Cre和FLEx-mCherry AAV注射到小鼠前额皮质后发现的NG2细胞。(B)显示前额皮质中AAV感染位点的低倍放大图(21DPI)。(C)NG2细胞中NeuroD1和Dlx2异位表达后,皮质NG2细胞重编程为NeuN-阳性神经元(21DPI)。(D-E)纹状体中的一些NG2-转化的神经元呈GABA(D)和GAD67(E)免疫阳性(21DPI)。比例尺:对图A、C为40μm,对图B为500μm,对图D、E为20μm。(F)代表性痕迹,显示了记录自前额皮质中原位NG2转化的神经元的自发性突触事件(35DPI)。
图10.前额皮质中NG2转化的神经元的亚型表征。(A-E)免疫染色,显示前额皮质中NeuroD1/Dlx2感染后NG2转化的细胞中不同的GABA能神经元亚型(21DPI)。比例尺:40μm。(F)定量数据,显示前额皮质中显著数量的NG2转化的神经元呈PV和CCK8免疫阳性。(G)代表性痕迹,显示前额皮质中NG2转化神经元(n=8神经元)的低频和高频动作电位放电模式(35DPI)。注意,一些神经元显示快速达峰样动作电位放电(138Hz)。
图11.对照病毒主要感染小鼠脑中的NG2细胞。(A)对照AAV(NG2::Cre和FLEx-mCherry)注射到纹状体后通常感染NG2细胞。(B)对照AAV(NG2::Cre和FLEx-mCherry)也主要感染前额皮质中的NG2细胞。比例尺:40μm。
图12列出人NeuroD1多肽的氨基酸序列(SEQ ID NO:1)。
图13列出人Dlx2多肽的氨基酸序列(SEQ ID NO:2)。
图14A-F.NeuroD1和Dlx2在R6/2小鼠纹状体中介导神经胶质向神经元的转化,所述R6/2小鼠是亨廷顿氏病的小鼠模型。(A,B)给R6/2小鼠星形胶质细胞中注射Cre-FLEx系统下表达NeuroD1和Dlx2或mCherry对照的AAV5病毒。1月后,注射了NeuroD1/Dlx2的小鼠(B)中的感染细胞(箭头)中检测到NeuroD1(箭头)和D1x2(箭头),但是mCherry对照小鼠(A)中未见。(C)在mCherry对照组中,大部分被感染的细胞是GFAP标记的星状胶质细胞(箭头)。(D)在NeuroD1/Dlx2组中,mCherry-阳性细胞并不与GFAP共定位,但是一些展现出神经元样的形态学。(E、F)R6/2小鼠纹状体中NeuroD1/Dlx2-介导的胶质细胞向神经元的转化经NeuN染色(箭头)确认。在两组中都观测到核中的Htt聚集(与DAPI共定位),这确认它们是亨廷顿氏病小鼠模型。
图15A-B.R6/2小鼠纹状体中神经胶质转化的神经元表征。(A)R6/2小鼠纹状体中NeuroD1/Dlx2介导的神经胶质转化的神经元(35DPI)呈GAD67(箭头)和GABA(箭头)免疫阳性。(B)一些转化的神经元也带DARPP32(箭头)标记,其是纹状体中型多棘GABA能神经元标志物,证明了神经胶质转化的神经元可以补充亨廷顿氏病中的DARPP32神经元流失。
图16A-D.使用AAV9病毒载体表达的NeuroD1和Dlx2在R6/2小鼠纹状体中介导神经胶质向神经元的转化,所述R6/2小鼠是亨廷顿氏病的小鼠模型。(A、B)将AAV9注入纹状体,并于注射后10天在感染的细胞中检测到Dlx2和NeuroD 1(箭头)。(C)在mCherry对照组中,大部分被感染的细胞与星形胶质细胞标志物GFAP共定位(箭头)。(D)在NeuroD 1/Dlx2组中,大多数阳性细胞与神经元标志物NeuN共定位(箭头)。
图17A-B.通过AAV9表征纹状体中神经胶质转化的神经元。(A)NeuroD1/Dlx2转化的神经元呈GABA能中性标志物GAD67免疫阳性(箭头)。(B)一些转化的神经元也呈DARPP32免疫阳性(箭头),所述DARPP32是纹状体GABA能中型多棘神经元。
具体实施方式
本文提供了用于在脑中生成GABA能神经元的方法和材料。例如,本文提供了使用编码NeuroD 1多肽的核酸和编码D1x2多肽的核酸来触发脑中的神经胶质细胞形成GABA能神经元的方法和材料,所述GABA能神经元可以是功能性地整合在活体哺乳动物的脑中。如本文所述形成GABA能神经元可以包括将脑内神经胶质细胞转化成GABA能神经元,所述GABA能神经元可以是功能性地整合在活体哺乳动物的脑中。在一些情况中,本文所述方法和材料可以用于改善亨廷顿氏病患者脑的脑结构,从而使其更加接近于健康人的脑结构,使亨廷顿氏病患者的脑恢复健康脑结构;减少亨廷顿氏病进展;延缓亨廷顿氏病症状的发作;和/或治疗亨廷顿氏病。在一些情况中,本文所述方法和材料可以用于逆转患亨廷顿氏病的哺乳动物中亨廷顿氏病的作用。
本文所述方法可以治疗任何合适的哺乳动物。例如,哺乳动物包括但不限于人类、猴子、狗、猫、牛、马、猪、大鼠、小鼠,其可以如本文所述进行治疗从而在活体哺乳动物脑中生成GABA能神经元。在一些情况中,患有亨廷顿氏病的人可以接受如本文所述的治疗从而在亨廷顿氏病患者脑中生成GABA能神经元。可用合适的亨廷顿氏病诊断技术鉴定哺乳动物患有亨廷顿氏病。例如,可以进行亨廷顿氏病的基因筛选以诊断人患有亨廷顿氏病。
如本文所述,哺乳动物可以这样治疗:以触发神经胶质细胞形成功能性整合GABA能神经元的方式向哺乳动物脑(例如,纹状体)内的神经胶质细胞(例如,NG2神经胶质细胞或星状胶质细胞)给予设计成表达NeuroD1多肽的核酸和设计成表达Dlx2多肽的核酸。NeuroD1多肽的示例包括但不限于,具有登录号NP_002491(GI编号121114306)中所示氨基酸序列的那些多肽。NeuroD1多肽可由/>登录号NM_002500(GI编号323462174)中所示核酸序列编码。D1x2多肽的示例包括但不限于,具有/>登录号NP_004396(GI编号4758168)中所示氨基酸序列的那些多肽。Dlx2多肽可由/>登录号NM_004405(GI编号84043958)中所示核酸序列编码。
可以使用各种适合的方法将设计成表达NeuroD1多肽的核酸和设计成表达Dlx2多肽的核酸递送至活体哺乳动物脑内的神经胶质细胞。例如,编码NeuroD1多肽的核酸和编码Dlx2多肽的核酸可以利用一种或多种载体诸如病毒载体给予哺乳动物。在一些情况中,可以使用分开的载体(例如,一个载体用于编码NeuroD1多肽的核酸,另一个载体用于编码Dlx2多肽的核酸)将核酸递送至神经胶质细胞。在一些情况中,可以使用含有编码NeuroD1多肽的核酸和编码Dlx2多肽的核酸的单个载体将核酸递送至神经胶质细胞。
用于将核酸(例如,编码NeuroD1多肽的核酸和编码Dlx2多肽的核酸)给予神经胶质细胞的载体可用标准材料(如包装细胞系、辅助病毒和载体构建体)制备。参见例如,Jeffrey R.Morgan编的Gene Therapy Protocols(《基因治疗方案》)(Methods in Molecular Medicine(《分子医学方法》)),新泽西州托托瓦的胡马纳出版社(HumanaPress)(2002)和Curtis A.Machida编的Viral Vectors for Gene Therapy:Methods and Protocols(《用于基因治疗的病毒载体:方法和方案》),新泽西州托托瓦的胡马纳出版社(2003)。基于病毒的核酸递送载体通常来自动物病毒,诸如腺病毒、腺相关病毒、逆转录病毒、慢病毒、牛痘病毒、疱疹病毒和刺瘤病毒。在一些情况中,编码NeuroD1多肽的核酸和编码Dlx2多肽的核酸可以使用腺相关病毒载体(例如,腺相关病毒血清型2病毒载体、腺相关病毒血清型5病毒载体或腺相关病毒血清型9病毒载体)、慢病毒载体、逆转录病毒载体、腺病毒载体、单纯性疱疹病毒载体或痘病毒载体。
除了编码NeuroD1多肽的核酸和/或编码Dlx2多肽的核酸,病毒载体可以包含操作性连接编码NeuroD1多肽的核酸和/或编码Dlx2多肽的核酸的调节元件。这类的调节元件可以包括调节核酸表达(例如,转录或调节)的启动子序列、增强子序列、响应元件、信号肽、内部核糖体进入序列、聚腺苷酸化信号、终止子或诱导元件。可包括在病毒载体中的元件的选择依赖于几个因素,包括但不限于诱导能力、靶向和所需表达水平。例如,可以在病毒载体中包含启动子以促进编码NeuroD1多肽的核酸和/或编码Dlx2多肽的核酸的转录。启动子可为组成型或诱导型(如存在四环素时),且可以通用或组织特异性方式影响编码多肽的核酸表达。可以用于驱动NeuroD1多肽和/或Dlx2多肽在神经胶质细胞中表达的组织特异性启动子的示例包括但不限于NG2、GFAP、Olig2、CAG、EF1a、AldhlL1和CMV启动子。
本文所用的“操作性连接”指调控元件在载体中相对于核酸的位置允许或促进所编码多肽的表达。例如,病毒载体可包含神经胶质特异性NG2启动子和编码NeuroD1多肽或Dlx2多肽的核酸。在该情况中,NG2启动子操作性连接编码NeuroD1多肽或Dlx2多肽的核酸从而驱动神经胶质细胞中的转录。
可用非病毒载体将编码NeuroD1多肽或Dlx2多肽的核酸给予癌细胞。使用非病毒载体递送核酸的方法如文献所述。参见例如Jeffrey R.Morgan编的Gene Therapy Protocols(《基因治疗方案》)(Methods in Molecular Medicine(《分子医学方法》)),新泽西州托托瓦的胡马纳出版社(2002)。例如,可通过直接注射包含编码NeuroD1多肽和/或Dlx2多肽的核酸的核酸分子(如质粒),或通过给予与脂质、聚合物或纳米球复合的核酸分子,将编码NeuroD1多肽和/或Dlx2多肽的核酸给予哺乳动物。在一些情况中,可以使用诸如CRISPR/Cas9介导的基因编辑等基因组编辑技术来激活内源性NeuroD1和/或Dlx2基因表达。
编码NeuroD1多肽和/或Dlx2多肽的核酸可用包括但不限于以下所述的技术生产:一般分子克隆、聚合酶链式反应(PCR)、化学核酸合成技术和这些技术的组合。例如,PCR或RT-PCR可与设计用于扩增编码NeuroD1多肽和/或Dlx2多肽的核酸(如基因组DNA或RNA)的寡核苷酸引物一起使用。
在一些情况中,可以在设计成表达编码NeuroD1多肽的核酸和/或设计成表达Dlx2多肽的核酸之外或取而代之地给予NeuroD1多肽和/或Dlx2多肽。例如,NeuroD1多肽和/或Dlx2多肽可以触发脑内神经胶质细胞形成GABA能神经元的方式给予,所示GABA能神经元可以是功能性地整合在活体哺乳动物的脑中。
经由直接颅内注射、腹膜内给予、鼻内给予、静脉内给予或以纳米颗粒和/或药物片剂、胶囊或丸剂的口服给予,设计成表达NeuroD1多肽的核酸和设计成表达Dlx2多肽的核酸(或NeuroD1多肽和/或Dlx2多肽)可以递送至脑内的神经胶质细胞(例如,纹状体内的神经胶质细胞)。
如本文所述,设计成表达NeuroD1多肽的核酸和设计成表达Dlx2多肽的核酸(或NeuroD1多肽和/或Dlx2多肽)可以给予患有亨廷顿氏病的哺乳动物(例如,人)并且用于改善亨廷顿氏病患者脑的脑结构,从而使其更接近正常人的脑结构,使亨廷顿氏病患者脑的脑恢复健康的脑结构,减少亨廷顿氏病进展;延缓亨廷顿氏病症状的发作;治疗亨廷顿氏病;或逆转亨廷顿氏病对哺乳动物的作用。在一些情况中,可将设计成表达具有SEQ ID NO:1中所示氨基酸序列的多肽的核酸和设计成表达具有SEQ ID NO:2中所示氨基酸序列的多肽的核酸(或具有SEQ ID NO:1中所示氨基酸序列的多肽和/或具有SEQ ID NO:2中所示氨基酸序列的多肽)给予患有本文所述亨廷顿氏病的哺乳动物(例如,人)用于改善亨廷顿氏病患者脑的脑结构,从而使其更接近正常人的脑结构;使亨廷顿氏病患者的脑恢复健康的脑结构;减少亨廷顿氏病进展;延缓亨廷顿氏病症状的发作;治疗亨廷顿氏病;或逆转亨廷顿氏病对哺乳动物的作用。例如,单个腺相关病毒载体可以设计成表达具有SEQ ID NO:1中所示氨基酸序列的多肽和/或具有SEQ ID NO:2中所示氨基酸序列的多肽,并且可以将这样设计的病毒载体给予患有亨廷顿氏病的人来治疗亨廷顿氏病。
在一些情况中,可以使用含有SEQ ID NO:1中所示整个氨基酸序列的多肽,但该氨基酸序列含有1-10(例如,10、1-9、2-9、1-8、2-8、1-7、1-6、1-5、1-4、1-3、2或1)个氨基酸添加、缺失、取代或其组合。例如,可以设计并给予患有亨廷顿氏病的人设计成表达含有SEQID NO:1所示整个氨基酸序列但其中具有1-10个氨基酸取代、缺失、取代或其组合的多肽的核酸以及设计成表达Dlx2多肽的核酸(或这些多肽本身),以治疗亨廷顿氏病。
在一些情况中,可以使用含有SEQ ID NO:2中所示整个氨基酸序列的多肽,但该氨基酸序列含有1-10个(例如,10、1-9、2-9、1-8、2-8、1-7、1-6、1-5、1-4、1-3、2或1)氨基酸添加、缺失、取代或其组合。例如,可以设计并给予患有亨廷顿氏病的人设计成表达含有SEQID NO:2所示整个氨基酸序列但其中具有1-10个氨基酸取代、缺失、取代或其组合的多肽的核酸以及设计成表达NeuroD1多肽的核酸(或这些多肽本身),以治疗亨廷顿氏病。在另一示例中,可以设计并给予患有亨廷顿氏病的人设计成表达含有SEQ ID NO:1所示整个氨基酸序列但其中具有1-10个氨基酸取代、缺失、取代或其组合的多肽的核酸以及,设计成表达含有SEQ ID NO:2所示整个氨基酸序列但其中具有1-10个氨基酸取代、缺失、取代或其组合的多肽的核酸,以治疗亨廷顿氏病。
SEQ ID NO:1和/或SEQ ID NO:2中的任何合适的氨基酸残基都可以缺失,并且在SEQ ID NO:1和/或SEQ ID NO:2所示序列内可以添加或取代任何合适的氨基酸残基(例如,20种常规氨基酸残基中的任一种或任何其它类型的氨基酸,诸如鸟氨酸或瓜氨酸)。大部分天然氨基酸是L-氨基酸,并且天然多肽大多包括L-氨基酸。D-氨基酸是L-氨基酸的对映异构体。在一些情况下,本文提供的多肽可包含一种或多种D-氨基酸。在一些实施方式中,多肽可以包含化学结构,诸如ε-氨基己酸;羟基化氨基酸,如3-羟基脯氨酸,4-羟基脯氨酸,(5R)-5-羟基-L-赖氨酸,异羟基赖氨酸和5-羟基-L-正缬氨酸;或糖基化氨基酸,如含有单糖(例如D-葡萄糖,D-半乳糖,D-甘露糖,D-葡糖胺和D-半乳糖胺)或单糖组合的氨基酸。
在一些情况中,可选择就维持以下特征而言没有显著差异的取代来进行氨基酸取代:(a)取代区域中肽主链的结构,(b)分子特定位点处的电荷或疏水性,或(c)侧链体积。例如,天然残基可基于侧链性质分组如下:(1)疏水性氨基酸(正亮氨酸、甲硫氨酸、丙氨酸、缬氨酸、亮氨酸和异亮氨酸);(2)中性亲水性氨基酸(半胱氨酸、丝氨酸和苏氨酸);(3)酸性氨基酸(天冬氨酸和谷氨酸);(4)碱性氨基酸(天冬酰胺、谷氨酰胺、组氨酸、赖氨酸和精氨酸);(5)影响链取向的氨基酸(甘氨酸和脯氨酸);和(6)芳族氨基酸(色氨酸、酪氨酸和苯丙氨酸)。以上组内取代被认为是保守性取代。可用于本文SEQ ID NO:1和/或SEQ ID NO:2的取代的非限制性示例包括但不限于:缬氨酸取代丙氨酸、赖氨酸取代精氨酸、谷氨酰胺取代天冬酰胺、谷氨酸取代天冬氨酸、丝氨酸取代半胱氨酸、天冬酰胺取代谷氨酰胺、天冬氨酸取代谷氨酸、脯氨酸取代甘氨酸、精氨酸取代组氨酸、亮氨酸取代异亮氨酸、异亮氨酸取代亮氨酸、精氨酸取代赖氨酸、亮氨酸取代甲硫氨酸、亮氨酸取代苯丙氨酸、甘氨酸取代脯氨酸、苏氨酸取代丝氨酸、丝氨酸取代苏氨酸、酪氨酸取代色氨酸、苯丙氨酸取代酪氨酸和/或亮氨酸取代缬氨酸。表1示出可以在SEQ ID NO:1和/或SEQ ID NO:2内任何合适位置进行的保守取代的其它示例。
表1.保守氨基酸取代示例
原始残基 | 示例性取代 | 优选取代 |
Ala | Val,Leu,Ile | Val |
Arg | Lys,Gln,Asn | Lys |
Asn | Gln,His,Lys,Arg | Gln |
Asp | Glu | Glu |
Cys | Ser | Ser |
Gln | Asn | Asn |
Glu | Asp | Asp |
Gly | Pro | Pro |
His | Asn,Gln,Lys,Arg | Arg |
Ile | Leu,Val,Met,Ala,Phe,Norleucine | Leu |
Leu | Norleucine,Ile,Val,Met,Ala,Phe | Ile |
Lys | Arg,Gln,Asn | Arg |
Met | Leu,Phe,Ile | Leu |
Phe | Leu,Val,Ile,Ala | Leu |
Pro | Gly | Gly |
Ser | Thr | Thr |
Thr | Ser | Ser |
Trp | Tyr | Tyr |
Tyr | Trp,Phe,Thr,Ser | Phe |
Val | Ile,Leu,Met,Phe,Ala,Norleucine | Leu |
在一些实施方式中,多肽可设计成包含SEQ ID NO:1或SEQ ID NO:2中所示的氨基酸序列,条件是其包括1个或多个非保守氨基酸。非保守性取代一般指将上述类别之一的成员更换为另一种类别的成员。氨基酸改变是否产生功能性多肽可以通过使用例如本文所公开的方法测定多肽的特异性活性来确定。
在一些情况中,可以使用具有与SEQ ID NO:1中所示氨基酸序列至少85%(例如,85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%或99.0%)序列相同性的氨基酸序列的多肽,只要其相对于SEQ ID NO:1包括至少一个不同(例如,至少一个氨基酸添加、缺失或取代)。例如,可以设计并给予患有亨廷顿氏病的人设计成表达含有与SEQ ID NO:1中所示氨基酸序列约90%-99%序列相同性的氨基酸序列的多肽的核酸以及设计成表达Dlx2多肽的核酸(或这些多肽本身),以治疗亨廷顿氏病。
在一些情况中,可以使用具有与SEQ ID NO:2中所示氨基酸序列至少85%(例如,85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%或99.0%)序列相同性的氨基酸序列的多肽,只要其相对于SEQ ID NO:2包括至少一个不同(例如,至少一个氨基酸添加、缺失或取代)。例如,可以设计并给予患有亨廷顿氏病的人设计成表达含有与SEQ ID NO:2中所示氨基酸序列约90%-99%序列相同性的氨基酸序列的多肽的核酸以及设计成表达NeuroD1多肽的核酸(或这些多肽本身),以治疗亨廷顿氏病。在其它示例中,可以设计并给予患有亨廷顿氏病的人设计成表达含有与SEQ ID NO:1中所示氨基酸序列约90%-99%序列相同性的氨基酸序列的多肽的核酸以及设计成表达含有与SEQ ID NO:2中所示氨基酸序列约90%-99%序列相同性的氨基酸序列的多肽的核酸(或这些多肽本身),以治疗亨廷顿氏病。
序列相同性百分数的计算是测定比对氨基酸序列中匹配位置的数目,把匹配位置的数目除以比对氨基酸总数目,并乘以100。匹配位置指比对氨基酸序列相同位置出现相同氨基酸的位置。可测定任何氨基酸序列的序列相同性百分数。
如下所述测定特定核酸或氨基酸序列与特定序列识别号(例如,SEQ ID NO:1或SEQ ID NO:2)所指示的序列之间的序列相同性百分比。首先,使用来自含有BLASTN版本2.0.14和BLASTP版本2.0.14的BLASTZ独立版本的BLAST 2序列(Bl2seq)程序比较核酸或氨基酸序列与特定序列识别号所指示的序列。该BLASTZ独立版本可在fr.com/blast或ncbi.nlm.nih.gov在线获取。解释如何使用Bl2seq程序的说明书可参见BLASTZ附带的自述文件。Bl2seq使用BLASTN或BLASTP算法在两条序列之间进行比较。BLASTN用于比较核酸序列,而BLASTP用于比较氨基酸序列。为比较两条核酸序列,如下所述设置选项:-i设为含有待比较的第一核酸序列的文件(如C:\seq1.txt);-j设为含有待比较的第二核酸序列的文件(如C:\seq2.txt);-p设为blastn;-o设为任何需要的文件名(如C:\output.txt);-q设为-1;-r设为2;且所有其他选项都设为其默认设置。例如,以下命令可用于生成含有两条序列之间比较的输出文件:C:\Bl2seq-i c:\seq1.txt-j c:\seq2.txt-p blastn-o c:\output.txt-q-1-r 2。为比较两条氨基酸序列,如下所述设置Bl2seq的选项:-i设为含有待比较的第一氨基酸序列的文件(如C:\seq 1.txt);-j设为含有待比较的第二氨基酸序列的文件(如C:\seq2.txt);-p设为blastp;-o设为任何需要的文件名(如C:\output.txt);且所有其他选项都设为其默认设置。例如,以下命令可用于生成含有两条氨基酸序列之间比较的输出文件:C:\Bl2seq-i c:\seq1.txt -j c:\seq2.txt-p blastp-o c:\output.txt。如果两条比较的序列具有同源性,则指定的输出文件会以对齐序列的形式显示那些同源区域。如果比较的两条序列不具有同源性,则指定的输出文件不会显示对齐序列。
比对后,通过对两条序列中存在相同核苷酸或氨基酸的位置进行计数来确定匹配数。序列相同性百分比通过将匹配数除以指定序列(例如,SEQ ID NO:1)中所示序列的长度然后将所得值乘以100来确定。例如,与SEQ ID NO:1所列序列比对具有340处匹配的氨基酸序列与SEQ ID NO:1所示序列具有95.5%相同性(即340÷356x100=95.5056)。应注意序列相同性百分比值四舍五入至小数点后第一位。例如,75.11、75.12、75.13和75.14向下四舍五入至75.1,而75.15、75.16、75.17、75.18和75.19向上四舍五入至75.2。还应注意,长度值始终是整数。
以下实施例进一步描述了本发明,这些实施例并不限制权利要求书所述的本发明范围。
实施例
实施例1-在纹状体中将神经胶质细胞体内重编程为GABA能神经元以治疗亨廷顿 氏病。
NG2细胞培养
如文献记载(Guo等,Cell Stem Cell,14:188-202(2014)),从出生后幼鼠脑中取出并分离小鼠皮质组织(P3-P5)。解离皮质细胞(0.25%胰蛋白酶-EDTA),并且铺板在涂覆有多聚-D-赖氨酸(PDL,西格玛公司(Sigma))的25cm2烧瓶中,然后在含有10%胎牛血清(FBS,吉布可公司(GIBCO))的DMEM/F12(吉布可公司)中培养9天,每隔3天更换一次培养基。在第9天,剧烈摇晃烧瓶,收集上清液并离心以收获具有少量神经元、星形胶质细胞和小胶质细胞的NG2细胞。大部分的星形胶质细胞是扁平的,不容易从烧瓶上振落。离心后,将细胞重悬并且接种至PDL包覆的盖玻片(12mm)上。NG2细胞在37C、5%CO2潮湿空气中维持于无血清DMEM培养基(GIBCO)中,其中含N2补充剂(STEMCELL)、10ng/mL血小板衍生生长因子(PDGF,英杰公司(Invitrogen))、10ng/mL FGF2(英杰公司)和10ng/mL EGF(英杰公司)。
生成逆转录病毒
如文献记载(Guo等,Cell Stem Cell,14:188-202(2014)),由hNG2启动子-GLuc(复能基因公司(GeneCopoeia))亚克隆人NG2启动子基因,并且将其用于替换编码NeuroD1或GFP的pCAG逆转录载体中的CAG启动子,生成pNG2-NeuroD 1-IRES-GFP或pNG2-GFP-IRES-GFP。由pCAG-Dlx2-IRES-DsRed亚克隆小鼠Dlx2 cDNA(Heinrich等,PloS Biology,(2010))(获得自Magdalena博士),并且将其插入pNG2逆转录病毒载体生成pNG2-Dlx2-IRES-GFP。E2A-Dlx2 cDNA是使用含有E2A肽的5’引物由模板质粒pCAG-Dlx2-IRES-DsRed获得的PCR产物。将该PCR产物插入pNG2逆转录病毒载体生成pNG2-NeuroD1-E2A-D1x2-IRES-GFP。如文献记载构建pCAG-NeuroD 1-IRES-GFP(Guo等,Cell Stem Cell,14:188-202(2014))。将pCMV6-XL5-ASCL1(OG公(OriGene))为模板的PCR产物插入pCAG-GFP-IRES-GFP逆转录病毒载体(Zhao等,J.Neurosci.,(2006))(获得自Fred Gage博士)构建人ASCL1质粒,生成pCAG-ASCL1-IRES-GFP。为了包装逆转录病毒颗粒,将上述靶标质粒转染至无gpg辅助蛋白的(gpg helper-free)人胚胎肾(HEK)细胞以生成编码神经转录因子的水泡性口炎病毒糖蛋白(VSV-G)-假型逆转录病毒。HEK细胞转导后测得病毒颗粒的效价为约107颗粒/mL。
NG2细胞转分化成神经元
用逆转录病毒感染小鼠NG2细胞24小时后,用分化培养基替换培养培养基,所述分化培养基含DMEM/F12(吉布可公司)、0.5%FBS(吉布可公司)、N2补充剂(吉布可公司)、维生素C(VC,5μg/mL,西格玛公司)、ROCK抑制剂(Y-27632,1μM,赛力克化学公司(Selleckchem))和盘尼西林/链霉素(吉布可公司)。为了促进转化期间突触成熟,每隔4天向培养物添加脑源性神经营养因子(BDNF,20ng/mL,英杰公司)。由于重编程期间NG2细胞向神经元的形态改变,空出的空间被其它小鼠星形胶质细胞填充以支持转化神经元的功能性发育。
生成AAV
通过PCR扩增hNG2或hGFAP启动子,并且将其插入pAAV-MCS(细胞生物实验室公司(Cell Biolab))的MluI和SacII之间替换CMV启动子。Cre基因通过PCR获得自GFAP启动子-Cre-MP-1(艾德基因公司(Addgene)),并且将其插入pAAV-MCS EcoRI和SalI位点以生成pAAV-NG2::Cre和pAAV-GFAP::Cre。将Cre基因亚克隆至pAAV-MCS EcoRI和SalI位点以生成pAAV-NG2::Cre和pAAV-GFAP::Cre。为了构建pAAV-FLEX-mCherry-P2A-mCherry(或pAAV-FLEX-GFP-P2A-GFP)、pAAV-FLEX-NeuroD1-P2A-mCherry(或pAAV-FLEX-NeuroD1-P2A-GFP)和pAAV-FLEX-D1x2-P2A-mCherry,通过PCR使用逆转录病毒构建体获得编码NeuroD1、Dlx2、mCherry或GFP的cDNA。扩增子与P2A-mCherry或P2A-GFP融合,然后亚克隆至pAAV-FLEX-GFPKpnI和XhoI位点。为了生成pAAV-NG2::NeuroD1-P2A-GFP和pAAV-NG2::Dlx2-P2A-GFP,将与P2A-GFP融合的原神经(proneural)基因即NeuroD1或Dlx2R亚克隆至hNG2启动子后的EcoRI和SalI位点。对这些质粒构建体进行测序以确认各自身份。
生成和纯化AAV5
在293AAV细胞(细胞生物实验室公司)中生产重组AAV5。简言之,使用聚乙烯亚胺(PEI,线性,MW 25,000)进行三质粒转染:pAAV表达载体、pAAV5-RC(细胞生物实验室公司)和pHelper(细胞生物实验室公司)。转染后72小时,将细胞刮到培养基中离心,然后通过将其交替置于干冰/乙醇和37℃水浴中冻融4次。AAV粗裂解物以Beckman SW55Ti离心机在不连续碘克沙醇梯度中以54,000rpm离心1小时纯化。提取含病毒层,并且通过密理博公司(Millipore)Amicon Ultra离心过滤器浓缩病毒。GFAP::Cre和NG2::Cre的病毒效价为1.2x1012GC/mL,FLEx-NeuroD1-P2A-GFP、FLEx-NeuroD1-P2A-mCherry和FLEx-Dlx2-P2A-mCherry为1.4x1012GC/mL,FLEx-mCherry-P2A-mCherry、FLEx-GFP-P2A-GFP、NG2::NeuroD1-P2A-GFP和NG2::Dlx2-P2A-GFP for为1.6x1012GC/mL,以上用QuickTiterTM AAV定量试剂盒(细胞生物实验室公司)测得。
动物
所有的动物(2-3月龄的C57/BL6小鼠)饲养在12小时光/暗循环并以足够的食物和水喂养。
立体定向病毒注射
对2-3月龄C57/BL6小鼠进行AAV注射脑手术。小鼠通过20mL/kg 2.5%阿佛丁(25mg/mL的of三溴己基乙醇和25μL/ml T-戊醇的混合物)或氯胺酮/甲苯噻嗪(120mg/kg和16mg/kg)腹膜注射麻醉,然后置于立体定向装置中。出于保护目的施用人工眼药膏覆盖来遮盖眼睛。对小鼠进行头皮中线切口手术并在头骨钻出用于针头注射的孔洞(~1mm),其相对于前囱的位置如下:纹状体注射为AP+0.6mm,ML 1.7mm,DV-2.8mm;前额皮质注射为AP+1.8mm,ML 2.5mm,DV-1.8mm。各小鼠的AAV注射使用5μL注射器和34G针头。注射体积为2μL,流量控制在0.2μL/分钟。病毒注射后,针头原位滞留至少5分钟后再缓慢抽出。
免疫细胞化学
对于脑切面免疫染色,用2.5%阿佛丁麻醉动物,然后用生理盐水(0.9%NaCl)快速灌注洗除血液,然后用4%多聚甲醛(PFA)固定脑。然后将脑取出,并在冷室中4%PFA后固定过夜。固定后,通过振动切片机(莱卡公司(Leica))将样品切成35μm冠状切片,用PBS洗涤三次,然后在含0.3%曲通X-100的磷酸盐缓冲液(PBS,pH 7.4)中透化处理1小时。对于GABA染色,略去透化处理步骤。将所有的脑切片在封闭缓冲液(含2.5%标准山羊血清(NGS)、2.5%标准驴血清(NDS)和0.1%曲通X-100的PBS)中再封闭一小时。为了细胞培养物免疫染色,细胞室温下在含4%PFA的PBS中固定12分钟。固定后,首先BPS洗涤培养物3次,然后在含0.1%曲通X-100的PBS中透化处理30分钟。在与一抗孵育之前,所有的样品用封闭缓冲液封闭1小时。
溶解于封闭缓冲液中的一抗与脑切片或培养物样品在冷室中过夜孵育。在PBS中洗涤3次后,样品与偶联DyLight 488、DyLight 594、Alexa Flour 647和Cy3(1∶1000,Jackson免疫研究实验室公司(Jackson ImmunoResearch))的合适二抗室温孵育1小时,然后在PBS中充分洗涤。最后将盖玻片固定在载玻片上,采用含有DAPI的抗褪色固定溶液(英杰公司)。所有的图像用共焦显微镜(奥林巴斯公司(Olympus)FV1000)拍摄。获取共焦图像的Z-堆栈,并用FV10-ASW 3.0Viewer软件(奥林巴斯公司)分析。
抗体
使用以下一抗:多克隆抗绿色荧光蛋白抗体(GFP,鸡,1:2000,阿柏堪穆公司(Abcam),AB13970),多克隆抗神经胶质纤维酸性蛋白抗体(GFAP,兔,1∶1000,大科公司(Dako),Z0334),单克隆抗CNP酶抗体(小鼠,1∶800,阿柏堪穆公司,AB6319),多克隆抗囊泡谷氨酸转运蛋白1抗体(vGluT1,rabbit,1:1000,突触系统公司(Synaptic Systems)),单克隆抗GAD67抗体(小鼠,1:1000,密理博公司,MAB5406),单克隆抗GAD65抗体(GAD-6,小鼠,1:1000,爱荷华市的杂交瘤发展研究库),单克隆抗NG2抗体(小鼠,1:600,阿柏堪穆公司,AB50009),多克隆抗Iba1抗体(兔,1:1000,Wako,019-19741),多克隆抗NeuN抗体(兔,1:1000,密理博公司,ABN78),单克隆抗βIII微管蛋白抗体(Tuj1,小鼠,1:1000,科文斯公司(COVANCE),MMS-435P),多克隆抗γ-氨基丁酸抗体(GABA,兔,1:2000,西格玛公司,A2052),多克隆抗红色荧光蛋白抗体(RFP,大鼠,1:1500,抗体在线公司(antibody-online),ABIN334653;兔,1:1000,罗克兰公司(Rockland),600-401-379),多克隆抗T-盒脑蛋白1抗体(Tbr1,1∶800,兔,阿柏堪穆公司,AB31940),单克隆抗Ctip2抗体(大鼠,1∶1000,阿柏堪穆公司,AB18465),单克隆抗NeuroD1抗体(小鼠,1∶1000,阿柏堪穆公司,AB60704),多克隆抗D1x2抗体(兔,1:600,阿柏堪穆公司,AB30339),多克隆抗双皮层蛋白抗体(DCX,兔,1:1000,阿柏堪穆公司,AB18723),单克隆抗小清蛋白抗体(PV,小鼠,1:1000,西格玛公司,P3088),多克隆抗钙网膜蛋白抗体(CR,山羊,1:1500,密理博公司,AB1550),单克隆抗生长激素抑制素抗体(SST,大鼠,1:300,密理博公司,MAB354),多克隆抗胆囊收缩素抗体(目录号26-33)(CCK-8,兔,1:2000,西格玛公司,C2581),多克隆抗神经肽Y抗体(NPY,兔,1:2000,阿柏堪穆公司,AB30914)和多克隆抗多巴胺-和cAMP-调节神经元磷酸蛋白抗体(DARP-32,兔,1:1500,密理博公司,AB10518)。
图像分析
细胞计数如下所述:对每个盖玻片或脑切片随机选择多个视野拍摄图像,用ImageJ软件分析。数据表示为平均值±SEM。采用斯氏t检验(配对或未配对的)进行统计学分析。*P<0.05,**P<0.01,***P<0.001。
电生理学
细胞培养物中的膜片钳记录
如文献记载(Guo等,Cell Stem Cell,14:188-202(2014)),使用Multiclamp 700A膜片钳放大器(美国加利福尼亚州帕洛阿尔托的分子设备公司(Molecular Devices,PaloAlto,CA))进行全细胞记录。用这样的浴液持续灌注记录槽,所述浴液组成为128mM NaCl、30mM葡萄糖、25mM HEPES、5mM KCl、1mM MgCl2,和2mM CaCl2。该浴液具有315-325mOsm/L的渗透压,用NaOH将其调节至pH 7.3。膜片钳微电极(patch-pipette)用硼硅酸盐玻璃(3-5MΩ)拉制,并用内液填充,用于记录动作电位,内液的组成为125mM K葡萄糖、10mM KCl、10mM三磷酸肌酸、10mM HEPES、5mM EGTA、4mM MgATP和0.5mM Na2GTP(pH 7.3,用KOH调节)。用另一种不同的内液来记录GABA能突触反应(IPSC),这种内液的组成为135mM Cs葡萄糖、5mMEGTA、10mM HEPES、10mM三磷酸肌酸、4mM MgATP和0.5mM Na2GTP(pH 7.3,用KOH调节)。串联电阻通常是15-30MΩ,并且为了避免增加与补偿相关的噪声不进行补偿。通过重力驱动的药物递送系统(VC-6,康涅狄格州哈姆登的Warner公司(Warner Hamden,CT))施加GABAA受体拮抗剂荷包牡丹碱(Bic)。对于电压钳实验,通常将膜电位维持在-20或0mV,用于记录上升的IPSC。使用pClamp 9软件software(美国加利福尼亚州帕洛阿尔托的分子设备公司)获取数据,10kHz采样、1kHz过滤。使用pClamp 9Clampfit软件分析动作电位,并且使用MiniAnalysis软件(乔治亚州迪卡特市Synaptosoft公司(Synaptosoft,Decator,GA))分析自发性突触事件。所有实验都在室温下进行。
脑切片记录
AAV注射后1-1.5月后制备脑切片,用莱卡公司的振动切片机在冰冷的切片溶液(75mM蔗糖、87mM NaCl、0.5mM CaCl2、2.5mM KCl、7mM MgCl2、1.25mM NaH2PO4、25mM NaHCO3和20mM葡萄糖)中切成并300μm厚冠状切片。切片在人造脑脊液(ACSF)中孵育,所述ACSF包含:119mM NaCl、2.5mM KCl、26mM NaHCO3、1.25mM NaH2PO4、2.5mM CaCl2、1.3mM MgCl2和10mM葡萄糖,并且用95%O2和5%CO2在32-33℃持续鼓泡30分钟。然后将脑切片转移至腔室于室温下恢复1小时。所有记录的记录腔室设定在32-33℃。进行全细胞记录的电极内液(pipette solution)含135mM K-葡萄糖盐、5mM Na-磷酸肌酸、10mM KCl、2mM EGTA、10mMHEPES、4mM MgATP和0.5mM Na2GTP(pH 7.3,用KOH调节,290mOsm/L)。电极电阻通常为4-6MΩ,而串联电阻约20-40MΩ。记录自发性事件时的膜电位维持在-70mV。使用pClamp 9软件software(美国加利福尼亚州帕洛阿尔托的分子设备公司)获取数据,10kHz采样、1kHz过滤,然后使用pClamp 9Clampfit和MiniAnalysis软件(乔治亚州迪卡特市Synaptosoft公司)分析。
培养的NG2细胞重编程为功能性GABA能神经元。
NG2细胞是神经胶质祖细胞,其在生理和病理条件下主要生成少突胶质细胞(Kang等,Neuron,68:668-681(2010);Buffo等,Proc.Natl.Acad.Sci.USA,105:3581-3586(2008);和Nishiyama等,Nat.Rev.Neurosci.,10:9-22(2009))。如下所述测试D1x2作为对于GABA能的命运来说重要的转录因子是否能够将NG2细胞重编程为GABA能神经元。
首先,使用小鼠NG2细胞的原代培养物来测试Dlx2重编程能力。细胞培养物中NG2细胞富集,据表达人NG2启动子控制下GFP的逆转录病毒(NG2::GFP-IRES-GFP)成功感染可知。大部分细胞呈少突胶质细胞标志物CNP酶免疫阳性(图1 A和2D;71.5±5.8%CNP酶+;n=4批)。与之相反,仅有约10%的细胞是GFAP-阳性星形胶质细胞,没有NeuN-阳性神经元(图2)。用表达NG2启动子控制下D1x2的逆转录病毒(NG2::Dlx2-IRES-GFP)感染NG2培养物。许多Dlx2感染的NG2细胞在感染1周后变成对神经元标志物NeuN呈免疫阳性(图1B;57.1±5.1%NeuN+;n=5批;7DPI),这表明Dlx2能够将NG2细胞重编程为神经元细胞。重要的是,Dlx2诱导的这些NG2重编程神经元展现出许多GABA能突触(图1C),但较少谷氨酸能突触(图3),这表明NG2细胞有可能转化成GABA能神经元而非谷氨酸能神经元。为了验证免疫染色结果,Dlx2感染2周后通过膜片钳记录检验NG2转化的神经元的功能特性。在NG2转化的神经元中检测到显著的GABA能突触事件(图1D;IPSC频率,0.7±0.2Hz;振幅,19.6±3.7pA;n=7;14DPI),这些事件大部分受GABAA受体拮抗剂荷包牡丹碱(BIC,20μM)阻断,这证实了NG2转化的神经元是GABA能。因此,Dlx2可以将培养的NG2细胞重编程为功能性GABA能神经元。
NeuroD1和Dlx2共表达提高转化效率
尽管Dlx2单独能够将NG2细胞重编程为GABA能神经元,但是其重编程效率并不是非常高。为了提高重编程效率,测试了其它转录因子,诸如Ascl1(也称为Mash1;Vierbuchen等,Nature,463:1035-1041(2010)和Bertrand等,Nat.Rev.Neurosci.,3:517-530(2002))和NeuroD1(Guo等,Cell Stem Cell,14:188-202(2014)和Kuwabara等,Nat.Neurosci.,12:1097-1105(2009)),以及Dlx2与Ascl1和NeuroD1的组合(图4)。在所有测试的组合中,NeuroD1和Dlx2一起的共表达生成最多数量的GABA能神经元(图4A-B,n=3重复,14DPI)。功能性试验与电生理记录联用以分析不同组中的GABA能事件(图4C)。最高频率的GABA能事件据检测也在NeuroD1+Dlx2组中(图4D,n=3重复,21DPI),这与免疫染色结果一致。
构建NG2启动子控制下共表达NeuroD1和Dlx2的多顺反子逆转录病毒(NG2::NeuroD1-E2A-Dlx2-IRES-GFP)。同时表达NeuroD1和Dlx2的该新逆转录病毒比其单独的Dlx2生成多得多的神经元(图1E)。定量地说,NeuroD1+Dlx2组中Tuj1+神经元(8.2±1.0细胞/0.1mm2)比单独Dlx2感染多3倍以上(2.3±0.3细胞/0.1mm2;n=4重复;12-14DPI)(图1G)。转化效率同样从单Dlx2的57.2±8.8%升高至NeuroD1+Dlx2一起的94.9±2.1%。GAD67染色证明了NeuroD1+Dlx2转化的神经元主要是GABA能的(图1F和1H;NeuroD1+Dlx2,8.8±0.9细胞/0.1mm2;Dlx2,1.4±0.2细胞/0.1mm2;n=4重复;19-21DPI)。VGlutl染色显示NeuroD1+Dlx2转化后,谷氨酸能神经元<3%(2.5±1.2%;n=4重复;19-21DPI)。因此,NeuroD1显著地促进Dlx2介导的NG2细胞向功能性GABA能神经元重编程。
NG2转化的GABA能神经元具有特定亚型特性
GABA能中间神经元根据特定蛋白表达标志物被分类成许多亚型,所述特定蛋白表达标志物例如但不限于:钙网膜蛋白(CR)、小清蛋白(PV)、生长激素抑制素(SST)、神经肽Y(NPY)和肠促胰酶肽(CCK)(Kepecs和Fishell,Nature,505:318-326(2014);Kawaguchi和Kondo,J.Neurocytol.,31:277-287(2002);以及Nat.Rev.Neurosci.,9:557-568(2008))。因此,以各种GABA能标志物进行一系列的免疫染色,以确定由NG2细胞转化而来的是什么特定亚型的GABA能神经元(图5)。值得注意的是,接近90%的NG2转化的神经元呈CR或SST免疫阳性(图5A-B),超过50%呈PV-阳性(图5C),较少细胞呈CCK或NPY阳性(图5D-E)。图5F示出了定量结果(CR,91.8±5.6%;SST,89.3±5.5%;PV,53.9±7.8%;CCK8,23.3±9.9%;NPY,14.9±3.9%;n=3批;19-21DPI)。GABA能神经元也可以根据其放电模式来表征,如小清蛋白中存在的快速达峰动作电位(Markram等,Nat.Rev.Neurosci.,5:793-807(2004))。当用膜片钳记录分析NG2转化的神经元时,在NeuroD1-Dlx2逆转录病毒感染后,一些神经元发出快速达峰样动作电位,而其它发出低频率动作电位(图5G-H,n=15细胞),由此可推定NG2转化的神经元是PV和非PV中间神经元的混合物。这些结果表明Dlx2与NeuroD1联合能够有效地将培养的NG2细胞转化为成熟的具有各种亚型的GABA能神经元,包括PV、CR和SST神经元。
将NG2细胞体内重编程为功能性GABA能神经元。
将培养的NG2细胞体外重编程为GABA能神经元后,如下所述检测小鼠脑中的NG2细胞是否也能够体内转化成GABA能中间神经元。据文献记载(Guo等,Cell Stem Cell,14:188-202(2014)),通过逆转录病毒诱导的体内重编程效率并不是很高。为了克服这一问题,制备重组腺相关病毒(血清型5,rAAV5)用于体内重编程。在rAAV的不同血清型中,选择rAAV5用于大部分实验,因为其优先感染神经胶质细胞而非神经元细胞(Howard等,Virology,372:24-34(2008)和Markakis等,Mol.Ther.,18:588-593(2010))。为了特异性地靶向NG2细胞并且实现稳定的转基因插入,研发了Cre-FLEx(倒装切割(ifip-excision))系统,其包括在人NG2启动子控制下表达Cre重组酶(NG2::Cre)的载体以及NeuroD1-P2A-mCherry或Dlx2-P2A-mCherry反向编码序列带Cre介导的FLEx开关的载体(图6A;Schnutgen等,Nat.Biotechnol.,21:562-565(2003)和Atasoy等,J.Neurosci.,28:7025-7030(2008))。Cre-FLEx rAAV系统被设计成允许Cre在NG2细胞中表达,继而激活NeuroD1或Dlx2与mCherry共同转录。对于对照实验,首先将rAAV-NG2::Cre与rAAV-FLEx-mCherry一起注射到小鼠纹状体中,纹状体是GABA能中间神经元富集的脑区域。据NG2免疫染色显示,对照rAAV(NG2::Cre和FLEx-mCherry)成功感染了纹状体中的NG2细胞(图6B;66.7±11.1%感染的细胞NG2+;n=3只动物)。值得注意是,在将rAAV-NG2::Cre加上rAAV-FLEx-NeuroD1和rAAV-FLEx-Dlx2注射到纹状体中后(图6C,Cre+NeuroD1+Dlx2),观察到许多感染的细胞具有神经元样形态并且呈NeuN免疫阳性(图6D;80.8±1.9%mCherry标记的细胞也呈NeuN阳性,n=4只动物;21DPI)。为了研究NG2-神经元转化的时间过程,检测了病毒注射(Cre+NeuroD1+Dlx2)后4-21天病毒感染的细胞(mCherry阳性)总数中NG2细胞相对于神经元的百分比。值得注意是,在该转化期间观察到NG2细胞稳步减少,而Tuj1+或NeuN+神经元稳步增加(图6E),这表明NG2细胞逐渐转化成神经元。
为了进一步证明NG2神经胶质直接转化成神经元,使用NG2启动子构建AAV5载体直接驱动NeuroD1或Dlx2的表达(NG2∷NeuroD1-P2A-GFP+NG2::Dlx2-P2A-GFP),不采用Cre/FLEx系统。相较于NG2启动子(NG2::GFP)控制下单独的GFP表达,表达NeuroD1+Dlx2后检测到更多的神经元(NeuN-阳性)(图7)。因此,NeuroD1和Dlx2联合能够高效地将NG2细胞在小鼠脑中体内重编程为神经元细胞。需要指出的是,人NG2启动子不是一个特异性的启动子。
如下所述检测纹状体中的NG2细胞是否如在NG2细胞培养物中那样转化成GABA能神经元。GABA和GAD67免疫染色证明许多NG2-转化的神经元实际上是GABA能神经元(图F-G;61.2±3.6%感染的细胞是GABA+;n=4只动物;21DPI)。为了测试NG2转化的神经元是否与其它神经元功能性地联系,在NeuroD1+Dlx2病毒注射后1-1.5个月后进行脑切片记录。NG2转化的神经元展现出稳健的自发性突触事件(图6H;频率6.8±1.3Hz;振幅,13.3±0.9pA;HP=-70mV;n=16;30-45DPI)。这些结果证明纹状体NG2细胞在NeuroD1和Dlx2异位表达后可以被原位重编程为功能性GABA能神经元。
对GABA能神经元亚型的区域性影响
使用一系列GABA能神经元标志物进一步表征体内NG2转化的GABA能神经元的亚型(图8)。在纹状体中,中型多棘神经元是投射神经元而非中间神经元,但是它们是GABA能神经元(Gangarossa等,Front Neural Circuits,7:22(2013))。纹状体中较大比例的NG2转化的神经元是DARPP32-阳性中型多棘神经元(图8A,40.6±2.8%)。因为中型多棘神经元对亨廷顿氏病中的毒性作用最敏感,该体内重编程方法可以用作新型疗法,由内部神经胶质细胞来生成中型多棘神经元来治疗亨廷顿氏病。还有很大数量的NG2转化的神经元呈PV免疫阳性(图8B),但是较少呈CCK8阳性(图8C-D)。定量而言,约19.9±1.9%的NG2转化的神经元为PV+GABA能神经元,9.3±2.3%神经元为SST+(图8F,n=3只动物),这与之前报道的PV和SST神经元是纹状体中中间神经元的两种主要亚型相一致(Marin等,J.Neurosci.,20:6063-6076(2000))。对脑切片记录的功能性分析显示有些NG2转化的神经元能够发出快速达峰动作电位(图8G),这表明它们有可能是PV中间神经元。这些结果证明纹状体NG2细胞通过Dlx2和NeuroD1异位共表达可以被原位重编程为DARPP32+和PV+GABA能神经元。
如下所述研究使用相同的转录因子NeuroD1+Dlx2,不同脑区域中的NG2细胞是否被重编程为不同亚型的GABA能神经元。将与纹状体中所用相同的rAAV(NG2::Cre+FLEx-NeuroD1+FLEx-Dlx2)注射到小鼠前额皮质,此处GABA能神经元的亚型与纹状体中的不同。作为对照实验,mCherry的单独表达(NG2::Cre+FLEx-mCherry)主要感染前额皮质的NG2细胞(图9A,77.5±1.3%感染的细胞为NG2+;n=3只动物;另见图11)。与之相反,前额皮质NG2细胞中Dlx2和NeuroD1的异位表达将大部分NG2细胞重编程为神经元(图9B-C;72±1.1%mCherry+细胞也为NeuN+;n=3只动物;21DPI)。重要的是,大多数NG2转化的神经元同时呈GABA或GAD67免疫阳性(图9D-E;69.3±8%mCherry+细胞也是GAD67+;n=3只动物;21DPI),这表明它们是GABA能神经元。此外,脑切片记录显示皮质NG2转化的神经元中稳健的自发性突触事件(图9F;频率,4.5±1.7Hz;振幅,14.6±2.1pA;n=7;30-45DPI),这表明NG2转化的神经元功能性地整合在局部神经回路中。因此,与纹状体NG2细胞相似,皮质NG2细胞可以通过Dlx2和NeuroD1异位共表达重编程为功能性GABA能神经元。然而,不同于纹状体中大部分的NG2重编程细胞是DARPP32-阳性中型多棘神经元,皮质NG2细胞被发现主要被重编程为CCK8(39.7±2.2%,n=3只动物)或PV-阳性神经元(26.3±3.4%,n=3只动物)(图10B、10D和10F),而较少神经元呈SST阳性或NPY阳性(图10A和10C)。皮质NG2转化的细胞群中未检测到DARPP32-阳性细胞(图10E-F)。膜片钳记录显示皮质NG2转化的神经元也能够发出快速达峰样动作电位或低频率动作电位(图10G),这证明皮质NG2细胞转化成不同亚型的GABA能神经元的混合物。这些结果证明了纹状体和皮质NG2细胞在表达相同的转录因子Dlx2和NeuroD1后可以被重编程为不同亚型的GABA能神经元,这表明区域性神经胶质细胞中的固有谱系痕迹或局部环境因子可以调节神经胶质神经元转化的命运选择。
实施例2-再生中型多棘神经元以治疗亨廷顿氏病
获得这样的亨廷顿氏疾病(HD)小鼠模型R6/2转基因小鼠,其携带来自人HD基因的120CAG重复并且在约8-12周龄表现出病发。将NeuroD1+Dlx2 AAV在6、8、10和12周龄时注入这些HD小鼠以确认本文所述体内重编程技术延长HD小鼠的生命并且改善这些HD小鼠的功能。将NeuroD1和Dlx2注入HD小鼠的纹状体能够再生包括中型多棘神经元在内的功能性GABA能神经元,继而能够延长寿命并且至少恢复HD小鼠的部分功能性缺陷。
实施例3-神经胶质细胞在脑内原位转化成GABA能神经元
制备表达NeuroD1和Dlx2的AAV5病毒载体。将表达NeuroD1和Dlx2病毒载体的AAV5注入R6/2小鼠,此为亨廷顿氏病小鼠模型。在注射表达NeuroD1和Dlx2的AAV5后,在亨廷顿氏病模型R6/2小鼠中纹状体的星形胶质细胞产生了新的神经元(图14A-F)。大部分NeuroD1+Dlx2转化的神经元是GABA能神经元(图15A-B)。
除了AAV5病毒载体,还确认了AAV9病毒载体体内细胞转化的能力。AAV9病毒载体被用于在星形胶质细胞启动子GFAP的控制下在星形胶质细胞中表达NeuroD1和Dlx2。表达NeuroD1和Dlx2的AAV9病毒载体能够将星形胶质细胞转化成神经元(图16A-D)。此外,用GABA能神经元标志物(GAD67)进行的免疫染色证明大部分NeuroD1/Dlx2转化的神经元是GABA能神经元(图17A-B)。在GABA能神经元中,部分NeuroD1/Dlx2转化的神经元为DARPP32-阳性中型多棘神经元,它们在亨廷顿氏病中常常是易受攻击的。这些结果证明诸如AAV5或AAV9的腺相关病毒载体可以被设计成表达NeuroD1和Dlx2,并且这样设计的载体可以用于将神经胶质细胞转化成GABA能神经元,包括DARPP32-阳性中型多棘神经元,从而治疗亨廷顿氏病。
有关联邦资助的研究的声明
本发明是在政府支持下由国家卫生研究院(National Institutes of Health)授予的基金号AG045656的MH083911资助完成。政府对本发明享有某些权利。
其他实施方式
应理解虽然本发明已结合其详述进行描述,但以上描述意在说明而不是限制本发明的范围,该范围由所附权利要求的范围限定。其他方面、优势和修改在所附权利要求的范围内。
Claims (10)
1.一种在活体哺乳动物脑的纹状体中形成GABA能神经元的方法,其中所述方法包括向所述纹状体内神经胶质细胞给予编码NeuroD1多肽的核酸和编码Dlx2多肽的核酸,其中所述NeuroD1多肽和所述Dlx2多肽通过所述神经胶质细胞表达,并且其中所述神经胶质细胞在所述纹状体内形成GABA能神经元。
2.如权利要求1所述的方法,其中所述哺乳动物是人。
3.如权利要求1-2中任一项所述的方法,其中所述细胞是NG2神经胶质细胞。
4.如权利要求1-3中任一项所述的方法,其中所述GABA能神经元呈DARPP32-阳性。
5.如权利要求1-4中任一项所述的方法,其中所述NeuroD1多肽是人NeuroD1多肽。
6.如权利要求1-5中任一项所述的方法,其中所述Dlx2多肽是人Dlx2多肽。
7.如权利要求1-6中任一项所述的方法,其中所述编码NeuroD1多肽的核酸以病毒载体的形式给予所述神经胶质细胞。
8.如权利要求7所述方法,其中所述病毒载体是腺相关病毒载体。
9.如权利要求7所述方法,其中所述病毒载体是腺相关病毒血清型2或5病毒载体。
10.如权利要求1-9中任一项所述的方法,其中所述编码Dlx2多肽的核酸以病毒载体的形式给予所述神经胶质细胞。
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201662296960P | 2016-02-18 | 2016-02-18 | |
US62/296960 | 2016-02-18 | ||
CN201780012209.1A CN109069544B (zh) | 2016-02-18 | 2017-02-17 | 脑内生成gaba能神经元 |
PCT/US2017/018398 WO2017143207A1 (en) | 2016-02-18 | 2017-02-17 | GENERATING GABAergic NEURONS IN BRAINS |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201780012209.1A Division CN109069544B (zh) | 2016-02-18 | 2017-02-17 | 脑内生成gaba能神经元 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN116763942A true CN116763942A (zh) | 2023-09-19 |
Family
ID=59626375
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201780012209.1A Active CN109069544B (zh) | 2016-02-18 | 2017-02-17 | 脑内生成gaba能神经元 |
CN202310531098.2A Pending CN116763942A (zh) | 2016-02-18 | 2017-02-17 | 脑内生成gaba能神经元 |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201780012209.1A Active CN109069544B (zh) | 2016-02-18 | 2017-02-17 | 脑内生成gaba能神经元 |
Country Status (4)
Country | Link |
---|---|
US (2) | US10973930B2 (zh) |
EP (2) | EP3416663B1 (zh) |
CN (2) | CN109069544B (zh) |
WO (1) | WO2017143207A1 (zh) |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017096123A1 (en) * | 2015-12-04 | 2017-06-08 | The Penn State Research Foundation | Chemical reprogramming of human glial cells into neurons with small molecule cocktail |
CN109069544B (zh) | 2016-02-18 | 2023-05-09 | 宾州研究基金会 | 脑内生成gaba能神经元 |
CN112203676A (zh) * | 2018-02-02 | 2021-01-08 | 宾州研究基金会 | 治疗脑损伤的方法和材料 |
WO2020168279A2 (en) * | 2019-02-15 | 2020-08-20 | Allen Institute | Artificial expression constructs for selectively modulating gene expression in selected neuronal cell populations |
CA3134656A1 (en) * | 2019-03-26 | 2020-10-01 | The Penn State Research Foundation | Methods and materials for treating cancer |
CN114286710A (zh) * | 2019-06-28 | 2022-04-05 | 宾州研究基金会 | 治疗亨廷顿病的方法和材料 |
JP2022552003A (ja) * | 2019-10-17 | 2022-12-14 | ザ・ペン・ステイト・リサーチ・ファウンデイション | 脊髄損傷およびalsの治療のための機能的ニューロンの再生 |
WO2021076951A1 (en) * | 2019-10-17 | 2021-04-22 | The Penn State Research Foundation | Regenerating functional neurons for treatment of hemorrhagic stroke |
MX2023003654A (es) * | 2020-09-29 | 2023-06-22 | Neuexcell Therapeutics Inc | Vector de combinación de neurod1. |
KR20230123926A (ko) * | 2020-09-29 | 2023-08-24 | 뉴엑셀 테라퓨틱스 아이엔씨. | Dlx2 벡터 |
KR20230123925A (ko) * | 2020-09-29 | 2023-08-24 | 뉴엑셀 테라퓨틱스 아이엔씨. | Neurod1 및 dlx2 벡터 |
JP2023544068A (ja) * | 2020-09-29 | 2023-10-19 | ニューエクセル・セラピューティクス・インコーポレイテッド | Neurod1ベクター |
CN117015389A (zh) * | 2021-03-31 | 2023-11-07 | 暨南大学 | 一种形成gaba能神经元的药物和方法 |
CN115212291A (zh) * | 2021-04-16 | 2022-10-21 | 暨南大学 | NeuroD1蛋白在制备用于使神经元迁移的药物中的应用 |
CA3236867A1 (en) * | 2021-10-29 | 2023-05-04 | Trailhead Biosystems Inc. | Methods and compositions for generating human forebrain neural progenitor cells and for maturation thereof to parvalbumin+ interneurons |
Family Cites Families (40)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5695995A (en) | 1994-05-06 | 1997-12-09 | Fred Hutchinson Cancer Research Center | Neurogenic differentiation (neurod) genes |
US6444463B1 (en) | 1994-05-06 | 2002-09-03 | Fred Hutchinson Cancer Research Center | Neurogenic differentiation gene neurod3 and methods for inducing differentiation of cells |
US5648097A (en) | 1995-10-04 | 1997-07-15 | Biotek, Inc. | Calcium mineral-based microparticles and method for the production thereof |
US6391336B1 (en) | 1997-09-22 | 2002-05-21 | Royer Biomedical, Inc. | Inorganic-polymer complexes for the controlled release of compounds including medicinals |
US7041507B1 (en) | 1999-01-20 | 2006-05-09 | Cedars-Sinai Medical Center | Transdiffentiation of transfected epidermal basal cells into neural progenitor cells, neuronal cells and/or glial cells |
US6602680B2 (en) * | 2000-07-14 | 2003-08-05 | The Regents Of The University Of California | Production of gabaergic cells |
US6800281B2 (en) * | 2000-11-09 | 2004-10-05 | Oxford Biomedica (Uk) Limited | Lentiviral-mediated growth factor gene therapy for neurodegenerative diseases |
US20060127358A1 (en) * | 2002-05-01 | 2006-06-15 | Nicholas Muzyczka | Raav expression systems and methods for enhancing transduction of mammalian neural cells |
US7820439B2 (en) | 2003-09-03 | 2010-10-26 | Reliance Life Sciences Pvt Ltd. | In vitro generation of GABAergic neurons from pluripotent stem cells |
EP1942192A1 (en) | 2007-01-08 | 2008-07-09 | Heinrich-Pette-Institut für experimentelle Virologie und Immunologie | Use of a tailored recombinase for the treatment of retroviral infections |
US20110223635A1 (en) | 2008-08-11 | 2011-09-15 | Karl Deisseroth | Method and Composition for Controlling Gene Expression |
WO2010053522A2 (en) * | 2008-10-29 | 2010-05-14 | The Regents Of The University Of California | Methods for identifying and producing neural stem and progenitor cells and their progeny |
PT2475675T (pt) | 2009-09-11 | 2017-02-17 | Ionis Pharmaceuticals Inc | Modulação da expressão de huntingtina |
JP5982286B2 (ja) | 2009-10-31 | 2016-08-31 | ニュー・ワールド・ラボラトリーズ・インコーポレイテッドNew World Laboratories Inc. | 細胞の再プログラミングのための方法とその用途 |
DK2816112T3 (en) | 2009-12-10 | 2018-11-19 | Univ Minnesota | TAL effector-mediated DNA modification |
WO2011091048A1 (en) | 2010-01-19 | 2011-07-28 | The Board Of Trustees Of The Leland Stanford Junior University | Direct conversion of cells to cells of other lineages |
WO2011097181A2 (en) | 2010-02-04 | 2011-08-11 | Vivoscript,Inc. | Compositions and methods for re-programming cells without genetic modification for treatment of neurological disorders |
US20130210739A1 (en) | 2010-07-21 | 2013-08-15 | Universite Pierre Et Marie Curie (Paris 6) | Bhlh proteins and their use as drugs |
US8895302B2 (en) * | 2010-08-12 | 2014-11-25 | Wisconsin Alumni Research Foundation | Directed differentiation of primate pluripotent stem cells into functional basal forebrain cholinergic neurons (BFCNs) and medium spiny gabaergic projection neurons |
US20130095118A1 (en) | 2011-10-11 | 2013-04-18 | Vaccinex, Inc. | Use of Semaphorin-4D Binding Molecules for Modulation of Blood Brain Barrier Permeability |
HK1203566A1 (zh) | 2012-02-29 | 2015-10-30 | 桑格摩生物科学股份有限公司 | 治療亨廷頓氏病的方法和組合物 |
CN113559280A (zh) | 2012-07-19 | 2021-10-29 | 宾夕法尼亚州研究基金会 | 再生用于在神经系统中治疗疾病和损伤的功能性神经元 |
ES2658401T3 (es) | 2012-12-12 | 2018-03-09 | The Broad Institute, Inc. | Suministro, modificación y optimización de sistemas, métodos y composiciones para la manipulación de secuencias y aplicaciones terapéuticas |
EP4286404A3 (en) | 2012-12-12 | 2024-02-14 | The Broad Institute Inc. | Crispr-cas component systems, methods and compositions for sequence manipulation |
US8697359B1 (en) | 2012-12-12 | 2014-04-15 | The Broad Institute, Inc. | CRISPR-Cas systems and methods for altering expression of gene products |
ES2749624T3 (es) | 2013-03-14 | 2020-03-23 | Caribou Biosciences Inc | Composiciones y métodos de ácidos nucleicos dirigidos a ácido nucleico |
AU2014236150B2 (en) * | 2013-03-14 | 2019-10-31 | The Regents Of The University Of California | In vitro production of medial ganglionic eminence precursor cells |
US9234213B2 (en) | 2013-03-15 | 2016-01-12 | System Biosciences, Llc | Compositions and methods directed to CRISPR/Cas genomic engineering systems |
CN120174012A (zh) | 2013-10-24 | 2025-06-20 | 优尼科Ip有限公司 | 用于基因治疗神经疾病的aav-5假型载体 |
WO2015069736A1 (en) | 2013-11-08 | 2015-05-14 | The Mclean Hospital Corporation | METHODS FOR EFFICIENT GENERATION OF GABAergic INTERNEURONS FROM PLURIPOTENT STEM CELLS |
KR20160097338A (ko) | 2013-12-12 | 2016-08-17 | 더 브로드 인스티튜트, 인코퍼레이티드 | 뉴클레오티드 반복 장애에서의 crispr-cas 시스템의 조성물 및 방법 및 용도 |
CN104894060B (zh) * | 2014-03-03 | 2018-11-06 | 中国科学院上海生命科学研究院 | 诱导体细胞转分化为神经干细胞的方法及其应用 |
US10314911B2 (en) | 2014-04-08 | 2019-06-11 | Healthpartners Research & Education | Methods for protecting and treating traumatic brain injury, concussion and brain inflammation with intranasal insulin |
KR102380324B1 (ko) | 2014-05-08 | 2022-03-30 | 상가모 테라퓨틱스, 인코포레이티드 | 헌팅턴병을 치료하기 위한 방법 및 조성물 |
EP2982758A1 (en) | 2014-08-04 | 2016-02-10 | Centre Hospitalier Universitaire Vaudois (CHUV) | Genome editing for the treatment of huntington's disease |
US11473084B2 (en) | 2015-10-09 | 2022-10-18 | The Children's Hospital Of Philadelphia | Compositions and methods for treating Huntington's disease and related disorders |
CN109069544B (zh) | 2016-02-18 | 2023-05-09 | 宾州研究基金会 | 脑内生成gaba能神经元 |
US10905707B2 (en) | 2017-11-10 | 2021-02-02 | University Of Massachusetts | Compositions and methods for the treatment of expanded repeat-associated disorders |
CN112203676A (zh) | 2018-02-02 | 2021-01-08 | 宾州研究基金会 | 治疗脑损伤的方法和材料 |
CA3134656A1 (en) | 2019-03-26 | 2020-10-01 | The Penn State Research Foundation | Methods and materials for treating cancer |
-
2017
- 2017-02-17 CN CN201780012209.1A patent/CN109069544B/zh active Active
- 2017-02-17 WO PCT/US2017/018398 patent/WO2017143207A1/en active Application Filing
- 2017-02-17 US US15/436,275 patent/US10973930B2/en active Active
- 2017-02-17 EP EP17753935.0A patent/EP3416663B1/en active Active
- 2017-02-17 EP EP21167319.9A patent/EP3881857B1/en active Active
- 2017-02-17 CN CN202310531098.2A patent/CN116763942A/zh active Pending
-
2021
- 2021-02-18 US US17/178,972 patent/US20210260217A1/en active Pending
Also Published As
Publication number | Publication date |
---|---|
EP3881857B1 (en) | 2025-04-16 |
CN109069544B (zh) | 2023-05-09 |
US20170239373A1 (en) | 2017-08-24 |
WO2017143207A1 (en) | 2017-08-24 |
EP3881857A1 (en) | 2021-09-22 |
US10973930B2 (en) | 2021-04-13 |
US20210260217A1 (en) | 2021-08-26 |
CN109069544A (zh) | 2018-12-21 |
EP3416663B1 (en) | 2021-04-14 |
EP3416663A1 (en) | 2018-12-26 |
EP3416663A4 (en) | 2019-02-20 |
EP3881857C0 (en) | 2025-04-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109069544B (zh) | 脑内生成gaba能神经元 | |
US11167044B2 (en) | Regenerating functional neurons for treatment of disease in the nervous system | |
US20210032300A1 (en) | Methods and materials for treating brain injuries | |
WO2021031810A1 (zh) | Ptbp1抑制剂在预防和/或治疗功能性神经元死亡相关的神经系统疾病中的应用 | |
Wang et al. | Knockdown of α-synuclein in cerebral cortex improves neural behavior associated with apoptotic inhibition and neurotrophin expression in spinal cord transected rats | |
CN112386699A (zh) | Ptbp1抑制剂在预防和/或治疗功能性神经元死亡相关的神经系统疾病中的应用 | |
WO2021032068A1 (zh) | Ptbp1抑制剂在预防和/或治疗功能性神经元死亡相关的神经系统疾病中的应用 | |
JP7680072B2 (ja) | リプログラミング用機能性断片、組み合わせ、およびその用途 | |
US20130052268A1 (en) | Compositions and methods for treatment of parkinson's disease | |
CN117279668A (zh) | 胶质细胞向神经元转分化用于预防或治疗神经元功能缺失或死亡相关疾病 | |
WO2021156831A1 (en) | Mirna-485 inhibitor for gene upregulation | |
KR20230154404A (ko) | 운동성 신경세포 직접교차 분화용 인자 | |
US20120122795A1 (en) | Accelerated extension of axons | |
HK40058795A (zh) | 在大脑中产生gaba能神经元 | |
CA3188895A1 (en) | Method for the treatment of wwox associated diseases | |
Yoo et al. | Distinct effect of neurotrophins delivered simultaneously by an adenoviral vector on neurite outgrowth of neural precursor cells from different regions of the brain | |
WO2025002450A1 (en) | Engineered reprogramming factors and uses thereof for treating eye diseases | |
US20230270818A1 (en) | Tcf7l2 mediated remyelination in the brain | |
KR20250001941A (ko) | 척수 손상 질환을 치료하기 위한 조성물 및 이의 이용 | |
이상환 | Effects of AAV-Mediated Delivery of HGF Gene on the Muscular and Nerve Systems in the Nerve Crush and SOD1-G93A Transgenic Mouse Models | |
WO2025026896A1 (en) | Modulation of presynaptic pathology with munc13-1 local translation | |
Guo | In Vivo Reprogramming for Brain Repair | |
O'Neill | Adeno-associated virus 2 as a vector for delivering CNTF and SHRHOA to the visual system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |