CN116732607A - Nitride epitaxial structure, epitaxial growth method and application thereof - Google Patents
Nitride epitaxial structure, epitaxial growth method and application thereof Download PDFInfo
- Publication number
- CN116732607A CN116732607A CN202310410667.8A CN202310410667A CN116732607A CN 116732607 A CN116732607 A CN 116732607A CN 202310410667 A CN202310410667 A CN 202310410667A CN 116732607 A CN116732607 A CN 116732607A
- Authority
- CN
- China
- Prior art keywords
- layer
- nitride
- boron nitride
- epitaxial
- hexagonal boron
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 150000004767 nitrides Chemical class 0.000 title claims abstract description 102
- 238000000034 method Methods 0.000 title claims abstract description 56
- 239000010410 layer Substances 0.000 claims abstract description 251
- 229910052582 BN Inorganic materials 0.000 claims abstract description 130
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 claims abstract description 130
- 239000002356 single layer Substances 0.000 claims abstract description 71
- 239000000758 substrate Substances 0.000 claims abstract description 66
- 239000004065 semiconductor Substances 0.000 claims abstract description 54
- 239000000463 material Substances 0.000 claims abstract description 24
- 238000011065 in-situ storage Methods 0.000 claims abstract description 9
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 claims description 59
- 229910002601 GaN Inorganic materials 0.000 claims description 58
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 claims description 39
- 229910052796 boron Inorganic materials 0.000 claims description 11
- 238000005229 chemical vapour deposition Methods 0.000 claims description 8
- 238000001451 molecular beam epitaxy Methods 0.000 claims description 7
- 229910052710 silicon Inorganic materials 0.000 claims description 7
- 239000010703 silicon Substances 0.000 claims description 7
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims description 6
- 238000005253 cladding Methods 0.000 claims description 5
- 229910003460 diamond Inorganic materials 0.000 claims description 5
- 239000010432 diamond Substances 0.000 claims description 5
- 229910052751 metal Inorganic materials 0.000 claims description 4
- 239000002184 metal Substances 0.000 claims description 4
- 229910010271 silicon carbide Inorganic materials 0.000 claims description 4
- 229910052594 sapphire Inorganic materials 0.000 claims description 2
- 239000010980 sapphire Substances 0.000 claims description 2
- 239000013078 crystal Substances 0.000 abstract description 28
- 238000003780 insertion Methods 0.000 abstract description 18
- 230000037431 insertion Effects 0.000 abstract description 18
- 238000000407 epitaxy Methods 0.000 abstract description 16
- 239000002131 composite material Substances 0.000 abstract description 13
- 230000007547 defect Effects 0.000 abstract description 13
- 239000010408 film Substances 0.000 description 29
- 229910021389 graphene Inorganic materials 0.000 description 29
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 26
- 230000000052 comparative effect Effects 0.000 description 12
- 230000006911 nucleation Effects 0.000 description 11
- 238000010899 nucleation Methods 0.000 description 11
- 230000008569 process Effects 0.000 description 10
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 7
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 6
- 229910052802 copper Inorganic materials 0.000 description 6
- 239000010949 copper Substances 0.000 description 6
- 238000012512 characterization method Methods 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 150000002500 ions Chemical class 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 4
- 238000011109 contamination Methods 0.000 description 4
- 229910052733 gallium Inorganic materials 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 238000012546 transfer Methods 0.000 description 4
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 3
- 238000005411 Van der Waals force Methods 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000000151 deposition Methods 0.000 description 3
- 230000008021 deposition Effects 0.000 description 3
- 230000004907 flux Effects 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 238000001755 magnetron sputter deposition Methods 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 238000004549 pulsed laser deposition Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 229910002704 AlGaN Inorganic materials 0.000 description 1
- PIGFYZPCRLYGLF-UHFFFAOYSA-N Aluminum nitride Chemical compound [Al]#N PIGFYZPCRLYGLF-UHFFFAOYSA-N 0.000 description 1
- 238000000231 atomic layer deposition Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000005137 deposition process Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000004299 exfoliation Methods 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 238000004377 microelectronic Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000005121 nitriding Methods 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000009832 plasma treatment Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
- JLTRXTDYQLMHGR-UHFFFAOYSA-N trimethylaluminium Chemical compound C[Al](C)C JLTRXTDYQLMHGR-UHFFFAOYSA-N 0.000 description 1
- 230000037303 wrinkles Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/30—Structure or shape of the active region; Materials used for the active region
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B25/00—Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
- C30B25/02—Epitaxial-layer growth
- C30B25/16—Controlling or regulating
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B25/00—Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
- C30B25/02—Epitaxial-layer growth
- C30B25/18—Epitaxial-layer growth characterised by the substrate
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B25/00—Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
- C30B25/02—Epitaxial-layer growth
- C30B25/18—Epitaxial-layer growth characterised by the substrate
- C30B25/20—Epitaxial-layer growth characterised by the substrate the substrate being of the same materials as the epitaxial layer
- C30B25/205—Epitaxial-layer growth characterised by the substrate the substrate being of the same materials as the epitaxial layer the substrate being of insulating material
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/10—Inorganic compounds or compositions
- C30B29/40—AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
- C30B29/403—AIII-nitrides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S2304/00—Special growth methods for semiconductor lasers
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Metallurgy (AREA)
- Materials Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Inorganic Chemistry (AREA)
Abstract
Description
技术领域Technical field
本发明涉及半导体制备工艺技术领域,特别是关于氮化物和晶体生长领域,尤其涉及一种氮化物外延结构、外延生长方法及其应用。The present invention relates to the technical field of semiconductor preparation processes, in particular to the field of nitride and crystal growth, and in particular to a nitride epitaxial structure, an epitaxial growth method and its application.
背景技术Background technique
氮化镓(GaN),氮化铝(AlN)等宽禁带半导体材料作为第三代半导体材料的代表,具有高击穿场强、热导率和电子迁移率等优点,是未来新一代光电子、功率电子和高频微电子的核心基础。As representatives of the third generation of semiconductor materials, wide bandgap semiconductor materials such as gallium nitride (GaN) and aluminum nitride (AlN) have the advantages of high breakdown field strength, thermal conductivity and electron mobility. They are the next generation of optoelectronics in the future. , core foundation of power electronics and high-frequency microelectronics.
目前外延氮化物单晶膜和器件大多采用异质外延的方法,例如以蓝宝石(Al2O3)、碳化硅(SiC)、硅(Si)等为衬底进行外延生长。然而,由于异质外延中较大的晶格失配和热膨胀系数失配,使得氮化物外延生长中通常会产生较大的应力,缺陷甚至裂纹,从而影响后续器件的制备。At present, epitaxial nitride single crystal films and devices mostly use heteroepitaxial growth methods, such as sapphire (Al 2 O 3 ), silicon carbide (SiC), silicon (Si), etc. as substrates for epitaxial growth. However, due to the large lattice mismatch and thermal expansion coefficient mismatch in heteroepitaxial growth, large stress, defects and even cracks are usually generated during nitride epitaxial growth, thus affecting the preparation of subsequent devices.
为了解决上述问题,近年来,越来越多的注意力集中在二维材料上,例如石墨烯,六方氮化硼(h-BN)和过渡金属二卤化碳(TMDC)等。2017年,美国麻省理工学院Kim等提出了一个新的外延概念——远程外延,认为基板的极性会“穿透”单层石墨烯作用到外延层上,从而指导外延层的取向,有利于获得无晶界缺陷的单晶半导体材料。他们使用第一性原理计算结合实验结果去证明远程外延被具有离子性的衬底实现了,并且可穿透的石墨烯的层数与衬底的离子性大小有关。但目前的研究进展必须寻找适当的衬底,尤其需要衬底具有相当的离子性才可以实现上述远程外延,从而限制了衬底材质的选择应用范围。In order to solve the above problems, in recent years, more and more attention has been focused on two-dimensional materials, such as graphene, hexagonal boron nitride (h-BN), and transition metal dihalocarbons (TMDC). In 2017, Kim et al. from the Massachusetts Institute of Technology proposed a new epitaxy concept - remote epitaxy, believing that the polarity of the substrate will "penetrate" the single layer of graphene and act on the epitaxial layer, thus guiding the orientation of the epitaxial layer. It is beneficial to obtain single crystal semiconductor materials without grain boundary defects. They used first-principles calculations combined with experimental results to prove that remote epitaxy is achieved by an ionic substrate, and that the number of penetrable graphene layers is related to the ionic size of the substrate. However, current research progress requires the search for an appropriate substrate, especially the substrate with considerable ionicity to achieve the above-mentioned remote epitaxy, thus limiting the selection and application range of substrate materials.
而与上述现状相关的一些现有技术,公开了多种氮化物外延方法,例如:Some existing technologies related to the above current situation disclose a variety of nitride epitaxy methods, such as:
在单层石墨烯/6H-SiC(0001)衬底上,采用金属有机物化学气相沉积法MOCVD生长了GaN成核层。该技术方案中,单层石墨烯在生长过程中可能会在NH3、H2等气体的作用下被破坏,产生孔洞,从而将异质衬底暴露,使得石墨烯不能充分发挥其在降低应力、衬底可剥离上的作用。(T Journot,et al.″Remote epitaxy using graphene enables growth ofstress-free GaN.″Nan otechnology 30(2019)505603.)On a single-layer graphene/6H-SiC (0001) substrate, a GaN nucleation layer was grown using the metal-organic chemical vapor deposition method MOCVD. In this technical solution, single-layer graphene may be destroyed by gases such as NH 3 and H 2 during the growth process, resulting in holes, thereby exposing the heterogeneous substrate and preventing graphene from fully exerting its ability to reduce stress. , The role of the substrate can be peeled off. (T Journot, et al. "Remote epitaxy using graphene enables growth of stress-free GaN." Nanotechnology 30 (2019) 505603.)
在使用h-BN插入层的多晶金刚石衬底上,依次生长低温AlN缓冲层、高温AlN缓冲层、AlGaN-I层、AlGaN-II层,最后在1050℃下生长GaN薄膜,(002)半高宽为1.2°。(Wenqiang Xu,et al.″High quality GaN grown on polycrystalline diamond substrateswith h-BN insertion laye rs by MOCVD.″Materials Letters 305(2021)130806.)On a polycrystalline diamond substrate using an h-BN insertion layer, a low-temperature AlN buffer layer, a high-temperature AlN buffer layer, an AlGaN-I layer, and an AlGaN-II layer are grown sequentially, and finally a GaN film is grown at 1050°C, (002) half The height and width are 1.2°. (Wenqiang Xu, et al. "High quality GaN grown on polycrystalline diamond substrates with h-BN insertion laye rs by MOCVD." Materials Letters 305(2021)130806.)
在Cu箔上合成用作GaN膜生长衬底的CVD石墨烯,将CVD石墨烯转移到Si/SiO2衬底上,然后在表面进行氧等离子体处理。在使用ZnO纳米壁作为中间层的CVD石墨烯上外延生长了GaN薄膜。(Hyobin Yoo,et al.″Microstructures of GaN Thin Films Grown onGraphene Lay ers.″Advanced Materials 24(2012)515-518.)CVD graphene used as a GaN film growth substrate was synthesized on Cu foil, the CVD graphene was transferred to the Si/SiO2 substrate, and then oxygen plasma treatment was performed on the surface. GaN films were epitaxially grown on CVD graphene using ZnO nanowalls as the interlayer. (Hyobin Yoo, et al. "Microstructures of GaN Thin Films Grown on Graphene Layers." Advanced Materials 24 (2012) 515-518.)
上述两个技术方案中,在多层石墨烯或h-BN上外延生长氮化物,由于石墨烯与氮化物之间弱的范德华作用力,在氮化物薄膜中会产生较多晶界缺陷,降低外延层的晶体质量。In the above two technical solutions, nitride is epitaxially grown on multi-layer graphene or h-BN. Due to the weak van der Waals force between graphene and nitride, more grain boundary defects will be generated in the nitride film, reducing the Crystal quality of the epitaxial layer.
在(111)Si衬底上,采用金属有机化学气相沉积技术(MOCVD)异质外延生长了AlN薄膜。(A.P.Lange,et al.″Influence of trimethylaluminum predoses on the growthmorphology,film-s ubstrate interface,and microstructure of MOCVD-grown AlN on(111)Si.″Journal of Crystal Growth 5 11(2019)106-117)On the (111) Si substrate, an AlN film was grown heteroepitaxially using metal organic chemical vapor deposition (MOCVD) technology. (A.P. Lange, et al. "Influence of trimethylaluminum predoses on the growthmorphology, film-s ubstrate interface, and microstructure of MOCVD-grown AlN on (111)Si." Journal of Crystal Growth 5 11 (2019) 106-117)
上述技术方案中,氮化物在蓝宝石(Al2O3)、碳化硅(SiC)、硅(Si)等衬底上异质外延,由于晶格失配和热失配会产生大量失配位错,降低外延层晶体质量。In the above technical solution, nitride is heteroepitaxially grown on sapphire (Al 2 O 3 ), silicon carbide (SiC), silicon (Si) and other substrates, and a large number of mismatch dislocations will be generated due to lattice mismatch and thermal mismatch. , reducing the crystal quality of the epitaxial layer.
在AlN单晶衬底上生长石墨烯或氮化硼所沉积形成的二维材料层作为插入层,在插入层上生长LED外延膜层;剥离后将复合外延层转移至金属基板上,得到柔性深紫外LED外延结构。(中国发明专利:一种柔性深紫外LED外延结构及其制备方法,CN115172537A)The two-dimensional material layer formed by growing graphene or boron nitride on an AlN single crystal substrate is used as an insertion layer, and an LED epitaxial film layer is grown on the insertion layer; after peeling off, the composite epitaxial layer is transferred to the metal substrate to obtain a flexible Deep UV LED epitaxial structure. (Chinese invention patent: a flexible deep ultraviolet LED epitaxial structure and its preparation method, CN115172537A)
上述技术方案中,在二维材料插入层上生长AlN本征层时,高温会导致衬底AlN的分解,破坏石墨烯或少层氮化硼二维插入层。使用多层氮化硼时,其极性会影响到外延层AlN,导致新的晶格失配,使AlN薄膜存在较大应力。该方案限制了外延衬底的选择,并且不能获得高质量单晶AlN本征层。In the above technical solution, when the AlN intrinsic layer is grown on the two-dimensional material insertion layer, the high temperature will cause the decomposition of the substrate AlN and destroy the graphene or few-layer boron nitride two-dimensional insertion layer. When using multi-layer boron nitride, its polarity will affect the epitaxial layer AlN, resulting in a new lattice mismatch and causing greater stress in the AlN film. This solution limits the choice of epitaxial substrates and cannot obtain high-quality single-crystal AlN intrinsic layers.
在图形化处理的衬底上生长石墨烯薄膜后生长氮化硼薄膜,后面依次生长氮化铝薄膜、氮化镓缓冲层、AlGaN势垒层和氮化镓帽层,得到氮化镓基功率器件的外延结构。(中国发明专利:一种氮化镓基功率器件的外延结构及制备方法,CN115411093A)After growing a graphene film on the patterned substrate, a boron nitride film is grown, and then an aluminum nitride film, a gallium nitride buffer layer, an AlGaN barrier layer and a gallium nitride cap layer are sequentially grown to obtain gallium nitride-based power. The epitaxial structure of the device. (Chinese invention patent: an epitaxial structure and preparation method of gallium nitride-based power devices, CN115411093A)
该方案使用多层石墨烯和氮化硼薄膜,由于石墨烯与氮化物之间弱的范德华作用力,在氮化铝薄膜中会产生较多晶界缺陷,降低氮化铝的晶体质量。This solution uses multi-layer graphene and boron nitride films. Due to the weak van der Waals force between graphene and nitride, more grain boundary defects will be generated in the aluminum nitride film, reducing the crystal quality of aluminum nitride.
将铜衬底抛光、清洗;在铜衬底上生长h-BN-石墨烯复合层;利用原子层沉积法在h-BN-石墨烯复合层上生长一层氮化铝层;在氮化铝薄层上采用金属有机物化学气相沉积法生长氮化镓层。(中国发明专利:一种基于六方氮化硼-石墨烯复合层作为缓冲层的氮化镓外延结构的制备方法,CN107706274A)Polish and clean the copper substrate; grow an h-BN-graphene composite layer on the copper substrate; use atomic layer deposition to grow an aluminum nitride layer on the h-BN-graphene composite layer; on the aluminum nitride The gallium nitride layer is grown on the thin layer using metal-organic chemical vapor deposition. (Chinese invention patent: A method for preparing a gallium nitride epitaxial structure based on a hexagonal boron nitride-graphene composite layer as a buffer layer, CN107706274A)
在氮化铝薄层上采用金属有机物化学气相沉积法生长氮化镓层,会产生失配位错,降低外延层氮化镓的晶体质量。Using metal-organic chemical vapor deposition to grow a gallium nitride layer on a thin aluminum nitride layer will produce misfit dislocations and reduce the crystal quality of the epitaxial gallium nitride layer.
基于上述技术现状,开发一种具有衬底广泛适应性以及能够利用远程外延获得低应力、低缺陷密度和可剥离的单晶氮化物材料的生长方法具有重要意义。Based on the above technical status, it is of great significance to develop a growth method that has broad substrate adaptability and can use remote epitaxy to obtain low stress, low defect density and exfoliable single crystal nitride materials.
发明内容Contents of the invention
针对现有技术的不足,本发明的目的在于提供一种氮化物外延结构、外延生长方法及其应用。In view of the shortcomings of the existing technology, the purpose of the present invention is to provide a nitride epitaxial structure, an epitaxial growth method and their applications.
为实现前述发明目的,本发明采用的技术方案包括:In order to achieve the foregoing invention objectives, the technical solutions adopted by the present invention include:
第一方面,本发明提供一种氮化物外延结构,其包括依次层叠设置的六方氮化硼层、单层非晶氮化硼层以及氮化物半导体层;In a first aspect, the present invention provides a nitride epitaxial structure, which includes a hexagonal boron nitride layer, a single-layer amorphous boron nitride layer and a nitride semiconductor layer that are stacked in sequence;
所述氮化物半导体层是由所述六方氮化硼层经过远程外延作用生长形成的。The nitride semiconductor layer is formed by growing the hexagonal boron nitride layer through remote epitaxial growth.
第二方面,本发明还提供一种氮化物半导体层的外延生长方法,其包括:In a second aspect, the present invention also provides an epitaxial growth method of a nitride semiconductor layer, which includes:
在衬底上生长六方氮化硼层;Grow a hexagonal boron nitride layer on the substrate;
在所述六方氮化物层表面生长单层非晶氮化硼层;Grow a single layer of amorphous boron nitride layer on the surface of the hexagonal nitride layer;
在所述单层非晶氮化硼层表面生长氮化物半导体层。A nitride semiconductor layer is grown on the surface of the single-layer amorphous boron nitride layer.
第三方面,本发明还提供上述外延生长方法制得的氮化物半导体层。In a third aspect, the present invention also provides a nitride semiconductor layer produced by the above epitaxial growth method.
第四方面,本发明还提供一种氮化物半导体器件,其包括上述氮化物外延结构或氮化物半导体层。In a fourth aspect, the present invention also provides a nitride semiconductor device, which includes the above-mentioned nitride epitaxial structure or nitride semiconductor layer.
基于上述技术方案,与现有技术相比,本发明的有益效果至少包括:Based on the above technical solution, compared with the existing technology, the beneficial effects of the present invention at least include:
本发明所提供的一种基于原位生长单层非晶氮化硼/六方氮化硼复合插入层的氮化物半导体层的外延生长方法,以多层六方氮化硼为极性底层,配合单层非晶氮化硼层,实现了远程外延生长低晶界缺陷、低失配位错、低应力的高质量单晶氮化物薄膜,衬底的选择具有任意性,不受限于特定的离子性衬底;此外,外延层剥离后的六方氮化硼/外延衬底可以反复利用,能够降低材料成本。The invention provides an epitaxial growth method for a nitride semiconductor layer based on the in-situ growth of a single layer of amorphous boron nitride/hexagonal boron nitride composite insertion layer. The multilayer hexagonal boron nitride is used as the polar bottom layer, and a single layer of hexagonal boron nitride is used as the polar bottom layer. An amorphous boron nitride layer realizes remote epitaxial growth of high-quality single crystal nitride films with low grain boundary defects, low misfit dislocations, and low stress. The choice of substrate is arbitrary and is not limited to specific ions. flexible substrate; in addition, the hexagonal boron nitride/epitaxial substrate after the epitaxial layer is peeled off can be repeatedly used, which can reduce material costs.
上述说明仅是本发明技术方案的概述,为了能够使本领域技术人员能够更清楚地了解本申请的技术手段,并可依照说明书的内容予以实施,以下以本发明的较佳实施例并配合详细附图说明如后。The above description is only an overview of the technical solutions of the present invention. In order to enable those skilled in the art to more clearly understand the technical means of the present application and implement them in accordance with the contents of the description, the following is a detailed description of the preferred embodiments of the present invention. The description of the drawings is as follows.
附图说明Description of drawings
图1是本发明一典型实施案例提供的外延生长方法的工艺流程示意图;Figure 1 is a schematic process flow diagram of an epitaxial growth method provided by a typical implementation case of the present invention;
图2是本发明一典型实施案例提供的氮化物外延结构的结构示意图。FIG. 2 is a schematic structural diagram of a nitride epitaxial structure provided in a typical embodiment of the present invention.
具体实施方式Detailed ways
鉴于现有技术中的不足,本案发明人经长期研究和大量实践,得以提出本发明的技术方案。如下将对该技术方案、其实施过程及原理等作进一步的解释说明。In view of the deficiencies in the prior art, the inventor of this case was able to propose the technical solution of the present invention after long-term research and extensive practice. The technical solution, its implementation process and principles will be further explained below.
在下面的描述中阐述了很多具体细节以便于充分理解本发明,但是,本发明还可以采用其他不同于在此描述的方式来实施,因此,本发明的保护范围并不受下面公开的具体实施例的限制。Many specific details are set forth in the following description to fully understand the present invention. However, the present invention can also be implemented in other ways different from those described here. Therefore, the protection scope of the present invention is not limited to the specific implementation disclosed below. Example limitations.
而且,诸如“第一”和“第二”等之类的关系术语仅仅用来将一个与另一个具有相同名称的部件或方法步骤区分开来,而不一定要求或者暗示这些部件或方法步骤之间存在任何这种实际的关系或者顺序。Furthermore, relative terms such as "first" and "second" are merely used to distinguish one component or method step from another with the same name and do not necessarily require or imply that such components or method steps are mutually exclusive. any such actual relationship or sequence exists between them.
超薄非晶BN(氮化硼,下同)在2016年首次被报道为二维纳米电子学的介电材料。例如可以利用脉冲激光沉积(PLD),可以在各种衬底上沉积1-5nm的非晶BN。并且沉积温度可到200℃以下。非晶BN薄膜是无定形的,没有明显的长程有序结构,不存在由晶体结构产生的极性,这意味着使用单层非晶BN的远程外延GaN的取向完全由衬底控制,不会产生额外的相,而且比石墨烯的高温稳定性更好。Ultrathin amorphous BN (boron nitride, the same below) was first reported as a dielectric material for two-dimensional nanoelectronics in 2016. For example, pulsed laser deposition (PLD) can be used to deposit 1-5 nm amorphous BN on various substrates. And the deposition temperature can reach below 200℃. The amorphous BN film is amorphous, has no obvious long-range ordered structure, and does not have polarity caused by the crystal structure. This means that the orientation of remote epitaxial GaN using a single layer of amorphous BN is completely controlled by the substrate and will not Creates an additional phase and is more stable at high temperatures than graphene.
不同于单层非晶BN,h-BN不仅是一种层状二维材料,而且具有离子性(0.256)。其离子性大于目前已被证实可实施氮化物远程外延的SiC衬底(离子性0.177)。因此,本发明经过创造性结合上述两种材料的特点,并经过长期实践,提出了一种原位生长单层非晶氮化硼/六方氮化硼复合插入层的氮化物生长方法,以得到低应力、低缺陷密度和可剥离的单晶氮化物材料。Unlike single-layer amorphous BN, h-BN is not only a layered two-dimensional material, but also ionic (0.256). Its ionicity is greater than the SiC substrate that has been proven to be able to implement nitride remote epitaxy (ionicity 0.177). Therefore, the present invention creatively combines the characteristics of the above two materials and through long-term practice, proposes a nitride growth method for in-situ growth of a single layer of amorphous boron nitride/hexagonal boron nitride composite insertion layer to obtain low Stress, low defect density and exfoliable single crystal nitride materials.
具体的,参见图1和图2所示,本发明实施例提供一种氮化物外延结构,其包括依次层叠设置的六方氮化硼层、单层非晶氮化硼层以及氮化物半导体层;所述氮化物半导体层是由所述六方氮化硼层经过远程外延作用生长形成的。Specifically, as shown in Figures 1 and 2, embodiments of the present invention provide a nitride epitaxial structure, which includes a hexagonal boron nitride layer, a single-layer amorphous boron nitride layer, and a nitride semiconductor layer that are stacked in sequence; The nitride semiconductor layer is formed by growing the hexagonal boron nitride layer through remote epitaxial growth.
现有技术公开了一些利用六方氮化硼作为缓冲层的氮化物外延生长方案,例如一些现有技术公开了先生长六方氮化硼层,然后在其表面通过MOCVD的方法形成氮化铝层,进而在氮化铝层表面继续生长氮化镓层的技术方案,这些技术方案中,由于缺失了单层非晶氮化硼层的存在,因此无法实现利用六方氮化硼的离子性远程外延生长氮化物半导体层,进而无法获得通过远程外延得到的高质量外延层。从本质上解释其原因在于:先生长氮化铝层再生长氮化镓层的技术方案中,氮化铝和氮化镓之间仍存在晶格失配,会降低外延层质量。而单层非晶氮化硼没有晶体结构而产生的极性,起到类似于单层石墨烯的作用,多层六方氮化硼作为二维层状极性衬底,其极性可穿透单层非晶氮化硼,远程外延单晶氮化物薄膜。远程外延过程中外延层自发弛豫,这一特有的驰豫现象能够显著降低外延氮化物和下方六方氮化硼之间晶格失配产生的位错,但本领域常规采用单层石墨烯时虽然也能够产生远程外延的作用,但会面临其他问题,进而无法充分发挥膜层生长质量的调控效果。因此本发明中特定地使用单层非晶氮化硼而达到远程外延方式,可实现高质量单晶氮化物薄膜。The prior art discloses some nitride epitaxial growth schemes using hexagonal boron nitride as a buffer layer. For example, some prior art discloses growing a hexagonal boron nitride layer first, and then forming an aluminum nitride layer on its surface by MOCVD. Technical solutions to continue growing the gallium nitride layer on the surface of the aluminum nitride layer. In these technical solutions, due to the lack of a single layer of amorphous boron nitride layer, ionic remote epitaxial growth using hexagonal boron nitride cannot be achieved. nitride semiconductor layer, and thus cannot obtain high-quality epitaxial layers obtained by remote epitaxy. The essential explanation is that in the technical solution of first growing an aluminum nitride layer and then growing a gallium nitride layer, there is still a lattice mismatch between aluminum nitride and gallium nitride, which will reduce the quality of the epitaxial layer. The polarity produced by a single layer of amorphous boron nitride due to its lack of crystal structure plays a role similar to that of a single layer of graphene. Multilayer hexagonal boron nitride serves as a two-dimensional layered polar substrate, and its polarity can penetrate Single layer amorphous boron nitride, remote epitaxial single crystal nitride film. During the remote epitaxy process, the epitaxial layer spontaneously relaxes. This unique relaxation phenomenon can significantly reduce the dislocations caused by the lattice mismatch between the epitaxial nitride and the underlying hexagonal boron nitride. However, when single-layer graphene is routinely used in this field Although it can also produce remote epitaxy, it will face other problems and cannot fully exert the control effect of film growth quality. Therefore, in the present invention, a single layer of amorphous boron nitride is specifically used to achieve remote epitaxy, and high-quality single crystal nitride films can be realized.
在一些实施方案中,所述六方氮化硼层设置于衬底表面。In some embodiments, the hexagonal boron nitride layer is disposed on the surface of the substrate.
在一些实施方案中,所述衬底的材质包括蓝宝石、碳化硅、硅、金刚石中的任意一种或两种以上的组合。In some embodiments, the substrate is made of any one or a combination of two or more of sapphire, silicon carbide, silicon, and diamond.
在一些实施方案中,所述氮化物半导体层的材质包括氮化镓、氮化铝中的任意一种或两种的组合。In some embodiments, the material of the nitride semiconductor layer includes any one or a combination of gallium nitride and aluminum nitride.
在一些实施方案中,所述六方氮化硼层的厚度为20-100nm。In some embodiments, the thickness of the hexagonal boron nitride layer is 20-100 nm.
在一些实施方案中,所述氮化物半导体层的厚度为500nm-3μm。In some embodiments, the nitride semiconductor layer has a thickness of 500 nm-3 μm.
继续参见图1所示,本发明实施例还提供了一种氮化物半导体层的外延生长方法,其包括如下的步骤:Continuing to refer to Figure 1, an embodiment of the present invention also provides an epitaxial growth method of a nitride semiconductor layer, which includes the following steps:
在衬底上生长六方氮化硼层。A hexagonal boron nitride layer is grown on the substrate.
在所述六方氮化物层表面生长单层非晶氮化硼层。A single layer of amorphous boron nitride layer is grown on the surface of the hexagonal nitride layer.
在所述单层非晶氮化硼层表面生长氮化物半导体层。A nitride semiconductor layer is grown on the surface of the single-layer amorphous boron nitride layer.
上述技术方案中,本发明的实施例提供了一种基于原位生长单层非晶氮化硼/六方氮化硼复合插入层的氮化物生长方法,以得到低应力、低缺陷密度和可剥离的单晶氮化物材料。在衬底先原位生长多层六方氮化硼层,再生成单层非晶氮化硼,通过远程外延获得低应力、低缺陷密度和可剥离的单晶氮化物材料。Among the above technical solutions, embodiments of the present invention provide a nitride growth method based on in-situ growth of a single layer of amorphous boron nitride/hexagonal boron nitride composite insertion layer to obtain low stress, low defect density and peelable of single crystal nitride materials. First, multiple layers of hexagonal boron nitride are grown in situ on the substrate, and then a single layer of amorphous boron nitride is generated. Through remote epitaxy, a single crystal nitride material with low stress, low defect density and exfoliation is obtained.
在一些实施方案中,所述六方氮化硼层和单层非晶氮化硼层在同一生长设备的腔室中连续生长。In some embodiments, the hexagonal boron nitride layer and the single-layer amorphous boron nitride layer are grown continuously in a chamber of the same growth equipment.
在一些实施方案中,所述单层非晶氮化硼层在六方氮化硼层表面原位生长。In some embodiments, the single layer of amorphous boron nitride is grown in situ on the surface of the hexagonal boron nitride layer.
在一些实施方案中,所述六方氮化硼层和单层非晶氮化硼层采用金属有机物化学气相沉积、分子束外延中的任意一种方法进行生长。In some embodiments, the hexagonal boron nitride layer and the single-layer amorphous boron nitride layer are grown using any one of metal-organic chemical vapor deposition and molecular beam epitaxy.
在一些实施方案中,具体包括如下的步骤:In some embodiments, it specifically includes the following steps:
在第一温度、第一氮硼比条件下,生长所述六方氮化硼层,生长时间20-40min。The hexagonal boron nitride layer is grown under the conditions of the first temperature and the first nitrogen-to-boron ratio, and the growth time is 20-40 minutes.
在第二温度、第二氮硼比条件下,生长所述单层非晶氮化硼层,生长时间为5-20s。The single-layer amorphous boron nitride layer is grown under the conditions of the second temperature and the second nitrogen-to-boron ratio, and the growth time is 5-20 s.
其中,所述第一温度高于第二温度,所述第一氮硼比低于第二氮硼比。Wherein, the first temperature is higher than the second temperature, and the first nitrogen-to-boron ratio is lower than the second nitrogen-to-boron ratio.
在一些实施方案中,所述第一温度为650-750℃,所述第二温度为200-350℃。In some embodiments, the first temperature is 650-750°C and the second temperature is 200-350°C.
在本发明中,形成的单层非晶氮化层是较为重要的,该单层非晶氮化层应当通过精确控制生长的温度和时间来生长,尤其是需要控制的较低的温度下,以秒为单位来精准控制生长时间,从而在六方氮化硼层表面形成单层可控的非晶层。作为上述技术方案的一些典型的应用实例,所述外延生长方法可以采用如下的具体步骤得以实施:In the present invention, the single-layer amorphous nitride layer formed is more important. The single-layer amorphous nitride layer should be grown by accurately controlling the growth temperature and time, especially at a lower temperature that needs to be controlled. The growth time is precisely controlled in seconds to form a single controllable amorphous layer on the surface of the hexagonal boron nitride layer. As some typical application examples of the above technical solutions, the epitaxial growth method can be implemented using the following specific steps:
S1:准备衬底。衬底选择上具有任意性,如蓝宝石(Al2O3)、碳化硅(SiC)、硅(Si)、金刚石衬底等等。S1: Prepare the substrate. The substrate selection is arbitrary, such as sapphire (Al 2 O 3 ), silicon carbide (SiC), silicon (Si), diamond substrate, etc.
S2:生成六方氮化硼层。六方氮化硼层是采用金属有机物化学气相沉积(MOCVD)、分子束外延(MBE)等在衬底上直接外延生长的,厚度例如可以是20-100nm。S2: Generate a hexagonal boron nitride layer. The hexagonal boron nitride layer is epitaxially grown directly on the substrate using metal organic chemical vapor deposition (MOCVD), molecular beam epitaxy (MBE), etc., and the thickness can be, for example, 20-100 nm.
S3:生成单层非晶氮化硼。在步骤S2生成六方氮化硼层的同一反应腔室中,通过调整工艺参数,继续生长单层非晶氮化硼,厚度约0.34nm,该厚度是由氮化硼的晶格参数所决定的。S3: Generate a single layer of amorphous boron nitride. In the same reaction chamber where the hexagonal boron nitride layer was generated in step S2, by adjusting the process parameters, continue to grow a single layer of amorphous boron nitride to a thickness of about 0.34nm. This thickness is determined by the lattice parameters of boron nitride. .
S4:生长单晶氮化物薄膜。在和步骤S2、S3同一反应腔室中,在温度1050℃下,先通入H2 10min对衬底表面进行清洁。再直接一步法外延生长氮化镓或氮化铝单晶薄膜,或多步法生长氮化铝、氮化镓叠层,或不同的氮化镓叠层(例如氮化镓成核层+氮化镓本征层)生长温度例如可以为1000-1100℃,生长时间可以是0.5-2h,但也不限于此。S4: Growth of single crystal nitride film. In the same reaction chamber as steps S2 and S3, at a temperature of 1050°C, first pass H 2 for 10 minutes to clean the substrate surface. Then directly epitaxially grow gallium nitride or aluminum nitride single crystal films in one step, or grow aluminum nitride, gallium nitride stacks, or different gallium nitride stacks (such as gallium nitride nucleation layer + nitrogen The growth temperature of the gallium intrinsic layer) may be, for example, 1000-1100°C, and the growth time may be 0.5-2 h, but is not limited thereto.
上述步骤中,关键的技术手段即在于以单层非晶氮化硼/六方氮化硼层作为实施远程外延的复合插入层,获得高质量单晶氮化物薄膜,即单层非晶氮化硼/六方氮化硼复合插入层外延氮化物半导体层,而在步骤S4中如何生长氮化物半导体层并非绝对限定为上述例举的优选实施方式。In the above steps, the key technical means is to use a single layer of amorphous boron nitride/hexagonal boron nitride layer as a composite insertion layer for remote epitaxy to obtain a high-quality single crystal nitride film, that is, a single layer of amorphous boron nitride. The nitride semiconductor layer is epitaxially grown on the hexagonal boron nitride composite insertion layer, and how to grow the nitride semiconductor layer in step S4 is not absolutely limited to the preferred embodiments exemplified above.
上述示例性技术方案中,在单层非晶氮化硼/多层六方氮化硼复合插入层外延生长氮化物材料,其中多层六方氮化硼作为二维层状极性底层,其极性可穿透单层非晶氮化硼,远程外延单晶氮化物薄膜。外延层氮化物的生长完全由下方多层六方氮化硼层控制,保证外延层单晶性的同时,对外延衬底选择没有离子性要求,具有任意性,能够广泛适应各种衬底。In the above exemplary technical solution, the nitride material is epitaxially grown in a single-layer amorphous boron nitride/multi-layer hexagonal boron nitride composite insertion layer, in which the multi-layer hexagonal boron nitride serves as a two-dimensional layered polar bottom layer, and its polarity It can penetrate single-layer amorphous boron nitride and remotely epitaxial single-crystal nitride films. The growth of the nitride in the epitaxial layer is completely controlled by the multi-layer hexagonal boron nitride layer below. While ensuring the single crystallinity of the epitaxial layer, there are no ionic requirements for the selection of the epitaxial substrate. It is arbitrary and can be widely adapted to various substrates.
采用在衬底上原位生长多层六方氮化硼、单层非晶氮化硼再外延氮化物的方法,可以防止二维石墨烯或者氮化硼在转移过程中造成的污染、褶皱和撕裂。同时也可以避免将衬底转移到不同反应腔室中生长时,转移过程带来的污染。The method of growing multi-layer hexagonal boron nitride, single-layer amorphous boron nitride and epitaxial nitride in situ on the substrate can prevent contamination, wrinkles and tears caused by two-dimensional graphene or boron nitride during the transfer process. crack. At the same time, it can also avoid contamination caused by the transfer process when the substrate is transferred to different reaction chambers for growth.
非晶氮化硼/六方氮化硼复合层相比石墨烯更具有高温稳定性,可以在更高温度外延氮化物材料,并且在NH3、H2等气体的作用下不会被破坏。The amorphous boron nitride/hexagonal boron nitride composite layer has more high-temperature stability than graphene and can epitaxial nitride materials at higher temperatures without being destroyed by gases such as NH 3 and H 2 .
本发明实施例的第三个方面还提供由上述外延生长方法制得的氮化物半导体层。A third aspect of the embodiment of the present invention also provides a nitride semiconductor layer produced by the above epitaxial growth method.
在一些实施方案中,所述氮化物半导体层经过剥离与衬底分离。In some embodiments, the nitride semiconductor layer is separated from the substrate through lift-off.
本发明实施例的第四个方面一种氮化物半导体器件,其包括上述氮化物外延结构或上述氮化物半导体层。A fourth aspect of the embodiment of the present invention is a nitride semiconductor device, which includes the above-mentioned nitride epitaxial structure or the above-mentioned nitride semiconductor layer.
在一些实施方案中,所述氮化物半导体器件包括氮化物激光器。In some embodiments, the nitride semiconductor device includes a nitride laser.
在一些实施方案中,所述氮化物激光器包括依次层叠的衬底、六方氮化硼层、单层非晶氮化硼层、氮化铝层、氮化镓缓冲层、N型氮化镓层、N型覆盖层、N型波导层、有源区多量子阱层、P型波导层、P型覆盖层、P型氮化镓层。In some embodiments, the nitride laser includes a substrate, a hexagonal boron nitride layer, a single-layer amorphous boron nitride layer, an aluminum nitride layer, a gallium nitride buffer layer, and an N-type gallium nitride layer stacked in sequence. , N-type cladding layer, N-type waveguide layer, active area multiple quantum well layer, P-type waveguide layer, P-type cladding layer, P-type gallium nitride layer.
以下通过若干实施例进一步详细说明本发明的技术方案。然而,所选的实施例仅用于说明本发明,而不限制本发明的范围。The technical solutions of the present invention are further described in detail below through several examples. However, the examples selected are only for illustrating the invention and do not limit the scope of the invention.
实施例1Example 1
本实施例示例一种基于单层非晶氮化硼插入层的氮化物生长方法,包括以下工艺步骤:This embodiment illustrates a nitride growth method based on a single-layer amorphous boron nitride insertion layer, including the following process steps:
(1)将铜衬底抛光清洗,放入MBE设备中。(1) Polish and clean the copper substrate and put it into the MBE equipment.
(2)在700℃下沉积多层六方氮化硼(h-BN),以Ar∶N2=50∶50离子轰击,通量为0.12m A/cm2,硼沉积速率:离子能量:500eV,生长30min,其厚度约为50nm。(2) Deposit multiple layers of hexagonal boron nitride (h-BN) at 700°C, bombard with ions at Ar:N 2 =50:50, the flux is 0.12m A/cm 2 , and the boron deposition rate is: Ion energy: 500eV, growth for 30 minutes, and its thickness is about 50nm.
(3)将温度降至300℃,以Ar:N2=50:50离子轰击,通量为0.28mA/cm2,硼沉积速率:0.离子能量:500eV。通过精确控制生长时间为15s,得到单层非晶BN层,厚度约为0.34nm。(3) Reduce the temperature to 300°C, bombard ions with Ar:N 2 =50:50, the flux is 0.28mA/cm 2 , and the boron deposition rate is: 0. Ion energy: 500eV. By precisely controlling the growth time to 15 seconds, a single-layer amorphous BN layer with a thickness of approximately 0.34nm was obtained.
(4)将温度升高到700℃。等离子体功率500W。在Ga/N为1.0%条件下进行生长20分钟以促进GaN在单层非晶BN上的成核。然后以Ga/N为1.9%条件下开始GaN的完全生长,形成厚度为2μm的氮化镓半导体层。(4) Raise the temperature to 700°C. Plasma power 500W. Growth was performed for 20 minutes at a Ga/N ratio of 1.0% to promote the nucleation of GaN on the single layer of amorphous BN. Then complete growth of GaN was started under the condition of Ga/N of 1.9%, forming a gallium nitride semiconductor layer with a thickness of 2 μm.
对氮化镓半导体层进行表征测试,其内应力为0.045GPa,位错密度为6.2×107cm-2;并且,本实施例所提供的氮化镓半导体层可以通过热释放胶带进行剥离。The gallium nitride semiconductor layer was characterized and tested, and the internal stress was 0.045GPa, and the dislocation density was 6.2×10 7 cm -2 ; and, the gallium nitride semiconductor layer provided in this embodiment can be peeled off through thermal release tape.
实施例2Example 2
一种基于单层非晶氮化硼插入层的氮化物生长方法,本实施例包括以下工艺步骤:A nitride growth method based on a single-layer amorphous boron nitride insertion layer. This embodiment includes the following process steps:
(1)将硅衬底放入MBE设备中。(1) Place the silicon substrate into the MBE equipment.
(2)在700℃下沉积多层六方氮化硼。(2) Deposit multiple layers of hexagonal boron nitride at 700°C.
(3)将温度降至300℃,射频等离子体功率为250W。通过精确控制生长时间得到单层非晶BN层。(3) Reduce the temperature to 300°C and the RF plasma power to 250W. A single-layer amorphous BN layer is obtained by precisely controlling the growth time.
(4)将温度升高到700℃。等离子体功率增加到500W。在富氮条件下进行生长20分钟以促进GaN在单层非晶BN上的成核。然后增加镓通量以在富镓条件下开始GaN的完全生长。(4) Raise the temperature to 700°C. Plasma power was increased to 500W. Growth was performed under nitrogen-rich conditions for 20 min to promote the nucleation of GaN on a single layer of amorphous BN. The gallium flux is then increased to initiate full growth of GaN under gallium-rich conditions.
实施例3Example 3
一种基于单层非晶氮化硼插入层的氮化物生长方法,本实施例包括以下工艺步骤:A nitride growth method based on a single-layer amorphous boron nitride insertion layer. This embodiment includes the following process steps:
(1)将铜衬底抛光清洗,放入MBE设备中。(1) Polish and clean the copper substrate and put it into the MBE equipment.
(2)在700℃下沉积多层六方氮化硼。(2) Deposit multiple layers of hexagonal boron nitride at 700°C.
(3)将温度降至300℃,射频等离子体功率为250W。通过精确控制生长时间得到单层非晶BN层。(3) Reduce the temperature to 300°C and the RF plasma power to 250W. A single-layer amorphous BN layer is obtained by precisely controlling the growth time.
(4)将温度升高到850℃。等离子体功率增加到300W。开始AlN薄层的生长。(4) Increase the temperature to 850°C. Plasma power was increased to 300W. Start the growth of a thin layer of AlN.
实施例4Example 4
一种基于单层非晶氮化硼插入层的氮化物生长方法,本实施例包括以下工艺步骤:A nitride growth method based on a single-layer amorphous boron nitride insertion layer. This embodiment includes the following process steps:
(1)将硅衬底放入MBE设备中。(1) Place the silicon substrate into the MBE equipment.
(2)在700℃下沉积多层六方氮化硼。(2) Deposit multiple layers of hexagonal boron nitride at 700°C.
(3)将温度降至300℃,射频等离子体功率为250W。通过精确控制生长时间得到单层非晶BN层。(3) Reduce the temperature to 300°C and the RF plasma power to 250W. A single-layer amorphous BN layer is obtained by precisely controlling the growth time.
(4)将温度升高到850℃。等离子体功率增加到300W。开始AlN薄层的生长。(4) Increase the temperature to 850°C. Plasma power was increased to 300W. Start the growth of a thin layer of AlN.
实施例2-4均获得了与实施例1相似的氮化物膜层,且这种氮化物膜层均相比于现有的氮化物膜层生长方式具有更优的膜层质量,包括但不限于更低的内应力和更低的位错密度。Examples 2-4 all obtained nitride films similar to Example 1, and such nitride films all had better film quality than existing nitride film growth methods, including but not Limited to lower internal stress and lower dislocation density.
实施例5Example 5
本发明的技术方案还提供一种基于上述方法制备得到的半导体器件结构,其中所述结构从下到上依次为:铜衬底、h-BN层、单层非晶BN层、氮化铝层和氮化镓层;h-BN的厚度为20-100nm,优选的h-BN的厚度为80nm;氮化铝层的厚度为20-100nm,优选的氮化铝层的厚度为80nm;氮化镓层的厚度为1-5μm,优选的氮化镓层厚度为3μm。The technical solution of the present invention also provides a semiconductor device structure prepared based on the above method, wherein the structure from bottom to top is: copper substrate, h-BN layer, single-layer amorphous BN layer, aluminum nitride layer and a gallium nitride layer; the thickness of h-BN is 20-100nm, and the preferred thickness of h-BN is 80nm; the thickness of the aluminum nitride layer is 20-100nm, and the preferred thickness of the aluminum nitride layer is 80nm; nitriding The thickness of the gallium layer is 1-5 μm, and the preferred thickness of the gallium nitride layer is 3 μm.
基于上述半导体器件结构,本实施例还制备了一种基于上述方法制备结构的激光器,激光器的结构依次为:在铜衬底上依次生长h-BN层、单层非晶BN层、氮化铝层、氮化镓缓冲层、N型氮化镓层、N型覆盖层、N型波导层、有源区多量子阱层、P型波导层、P型覆盖层、P型氮化镓层,形成氮化镓激光器结构。Based on the above semiconductor device structure, this embodiment also prepares a laser with a structure based on the above method. The structure of the laser is as follows: sequentially growing an h-BN layer, a single layer of amorphous BN layer, and aluminum nitride on a copper substrate. layer, gallium nitride buffer layer, N-type gallium nitride layer, N-type cladding layer, N-type waveguide layer, active region multiple quantum well layer, P-type waveguide layer, P-type cladding layer, P-type gallium nitride layer, Form a gallium nitride laser structure.
对比例1Comparative example 1
本对比例与实施例1大体相同,区别主要在于:This comparative example is generally the same as Example 1, and the main differences are:
将步骤(3)生长单层非晶氮化硼的步骤替换为取出衬底,采用磁控溅射氮化铝成核层,替代单层非晶氮化硼层,该氮化铝成核层的厚度为20nm左右。The step (3) of growing a single layer of amorphous boron nitride is replaced by taking out the substrate and using magnetron sputtering to form an aluminum nitride nucleation layer instead of the single layer of amorphous boron nitride. The aluminum nitride nucleation layer The thickness is about 20nm.
这种外延方式的缺点在于:①生长多层氮化硼后,再磁控溅射氮化铝成核层,衬底转移过程中会带来污染。②在氮化铝成核层上生长氮化镓层,会产生失配位错,降低外延层氮化镓的晶体质量。The disadvantages of this epitaxial method are: ① After growing multiple layers of boron nitride, and then magnetron sputtering the aluminum nitride nucleation layer, contamination will be caused during the substrate transfer process. ②Growing a gallium nitride layer on the aluminum nitride nucleation layer will generate misfit dislocations and reduce the crystal quality of the epitaxial layer gallium nitride.
经过表征,所获得的氮化镓半导体层的内应力为0.409GPa,位错密度为9.4×107cm-2。After characterization, the internal stress of the obtained gallium nitride semiconductor layer is 0.409GPa, and the dislocation density is 9.4×10 7 cm -2 .
对比例2Comparative example 2
本对比例与实施例1大体相同,区别主要在于:This comparative example is generally the same as Example 1, and the main differences are:
将步骤(3)生长单层非晶氮化硼的步骤替换不取出衬底,在同一腔室内继续采用同样的沉积工艺形成氮化铝成核层,替代单层非晶氮化硼层,该氮化铝成核层的厚度为20nm左右。The step of growing a single layer of amorphous boron nitride in step (3) is replaced without removing the substrate, and the same deposition process is continued in the same chamber to form an aluminum nitride nucleation layer instead of the single layer of amorphous boron nitride layer. The thickness of the aluminum nitride nucleation layer is about 20nm.
该外延方式在氮化铝成核层上生长氮化镓层,会产生失配位错,降低外延层氮化镓的晶体质量。This epitaxial method grows a gallium nitride layer on an aluminum nitride nucleation layer, which will produce misfit dislocations and reduce the crystal quality of the epitaxial layer gallium nitride.
经过表征,所获得的氮化镓半导体层的内应力为0.387GPa,位错密度为9.0×107cm-2。After characterization, the internal stress of the obtained gallium nitride semiconductor layer is 0.387GPa, and the dislocation density is 9.0×10 7 cm -2 .
对比例3Comparative example 3
本对比例与实施例1大体相同,区别主要在于:This comparative example is generally the same as Example 1, and the main differences are:
将步骤(3)生长单层非晶氮化硼的步骤去除,直接在六方氮化硼层上生长氮化镓外延层。The step of growing a single layer of amorphous boron nitride in step (3) is eliminated, and a gallium nitride epitaxial layer is directly grown on the hexagonal boron nitride layer.
经过表征,所获得的氮化镓半导体层的内应力为0.605GPa,位错密度为1.2×108cm-2。After characterization, the internal stress of the obtained gallium nitride semiconductor layer is 0.605GPa, and the dislocation density is 1.2×10 8 cm -2 .
这说明,缺失了单层非晶氮化硼层,六方氮化硼层的离子性无法通过远程外延作用来调控氮化镓层的生长过程,从而导致氮化镓层的内应力和缺陷出现显著恶化。This shows that without the single-layer amorphous boron nitride layer, the ionicity of the hexagonal boron nitride layer cannot control the growth process of the gallium nitride layer through remote epitaxy, resulting in significant internal stress and defects in the gallium nitride layer. deterioration.
对比例4Comparative example 4
本对比例与实施例1大体相同,区别主要在于:This comparative example is generally the same as Example 1, and the main differences are:
将步骤(3)生长单层非晶氮化硼的步骤替换为采用CVD法生长单层石墨烯。The step (3) of growing a single layer of amorphous boron nitride is replaced by growing a single layer of graphene using the CVD method.
这种外延方式的缺点在于:①生长氮化硼和石墨烯需要在不同腔室中完成,在不同腔室的转移过程也会给衬底带来污染。②高温生长氮化镓时,生长气源NH3等都容易破坏石墨烯,从而导致外延质量受到影响。The disadvantages of this epitaxial method are: ① The growth of boron nitride and graphene needs to be completed in different chambers, and the transfer process in different chambers will also bring contamination to the substrate. ② When growing gallium nitride at high temperature, the growth gas source such as NH 3 can easily destroy graphene, thus affecting the epitaxial quality.
经过表征,所获得的氮化镓半导体层的内应力为0.584GPa,位错密度为1.0×108cm-2。After characterization, the internal stress of the obtained gallium nitride semiconductor layer is 0.584GPa, and the dislocation density is 1.0×10 8 cm -2 .
对比例5Comparative example 5
本对比例与实施例1大体相同,区别主要在于:This comparative example is generally the same as Example 1, and the main differences are:
延长步骤(3)生长单层非晶氮化硼的时间,使其生长成厚度10nm左右的多层非晶氮化硼。Extend the time for growing a single layer of amorphous boron nitride in step (3) to grow into a multi-layer amorphous boron nitride with a thickness of about 10 nm.
这种外延方式中,由于多层非晶氮化硼与氮化物之间弱的范德华作用力,在氮化物薄膜中会产生较多晶界缺陷,降低外延层的晶体质量。In this epitaxial method, due to the weak van der Waals force between multi-layer amorphous boron nitride and nitride, more grain boundary defects will be generated in the nitride film, reducing the crystal quality of the epitaxial layer.
经过表征,所获得的氮化镓半导体层的内应力为0.623GPa,位错密度为1.3×108cm-2。After characterization, the internal stress of the obtained gallium nitride semiconductor layer is 0.623GPa, and the dislocation density is 1.3×10 8 cm -2 .
以上对比例说明,六方氮化硼层和氮化物半导体层之间的膜层的厚度、材质均是实现六方氮化硼对外延生长的氮化物半导体层进行有效地远程外延调控的重要技术特征,缺少任一特征均无法实现有效的远程外延作用。The above comparative example shows that the thickness and material of the film layer between the hexagonal boron nitride layer and the nitride semiconductor layer are important technical features to achieve effective remote epitaxial control of the epitaxially grown nitride semiconductor layer by hexagonal boron nitride. Effective remote extension is not possible without either feature.
基于上述实施例以及对比例,可以明确,本发明实施例所提供的一种基于原位生长单层非晶氮化硼/六方氮化硼复合插入层的氮化物半导体层的外延生长方法,以多层六方氮化硼为极性底层,配合单层非晶氮化硼层,实现了远程外延生长低晶界缺陷、低失配位错、低应力的高质量单晶氮化物薄膜;此外,外延层剥离后的六方氮化硼/外延衬底可以反复利用,能够降低材料成本。Based on the above embodiments and comparative examples, it can be understood that the epitaxial growth method of the nitride semiconductor layer based on the in-situ growth of a single layer of amorphous boron nitride/hexagonal boron nitride composite insertion layer provided by the embodiment of the present invention can Multilayer hexagonal boron nitride serves as the polar bottom layer, combined with a single layer of amorphous boron nitride layer, to achieve remote epitaxial growth of high-quality single crystal nitride films with low grain boundary defects, low misfit dislocations, and low stress; in addition, The hexagonal boron nitride/epitaxial substrate after the epitaxial layer is peeled off can be used repeatedly, which can reduce material costs.
应当理解,上述实施例仅为说明本发明的技术构思及特点,其目的在于让熟悉此项技术的人士能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围。凡根据本发明精神实质所作的等效变化或修饰,都应涵盖在本发明的保护范围之内。It should be understood that the above embodiments are only to illustrate the technical concepts and characteristics of the present invention. Their purpose is to enable those familiar with the technology to understand the content of the present invention and implement it accordingly, and cannot limit the scope of protection of the present invention. All equivalent changes or modifications made based on the spirit and essence of the present invention should be included in the protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310410667.8A CN116732607A (en) | 2023-04-17 | 2023-04-17 | Nitride epitaxial structure, epitaxial growth method and application thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310410667.8A CN116732607A (en) | 2023-04-17 | 2023-04-17 | Nitride epitaxial structure, epitaxial growth method and application thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN116732607A true CN116732607A (en) | 2023-09-12 |
Family
ID=87912206
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202310410667.8A Pending CN116732607A (en) | 2023-04-17 | 2023-04-17 | Nitride epitaxial structure, epitaxial growth method and application thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN116732607A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118028974A (en) * | 2024-04-15 | 2024-05-14 | 中国科学院苏州纳米技术与纳米仿生研究所 | Epitaxial growth method of large-size monocrystal hexagonal boron nitride and application thereof |
CN118087038A (en) * | 2024-04-18 | 2024-05-28 | 中国科学院苏州纳米技术与纳米仿生研究所 | Epitaxial growth method and application of single crystal nitride film based on electric field regulation and control |
-
2023
- 2023-04-17 CN CN202310410667.8A patent/CN116732607A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118028974A (en) * | 2024-04-15 | 2024-05-14 | 中国科学院苏州纳米技术与纳米仿生研究所 | Epitaxial growth method of large-size monocrystal hexagonal boron nitride and application thereof |
CN118087038A (en) * | 2024-04-18 | 2024-05-28 | 中国科学院苏州纳米技术与纳米仿生研究所 | Epitaxial growth method and application of single crystal nitride film based on electric field regulation and control |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104409319B (en) | The preparation method of high-quality GaN cushion is grown on a kind of graphene-based bottom | |
JP4189386B2 (en) | Method for growing nitride semiconductor crystal layer and method for producing nitride semiconductor light emitting device | |
US20060189020A1 (en) | Method for manufacturing nitride based single crystal substrate and method for manufacturing nitride based light emitting diode using the same | |
CN116732607A (en) | Nitride epitaxial structure, epitaxial growth method and application thereof | |
TWI529928B (en) | Growth of planar non-polar {10-10} m-plane gallium nitride with hydride vapor phase epitaxy (hvpe) | |
US20090291523A1 (en) | Method of Manufacturing High Quality ZnO Monocrystal Film on Silicon(111) Substrate | |
CN105161578B (en) | The growing method of GaN film and compound GaN film on Si substrates | |
CN116053120B (en) | Nitride epitaxial structure and preparation method and application thereof | |
Weeks Jr et al. | Undoped and doped GaN thin films deposited on high-temperature monocrystalline AlN buffer layers on vicinal and on-axis α (6H)–SiC (0001) substrates via organometallic vapor phase epitaxy | |
JP2016145144A (en) | Diamond laminated structure, diamond semiconductor forming substrate, diamond semiconductor device, and method for producing diamond laminated structure | |
CN105810562A (en) | GaN growth method based on molybdenum disulfide and magnetron sputtering aluminum nitride | |
CN116497455B (en) | A preparation method of nitride ferroelectric semiconductor with adjustable ferroelectric domain size | |
WO2005088687A1 (en) | Method for manufacturing gallium nitride semiconductor substrate | |
CN117133638A (en) | Growth of aluminum nitride film on hexagonal boron nitride and its preparation method and application | |
CN101901756A (en) | MOCVD Growth Method of Polar c-plane GaN Thin Films on C-plane Al2O3 Substrate | |
JP2004115305A (en) | Gallium nitride single crystal substrate, method of manufacturing the same, gallium nitride-based semiconductor device and light emitting diode | |
CN105762061B (en) | A kind of epitaxial growth method of nitride | |
JP2005001928A (en) | Self-supporting substrate and method for producing the same | |
JP2007103955A (en) | Nitride semiconductor and method for growing nitride semiconductor crystal layer | |
JP3671215B2 (en) | Lamination method of indium nitride on sapphire substrate | |
CN117577748A (en) | LED epitaxial wafer, preparation method thereof and LED | |
WO2022019799A1 (en) | Heteroepitaxial structure with a diamond heat sink | |
JP2004307253A (en) | Method for manufacturing semiconductor substrate | |
JP2000281499A (en) | Preparation of gallium nitride single crystal | |
Chubenko et al. | Porous silicon as substrate for epitaxial films growth |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |