CN116761445A - Perovskite solar cell with stable temperature and preparation method thereof - Google Patents
Perovskite solar cell with stable temperature and preparation method thereof Download PDFInfo
- Publication number
- CN116761445A CN116761445A CN202310729493.1A CN202310729493A CN116761445A CN 116761445 A CN116761445 A CN 116761445A CN 202310729493 A CN202310729493 A CN 202310729493A CN 116761445 A CN116761445 A CN 116761445A
- Authority
- CN
- China
- Prior art keywords
- encapsulation layer
- temperature
- phase change
- solar cell
- change material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000002360 preparation method Methods 0.000 title claims abstract description 15
- 238000005538 encapsulation Methods 0.000 claims abstract description 89
- 239000002131 composite material Substances 0.000 claims abstract description 58
- 239000012782 phase change material Substances 0.000 claims abstract description 50
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 27
- 239000011734 sodium Substances 0.000 claims description 25
- 229910002804 graphite Inorganic materials 0.000 claims description 23
- 239000010439 graphite Substances 0.000 claims description 23
- 238000007731 hot pressing Methods 0.000 claims description 16
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 claims description 14
- 238000000034 method Methods 0.000 claims description 13
- 239000002667 nucleating agent Substances 0.000 claims description 11
- 239000000758 substrate Substances 0.000 claims description 11
- 230000005525 hole transport Effects 0.000 claims description 10
- 229910052751 metal Inorganic materials 0.000 claims description 10
- 239000002184 metal Substances 0.000 claims description 10
- 239000000565 sealant Substances 0.000 claims description 8
- 101100496858 Mus musculus Colec12 gene Proteins 0.000 claims description 7
- 239000011780 sodium chloride Substances 0.000 claims description 7
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 6
- 229910017053 inorganic salt Inorganic materials 0.000 claims description 6
- 229910052708 sodium Inorganic materials 0.000 claims description 6
- 239000002253 acid Substances 0.000 claims description 5
- 239000002562 thickening agent Substances 0.000 claims description 5
- 229920001495 poly(sodium acrylate) polymer Polymers 0.000 claims description 4
- NNMHYFLPFNGQFZ-UHFFFAOYSA-M sodium polyacrylate Chemical compound [Na+].[O-]C(=O)C=C NNMHYFLPFNGQFZ-UHFFFAOYSA-M 0.000 claims description 4
- 239000002313 adhesive film Substances 0.000 claims description 2
- 150000003839 salts Chemical class 0.000 claims description 2
- 229920001567 vinyl ester resin Polymers 0.000 claims 1
- 239000011521 glass Substances 0.000 description 16
- 238000004806 packaging method and process Methods 0.000 description 13
- 239000000243 solution Substances 0.000 description 13
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 12
- 238000004528 spin coating Methods 0.000 description 12
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical group CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 8
- 238000000576 coating method Methods 0.000 description 7
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 6
- BAVYZALUXZFZLV-UHFFFAOYSA-N Methylamine Chemical compound NC BAVYZALUXZFZLV-UHFFFAOYSA-N 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 239000011248 coating agent Substances 0.000 description 5
- 239000008367 deionised water Substances 0.000 description 5
- 229910021641 deionized water Inorganic materials 0.000 description 5
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- RDOXTESZEPMUJZ-UHFFFAOYSA-N anisole Chemical compound COC1=CC=CC=C1 RDOXTESZEPMUJZ-UHFFFAOYSA-N 0.000 description 4
- 238000000137 annealing Methods 0.000 description 4
- 238000001704 evaporation Methods 0.000 description 4
- XDXWNHPWWKGTKO-UHFFFAOYSA-N 207739-72-8 Chemical group C1=CC(OC)=CC=C1N(C=1C=C2C3(C4=CC(=CC=C4C2=CC=1)N(C=1C=CC(OC)=CC=1)C=1C=CC(OC)=CC=1)C1=CC(=CC=C1C1=CC=C(C=C13)N(C=1C=CC(OC)=CC=1)C=1C=CC(OC)=CC=1)N(C=1C=CC(OC)=CC=1)C=1C=CC(OC)=CC=1)C1=CC=C(OC)C=C1 XDXWNHPWWKGTKO-UHFFFAOYSA-N 0.000 description 3
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 3
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 3
- PNKUSGQVOMIXLU-UHFFFAOYSA-N Formamidine Chemical compound NC=N PNKUSGQVOMIXLU-UHFFFAOYSA-N 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- 229910006404 SnO 2 Inorganic materials 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 239000012296 anti-solvent Substances 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 230000008020 evaporation Effects 0.000 description 3
- 229910021389 graphene Inorganic materials 0.000 description 3
- 230000017525 heat dissipation Effects 0.000 description 3
- 238000005286 illumination Methods 0.000 description 3
- 230000007774 longterm Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 229920002689 polyvinyl acetate Polymers 0.000 description 3
- 239000011118 polyvinyl acetate Substances 0.000 description 3
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 2
- LIXXICXIKUPJBX-UHFFFAOYSA-N [Pt].[Rh].[Pt] Chemical compound [Pt].[Rh].[Pt] LIXXICXIKUPJBX-UHFFFAOYSA-N 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- MVPPADPHJFYWMZ-UHFFFAOYSA-N chlorobenzene Chemical compound ClC1=CC=CC=C1 MVPPADPHJFYWMZ-UHFFFAOYSA-N 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 239000012459 cleaning agent Substances 0.000 description 2
- SWXVUIWOUIDPGS-UHFFFAOYSA-N diacetone alcohol Natural products CC(=O)CC(C)(C)O SWXVUIWOUIDPGS-UHFFFAOYSA-N 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 230000031700 light absorption Effects 0.000 description 2
- UZKWTJUDCOPSNM-UHFFFAOYSA-N methoxybenzene Substances CCCCOC=C UZKWTJUDCOPSNM-UHFFFAOYSA-N 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000002105 nanoparticle Substances 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 238000011056 performance test Methods 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 2
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- 229920001167 Poly(triaryl amine) Polymers 0.000 description 1
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910021538 borax Inorganic materials 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- QHFQAJHNDKBRBO-UHFFFAOYSA-L calcium chloride hexahydrate Chemical compound O.O.O.O.O.O.[Cl-].[Cl-].[Ca+2] QHFQAJHNDKBRBO-UHFFFAOYSA-L 0.000 description 1
- 229920003086 cellulose ether Polymers 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical group 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000005191 phase separation Methods 0.000 description 1
- 229920000301 poly(3-hexylthiophene-2,5-diyl) polymer Polymers 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000007790 scraping Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 229910052938 sodium sulfate Inorganic materials 0.000 description 1
- 235000011152 sodium sulphate Nutrition 0.000 description 1
- 239000004328 sodium tetraborate Substances 0.000 description 1
- 235000010339 sodium tetraborate Nutrition 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 229940047908 strontium chloride hexahydrate Drugs 0.000 description 1
- AMGRXJSJSONEEG-UHFFFAOYSA-L strontium dichloride hexahydrate Chemical compound O.O.O.O.O.O.Cl[Sr]Cl AMGRXJSJSONEEG-UHFFFAOYSA-L 0.000 description 1
- 150000003457 sulfones Chemical class 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 238000004506 ultrasonic cleaning Methods 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
- XLOMVQKBTHCTTD-UHFFFAOYSA-N zinc oxide Inorganic materials [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K30/00—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
- H10K30/80—Constructional details
- H10K30/88—Passivation; Containers; Encapsulations
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K5/00—Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
- C09K5/02—Materials undergoing a change of physical state when used
- C09K5/06—Materials undergoing a change of physical state when used the change of state being from liquid to solid or vice versa
- C09K5/063—Materials absorbing or liberating heat during crystallisation; Heat storage materials
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K30/00—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
- H10K30/40—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising a p-i-n structure, e.g. having a perovskite absorber between p-type and n-type charge transport layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K30/00—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
- H10K30/50—Photovoltaic [PV] devices
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K71/00—Manufacture or treatment specially adapted for the organic devices covered by this subclass
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/549—Organic PV cells
Landscapes
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Electromagnetism (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Combustion & Propulsion (AREA)
- Thermal Sciences (AREA)
- Organic Chemistry (AREA)
- Photovoltaic Devices (AREA)
Abstract
本发明提供了一种温度稳定的钙钛矿太阳能电池及其制备方法,钙钛矿太阳能电池包括复合恒温封装层;所述复合恒温封装层包括第一封装层;第二封装层;和封装于所述第一封装层和第二封装层中的低温相变材料。本发明提供的钙钛矿太阳能电池封装外侧沉积低温相变材料,降低电池白天光照下的工作温升,使电池可以维持较为恒定的温度。电池工作温度可根据相变材料调节,电池可以应用于温室大棚侧顶等恒温应用场景。
The invention provides a temperature-stable perovskite solar cell and a preparation method thereof. The perovskite solar cell includes a composite constant temperature encapsulation layer; the composite constant temperature encapsulation layer includes a first encapsulation layer; a second encapsulation layer; and an encapsulation layer. Low temperature phase change material in the first encapsulation layer and the second encapsulation layer. The low-temperature phase change material deposited on the outside of the perovskite solar cell package provided by the present invention reduces the operating temperature rise of the battery under daytime light, allowing the battery to maintain a relatively constant temperature. The battery operating temperature can be adjusted according to the phase change material, and the battery can be used in constant temperature applications such as the side roof of greenhouses.
Description
技术领域Technical field
本发明属于钙钛矿太阳能电池技术领域,尤其涉及一种温度稳定的钙钛矿太阳能电池及其制备方法。The invention belongs to the technical field of perovskite solar cells, and in particular relates to a temperature-stable perovskite solar cell and a preparation method thereof.
背景技术Background technique
近年来,随着钙钛矿太阳能电池效率的飞速发展,其已逐渐成为光伏产业最具潜力的技术。但是,目前钙钛矿电池依然面临着光照下温升较高,散热能力不好,长期工作稳定性不足的问题。In recent years, with the rapid development of perovskite solar cell efficiency, it has gradually become the most promising technology in the photovoltaic industry. However, perovskite cells currently still face problems such as high temperature rise under light, poor heat dissipation capabilities, and insufficient long-term working stability.
现有技术主要通过风冷、水冷等冷却方式降低温度,但其结构复杂,且成本较高,无法满足钙钛矿太阳能电池产业化的需求。The existing technology mainly reduces the temperature through cooling methods such as air cooling and water cooling. However, its structure is complex and the cost is high, which cannot meet the needs of the industrialization of perovskite solar cells.
发明内容Contents of the invention
有鉴于此,本发明的目的在于提供一种温度稳定的钙钛矿太阳能电池及其制备方法,该钙钛矿太阳能电池采用低温相变材料作为封装层,能够降低电池白天光照下的工作温升,使电池维持较为恒定的温度。In view of this, the object of the present invention is to provide a temperature-stable perovskite solar cell and a preparation method thereof. The perovskite solar cell uses a low-temperature phase change material as an encapsulation layer, which can reduce the operating temperature rise of the battery under daytime light. , so that the battery maintains a relatively constant temperature.
本发明提供了一种温度稳定的钙钛矿太阳能电池,包括复合恒温封装层;The invention provides a temperature-stable perovskite solar cell, which includes a composite constant-temperature encapsulation layer;
所述复合恒温封装层包括第一封装层;第二封装层;The composite thermostatic encapsulation layer includes a first encapsulation layer; a second encapsulation layer;
和封装于所述第一封装层和第二封装层中的低温相变材料。and a low-temperature phase change material encapsulated in the first encapsulation layer and the second encapsulation layer.
在本发明中,所述低温相变材料为CaCl2·6H2O基复合相变材料和/或Na2SO4·10H2O基复合相变材料。In the present invention, the low-temperature phase change material is a CaCl 2 ·6H 2 O-based composite phase change material and/or a Na 2 SO 4 ·10H 2 O-based composite phase change material.
在本发明中,所述CaCl2·6H2O基复合相变材料选自CaCl2·6H2O和多孔Al2O3复合物;CaCl2·6H2O和膨胀石墨复合物;或含有形核剂SrCl2·6H2O、Ba(OH)2·8H2O、无机盐KCl、MgCl2和NaCl其中之一或多组分的CaCl2·6H2O。In the present invention, the CaCl 2 ·6H 2 O-based composite phase change material is selected from the group consisting of CaCl 2 ·6H 2 O and porous Al 2 O 3 composites; CaCl 2 ·6H 2 O and expanded graphite composites; or containing The nucleating agent is one or more components of CaCl 2 ·6H 2 O, including SrCl 2 ·6H 2 O , Ba(OH) 2 ·8H 2 O, inorganic salt KCl, MgCl 2 and NaCl.
在本发明中,所述Na2SO4·10H2O基复合相变材料选自Na2SO4·10H2O和聚丙烯酸钠复合物;Na2SO4·10H2O和膨胀石墨复合物;或含有形核剂Na2B4O7·10H2O、增稠剂聚羧酸、无机盐KCl、MgCl2和NaCl其中之一或多组分的Na2SO4·10H2O。In the present invention, the Na 2 SO 4 ·10H 2 O-based composite phase change material is selected from the group consisting of Na 2 SO 4 ·10H 2 O and sodium polyacrylate composite; Na 2 SO 4 ·10H 2 O and expanded graphite composite ; Or Na 2 SO 4 ·10H 2 O containing one or more components of nucleating agent Na 2 B 4 O 7 ·10H 2 O, thickener polycarboxylic acid, inorganic salt KCl, MgCl 2 and NaCl.
在本发明中,所述第二封装层具有槽式结构,所述低温相变材料封装于所述槽式结构内。In the present invention, the second encapsulation layer has a groove structure, and the low-temperature phase change material is encapsulated in the groove structure.
在本发明中,所述具有槽式结构的第二封装层的底部厚度为0.5~3mm,槽式结构的壁厚为1~4mm。In the present invention, the bottom thickness of the second packaging layer with the groove structure is 0.5-3 mm, and the wall thickness of the groove structure is 1-4 mm.
在本发明中,所述低温相变材料包括CaCl2·6H2O、形核剂SrCl2·6H2O和膨胀石墨;In the present invention, the low-temperature phase change material includes CaCl 2 ·6H 2 O, nucleating agent SrCl 2 ·6H 2 O and expanded graphite;
或包括Na2SO4·10H2O和膨胀石墨。Or include Na 2 SO 4 ·10H 2 O and expanded graphite.
本发明提供了一种上述技术方案所述温度稳定的钙钛矿太阳能电池的制备方法,包括以下步骤:The invention provides a method for preparing a temperature-stable perovskite solar cell according to the above technical solution, which includes the following steps:
将低温相变材料封装于第一封装层和第二封装层之间,得到复合恒温封装层。The low-temperature phase change material is encapsulated between the first encapsulation layer and the second encapsulation layer to obtain a composite constant temperature encapsulation layer.
在本发明中,还包括在基底上依次制备电子传输层、钙钛矿吸光层、空穴传输层和金属电极层,然后盖上聚乙烯-聚醋酸乙烯酯共聚物胶膜,四周设置密封胶,盖上复合恒温封装层,热压封装贴合,得到钙钛矿太阳能电池。In the present invention, it also includes sequentially preparing an electron transport layer, a perovskite light-absorbing layer, a hole transport layer and a metal electrode layer on a substrate, and then covering it with a polyethylene-polyvinyl acetate copolymer film, and setting sealant around it. , cover it with a composite constant-temperature encapsulation layer, and heat-press encapsulate it to obtain a perovskite solar cell.
在本发明中,所述热压的强度为0.05~0.3MPa,热压的温度为60~140℃,热压的时间为5~15min。In the present invention, the hot pressing intensity is 0.05-0.3MPa, the hot-pressing temperature is 60-140°C, and the hot-pressing time is 5-15 minutes.
本发明提供了一种温度稳定的钙钛矿太阳能电池,包括复合恒温封装层;所述复合恒温封装层包括第一封装层;第二封装层;和封装于所述第一封装层和第二封装层中的低温相变材料。本发明提供的钙钛矿太阳能电池封装外侧沉积低温相变材料,降低电池白天光照下的工作温升,使电池可以维持较为恒定的温度。电池工作温度可根据相变材料调节,电池可以应用于温室大棚侧顶等恒温应用场景。The invention provides a temperature-stable perovskite solar cell, including a composite constant temperature encapsulation layer; the composite constant temperature encapsulation layer includes a first encapsulation layer; a second encapsulation layer; and an encapsulation layer encapsulated in the first encapsulation layer and the second Low temperature phase change materials in the encapsulation layer. The low-temperature phase change material deposited on the outside of the perovskite solar cell package provided by the present invention reduces the operating temperature rise of the battery under daytime light, allowing the battery to maintain a relatively constant temperature. The battery operating temperature can be adjusted according to the phase change material, and the battery can be used in constant temperature applications such as the side roof of greenhouses.
附图说明Description of the drawings
图1为本发明提供的温度稳定的钙钛矿太阳能电池的结构示意图;其中,1为第一封装层,2为低温相变材料,3为第二封装层,4为金属电极层、5为空穴传输层、6为钙钛矿吸光层、7为电子传输层和8为基底;Figure 1 is a schematic structural diagram of a temperature-stable perovskite solar cell provided by the present invention; wherein, 1 is the first encapsulation layer, 2 is the low-temperature phase change material, 3 is the second encapsulation layer, 4 is the metal electrode layer, and 5 is Hole transport layer, 6 is the perovskite light absorption layer, 7 is the electron transport layer and 8 is the substrate;
图2为本发明实施例1制备的电池的温度性能测试曲线;Figure 2 is a temperature performance test curve of the battery prepared in Example 1 of the present invention;
图3为本发明实施例2制备的电池的温度性能测试曲线。Figure 3 is a temperature performance test curve of the battery prepared in Example 2 of the present invention.
具体实施方式Detailed ways
本发明提供了一种温度稳定的钙钛矿太阳能电池,包括复合恒温封装层;The invention provides a temperature-stable perovskite solar cell, which includes a composite constant-temperature encapsulation layer;
所述复合恒温封装层包括第一封装层;第二封装层;The composite thermostatic encapsulation layer includes a first encapsulation layer; a second encapsulation layer;
和封装于所述第一封装层和第二封装层中的低温相变材料。and a low-temperature phase change material encapsulated in the first encapsulation layer and the second encapsulation layer.
本发明提供的钙钛矿太阳能电池通过设置复合恒温封装层,其中的低温相变材料能使钙钛矿太阳能电池工作温度大幅下降,同时,器件结构复杂度及成本不显著提升;还能调节电池工作温度,夜间也可以维持恒定温度,适用于温室侧顶等多种恒温应用场景。The perovskite solar cell provided by the present invention is provided with a composite constant temperature encapsulation layer, in which the low-temperature phase change material can significantly reduce the operating temperature of the perovskite solar cell. At the same time, the complexity and cost of the device structure are not significantly increased; it can also adjust the battery The operating temperature can be maintained at a constant temperature at night, and it is suitable for various constant temperature application scenarios such as greenhouse side roofs.
本发明提供的钙钛矿太阳能电池包括复合恒温封装层;所述复合恒温封装层包括第一封装层,所述第一封装层主成分为超白玻璃材质,第一封装层的厚度为0.5~3mm。The perovskite solar cell provided by the invention includes a composite constant temperature encapsulation layer; the composite constant temperature encapsulation layer includes a first encapsulation layer, the main component of the first encapsulation layer is ultra-white glass material, and the thickness of the first encapsulation layer is 0.5~ 3mm.
所述复合恒温封装层包括第二封装层,所述第二封装层的主成分为超白玻璃材质;第二封装层具有槽式结构,具有槽式结构的第二封装层的底部厚度为0.5~3mm,槽式结构的壁厚为1~4mm。所述槽式结构的深度为3~6mm。所述第二封装层的厚度为8~12mm。The composite constant temperature encapsulation layer includes a second encapsulation layer, the main component of the second encapsulation layer is ultra-white glass material; the second encapsulation layer has a groove structure, and the bottom thickness of the second encapsulation layer with the groove structure is 0.5 ~3mm, the wall thickness of the trough structure is 1~4mm. The depth of the groove structure is 3 to 6 mm. The thickness of the second packaging layer is 8-12 mm.
所述复合恒温封装层包括封装于所述第一封装层和第二封装层中的低温相变材料。所述低温相变材料优选装于所述第二封装层的槽式结构中,低温相变材料的加入量占槽容积的40~80%。The composite thermostatic encapsulation layer includes a low-temperature phase change material encapsulated in the first encapsulation layer and the second encapsulation layer. The low-temperature phase change material is preferably installed in the groove structure of the second packaging layer, and the added amount of the low-temperature phase change material accounts for 40% to 80% of the groove volume.
在本发明中,所述低温相变材料的制备原料包括CaCl2·6H2O或Na2SO4·10H2O,以CaCl2·6H2O或Na2SO4·10H2O为基准,加入0~15wt%的调节剂、0~5wt%的形核剂、0~6wt%增稠剂和0~10wt%无机盐;所述调节剂选自聚丙烯酸钠、膨胀石墨、多孔Al2O3和石墨烯中的一种或多种;所述形核剂选自SrCl2·6H2O、Ba(OH)2·8H2O、Na2B4O7·10H2O(硼砂)中的一种或多种;所述增稠剂选自聚羧酸、纤维素醚、聚丙烯酰胺和甘油中的一种或多种;所述无机盐选自KCl、NaCl和MgCl2中的一种或多种。所述多孔Al2O3、膨胀石墨、石墨烯等属于复合相变材料中的一种复合组分,用于调节CaCl2·6H2O不同性能,多孔Al2O3、膨胀石墨、石墨烯等可以提高结构稳定性和均匀性,减少相分离问题等。具体的,所述低温相变材料为CaCl2·6H2O基复合相变材料和/或Na2SO4·10H2O基复合相变材料;所述CaCl2·6H2O基复合相变材料选自CaCl2·6H2O和多孔Al2O3复合物;CaCl2·6H2O和膨胀石墨复合物;或含有形核剂SrCl2·6H2O、Ba(OH)2·8H2O、无机盐KCl、MgCl2和NaCl其中之一或多组分的CaCl2·6H2O。所述Na2SO4·10H2O基复合相变材料选自Na2SO4·10H2O和聚丙烯酸钠复合物;Na2SO4·10H2O和膨胀石墨复合物;或含有形核剂Na2B4O7·10H2O、增稠剂聚羧酸、无机盐KCl、MgCl2、NaCl其中之一或多组分的Na2SO4·10H2O。具体实施例中,所述低温相变材料包括CaCl2·6H2O、形核剂SrCl2·6H2O和膨胀石墨;或包括Na2SO4·10H2O和膨胀石墨。In the present invention, the raw materials for preparing the low-temperature phase change material include CaCl 2 ·6H 2 O or Na 2 SO 4 ·10H 2 O, based on CaCl 2 ·6H 2 O or Na 2 SO 4 ·10H 2 O, Add 0-15wt% regulator, 0-5wt% nucleating agent, 0-6wt% thickener and 0-10wt% inorganic salt; the regulator is selected from sodium polyacrylate, expanded graphite, porous Al 2 O 3 and one or more of graphene; the nucleating agent is selected from SrCl 2 ·6H 2 O, Ba(OH) 2 ·8H 2 O, Na 2 B 4 O 7 ·10H 2 O (borax) One or more of them; the thickener is selected from one or more of polycarboxylic acid, cellulose ether, polyacrylamide and glycerol; the inorganic salt is selected from one of KCl, NaCl and MgCl 2 Kind or variety. The porous Al 2 O 3 , expanded graphite, graphene, etc. belong to a composite component in the composite phase change material and are used to adjust the different properties of CaCl 2 ·6H 2 O. The porous Al 2 O 3 , expanded graphite, graphene, etc. etc. can improve structural stability and uniformity, reduce phase separation problems, etc. Specifically, the low-temperature phase change material is a CaCl 2 ·6H 2 O-based composite phase change material and/or a Na 2 SO 4 ·10H 2 O-based composite phase change material; the CaCl 2 ·6H 2 O-based composite phase change material The material is selected from CaCl 2 ·6H 2 O and porous Al 2 O 3 composite; CaCl 2 ·6H 2 O and expanded graphite composite; or containing nucleating agents SrCl 2 ·6H 2 O, Ba(OH) 2 ·8H 2 O, one or more of the inorganic salts KCl, MgCl 2 and NaCl, CaCl 2 ·6H 2 O. The Na 2 SO 4 ·10H 2 O-based composite phase change material is selected from the group consisting of Na 2 SO 4 ·10H 2 O and sodium polyacrylate composite; Na 2 SO 4 ·10H 2 O and expanded graphite composite; or contains nucleation Agent Na 2 B 4 O 7 ·10H 2 O, thickener polycarboxylic acid, inorganic salt KCl, MgCl 2 , NaCl one or more components Na 2 SO 4 ·10H 2 O. In specific embodiments, the low-temperature phase change material includes CaCl 2 ·6H 2 O, nucleating agent SrCl 2 ·6H 2 O and expanded graphite; or includes Na 2 SO 4 ·10H 2 O and expanded graphite.
本发明优选在复合恒温封装层的顶面设计织构图案,扩大其表面积;也可以通过涂布石墨、导热凝胶等散热涂层,厚度为0.1~0.2mm,提高其散热能力。In the present invention, it is preferable to design a texture pattern on the top surface of the composite thermostatic encapsulation layer to expand its surface area; it can also improve its heat dissipation capability by coating graphite, thermal conductive gel and other heat dissipation coatings with a thickness of 0.1 to 0.2 mm.
本发明提供的钙钛矿太阳能电池还包括于复合恒温封装层中第二封装层上依次设置的金属电极层、空穴传输层、钙钛矿吸光层、电子传输层和基底。也就是本发明中钙钛矿太阳能电池包括基底、电子传输层、钙钛矿吸光层、空穴传输层、金属电极层和复合恒温封装层;所述复合恒温封装层的第二封装层与金属电极层接触。The perovskite solar cell provided by the invention also includes a metal electrode layer, a hole transport layer, a perovskite light absorbing layer, an electron transport layer and a substrate sequentially arranged on the second encapsulation layer in the composite constant temperature encapsulation layer. That is to say, the perovskite solar cell in the present invention includes a substrate, an electron transport layer, a perovskite light-absorbing layer, a hole transport layer, a metal electrode layer and a composite constant temperature encapsulation layer; the second encapsulation layer of the composite constant temperature encapsulation layer and the metal electrode layer contact.
在本发明中,所述金属电极层为Au、Ag或Cu中的一种或多种;所述金属电极层的厚度为50~100nm。In the present invention, the metal electrode layer is one or more of Au, Ag or Cu; the thickness of the metal electrode layer is 50-100 nm.
所述空穴传输层选自Spiro-OMeTAD、PTAA、P3HT等。所述空穴传输层的厚度为100~200nm。The hole transport layer is selected from Spiro-OMeTAD, PTAA, P3HT, etc. The thickness of the hole transport layer is 100-200 nm.
所述钙钛矿吸光层的组成为ABX3,其中,A为甲脒(FA)、Cs、甲胺(MA)等;B为Pb、Sn等,X为I、Br、Cl等。所述钙钛矿吸光层的厚度为200~800nm。The composition of the perovskite light-absorbing layer is ABX 3 , where A is formamidine (FA), Cs, methylamine (MA), etc.; B is Pb, Sn, etc., and X is I, Br, Cl, etc. The thickness of the perovskite light-absorbing layer is 200-800 nm.
所述电子传输层选自SnO2、TiO2、ZnO等金属氧化物,厚度为10~40nm;The electron transport layer is selected from metal oxides such as SnO 2 , TiO 2 , ZnO, etc., and has a thickness of 10 to 40 nm;
所述基底为透明导电玻璃,主要为ITO玻璃、FTO玻璃等;基底的厚度为0.5~3mm。The substrate is transparent conductive glass, mainly ITO glass, FTO glass, etc.; the thickness of the substrate is 0.5-3mm.
本发明提供了一种上述技术方案所述温度稳定的钙钛矿太阳能电池的制备方法,包括以下步骤:The invention provides a method for preparing a temperature-stable perovskite solar cell according to the above technical solution, which includes the following steps:
将低温相变材料封装于第一封装层和第二封装层之间,得到复合恒温封装层。The low-temperature phase change material is encapsulated between the first encapsulation layer and the second encapsulation layer to obtain a composite constant temperature encapsulation layer.
本发明通过边缘密封胶或对封装层抽低真空,保证封装层的密封性。The invention ensures the sealing performance of the packaging layer through edge sealant or low vacuum on the packaging layer.
本发明制备钙钛矿太阳能电池还包括在基底上依次制备电子传输层、钙钛矿吸光层、空穴传输层和金属电极层,然后盖上聚乙烯-聚醋酸乙烯酯共聚物胶膜,四周设置密封胶,盖上复合恒温封装层,热压封装贴合,得到钙钛矿太阳能电池。Preparing perovskite solar cells in the present invention also includes sequentially preparing an electron transmission layer, a perovskite light absorption layer, a hole transmission layer and a metal electrode layer on a substrate, and then covering it with a polyethylene-polyvinyl acetate copolymer film, surrounding Set the sealant, cover it with a composite thermostatic encapsulation layer, and hot-press encapsulate it to obtain a perovskite solar cell.
本发明采用自下而上的制备方式制备钙钛矿太阳能电池。The present invention adopts a bottom-up preparation method to prepare perovskite solar cells.
本发明对基底进行清洗,优选依次采用清洗剂、去离子水、乙醇、丙酮和异丙醇进行超声清洗,超声时间为10~25min,清洗后浸泡于异丙醇中,使用前采用氮气气枪吹干。In the present invention, the substrate is cleaned by ultrasonic cleaning using cleaning agent, deionized water, ethanol, acetone and isopropyl alcohol in sequence. The ultrasonic time is 10 to 25 minutes. After cleaning, the substrate is soaked in isopropyl alcohol and blown with a nitrogen air gun before use. Dry.
本发明采用溶液法制备电子传输层,具体实施例中,采用1-4wt%的SnO2纳米颗粒水溶液,旋涂速率为3000~6000rpm,时间为30~50s,退火温度为100~180℃,时间为20~40min。The present invention adopts a solution method to prepare the electron transport layer. In specific embodiments, a 1-4wt% SnO2 nanoparticle aqueous solution is used, the spin coating rate is 3000-6000rpm, the time is 30-50s, the annealing temperature is 100-180°C, and the time It is 20~40min.
本发明采用溶液法制备钙钛矿吸光层,所述钙钛矿吸光层的前驱体溶液选自APbX3,其中,A为FA、MA、Cs中的一种或多种,X为I、Br、Cl中的一种或多种,根据钙钛矿配比,称量相应质量的AX和PbX2加入溶剂中,溶剂为DMF(N,N-二甲基甲酰胺)、DMSO(二甲基亚砜)、NMP(N-甲基吡咯烷酮)、GBL(γ-丁内酯)中的一种或多种,溶液浓度为1.0~1.6mol/L。钙钛矿薄膜可采用旋涂、刮涂、狭缝涂布等方法制备,旋涂速率为1000~6000rpm,时间为30~60s,在旋涂结束前8~15s滴加反溶剂,反溶剂选自苯甲醚、氯苯、甲苯、乙醚中的一种。刮涂法刮刀高度为60~100微米,移动速度为10~40mm/s,风刀气流速度为6-8m/s。狭缝涂布法刀头高度为60~130微米,移动速度为5~15mm/s,出液速度为1~3mL/min。溶液涂布后退火成膜,退火温度为80~160℃,时间为10~40min。The present invention adopts a solution method to prepare a perovskite light-absorbing layer. The precursor solution of the perovskite light-absorbing layer is selected from APbX3, where A is one or more of FA, MA, and Cs, and X is I, Br, One or more of Cl, according to the perovskite ratio, weigh the corresponding mass of AX and PbX 2 and add them to the solvent. The solvent is DMF (N,N-dimethylformamide), DMSO (dimethylformamide). Sulfone), NMP (N-methylpyrrolidone), GBL (γ-butyrolactone), one or more, the solution concentration is 1.0~1.6mol/L. The perovskite film can be prepared by spin coating, blade coating, slit coating and other methods. The spin coating rate is 1000~6000rpm and the time is 30~60s. Antisolvent is added dropwise 8~15s before the end of spin coating. The antisolvent is selected One of the following: anisole, chlorobenzene, toluene, and ether. In the scraping method, the height of the scraper is 60-100 microns, the moving speed is 10-40mm/s, and the airflow speed of the air knife is 6-8m/s. The height of the knife head of the slit coating method is 60-130 microns, the moving speed is 5-15mm/s, and the liquid discharge speed is 1-3mL/min. After coating, the solution is annealed to form a film. The annealing temperature is 80 to 160°C and the time is 10 to 40 minutes.
本发明采用溶液法制备空穴传输层,旋涂速度为2000~6000rpm,时间为20~60s。The present invention adopts a solution method to prepare the hole transport layer, the spin coating speed is 2000-6000rpm, and the time is 20-60s.
本发明采用真空蒸镀法制备金属电极层,真空度为6×10-5~2×10-4Pa,蒸镀速率为0.5~2nm/min,厚度为50~100nm,优选为60~90nm。The present invention adopts vacuum evaporation method to prepare the metal electrode layer, the vacuum degree is 6×10 -5 ~ 2×10 -4 Pa, the evaporation rate is 0.5 ~ 2nm/min, and the thickness is 50 ~ 100nm, preferably 60 ~ 90nm.
本发明在制备好的钙钛矿电池活性区域盖上EVA(聚乙烯-聚醋酸乙烯酯共聚物)胶膜,四周可选用密封胶,盖上顶部封装层,通过热压法进行封装贴合,热压强度为0.05~0.3MPa,温度为60~140℃,排空时间为3~9min,热压时间为5~15min。In the present invention, the active area of the prepared perovskite battery is covered with an EVA (polyethylene-polyvinyl acetate copolymer) adhesive film, and sealant can be used around it, the top packaging layer is covered, and the packaging is carried out by hot pressing. The hot pressing strength is 0.05~0.3MPa, the temperature is 60~140℃, the emptying time is 3~9min, and the hot pressing time is 5~15min.
本发明提供的制备方法简单,易于工业化生产。本发明通过提供一种温度稳定的钙钛矿太阳能电池,可以有效实现电池的温度稳定,从而降低其光照温升,提高其长期工作稳定性,并拓宽其应用场景。The preparation method provided by the invention is simple and easy for industrial production. By providing a temperature-stable perovskite solar cell, the present invention can effectively stabilize the temperature of the battery, thereby reducing its illumination temperature rise, improving its long-term working stability, and broadening its application scenarios.
为了进一步说明本发明,下面结合实施例对本发明提供的一种温度稳定的钙钛矿太阳能电池及其制备方法进行详细地描述,但不能将它们理解为对本发明保护范围的限定。In order to further illustrate the present invention, the temperature-stable perovskite solar cell and its preparation method provided by the present invention are described in detail below with reference to the examples, but they should not be understood as limiting the scope of the present invention.
预备例1Preliminary example 1
顶部恒温封装层制备:Preparation of the top constant temperature encapsulation layer:
步骤1、量取10mL去离子水,称量10.2g无水氯化钙,迅速加入去离子水中;称量0.4g六水合氯化锶,加入溶液中;Step 1. Measure 10 mL of deionized water, weigh 10.2g of anhydrous calcium chloride, and quickly add it to the deionized water; weigh 0.4g of strontium chloride hexahydrate and add it to the solution;
步骤2、将40目石墨在700W加热功率下加热膨胀15s,得到膨胀石墨;称量1g膨胀石墨,加入步骤1制备的溶液中,机械振荡15min,使其充分混合均匀,得到六水合氯化钙-膨胀石墨复合相变材料。Step 2. Heat and expand 40-mesh graphite at 700W heating power for 15 seconds to obtain expanded graphite; weigh 1g of expanded graphite, add it to the solution prepared in step 1, and mechanically shake for 15 minutes to mix thoroughly to obtain calcium chloride hexahydrate. -Expanded graphite composite phase change material.
步骤3、在槽式封装玻璃中加入上述复合相变材料,容积为槽的70%,在槽顶边缘涂覆密封胶。取超白玻璃盖在槽式封装玻璃上,边缘对齐密封。Step 3: Add the above-mentioned composite phase change material into the trough-type packaging glass, with a volume of 70% of the trough, and apply sealant on the top edge of the trough. Put the ultra-white glass cover on the grooved packaging glass, align the edges and seal.
步骤4、层压贴合封装层,压强为0.1MPa,时间为5min。Step 4: Laminate the packaging layer with a pressure of 0.1MPa and a time of 5 minutes.
预备例2Preliminary example 2
顶部恒温封装层制备:Preparation of the top constant temperature encapsulation layer:
步骤1、将40目石墨在700W加热功率下加热膨胀15s,得到膨胀石墨;称量18.4gNa2SO4·10H2O,1.6g膨胀石墨,2.4g去离子水,在40℃下真空吸附并搅拌4小时,得到十水合硫酸钠-膨胀石墨复合相变材料。Step 1. Heat and expand 40 mesh graphite at 700W heating power for 15 seconds to obtain expanded graphite; weigh 18.4g Na 2 SO 4 ·10H 2 O, 1.6g expanded graphite, 2.4g deionized water, vacuum adsorb at 40°C and Stir for 4 hours to obtain sodium sulfate decahydrate-expanded graphite composite phase change material.
步骤3、在槽式封装玻璃中加入上述复合相变材料,容积为槽的70%,在槽顶边缘涂覆密封胶。取超白玻璃盖在槽式封装玻璃上,边缘对齐密封。Step 3: Add the above-mentioned composite phase change material into the trough-type packaging glass, with a volume of 70% of the trough, and apply sealant on the top edge of the trough. Put the ultra-white glass cover on the grooved packaging glass, align the edges and seal.
步骤4、层压贴合封装层,压强为0.1MPa,时间为5min。Step 4: Laminate the packaging layer with a pressure of 0.1MPa and a time of 5 minutes.
对比例1Comparative example 1
n-i-p结构钙钛矿电池制备:Preparation of n-i-p structure perovskite cells:
制备方法如下:The preparation method is as follows:
步骤1、透明导电玻璃依次采用清洗剂、去离子水、乙醇、丙酮和异丙醇进行超声清洗,每次清洗时间为15min,清洗后的基板浸泡在异丙醇溶液中,使用前采用氮气枪吹干。Step 1. The transparent conductive glass is ultrasonically cleaned using cleaning agent, deionized water, ethanol, acetone and isopropyl alcohol in sequence. Each cleaning time is 15 minutes. The cleaned substrate is soaked in the isopropyl alcohol solution and a nitrogen gun is used before use. Blow dry.
步骤2、在透明导电玻璃上采用旋涂法制备SnO2电子传输层,溶液为含2.5wt%SnO2纳米颗粒的水溶液,旋涂速率为4000rpm,时间为30s,旋涂后退火的温度为160℃,时间为30min,厚度为20nm。Step 2. Use the spin coating method to prepare the SnO 2 electron transport layer on the transparent conductive glass. The solution is an aqueous solution containing 2.5wt% SnO 2 nanoparticles. The spin coating rate is 4000 rpm and the time is 30 s. The annealing temperature after spin coating is 160 ℃, time is 30min, thickness is 20nm.
步骤3、采用一步旋涂法制备钙钛矿薄膜,钙钛矿组分为FAPbI3,浓度为1.4mol/L,旋涂速率为5000rpm,时间为30s,成膜过程中在涂覆20s后滴加苯甲醚反溶剂;退火的温度为100℃,时间为30min,厚度为450nm。Step 3. Use a one-step spin coating method to prepare a perovskite film. The perovskite component is FAPbI 3 , the concentration is 1.4mol/L, the spin coating rate is 5000rpm, and the time is 30s. During the film formation process, drop the film after 20s of coating. Add anisole antisolvent; the annealing temperature is 100°C, the time is 30min, and the thickness is 450nm.
步骤4、在钙钛矿薄膜上采用旋涂法制备spiro-OMeTAD空穴传输层,溶液为在1ml氯苯溶液中分别加入73.2mg spiro-OMeTAD,28.8μL的TBP,17.5μL的Li-TFSI(520mg/ml),29μL的FK-209(520mg/ml)制备获得,旋涂速率为4000rpm,时间为30s,厚度为180nm。Step 4. Use the spin coating method to prepare the spiro-OMeTAD hole transport layer on the perovskite film. The solution is to add 73.2 mg spiro-OMeTAD, 28.8 μL TBP, and 17.5 μL Li-TFSI ( 520 mg/ml), 29 μL of FK-209 (520 mg/ml) was prepared, the spin coating speed was 4000 rpm, the time was 30 s, and the thickness was 180 nm.
步骤5、在空穴传输层上采用蒸镀法制备Au背电极,蒸镀真空度为8.0×10-5Pa,蒸镀速率第一阶段约为0.5~1nm/min,时间为20min,第二阶段约为2~3nm/min,时间为25min,薄膜厚度约为70nm。Step 5. Use the evaporation method to prepare the Au back electrode on the hole transport layer. The evaporation vacuum degree is 8.0×10 -5 Pa. The evaporation rate in the first stage is about 0.5~1nm/min, and the time is 20 minutes. The stage is about 2~3nm/min, the time is 25min, and the film thickness is about 70nm.
步骤6、在制备好的钙钛矿电池活性区域盖上EVA胶膜,四周粘贴丁基密封胶,盖上超白玻璃封装层,通过热压法进行封装贴合,热压强度为0.1MPa,温度为100℃,排空时间为5min,热压时间为10min。Step 6: Cover the active area of the prepared perovskite battery with EVA film, paste butyl sealant around it, cover with an ultra-white glass encapsulation layer, and encapsulate and bond it by hot pressing. The hot pressing strength is 0.1MPa. The temperature is 100°C, the emptying time is 5min, and the hot pressing time is 10min.
实施例1Example 1
具有恒温封装层的n-i-p结构钙钛矿电池制备:Preparation of n-i-p structure perovskite cells with constant temperature encapsulation layer:
步骤1~步骤5与对比例1中一致;Steps 1 to 5 are the same as in Comparative Example 1;
步骤6中,超白玻璃封装层改为预备例1中制备的复合恒温封装层,热压强度为0.1MPa,温度为70℃,排空时间为5min,热压时间为15min。In step 6, the ultra-white glass encapsulation layer is changed to the composite constant temperature encapsulation layer prepared in Preparatory Example 1. The hot pressing strength is 0.1MPa, the temperature is 70°C, the emptying time is 5 minutes, and the hot pressing time is 15 minutes.
性能分析Performance analysis
本发明对对比例1和实施例1制备的n-i-p结构钙钛矿电池在持续光照条件下的温度进行了测试,采用铂铑-铂热电偶测温,温度变化如图2所示。从图2中可以看出,引入恒温封装层后,钙钛矿太阳能电池的光照稳定温度从45.3℃降低至34.2℃,能有效降低电池在白天光照下的工作温升。The present invention tested the temperature of the n-i-p structure perovskite cells prepared in Comparative Example 1 and Example 1 under continuous illumination conditions, using a platinum-rhodium-platinum thermocouple to measure the temperature. The temperature changes are shown in Figure 2. As can be seen from Figure 2, after the introduction of the constant temperature encapsulation layer, the light stable temperature of the perovskite solar cell is reduced from 45.3°C to 34.2°C, which can effectively reduce the operating temperature rise of the battery under daytime light.
实施例2Example 2
具有恒温封装层的n-i-p结构钙钛矿电池制备:Preparation of n-i-p structure perovskite cells with constant temperature encapsulation layer:
步骤1~步骤5与对比例1中一致;Steps 1 to 5 are the same as in Comparative Example 1;
步骤6中,超白玻璃封装层改为预备例2中制备的复合恒温封装层,热压强度为0.1MPa,温度为70℃,排空时间为5min,热压时间为15min。In step 6, the ultra-white glass encapsulation layer is changed to the composite constant temperature encapsulation layer prepared in Preparatory Example 2. The hot pressing strength is 0.1MPa, the temperature is 70°C, the emptying time is 5 minutes, and the hot pressing time is 15 minutes.
性能分析、performance analysis,
本发明对对比例1和实施例2制备的n-i-p结构钙钛矿电池在持续光照条件下的温度进行了测试,采用铂铑-铂热电偶测温,温度变化如图3所示。从图3中可以看出,引入恒温封装层后,钙钛矿太阳能电池的光照稳定温度从45.3℃降低至37.8℃,能有效降低电池在白天光照下的工作温升;The present invention tested the temperature of the n-i-p structure perovskite cells prepared in Comparative Example 1 and Example 2 under continuous illumination conditions, using a platinum-rhodium-platinum thermocouple to measure the temperature. The temperature changes are shown in Figure 3. As can be seen from Figure 3, after the introduction of the constant temperature encapsulation layer, the light stable temperature of the perovskite solar cell is reduced from 45.3°C to 37.8°C, which can effectively reduce the operating temperature rise of the battery under daytime light;
电池工作温度可根据相变材料调节,随相变材料相变温度及相变焓变化,一般高于相变温度3~8℃,适用于温室大棚侧顶等恒温应用场景。The battery operating temperature can be adjusted according to the phase change material. It changes with the phase change temperature and phase change enthalpy of the phase change material. It is generally 3 to 8°C higher than the phase change temperature. It is suitable for constant temperature application scenarios such as the side roof of greenhouses.
本发明对对比例1制备的n-i-p结构钙钛矿电池的光电性能参数进行了测试,测试结果如表1所示。The present invention tested the photoelectric performance parameters of the n-i-p structure perovskite cell prepared in Comparative Example 1, and the test results are shown in Table 1.
表1Table 1
由于实施例1~2与对比例1采用的是同样条件制备的n-i-p结构钙钛矿电池,其初始光电性能参数基本一致,但是器件在1个太阳光下持续照射100小时后,对比例1电池的效率降低至初始值的99.1%,实施例1电池效率为初始值的99.8%,实施例2电池效率为初始值的99.6%。表明引入恒温封装层后,钙钛矿电池的长期光照稳定性有所提升。Since Examples 1 to 2 and Comparative Example 1 use n-i-p structure perovskite cells prepared under the same conditions, their initial photoelectric performance parameters are basically the same. However, after the device is continuously irradiated under one sunlight for 100 hours, the battery of Comparative Example 1 The efficiency dropped to 99.1% of the initial value, the battery efficiency of Example 1 was 99.8% of the initial value, and the battery efficiency of Example 2 was 99.6% of the initial value. It shows that the long-term light stability of perovskite cells has been improved after introducing a constant temperature encapsulation layer.
由以上实施例可知,本发明提供了一种温度稳定的钙钛矿太阳能电池,包括复合恒温封装层;所述复合恒温封装层包括第一封装层;第二封装层;和封装于所述第一封装层和第二封装层中的低温相变材料。本发明提供的钙钛矿太阳能电池封装外侧沉积低温相变材料,降低电池白天光照下的工作温升,使电池可以维持较为恒定的温度。电池工作温度可根据相变材料调节,电池可以应用于温室大棚侧顶等恒温应用场景。As can be seen from the above embodiments, the present invention provides a temperature-stable perovskite solar cell, including a composite constant temperature encapsulation layer; the composite constant temperature encapsulation layer includes a first encapsulation layer; a second encapsulation layer; and an encapsulation layer encapsulated in the third A low temperature phase change material in an encapsulation layer and a second encapsulation layer. The low-temperature phase change material deposited on the outside of the perovskite solar cell package provided by the present invention reduces the operating temperature rise of the battery under daytime light, allowing the battery to maintain a relatively constant temperature. The battery operating temperature can be adjusted according to the phase change material, and the battery can be used in constant temperature applications such as the side roof of greenhouses.
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。The above are only preferred embodiments of the present invention. It should be noted that those skilled in the art can make several improvements and modifications without departing from the principles of the present invention. These improvements and modifications can also be made. should be regarded as the protection scope of the present invention.
Claims (10)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310729493.1A CN116761445A (en) | 2023-06-19 | 2023-06-19 | Perovskite solar cell with stable temperature and preparation method thereof |
PCT/CN2024/100206 WO2024260385A1 (en) | 2023-06-19 | 2024-06-19 | Perovskite solar cell having stable temperature and preparation method therefor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310729493.1A CN116761445A (en) | 2023-06-19 | 2023-06-19 | Perovskite solar cell with stable temperature and preparation method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN116761445A true CN116761445A (en) | 2023-09-15 |
Family
ID=87947446
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202310729493.1A Pending CN116761445A (en) | 2023-06-19 | 2023-06-19 | Perovskite solar cell with stable temperature and preparation method thereof |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN116761445A (en) |
WO (1) | WO2024260385A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117135937A (en) * | 2023-10-27 | 2023-11-28 | 宁德时代新能源科技股份有限公司 | Perovskite battery, photovoltaic module, photovoltaic system and power consumption device |
WO2024260385A1 (en) * | 2023-06-19 | 2024-12-26 | 中国华能集团清洁能源技术研究院有限公司 | Perovskite solar cell having stable temperature and preparation method therefor |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20120025503A (en) * | 2009-05-14 | 2012-03-15 | 마디코, 인크. | Heat dissipating protective sheets and encapsulant for photovoltaic modules |
CN202996862U (en) * | 2012-12-11 | 2013-06-12 | 浙江昱辉阳光能源江苏有限公司 | Backboard and photovoltaic assembly |
CN105895721A (en) * | 2016-04-29 | 2016-08-24 | 晶澳太阳能有限公司 | Double-side solar cell module |
CN115913059A (en) * | 2022-11-30 | 2023-04-04 | 广东工业大学 | Photovoltaic thermoelectric coupling flexible power generation device |
CN116761445A (en) * | 2023-06-19 | 2023-09-15 | 华能新能源股份有限公司 | Perovskite solar cell with stable temperature and preparation method thereof |
-
2023
- 2023-06-19 CN CN202310729493.1A patent/CN116761445A/en active Pending
-
2024
- 2024-06-19 WO PCT/CN2024/100206 patent/WO2024260385A1/en unknown
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024260385A1 (en) * | 2023-06-19 | 2024-12-26 | 中国华能集团清洁能源技术研究院有限公司 | Perovskite solar cell having stable temperature and preparation method therefor |
CN117135937A (en) * | 2023-10-27 | 2023-11-28 | 宁德时代新能源科技股份有限公司 | Perovskite battery, photovoltaic module, photovoltaic system and power consumption device |
CN117135937B (en) * | 2023-10-27 | 2024-03-29 | 宁德时代新能源科技股份有限公司 | Perovskite battery, photovoltaic module, photovoltaic system and power consumption device |
Also Published As
Publication number | Publication date |
---|---|
WO2024260385A1 (en) | 2024-12-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN116761445A (en) | Perovskite solar cell with stable temperature and preparation method thereof | |
CN111640870B (en) | Perovskite solar cell and preparation method | |
CN105047825B (en) | A kind of organic/inorganic perovskite battery and preparation method thereof | |
CN109103338B (en) | Preparation method of large-area perovskite thin film and battery pack thereof | |
CN102779864B (en) | Cadmium telluride thin-film battery and manufacturing method thereof | |
Ou et al. | Boosting the stability and efficiency of Cs2AgBiBr6 perovskite solar cells via Zn doping | |
CN104167469B (en) | A kind of SnS 2the one time to produce method of/SnS hetero-junction thin-film solar cell | |
CN101630701A (en) | Method for preparing copper-indium-selenium optoelectronic thin film material of solar cell | |
CN112542549B (en) | Wide-bandgap perovskite solar cell and preparation and application thereof | |
CN112436091B (en) | Novel perovskite solar cell doped with rare earth ions | |
CN107240643A (en) | Bromo element doping methylamine lead iodine perovskite solar cell and preparation method thereof | |
CN103956406B (en) | A kind of antivacuum preparation method of superstrate structure copper-zinc-tin-sulfur solar cell | |
CN103346193A (en) | CdTe nanometer crystalline heterojunction solar battery and manufacturing method thereof | |
CN116847704B (en) | A method for preparing perovskite film and stacked solar cell | |
CN103078010A (en) | Full-non-vacuum process preparation method of copper-zinc-tin-sulfur thin film solar cell | |
CN103400892B (en) | A kind of method of preparing zinc sulphide optoelectronic film | |
CN111525034A (en) | A high-efficiency and stable preparation method of mixed-dimensional perovskite solar cells | |
CN103474510A (en) | Method for manufacturing copper indium gallium selenium thin-film solar cell | |
CN106159096A (en) | A kind of double-side photic large area perovskite solar cell and preparation method thereof | |
CN112952001A (en) | Perovskite solar cell and preparation method thereof | |
CN102643032A (en) | A method for preparing In2S3 thin films by chemical water bath deposition | |
CN106449809B (en) | Domestic glass and preparation method based on 3D printing Nano diamond transparent thin-film battery | |
CN102005304B (en) | Preparation method for SiO2-ZnO nano-bar array composite electrode | |
CN208028076U (en) | A kind of novel energy-conserving battery piece | |
CN106024934A (en) | Post-doping CIGS solar battery device and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |