CN116716317B - Application of PSK3 gene in promotion of genetic transformation efficiency of alfalfa - Google Patents
Application of PSK3 gene in promotion of genetic transformation efficiency of alfalfa Download PDFInfo
- Publication number
- CN116716317B CN116716317B CN202310900048.7A CN202310900048A CN116716317B CN 116716317 B CN116716317 B CN 116716317B CN 202310900048 A CN202310900048 A CN 202310900048A CN 116716317 B CN116716317 B CN 116716317B
- Authority
- CN
- China
- Prior art keywords
- alfalfa
- psk3
- gene
- callus
- prgeb31r
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/415—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
- C12N15/113—Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8216—Methods for controlling, regulating or enhancing expression of transgenes in plant cells
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
- C12N9/16—Hydrolases (3) acting on ester bonds (3.1)
- C12N9/22—Ribonucleases [RNase]; Deoxyribonucleases [DNase]
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/10—Type of nucleic acid
- C12N2310/20—Type of nucleic acid involving clustered regularly interspaced short palindromic repeats [CRISPR]
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Genetics & Genomics (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Wood Science & Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Molecular Biology (AREA)
- Zoology (AREA)
- Biomedical Technology (AREA)
- General Engineering & Computer Science (AREA)
- Biotechnology (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Biophysics (AREA)
- Microbiology (AREA)
- Physics & Mathematics (AREA)
- Plant Pathology (AREA)
- Medicinal Chemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Gastroenterology & Hepatology (AREA)
- Botany (AREA)
- Cell Biology (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
Abstract
Description
技术领域Technical field
本发明属于植物基因工程和基因编辑技术领域,特别涉及PSK3基因在促进紫花苜蓿遗传转化效率上的应用。The invention belongs to the technical fields of plant genetic engineering and gene editing, and particularly relates to the application of PSK3 gene in promoting the genetic transformation efficiency of alfalfa.
背景技术Background technique
紫花苜蓿被誉为“牧草之王”,是全世界种植面积最大的饲草作物。叶茎比是决定紫花苜蓿生物量、蛋白质含量等重要农艺性状的关键指标之一,培育叶片数较多的品种可提高苜蓿的叶茎比,从而提高苜蓿的生物量和营养价值。Cys(2)His(2)锌指转录因子PALMate-likePentafoliata1(PALM1)参与苜蓿侧小叶的起始和叶片初级形态的建成,丧失功能的蒺藜苜蓿PALM1突变体呈现裂叶表型,叶尖聚集有4-5个小叶,可显著增加苜蓿的叶茎比。Alfalfa is known as the "King of Forage" and is the forage crop with the largest planting area in the world. The leaf-to-stem ratio is one of the key indicators that determines important agronomic traits such as alfalfa biomass and protein content. Cultivating varieties with more leaves can increase the leaf-to-stem ratio of alfalfa, thereby increasing its biomass and nutritional value. Cys(2)His(2) zinc finger transcription factor PALMate-likePentafoliata1 (PALM1) is involved in the initiation of alfalfa lateral leaflets and the establishment of primary leaf morphology. The loss-of-function PALM1 mutant of alfalfa exhibits a split leaf phenotype, with leaf tips gathering. 4-5 leaflets can significantly increase the leaf-to-stem ratio of alfalfa.
除利用常规育种技术进行苜蓿种质创新和育种外,生物技术也不断被引入苜蓿育种工作中,并取得了重要突破,其中基因编辑技术为培育优异苜蓿新种质提供了新的技术途径。然而,当前大部分植物的基因编辑需要依靠遗传转化技术才能实现,因此如何提高遗传转化效率成为制约植物基因编辑的瓶颈之一。紫花苜蓿愈伤发生和再生效率低下,导致其遗传转化体系对品种和基因型依赖严重。另外,紫花苜蓿遗传背景复杂,基因组庞大,同源多倍体基因组相似度高,导致基因编辑效率低甚至不编辑,载体构建复杂,严重阻碍了基因编辑技术在紫花苜蓿遗传育种中的推广和应用。In addition to using conventional breeding techniques to innovate and breed alfalfa germplasm, biotechnology has also been continuously introduced into alfalfa breeding work, and important breakthroughs have been made. Among them, gene editing technology provides a new technical approach for cultivating excellent new alfalfa germplasm. However, currently most plant gene editing relies on genetic transformation technology. Therefore, how to improve the efficiency of genetic transformation has become one of the bottlenecks restricting plant gene editing. The low callus generation and regeneration efficiency of alfalfa results in its genetic transformation system being heavily dependent on varieties and genotypes. In addition, the genetic background of alfalfa is complex, the genome is large, and the autopolyploid genomes are highly similar, resulting in low or no gene editing efficiency and complex vector construction, which seriously hinders the promotion and application of gene editing technology in alfalfa genetic breeding. .
植物愈伤形成与再生在细胞水平主要涉及细胞命运的转变和细胞全能性的建立。该过程受一系列调控植物胚胎发育的核心转录因子的协同控制。异源过表达上述核心转录因子,例如BabyBoom-WUS2、GRF4-GIF1、TaWOX5等,可作为分子辅助工具促进外植体的快速脱分化形成愈伤或加速愈伤再分化形成器官,从而显著降低了基因转化对外植体来源与基因型的要求。然而上述分子辅助工具无法同时实现愈伤快速增殖与高效再生,且很多分子辅助工具易致畸形,导致应用受限。PSK3基因编码一种磺化五肽生长因子(磺肽素),能够同时促进愈伤快速增殖与高效再生。然而,之前报道多为磺化五肽生长因子的外源施加,该物质未商业化,其施加量随植物物种及品种的不同而波动较大,不稳定且重复性差),并且至今未见该基因在植物组培快繁与遗传转化方面的使用。因此本专利PSK3同时促进紫花苜蓿愈伤增殖与再生,构建新的高效愈伤增殖与再生的遗传转化辅助分子工具,用于紫花苜蓿基因编辑和新种质的创制。Plant callus formation and regeneration mainly involve the transformation of cell fate and the establishment of cell totipotency at the cellular level. This process is cooperatively controlled by a series of core transcription factors that regulate plant embryonic development. Heterologous overexpression of the above-mentioned core transcription factors, such as BabyBoom-WUS2, GRF4-GIF1, TaWOX5, etc., can be used as molecular auxiliary tools to promote rapid dedifferentiation of explants to form calluses or accelerate callus redifferentiation to form organs, thereby significantly reducing Requirements for explant source and genotype for gene transformation. However, the above-mentioned molecular auxiliary tools cannot achieve rapid proliferation and efficient regeneration of callus at the same time, and many molecular auxiliary tools are prone to deformity, resulting in limited application. The PSK3 gene encodes a sulfonated pentapeptide growth factor (sulfopeptin), which can simultaneously promote rapid proliferation and efficient regeneration of callus. However, previous reports mostly involved the exogenous application of sulfonated pentapeptide growth factors. This substance has not been commercialized, and its application amount fluctuates greatly with different plant species and varieties. It is unstable and has poor repeatability), and this has not been seen so far. The use of genes in rapid propagation and genetic transformation of plant tissue culture. Therefore, the patented PSK3 simultaneously promotes alfalfa callus proliferation and regeneration, and constructs a new genetic transformation auxiliary molecular tool for efficient callus proliferation and regeneration, which can be used for alfalfa gene editing and the creation of new germplasm.
发明内容Contents of the invention
本发明针对上述技术问题提供一种PSK3基因在促进紫花苜蓿遗传转化效率上的应用,本发明载体是由一个组成型强启动子拟南芥Ubiquitin10的强启动子同时启动Cas9模块和sgRNA模块协同高效表达从而达到高效编辑的效果,而tRNA串联系统(使用tRNA将多个sgRNA串联表达),可实现同一基因或不同基因多个靶位点的同时编辑。另本载体同时带有植物磺肽素编码基因Phytosulfokine3precursor(PSK3)和植物抗性筛选基因(hph/bar/NPTⅡ),其中PSK3基因可显著促进苜蓿愈伤增殖和再生。In view of the above technical problems, the present invention provides an application of PSK3 gene in promoting the genetic transformation efficiency of alfalfa. The vector of the present invention is composed of a strong promoter of Arabidopsis Ubiquitin10, a constitutive strong promoter, to simultaneously activate the Cas9 module and the sgRNA module to synergistically and efficiently expression to achieve efficient editing effects, and the tRNA tandem system (using tRNA to express multiple sgRNAs in tandem) can achieve simultaneous editing of multiple target sites on the same gene or different genes. In addition, this vector also contains the Phytosulfokine3precursor (PSK3) encoding gene and the plant resistance screening gene (hph/bar/NPTⅡ). The PSK3 gene can significantly promote alfalfa callus proliferation and regeneration.
本发明是通过如下技术方案来实现的:The present invention is achieved through the following technical solutions:
PSK3基因在促进紫花苜蓿愈伤增殖和再生中的应用。Application of PSK3 gene in promoting callus proliferation and regeneration of alfalfa.
本发明还提供所述紫花苜蓿基因编辑载体系统的应用,所述系统编码相应PSK3蛋白质,提高紫花苜蓿愈伤发生和再生效率,所述载体系统为PSK3-CRISPR_2.0-pRGEB31R,其中,Cas9以及sgRNA由拟南芥Ubiquitin10的强启动子启动表达。The present invention also provides the application of the alfalfa gene editing vector system, which encodes the corresponding PSK3 protein and improves the efficiency of alfalfa callus occurrence and regeneration. The vector system is PSK3-CRISPR_2.0-pRGEB31R, wherein Cas9 and sgRNA is expressed from the strong promoter of Arabidopsis Ubiquitin10.
本发明还提供一种基因编辑载体系统PSK3-CRISPR_2.0-pRGEB31R-KOPALM1,所述系统能用于MsPALM1基因编辑。The invention also provides a gene editing vector system PSK3-CRISPR_2.0-pRGEB31R-KOPALM1, which can be used for MsPALM1 gene editing.
进一步,所述基因编辑载体系统中的PALM1基因为其它控制性状的基因。Furthermore, the PALM1 gene in the gene editing vector system is another gene that controls traits.
本发明还提供利用PSK3-CRISPR_2.0-pRGEB31R基因编辑载体系统获得多叶型紫花苜蓿的方法,所述方法包括如下步骤:The present invention also provides a method for obtaining multi-leaf alfalfa using the PSK3-CRISPR_2.0-pRGEB31R gene editing vector system. The method includes the following steps:
(1)获取紫花苜蓿PSK3基因序列,设计引物;(1) Obtain the alfalfa PSK3 gene sequence and design primers;
(2)根据已获得的PSK3基因序列,设计引物如下:(2) Based on the obtained PSK3 gene sequence, design primers as follows:
PSK3-F:CATTTCATTTGGAGAGGACAATGAGGCTAAGTTTTATCTTPSK3-F:CATTTCATTTGGAGAGGACAATGAGGCTAAGTTTTATCTT
PSK3-R:TCAAGGCTTATGATGTTGTGPSK3-R: TCAAGGCTTATGATGTTGTG
(3)从PEG100载体上扩增CaMV35Spromoter序列,设计引物如下:(3) Amplify the CaMV35Spromoter sequence from the PEG100 vector and design the primers as follows:
35S-PSK3-F:TCCCGCCTTCAGTTTTGAGACTTTTCAACAAAGGA35S-PSK3-F:TCCCGCCTTCAGTTTTGAGACTTTTCAACAAAGGA
35S-PSK3-R:TGTCCTCTCCAAATGAAATGA35S-PSK3-R:TGTCCTTCCCAAATGAAATGA
(4)从PEG100载体上扩增OCSterminator序列,设计引物如下:OCS-PSK3-F:ACATCATAAGCCTTGACTGCTTTAATGAGATATGCG OCS-PSK3-R:AAACACTGATAGTTTCTGCTGAGCCTCGACAGTT(4) Amplify the OCSterminator sequence from the PEG100 vector and design the primers as follows: OCS-PSK3-F: ACATCATAAGCCTTGACTGCTTTAATGAGATATGCG OCS-PSK3-R: AAACACTGATAGTTTCTGCTGAGCCTCGACAGTT
(5)使用高保真酶对PSK3、CaMV35Spromoter和OCSterminator3个片段进行PCR扩增,片段大小分别为369bp、346bp、708bp,以3个PCR反应产物为模板,进行二轮PCR反应,使用桥联方式把3个PCR反应产物连接成一个PSK3完整表达盒,连接引物序列如下:(5) Use high-fidelity enzymes to perform PCR amplification of three fragments of PSK3, CaMV35Spromoter and OCSterminator. The fragment sizes are 369bp, 346bp and 708bp respectively. Use the three PCR reaction products as templates to perform a second round of PCR reaction and use bridging method to The three PCR reaction products are connected into a complete PSK3 expression cassette. The connection primer sequence is as follows:
35S-PSK3-F:TCCCGCCTTCAGTTTTGAGACTTTTCAACAAAGGA OCS-PSK3-R:AAACACTGATAGTTTCTGCTGAGCCTCGACAGTT35S-PSK3-F:TCCCGCCTTCAGTTTTGAGACTTTTCAACAAAGGA OCS-PSK3-R:AAACACTGATAGTTTCTGCTGAGCCTCGACAGTT
(6)使用PmeⅠ限制性内切酶对CRISPR_2.0-pRGEB31R载体进行单酶切并割胶回收,将5)回收的目的片段通过无缝连接方式连入到酶切后的CRISPR_2.0-pRGEB31R载体,连接反应产物转入DH5α,鉴定阳性克隆并测序,将测序结果和已经报道的序列比对,将测序正确的菌落培养后提取PSK3-CRISPR_2.0-pRGEB31R载体质粒并在-20℃保存;(6) Use PmeⅠ restriction endonuclease to perform a single enzyme digestion on the CRISPR_2.0-pRGEB31R vector and cut the gel to recover it. Connect the target fragment recovered in 5) into the digested CRISPR_2.0-pRGEB31R vector through a seamless connection. , the ligation reaction product was transferred into DH5α, positive clones were identified and sequenced, the sequencing results were compared with the reported sequences, the correctly sequenced colonies were cultured and the PSK3-CRISPR_2.0-pRGEB31R vector plasmid was extracted and stored at -20°C;
(7)获取紫花苜蓿MsPALM1基因序列,设计引物;(7) Obtain the alfalfa MsPALM1 gene sequence and design primers;
(8)根据已经获得的紫花苜蓿MsPALM1基因序列,以及CRISPR(Protospacer-adjacentMotif(PAM)为NGG)载体设计原则,选取的四个靶位点分别为:(8) Based on the obtained alfalfa MsPALM1 gene sequence and the CRISPR (Protospacer-adjacentMotif (PAM) is NGG) vector design principles, the four selected target sites are:
‘GGAATATTATGAACACAACA’,‘CGGTCAGCTCAAGCTCTTGG’,‘GGAAACGAGCACGGTCGCGG’,‘TTTACCATTTCTTCCGTGTT’;‘GGAATATTATGAACACAACA’, ‘CGGTCAGCTCAAGCTCTTGG’, ‘GGAAACGAGCACGGTCGCGG’, ‘TTTACCATTTCTTCCGTGTT’;
(9)选定靶位点后,使用高保真酶对含有靶位点、tRNA和sgRNA片段进行PCR扩增;设计不同靶位点相应的引物,以包含tRNA和sgRNA序列的pGTR载体为模板;PCR扩增并进行胶回收获得200bp的片段,然后取出PCR反应产物进行胶回收;引物序列如下:(9) After selecting the target site, use a high-fidelity enzyme to perform PCR amplification of the target site, tRNA and sgRNA fragments; design corresponding primers for different target sites, using the pGTR vector containing tRNA and sgRNA sequences as a template; PCR amplification and gel recovery were performed to obtain a 200bp fragment, and then the PCR reaction product was removed for gel recovery; the primer sequence is as follows:
MsPALM1-tRNA-CRISPRCas92.0-1:MsPALM1-tRNA-CRISPRCas92.0-1:
TAGGTCTCAATCGAACAAAGCACCAGTG MsPALM1-tRNA-CRISPRCas92.0-2:TAGGTCTCAATCGAACAAAGCACCAGTG MsPALM1-tRNA-CRISPRCas92.0-2:
GCGGTCTCATCATAATATTCCTGCACCAGCCGGGAA MsPALM1-tRNA-CRISPRCas92.0-3:GCGGTCTCATCATAATATTCCTGCACCAGCCGGGAA MsPALM1-tRNA-CRISPRCas92.0-3:
TAGGTCTCAATGAACACAACAGTTTTAGAGCTAGAAA MsPALM1-tRNA-CRISPRCas92.0-4:TAGGTCTCAATGAACACAACAGTTTTAGAGCTAGAAA MsPALM1-tRNA-CRISPRCas92.0-4:
GCGGTCTCATTGAGCTGACCGTGCACCAGCCGGGAA MsPALM1-tRNA-CRISPRCas92.0-5:GCGGTCTCATTGAGCTGACCGTGCACCAGCCGGGAA MsPALM1-tRNA-CRISPRCas92.0-5:
TAGGTCTCATCAAGCTCTTGGGTTTTAGAGCTAGAAA MsPALM1-tRNA-CRISPRCas92.0-6:TAGGTCTCATCAAGCTCTTGGGTTTTAGAGCTAGAAA MsPALM1-tRNA-CRISPRCas92.0-6:
GCGGTCTCAGTGCTCGTTTCCTGCACCAGCCGGGAA MsPALM1-tRNA-CRISPRCas92.0-7:GCGGTCTCAGTGCTCGTTTCCTGCACCAGCCGGGAA MsPALM1-tRNA-CRISPRCas92.0-7:
TAGGTCTCAGCACGGTCGCGGGTTTTAGAGCTAGAAA MsPALM1-tRNA-CRISPRCas92.0-8:TAGGTCTCAGCACGGTCGCGGGTTTTAGAGCTAGAAA MsPALM1-tRNA-CRISPRCas92.0-8:
GCGGTCTCAAGAAATGGTAAATGCACCAGCCGGGAA MsPALM1-tRNA-CRISPRCas92.0-9:GCGGTCTCAAGAAATGGTAAATGCACCAGCCGGGAA MsPALM1-tRNA-CRISPRCas92.0-9:
TAGGTCTCATTCTTCCGTGTTGTTTTAGAGCTAGAAA MsPALM1-tRNA-CRISPRCas92.0-10:TAGGTCTCATTCTTCCGTGTTGTTTTAGAGCTAGAAA MsPALM1-tRNA-CRISPRCas92.0-10:
TAGGTCTCAATATAAAAAAAGCACCGACTCGGTGCC;TAGGTCTCAATATAAAAAAAGCACCGACTCGGTGCC;
(10)回收的目的片段使用BsaⅠ限制性内切酶和T4连接酶通过一步法连接反应连入PSK3-CRISPR_2.0-pRGEB31R骨架载体,连接反应产物转入DH5α,鉴定阳性克隆并测序,将测序结果和已经报道的序列对比,将测序正确的菌落培养后提取PSK3-CRISPR_2.0-pRGEB31R-KOPALM1载体质粒并在-20℃保存。(10) The recovered target fragment is ligated into the PSK3-CRISPR_2.0-pRGEB31R backbone vector using BsaⅠ restriction endonuclease and T4 ligase through a one-step ligation reaction. The ligation reaction product is transferred into DH5α. Positive clones are identified and sequenced. The results were compared with the reported sequences. The correctly sequenced colonies were cultured and the PSK3-CRISPR_2.0-pRGEB31R-KOPALM1 vector plasmid was extracted and stored at -20°C.
(11)制备农杆菌侵染液,将紫花苜蓿叶子块浸泡在农杆菌侵染液中,诱导愈伤组织,长出的愈伤组织转移到分化培养基上诱导再生芽,再生芽转移到生根培养基诱导芽生根,已经生根的幼苗长到6-8cm高,转移到透气湿润的土里,待紫花苜蓿长出新叶。(11) Prepare the Agrobacterium infection solution, soak the alfalfa leaf pieces in the Agrobacterium infection solution to induce callus, transfer the grown callus to the differentiation medium to induce regenerative shoots, and transfer the regenerated shoots to rooting The culture medium induces the shoots to take root. The rooted seedlings grow to a height of 6-8cm and are transferred to breathable and moist soil until the alfalfa grows new leaves.
进一步,所述步骤(8)CRISPR/Cas9载体设计靶设计原则:靶位点20个碱基,并且须以-NGG-结尾;靶位点的GC含量应该介于40%到70%,并且避免具有连续4个T碱基;针对紫花苜蓿PALM1基因设计2-4个靶位点,提高基因编辑的成功率。Further, step (8) CRISPR/Cas9 vector design target design principles: the target site is 20 bases and must end with -NGG-; the GC content of the target site should be between 40% and 70%, and avoid It has 4 consecutive T bases; 2-4 target sites are designed for the alfalfa PALM1 gene to improve the success rate of gene editing.
进一步,所述步骤(2)(3)(4)(5)(9)PCR的反应体系为:25μLPhanta(2×),cDNA,正/反向引物(10μM)各1μL,2μLpGTR载体,21μLddH2O;PCR反应条件为:95℃3min;95℃15s,56℃15s;72℃45s,34个循环;72℃10min。Further, the reaction system of PCR in the steps (2) (3) (4) (5) (9) is: 25 μL Phanta (2×), cDNA, 1 μL each of forward/reverse primer (10 μM), 2 μL pGTR vector, 21 μL ddH 2 O; PCR reaction conditions are: 95℃ for 3min; 95℃ for 15s, 56℃ for 15s; 72℃ for 45s, 34 cycles; 72℃ for 10min.
进一步,所述的步骤(6)的连接反应体系:5×CEⅡbuffer4μL,ExpressⅡ2μL,载体300ng,目的胶回收片段60ng,去离子水补齐20μL反应总体系。连接PCR程序:37℃连接30min,程序结束后4℃保存于冰箱备用。Further, the ligation reaction system of step (6): 4 μL of 5×CEII buffer, 2 μL of Express II, 300 ng of carrier, 60 ng of target gel recovery fragment, and deionized water to complete the total reaction system of 20 μL. Ligation PCR program: ligation at 37°C for 30 minutes. After the program is completed, store in the refrigerator at 4°C for later use.
进一步,所述的步骤(10)的连接反应体系:BsaⅠ15U,10×BasⅠbuffer1.5μL,T4连接酶50U,载体0.5μg,目的胶回收片段30ng,去离子水补齐15μL反应总体系;连接PCR程序:37℃酶切10min,10℃连接5min,20℃延伸10min,3个循环,37℃酶切10min,10℃连接5min,20℃延伸10min,10个循环,程序结束后4℃保存于冰箱备用。Further, the ligation reaction system of step (10): BsaⅠ15U, 10×BasⅠbuffer 1.5μL, T4 ligase 50U, carrier 0.5μg, target gel recovery fragment 30ng, deionized water to complete the total reaction system of 15μL; connect the PCR program : Digest at 37°C for 10 minutes, ligate at 10°C for 5 minutes, extend at 20°C for 10 minutes, 3 cycles, digest at 37°C for 10 minutes, connect at 10°C for 5 minutes, extend at 20°C for 10 minutes, 10 cycles, store in the refrigerator at 4°C for later use. .
进一步,所述步骤(10)将构建好的质粒加入融化的农杆菌感受态冰浴30min,后液氮速冻3min,37℃热激90s,冰浴2min,加入LB液体培养基,28℃摇床160rpm培养2-3h。Further, in step (10), the constructed plasmid is added to the melted Agrobacterium competent cells in an ice bath for 30 minutes, then quickly frozen in liquid nitrogen for 3 minutes, heat shocked at 37°C for 90 seconds, bathed in ice for 2 minutes, then added with LB liquid culture medium, and shaken at 28°C Incubate at 160rpm for 2-3h.
本发明与现有技术相比的有益效果:The beneficial effects of the present invention compared with the prior art:
本发明利用PSK3基因能够同时促进紫花苜蓿愈伤增殖和再生的优势,结合PSK3-CRISPR_2.0-pRGEB31R基因编辑高效简捷载体系统,以公农1号紫花苜蓿为遗传背景,4-6个月内成功将紫花苜蓿PALM1基因纯合编辑,并获得多叶型紫花苜蓿。经鉴定转基因阳性效率可达63%以上,其中79%的阳性转基因株系的PALM1基因获得了编辑。The present invention takes advantage of the PSK3 gene that can simultaneously promote the proliferation and regeneration of alfalfa callus, combines it with the PSK3-CRISPR_2.0-pRGEB31R gene editing efficient and simple vector system, and uses Gongnong No. 1 alfalfa as the genetic background. Within 4-6 months, The alfalfa PALM1 gene was successfully edited homozygously, and multi-leaf alfalfa was obtained. It was determined that the transgenic positive efficiency could reach over 63%, and 79% of the positive transgenic lines had their PALM1 genes edited.
附图说明Description of the drawings
图1为紫花苜蓿PSK3-CRISPR_2.0-pRGEB31R载体结构简图;Figure 1 is a simplified structural diagram of the alfalfa PSK3-CRISPR_2.0-pRGEB31R vector;
图2为PSK3促进公农1号紫花苜蓿愈伤快速发生表型图;Figure 2 is a phenotypic diagram of PSK3 promoting the rapid occurrence of callus in alfalfa Gongnong No. 1;
A、CRISPR_2.0-pRGEB31R-KOPALM1转基因公农1号紫花苜蓿愈伤生长30天表型图,B、PSK3-CRISPR_2.0-pRGEB31R-KOPALM1转基因公农1号紫花苜蓿愈伤生长30天表型图,C、CRISPR_2.0-pRGEB31R-KOPALM1转基因公农1号紫花苜蓿愈伤生长45天细节图,D、PSK3-CRISPR_2.0-pRGEB31R-KOPALM1转基因公农1号紫花苜蓿愈伤生长45天细节图。A. Phenotype of callus growth of CRISPR_2.0-pRGEB31R-KOPALM1 transgenic Gongnong No. 1 alfalfa at 30 days. B. Phenotype of callus growth of PSK3-CRISPR_2.0-pRGEB31R-KOPALM1 transgenic Gongnong No. 1 alfalfa at 30 days. Figure, C, CRISPR_2.0-pRGEB31R-KOPALM1 transgenic Gongnong No. 1 alfalfa callus growth for 45 days details, D, PSK3-CRISPR_2.0-pRGEB31R-KOPALM1 transgenic Gongnong No. 1 callus growth details for 45 days picture.
图3为PSK3促进公农1号紫花苜蓿愈伤再生;Figure 3 shows that PSK3 promotes callus regeneration of Gongnong No. 1 alfalfa;
A、CRISPR_2.0-pRGEB31R-KOPALM1转基因公农1号紫花苜蓿愈伤再生表型图,B、PSK3-CRISPR_2.0-pRGEB31R-KOPALM1转基因公农1号紫花苜蓿愈伤再生表型图,C、PSK3促进公农1号紫花苜蓿愈伤再生效率统计图。A. CRISPR_2.0-pRGEB31R-KOPALM1 transgenic Gongnong No. 1 alfalfa callus regeneration phenotype chart, B. PSK3-CRISPR_2.0-pRGEB31R-KOPALM1 transgenic Gongnong No. 1 alfalfa callus regeneration phenotype chart, C. Statistical chart of PSK3 promoting callus regeneration efficiency of Gongnong No. 1 alfalfa.
图4为MsPALM1靶位点位置示意图及基因编辑情况;Figure 4 is a schematic diagram of the MsPALM1 target site location and gene editing status;
A、MsPALM1靶位点位置示意图,B、两株纯合编辑植株MsPALM1基因编辑类型突变效率统计图;A. Schematic diagram of the location of the MsPALM1 target site, B. Statistical diagram of the MsPALM1 gene editing type mutation efficiency of two homozygous edited plants;
图5为MsPALM1纯合编辑公农1号紫花苜蓿表型;Figure 5 shows the phenotype of MsPALM1 homozygous edited alfalfa Gongnong 1;
A、公农1号紫花苜蓿和PALM1-KO公农1号紫花苜蓿整体图,B公农1号紫花苜蓿和PALM1-KO公农1号紫花苜蓿叶片图。A. Overall picture of Gongnong No. 1 alfalfa and PALM1-KO Gongnong No. 1 alfalfa, B. Gongnong No. 1 alfalfa and PALM1-KO Gongnong No. 1 alfalfa leaves.
具体实施方式Detailed ways
下面通过实施例来对本发明技术方案进一步解释,但本发明的保护范围不受实施例任何形式上的限制。The technical solutions of the present invention are further explained below through examples, but the protection scope of the present invention is not limited in any way by the examples.
实施例1:PSK3-CRISPR_2.0-pRGEB31R-KOPALM1载体构建过程如下:Example 1: PSK3-CRISPR_2.0-pRGEB31R-KOPALM1 vector construction process is as follows:
(1)从紫花苜蓿全基因组序列中检索获得PSK3基因序列,设计引物,以公农1号紫花苜蓿cDNA为模板扩增PSK3序列,序列信息如下所示:ATGAGGCTAAGTTTTATCTTTGGAGCTCAAATCTTTTTCCTTTTCTTTCTACTCTCCTCCTCAATACTCTCTGCCAGACAACTTACCAATGAACAAGGTACGCATGCAATACTTAACTCTTCATTAGGGCCAAACTTTGTTTTGGAGTTGGAAGGAGATGAATCTTTCAAGGTGTCAGGAATGGAAGAGTGTAATATTGAAGATGAAGATTGTATGCAAAGAAGAATGACTTTAGAAGCTCACCTAGACTACATCTACACACAACATCATAAGCCTTGA;(1) Obtain the PSK3 gene sequence from the whole genome sequence of alfalfa, design primers, and use alfalfa Gongnong No. 1 cDNA as a template to amplify the PSK3 sequence. The sequence information is as follows: ATGAGGCTAAGTTTTATCTTTGGAGCTCAAATCTTTTTCCTTTTCTTTCTACTCTCCTCCTCAATACTCTCTGCCAGACAACTTACCAATGAACAAGGTACGCATGCAATACTTAACTCTTCATTAGGGCCAAACTTTGTTT TGGAGTTGGAAGGAGATGAATCTTTCAAGGTGTCAGGAATGGAAGAGTGTAATATTGAAGATGAAGATTGTATGCAAAGAAGAATGACTTTAGAAGCTCACCTAGACTACATCTACACACAACATCATAAGCCTTGA;
(2)根据已获得的PSK3基因序列,设计引物如下:(2) Based on the obtained PSK3 gene sequence, design primers as follows:
PSK3-F:CATTTCATTTGGAGAGGACAATGAGGCTAAGTTTTATCTTPSK3-F:CATTTCATTTGGAGAGGACAATGAGGCTAAGTTTTATCTT
PSK3-R:TCAAGGCTTATGATGTTGTGPSK3-R: TCAAGGCTTATGATGTTGTG
(3)从PEG100载体上扩增CaMV35Spromoter序列,设计引物如下:35S-PSK3-F:TCCCGCCTTCAGTTTTGAGACTTTTCAACAAAGGA(3) Amplify the CaMV35Spromoter sequence from the PEG100 vector and design the primers as follows: 35S-PSK3-F: TCCCGCCTTCAGTTTTGAGACTTTTCAACAAAGGA
35S-PSK3-R:TGTCCTCTCCAAATGAAATGA35S-PSK3-R:TGTCCTCTCCAAATGAAATGA
(4)从PEG100载体上扩增OCSterminator序列,设计引物如下:OCS-PSK3-F:ACATCATAAGCCTTGACTGCTTTAATGAGATATGCG OCS-PSK3-R:AAACACTGATAGTTTCTGCTGAGCCTCGACAGTT(4) Amplify the OCSterminator sequence from the PEG100 vector and design the primers as follows: OCS-PSK3-F: ACATCATAAGCCTTGACTGCTTTAATGAGATATGCG OCS-PSK3-R: AAACACTGATAGTTTCTGCTGAGCCTCGACAGTT
(5)使用高保真酶对以上PSK3、CaMV35Spromoter和OCSterminator3个片段进行PCR扩增,反应体系为:25μLPhanta(2×),cDNA,正/反向引物(10μM)各1μL,2μLpGTR载体,21μLddH2O。PCR反应条件为:95℃3min;95℃15s,56℃15s;72℃45s,34个循环;72℃10min。PCR扩增并进行胶回收,以上3个片段大小分别为369bp、346bp、708bp,然后取出PCR反应产物进行二轮PCR反应,使用桥联方式把3个扩增产物连接成一个片段,引物序列如下:(5) Use high-fidelity enzymes to perform PCR amplification of the above three fragments of PSK3, CaMV35Spromoter and OCSterminator. The reaction system is: 25μL Phanta (2×), cDNA, 1μL of forward/reverse primer (10μM), 2μL of pGTR vector, 21μL of ddH 2 O . PCR reaction conditions were: 95°C for 3 min; 95°C for 15 s, 56°C for 15 s; 72°C for 45 s, 34 cycles; and 72°C for 10 min. PCR amplification and gel recovery were performed. The sizes of the above three fragments were 369bp, 346bp, and 708bp respectively. Then the PCR reaction products were taken out for a second round of PCR reaction. The three amplification products were connected into one fragment using bridging method. The primer sequences are as follows :
35S-PSK3-F:TCCCGCCTTCAGTTTTGAGACTTTTCAACAAAGGA OCS-PSK3-R:AAACACTGATAGTTTCTGCTGAGCCTCGACAGTT35S-PSK3-F:TCCCGCCTTCAGTTTTGAGACTTTTCAACAAAGGA OCS-PSK3-R:AAACACTGATAGTTTCTGCTGAGCCTCGACAGTT
(6)使用PmeⅠ限制性内切酶对CRISPR_2.0-pRGEB31R载体进行单酶切并割胶回收,将5)回收的目的片段通过无缝连接方式连入到酶切后的CRISPR_2.0-pRGEB31R载体,连接反应产物转入DH5α,鉴定阳性克隆并测序,将测序结果和已经报道的序列对比,将测序正确的菌落培养后提取PSK3-CRISPR_2.0-pRGEB31R载体质粒并在-20℃保存,如图1所示;(6) Use PmeⅠ restriction endonuclease to perform a single enzyme digestion on the CRISPR_2.0-pRGEB31R vector and cut the gel to recover it. Connect the target fragment recovered in 5) into the digested CRISPR_2.0-pRGEB31R vector through a seamless connection. , the ligation reaction product was transferred into DH5α, positive clones were identified and sequenced, the sequencing results were compared with the reported sequences, the correctly sequenced colonies were cultured and the PSK3-CRISPR_2.0-pRGEB31R vector plasmid was extracted and stored at -20°C, as shown in the figure 1 shown;
PSK3基因可显著促进苜蓿愈伤增殖:筛选30天后,PSK3-CRISPR2.0-pRGEB31R-KOPALM1转基因愈伤相较于CRISPR2.0-pRGEB31R-KOPALM1转基因愈伤显著增加,具体表型见图2。PSK3基因可显著促进苜蓿愈伤再生:PSK3-CRISPR2.0-pRGEB31R-KOPALM1转基因愈伤分化成芽点的数量相较于CRISPR2.0-pRGEB31R-KOPALM1转基因愈伤显著增加,具体表型见图3。The PSK3 gene can significantly promote alfalfa callus proliferation: 30 days after screening, PSK3-CRISPR2.0-pRGEB31R-KOPALM1 transgenic calli increased significantly compared with CRISPR2.0-pRGEB31R-KOPALM1 transgenic calli. The specific phenotype is shown in Figure 2. The PSK3 gene can significantly promote alfalfa callus regeneration: the number of PSK3-CRISPR2.0-pRGEB31R-KOPALM1 transgenic calli that differentiates into bud points is significantly increased compared to that of CRISPR2.0-pRGEB31R-KOPALM1 transgenic calli. The specific phenotype is shown in Figure 3. .
实施例2PSK3-CRISPR_2.0-pRGEB31R-KOPALM1载体质粒的获得:根据已经获得的紫花苜蓿MsPALM1基因序列,以及CRISPR载体设计原则,选取的四个靶位点分别为‘GGAATATTATGAACACAACA’,Example 2 Obtaining the PSK3-CRISPR_2.0-pRGEB31R-KOPALM1 vector plasmid: Based on the obtained alfalfa MsPALM1 gene sequence and the CRISPR vector design principles, the four target sites selected were ‘GGAATATTATGAACACAACA’,
‘CGGTCAGCTCAAGCTCTTGG’,‘GGAAACGAGCACGGTCGCGG’,‘CGGTCAGCTCAAGCTCTTGG’, ‘GGAAACGAGCACGGTCGCGG’,
‘TTTACCATTTCTTCCGTGTT’,‘TTTACCATTTCTTCCGTGTT’,
经鉴定79%的阳性转基因株系中MsPALM1发生编辑,具体数据见图4。It was identified that MsPALM1 was edited in 79% of the positive transgenic lines. The specific data are shown in Figure 4.
CRISPR/Cas9载体设计靶设计原则:靶位点20个碱基并且必须以“NGG”结尾;靶位点的GC含量应该介于40%到70%;并且避免具有连续4个T碱基;针对紫花苜蓿PALM1基因设计4个靶位点,用于提高基因编辑成功率。CRISPR/Cas9 vector design target design principles: the target site is 20 bases and must end with "NGG"; the GC content of the target site should be between 40% and 70%; and avoid having 4 consecutive T bases; for The alfalfa PALM1 gene is designed with four target sites to improve the success rate of gene editing.
选定靶位点后使用高保真酶(Phanta)对片段进行PCR扩增,设计不同靶位点相应的引物(引物序列如下),从包含tRNA和sgRNA序列的pGTR载体为模板。反应体系为:25μLPhanta(2×),cDNA,正/反向引物(10μM)各1μL,2μLpGTR载体,21μLddH2O。PCR反应条件为:95℃3min;95℃15s,56℃15s;72℃45s,34个循环;72℃10min。PCR扩增并进行胶回收,获得约200bp的片段,然后取出PCR反应产物进行胶回收,引物序列如下:MsPALM1-tRNA-CRISPRCas92.0-1:After selecting the target site, use a high-fidelity enzyme (Phanta) to PCR amplify the fragment, design corresponding primers for different target sites (primer sequences are as follows), and use the pGTR vector containing tRNA and sgRNA sequences as a template. The reaction system is: 25 μL Phanta (2×), cDNA, 1 μL each of forward/reverse primer (10 μM), 2 μL pGTR vector, and 21 μL ddH 2 O. PCR reaction conditions were: 95°C for 3 min; 95°C for 15 s, 56°C for 15 s; 72°C for 45 s, 34 cycles; and 72°C for 10 min. PCR amplification and gel recovery were performed to obtain a fragment of approximately 200 bp, and then the PCR reaction product was removed for gel recovery. The primer sequence is as follows: MsPALM1-tRNA-CRISPRCas92.0-1:
TAGGTCTCAATCGAACAAAGCACCAGTG MsPALM1-tRNA-CRISPRCas92.0-2:TAGGTCTCAATCGAACAAAGCACCAGTG MsPALM1-tRNA-CRISPRCas92.0-2:
GCGGTCTCATCATAATATTCCTGCACCAGCCGGGAA MsPALM1-tRNA-CRISPRCas92.0-3:GCGGTCTCATCATAATATTCCTGCACCAGCCGGGAA MsPALM1-tRNA-CRISPRCas92.0-3:
TAGGTCTCAATGAACACAACAGTTTTAGAGCTAGAAA MsPALM1-tRNA-CRISPRCas92.0-4:TAGGTCTCAATGAACACAACAGTTTTAGAGCTAGAAA MsPALM1-tRNA-CRISPRCas92.0-4:
GCGGTCTCATTGAGCTGACCGTGCACCAGCCGGGAA MsPALM1-tRNA-CRISPRCas92.0-5:GCGGTCTCATTGAGCTGACCGTGCACCAGCCGGGAA MsPALM1-tRNA-CRISPRCas92.0-5:
TAGGTCTCATCAAGCTCTTGGGTTTTAGAGCTAGAAA MsPALM1-tRNA-CRISPRCas92.0-6:TAGGTCTCATCAAGCTCTTGGGTTTTAGAGCTAGAAA MsPALM1-tRNA-CRISPRCas92.0-6:
GCGGTCTCAGTGCTCGTTTCCTGCACCAGCCGGGAA MsPALM1-tRNA-CRISPRCas92.0-7:GCGGTCTCAGTGCTCGTTTCCTGCACCAGCCGGGAA MsPALM1-tRNA-CRISPRCas92.0-7:
TAGGTCTCAGCACGGTCGCGGGTTTTAGAGCTAGAAA MsPALM1-tRNA-CRISPRCas92.0-8:TAGGTCTCAGCACGGTCGCGGGTTTTAGAGCTAGAAA MsPALM1-tRNA-CRISPRCas92.0-8:
GCGGTCTCAAGAAATGGTAAATGCACCAGCCGGGAA MsPALM1-tRNA-CRISPRCas92.0-9:GCGGTCTCAAGAAATGGTAAATGCACCAGCCGGGAA MsPALM1-tRNA-CRISPRCas92.0-9:
TAGGTCTCATTCTTCCGTGTTGTTTTAGAGCTAGAAA MsPALM1-tRNA-CRISPRCas92.0-10:TAGGTCTCATTCTTCCGTGTTGTTTTAGAGCTAGAAA MsPALM1-tRNA-CRISPRCas92.0-10:
TAGGTCTCAATATAAAAAAAGCACCGACTCGGTGCCTAGGTCTCAATATAAAAAAAGCACCGACTCGGTGCC
(8)一步法连接反应体系:BsaⅠ(购于NEB公司)15U,10×BasⅠbuffer1.5μL,T4连接酶50U,载体0.5μg,目的胶回收片段30ng,去离子水补齐15μL反应总体系。一步法连接PCR程序:37℃酶切10min,10℃连接5min,20℃延伸10min,3个循环,37℃酶切10min,10℃连接5min,20℃延伸10min,10个循环,程序结束后4℃保存于冰箱备用。(8) One-step ligation reaction system: 15 U of BsaⅠ (purchased from NEB Company), 1.5 μL of 10×BasⅠ buffer, 50 U of T4 ligase, 0.5 μg of carrier, 30 ng of target gel recovery fragment, and deionized water to complete the total reaction system of 15 μL. One-step ligation PCR program: digest at 37°C for 10 minutes, ligate at 10°C for 5 minutes, extend at 20°C for 10 minutes, 3 cycles, digest at 37°C for 10 minutes, ligate at 10°C for 5 minutes, extend at 20°C for 10 minutes, 10 cycles, 4 °C and store in the refrigerator for later use.
(9)连接反应产物转入DH5α,鉴定阳性克隆送测序。(9) The ligation reaction product is transferred into DH5α, and positive clones are identified and sent for sequencing.
(10)将测序结果和已经报道的序列对比,将测序正确的菌落培养后提取PSK3-CRISPR_2.0-pRGEB31R-KOPALM1载体质粒并-20℃保存,用于后续实验。(10) Compare the sequencing results with the reported sequences, culture the correctly sequenced colonies, extract the PSK3-CRISPR_2.0-pRGEB31R-KOPALM1 vector plasmid and store it at -20°C for subsequent experiments.
实施例3:公农1号紫花苜蓿PALM1纯合编辑株系的获得Example 3: Obtaining the homozygous edited line of alfalfa PALM1 Gongnong No. 1
(1)采集健壮公农1号紫花苜蓿的叶子,叶子大小约为5cm,太大太小会受到消毒剂的影响,7.5%的次氯酸钠消毒10min,用无菌水清洗至无消毒剂残留,吸干水分。(1) Collect the leaves of Jianzhuang Gongnong No. 1 alfalfa. The size of the leaves is about 5cm. If the leaves are too large or too small, they will be affected by the disinfectant. Disinfect with 7.5% sodium hypochlorite for 10 minutes. Wash with sterile water until there is no disinfectant residue. dry moisture.
(2)提前制备侵染液:热激发将实施例1获得PSK3-CRISPR_2.0-pRGEB31R-KOPALM1质粒转到EHA105农杆菌中,卡那霉素和利福平LB平板上筛选出阳性菌落,置于-80℃冰箱备用。取出菌液置于Kan(50mg/L)+Rif(50mg/L)LB中摇菌,将菌液过夜摇至OD600=0.6-0.8,18℃3500rpm离心15min,弃液体,加入等量的SH3a转化液,0.1%的AS(100mM),继续摇2-3h。再用侵染液稀释至0.2-0.3,侵染液制备完成。(2) Prepare the infection solution in advance: transfer the PSK3-CRISPR_2.0-pRGEB31R-KOPALM1 plasmid obtained in Example 1 to EHA105 Agrobacterium under thermal stimulation, screen out positive colonies on kanamycin and rifampicin LB plates, and place them Store in -80℃ refrigerator for later use. Take out the bacterial solution and place it in Kan(50mg/L)+Rif(50mg/L) LB and shake the bacteria. Shake the bacterial solution overnight until OD 600 = 0.6-0.8. Centrifuge at 3500rpm at 18℃ for 15min. Discard the liquid and add an equal amount of SH3a. Transformation solution, 0.1% AS (100mM), continue shaking for 2-3h. Then dilute the infection solution to 0.2-0.3, and the preparation of the infection solution is completed.
(3)再将经过步骤(1)处理的叶子剪成1cm浸泡到制备好的侵染液中里,同时超声波15min。用灭过菌的滤纸将菌液吸干。置于共培养SH3a+AS(SH基础培养基中含有终浓度为30g·L-1蔗糖,4mg·L–12,4-D,0.5mg·L–16-BA,100μmol·L–1乙酰丁香酮,pH值为5.95)共培养两天。(3) Cut the leaves treated in step (1) into 1cm pieces and soak them in the prepared infection solution, while ultrasonicating for 15 minutes. Blot the bacterial solution with sterilized filter paper. Placed in co-culture SH3a+AS (SH basic medium containing final concentration of 30g·L -1 sucrose, 4mg·L -1 2,4-D, 0.5mg·L -1 6-BA, 100μmol·L -1 acetosyringone, pH 5.95) for two days.
(4)将没有出现霉菌和细菌的叶子转移到筛选培养基SH3a培养基(SH基础培养基,30g·L-1蔗糖,pH值为5.95,4g·L-1植物凝胶,4mg·L–12,4-D,0.5mg·L–16-BA,400mg·L–1特美汀,2mg·L–1bialaphos/7.5mg·L–1hyg-B/15mg·L–1Gentamicin,诱导愈伤组织1.5-2个月。(4) Transfer the leaves without mold and bacteria to the screening medium SH3a medium (SH basic medium, 30g·L-1 sucrose, pH value 5.95, 4g·L -1 plant gel, 4mg·L – 1 2,4-D, 0.5mg·L –1 6-BA, 400mg·L –1 Gentamicin, 2mg·L –1 bialaphos/7.5mg·L –1 hyg-B/15mg·L –1 Gentamicin, Induce callus for 1.5-2 months.
(5)将长出的愈伤组织转移到分化培养基MSBK(MS基础培养基,30g·L-1蔗糖,pH值为5.955,7.8g·L-1琼脂,0.5mg·L–16-BA,1mg·L–1KT,300mg·L–1特美汀,1.5mg·L– 1bialaphos/5mg·L–1hyg-B/10mg·L–1Gentamicin,,诱导再生芽1.5-2个月。(5) Transfer the grown calli to differentiation medium MSBK (MS basic medium, 30g·L-1 sucrose, pH value 5.955, 7.8g·L -1 agar, 0.5mg·L –1 6- BA, 1mg·L –1 KT, 300mg·L –1 Gentamicin, 1.5mg·L – 1 bialaphos/5mg·L –1 hyg-B/10mg·L –1 Gentamicin, induce 1.5-2 regenerated buds moon.
(6)将诱导出来的再生芽转移到生根培养基MS0(MS基础培养基,15g·L-1蔗糖,pH值为6,7.8g·L-1琼脂,2mg·L–1NAA,300mg·L–1特美汀,诱导芽生根2-3周。(6) Transfer the induced regenerated shoots to rooting medium MS 0 (MS basic medium, 15g·L -1 sucrose, pH value 6, 7.8g·L -1 agar, 2mg·L -1 NAA, 300mg ·L -1 Temetin, induces shoots to take root for 2-3 weeks.
(7)待已经生根的幼苗长到6-8cm高,加入无菌水打开盖子炼苗7天,后将生根培养基洗干净,在加入生根粉的水里浸泡30min,转移到混有蛭石湿润、透气的土里,用保鲜膜盖上,待观察苜蓿长出新叶2-3个周,揭去保鲜膜,PALM1敲除纯合转基因株系呈现多叶表型,叶尖聚集有4-5个小叶。如图5所示。(7) When the rooted seedlings grow to 6-8cm high, add sterile water and open the lid to cultivate the seedlings for 7 days. Then wash the rooting medium, soak it in water with rooting powder for 30 minutes, and transfer it to a medium mixed with vermiculite. Place in moist, breathable soil, cover with plastic wrap, and wait until the alfalfa grows new leaves for 2-3 weeks. Remove the plastic wrap. The PALM1 knockout homozygous transgenic line will show a multi-leaf phenotype, with 4 clusters at the leaf tips. -5 leaflets. As shown in Figure 5.
(8)PCR鉴定转基因苜蓿,提取步骤(7)的苜蓿DNA为PCR模板,反应体系为:10μLTapMix(2×),cDNA,正/反向引物(10μM)各1μL,2μL苜蓿DNA,6μLddH2O。PCR反应条件为:95℃3min;95℃15s,56℃15s;72℃20s,28个循环;72℃10min。PCR鉴定产物进过琼脂糖凝胶电泳,潮霉素片段约398bp,Cas9片段约547bp,同时具有两个阳性目的片段为转基因植株。引物序列如下:(8) PCR identification of transgenic alfalfa, the alfalfa DNA extracted in step (7) is used as a PCR template, the reaction system is: 10 μL TapMix (2×), cDNA, 1 μL of forward/reverse primer (10 μM), 2 μL of alfalfa DNA, 6 μL of ddH 2 O . PCR reaction conditions were: 95°C for 3 min; 95°C for 15 s, 56°C for 15 s; 72°C for 20 s, 28 cycles; and 72°C for 10 min. The PCR identification product was subjected to agarose gel electrophoresis. The hygromycin fragment was approximately 398 bp and the Cas9 fragment was approximately 547 bp. The two positive target fragments at the same time were considered transgenic plants. The primer sequences are as follows:
hph-F:AAGGAATCGGTCAATACACTACATGGhph-F: AAGGAATCGGTCAATACACTACATGG
hph-R:AAGACCAATGCGGAGCATATACGhph-R:AAGACCAATGCGGAGCATATACG
Cas9-F:AAGAACCGGATCTGCTATCTGCCas9-F: AAGAACCGGATTCTGCTATCTGC
Cas9-R:GGTCGAAGTTGCTCTTGAAGTTGCas9-R: GGTCGAAGTTGCTCTTGAAGTTG
(9)选取阳性紫花苜蓿的DNA为PCR模板,反应体系为:25μLPhanta(9) Select the DNA of positive alfalfa as the PCR template, and the reaction system is: 25 μL Phanta
(2×),cDNA,正/反向引物(10μM)各1μL,2μL苜蓿DNA,21μLddH2O。PCR反应条件为:95℃3min;95℃15s,56℃15s;72℃45s,34个循环;72℃10min。PCR扩增胶回收获得约611bp的片段,然后取出PCR反应产物进行胶回收。引物序列如下:(2×), cDNA, 1 μL each of forward/reverse primer (10 μM), 2 μL alfalfa DNA, 21 μL ddH 2 O. PCR reaction conditions were: 95°C for 3 min; 95°C for 15 s, 56°C for 15 s; 72°C for 45 s, 34 cycles; and 72°C for 10 min. A fragment of approximately 611 bp was obtained through PCR amplification gel recovery, and then the PCR reaction product was removed for gel recovery. The primer sequences are as follows:
MsPALM1测序-F:ACTTGGATGTGGAACCCTA,MsPALM1 sequencing-F:ACTTGGATGTGGAACCCTA,
MsPALM1测序-R:AGCTCAAGATCAAGCTCTTCMsPALM1 Sequencing-R: AGCTCAAGATCAAGCTCTTC
(10)对多叶表型的植株进行PCR鉴定,胶回收产物连接T载体,热激法转化DH5α,鉴定阳性进行单克隆测序,紫花苜蓿为同源四倍体,DNA链全部被编辑为纯合编辑。随机选取其中三株分别编号为KO1、KO2,在编辑位点附近100-150bp内设计引物,加上引物接头,以上述三株纯合苜蓿植株的DNA作为模板进行PCR扩增,并利用Hi-TOM深度测序验证结果:如图4中的B所示,KO1中发生插入1个碱基的编辑类型占比为17.6%,删除3个碱基并插入1个碱基的编辑类型占比为52.9%,删除2个碱基的编辑类型占比为6%,删除8个碱基的编辑类型占比为23.5%;KO2中发生删除4个碱基并插入1个碱基的编辑类型占比为17%,删除9个碱基并插入1个碱基的编辑类型占比为22%,删除9个碱基并插入2个碱基的编辑类型占比为11%,删除9个以上碱基的编辑类型占比为50%。(10) PCR identification was performed on plants with multi-leaf phenotypes. The gel recovery products were connected to T vectors and transformed into DH5α by heat shock method. If positive identification was performed, single clone sequencing was performed. Alfalfa was an autotetraploid, and all DNA chains were edited into pure Co-editor. Three of the plants were randomly selected, numbered KO1 and KO2 respectively, and primers were designed within 100-150 bp near the editing site, and primer adapters were added. The DNA of the above three homozygous alfalfa plants was used as a template for PCR amplification, and Hi- TOM deep sequencing verification results: As shown in B in Figure 4, the proportion of editing types that insert 1 base in KO1 is 17.6%, and the proportion of editing types that delete 3 bases and insert 1 base is 52.9 %, the editing type that deletes 2 bases accounts for 6%, and the editing type that deletes 8 bases accounts for 23.5%; the editing type that deletes 4 bases and inserts 1 base accounts for KO2 17%, the editing type that deletes 9 bases and inserts 1 base accounts for 22%, the editing type that deletes 9 bases and inserts 2 bases accounts for 11%, and the editing type that deletes more than 9 bases accounts for 17%. The editing type accounts for 50%.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310900048.7A CN116716317B (en) | 2023-07-21 | 2023-07-21 | Application of PSK3 gene in promotion of genetic transformation efficiency of alfalfa |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310900048.7A CN116716317B (en) | 2023-07-21 | 2023-07-21 | Application of PSK3 gene in promotion of genetic transformation efficiency of alfalfa |
Publications (2)
Publication Number | Publication Date |
---|---|
CN116716317A CN116716317A (en) | 2023-09-08 |
CN116716317B true CN116716317B (en) | 2024-01-16 |
Family
ID=87871678
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202310900048.7A Active CN116716317B (en) | 2023-07-21 | 2023-07-21 | Application of PSK3 gene in promotion of genetic transformation efficiency of alfalfa |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN116716317B (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104737899A (en) * | 2015-02-07 | 2015-07-01 | 中国农业科学院兰州畜牧与兽药研究所 | Breeding method of multifoliaolate alfalfa through space-flight mutation |
CN108866093A (en) * | 2018-07-04 | 2018-11-23 | 广东三杰牧草生物科技有限公司 | A method of using CRISPR/Cas9 system to alfalfa site-directed point mutation |
CN108949774A (en) * | 2018-07-04 | 2018-12-07 | 广东三杰牧草生物科技有限公司 | A method of Multiblade alfalfa material is obtained using the artificial directed mutants of MsPALM1 |
CN113564180A (en) * | 2021-07-29 | 2021-10-29 | 中国热带农业科学院橡胶研究所 | A kind of rubber tree sulfopeptin gene HbPSK5 and its encoding small peptide and application |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003093425A2 (en) * | 2002-05-04 | 2003-11-13 | The Samuel Roberts Noble Foundation, Inc. | Methods of identifying genes for the manipulation of triterpene saponins |
US20210147844A1 (en) * | 2018-07-04 | 2021-05-20 | Guangdong Sanjie Forage Biotechnology Co., Ltd | Method for Site-Specific Mutagenesis of Medicago Sativa Genes by Using CRISPR/Cas9 System |
-
2023
- 2023-07-21 CN CN202310900048.7A patent/CN116716317B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104737899A (en) * | 2015-02-07 | 2015-07-01 | 中国农业科学院兰州畜牧与兽药研究所 | Breeding method of multifoliaolate alfalfa through space-flight mutation |
CN108866093A (en) * | 2018-07-04 | 2018-11-23 | 广东三杰牧草生物科技有限公司 | A method of using CRISPR/Cas9 system to alfalfa site-directed point mutation |
CN108949774A (en) * | 2018-07-04 | 2018-12-07 | 广东三杰牧草生物科技有限公司 | A method of Multiblade alfalfa material is obtained using the artificial directed mutants of MsPALM1 |
CN113564180A (en) * | 2021-07-29 | 2021-10-29 | 中国热带农业科学院橡胶研究所 | A kind of rubber tree sulfopeptin gene HbPSK5 and its encoding small peptide and application |
Non-Patent Citations (2)
Title |
---|
Allelopathic and Autotoxic Effects of Medicago sativa-Derived Allelochemicals;Bimal Kumar Ghimire;Plants (Basel);第8卷(第7期);全文 * |
木质素合成关键酶咖啡酰辅酶A氧甲基转移酶的研究进展;王华美;基因组学与应用生物学;第33卷(第2期);全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN116716317A (en) | 2023-09-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107988229B (en) | A method for obtaining tiller-altered rice by modifying the OsTAC1 gene using CRISPR-Cas | |
CN106011167B (en) | The method of the application and rice fertility restorer of male sterility gene OsDPW2 | |
CN103602657B (en) | The application of EAT1 gene and recovery EAT1 genetically deficient cause the method for male sterility of rice | |
CN104313034B (en) | The application of male sterility gene OsLAP5 and the method for recovering male sterility of rice | |
US20210269816A1 (en) | Method of Obtaining Multileaflet Medicago Sativa Materials by Means of MsPALM1 Artificial Site-Directed Mutants | |
CN104846009B (en) | A kind of construction method of Rice Engineering maintainer and its application | |
CN113481176B (en) | Application of GA3ox1 protein in regulating alfalfa plant type | |
BR112021014917A2 (en) | METHODS AND COMPOSITIONS TO GENERATE DOMINANT SHORT STATURE ALLELES USING GENOME EDITING | |
CN110408652A (en) | A method for multi-target site-directed mutagenesis of wild apple genes in Xinjiang based on CRISPR/Cas9 system | |
CN115927445A (en) | Application of OsPIL15 Gene in Regulating Water Saving and Drought Resistance in Rice | |
US11365423B2 (en) | Method of obtaining multileaflet Medicago sativa materials by means of MsPALM1 artificial site-directed mutants | |
CN114395581A (en) | Method for creating watermelon hololimbic leaf germplasm through gene editing technology | |
WO2001096583A2 (en) | Removal of selectable markers from transformed cells | |
CN111909956B (en) | Method for blocking or weakening rice OsNAC092 gene expression to improve rice drought resistance | |
CN118440956A (en) | Application of PGIP2 gene in regulating waterlogging tolerance of crops | |
CN116716317B (en) | Application of PSK3 gene in promotion of genetic transformation efficiency of alfalfa | |
KR20200066967A (en) | Method for producing genome-edited Brassica rapa plant having late flowering trait by FT gene editing and the plant thereof | |
CN116926118A (en) | Method for creating male sterility and maintaining dual-purpose line by knocking BnOPR3 gene of rape | |
CN113416735B (en) | Tobacco germ cell specific high expression gene and application thereof | |
CN116121278B (en) | Phosphorylation mutation of CsRBOH5 and its application in improving citrus canker resistance | |
CN119242647B (en) | Mutant of corn auxin export carrier gene ZmPGP and application thereof | |
CN119842802B (en) | A method for increasing corn biomass and/or grain yield by site-directed base mutation of corn ZmGRF3 gene | |
CN117025627B (en) | Tobacco chloride channel protein NtCLC and coding gene and application thereof | |
CN118834905B (en) | Application of medicago sativa gene STMP in improving salt tolerance of medicago sativa | |
CN116063425A (en) | Application of TaGS protein or biological material in regulation of plant salt and alkali tolerance or plant breeding |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20250514 Address after: 266101 Shandong Province, Qingdao city Laoshan District Songling Road No. 189 Patentee after: QINGDAO INSTITUTE OF BIOENERGY AND BIOPROCESS TECHNOLOGY, CHINESE ACADEMY OF SCIENCES Country or region after: China Patentee after: Mengcao ecological environment (Group) Co.,Ltd. Address before: 266101 Shandong Province, Qingdao city Laoshan District Songling Road No. 189 Patentee before: QINGDAO INSTITUTE OF BIOENERGY AND BIOPROCESS TECHNOLOGY, CHINESE ACADEMY OF SCIENCES Country or region before: China |