CN116707754A - A digital image encryption method based on five-dimensional non-equilibrium point hyperchaos - Google Patents
A digital image encryption method based on five-dimensional non-equilibrium point hyperchaos Download PDFInfo
- Publication number
- CN116707754A CN116707754A CN202310694717.XA CN202310694717A CN116707754A CN 116707754 A CN116707754 A CN 116707754A CN 202310694717 A CN202310694717 A CN 202310694717A CN 116707754 A CN116707754 A CN 116707754A
- Authority
- CN
- China
- Prior art keywords
- image
- matrix
- mod
- encryption
- dimensional non
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L9/00—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
- H04L9/001—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols using chaotic signals
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N1/00—Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
- H04N1/44—Secrecy systems
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02D—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
- Y02D30/00—Reducing energy consumption in communication networks
- Y02D30/50—Reducing energy consumption in communication networks in wire-line communication networks, e.g. low power modes or reduced link rate
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Computer Security & Cryptography (AREA)
- Computer Networks & Wireless Communication (AREA)
- Multimedia (AREA)
- Image Processing (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种信息安全领域数字图像加密方法,具体涉及一种基于五维无平衡点超混沌的数字图像加密方法。The invention relates to a digital image encryption method in the field of information security, in particular to a digital image encryption method based on five-dimensional non-equilibrium point hyperchaos.
背景技术Background technique
在科技和互联网传输不断发展的情况下,信息安全在实际生活中的需求也越来越迫切。同时,信息存储和传输过程中的安全问题也得到了越来越多的重视。由于混沌系统的初值敏感性和不可预测性等独有的本质特性,使得混沌系统具有巨大的应用价值,其一就非常适合于数字图像加密。With the continuous development of technology and Internet transmission, the demand for information security in real life is becoming more and more urgent. At the same time, more and more attention has been paid to the security issues in the process of information storage and transmission. Due to the unique essential characteristics of the initial value sensitivity and unpredictability of the chaotic system, the chaotic system has great application value, one of which is very suitable for digital image encryption.
目前,数字图像的加密方法不仅耗时,而且难以满足现代数据量大、高冗余性及数据点之间高相关性的数字图像的加密需求,出现了许多的问题与不足,例如,低维混沌系统通常具有较低的维度和较简单的动力学规律,这导致其行为相对可预测。攻击者可以通过分析系统的动力学规律或者通过观察少量的密文和明文对来推测出加密的关键参数或者密钥,从而破解加密。而五维无平衡点超混沌系统的动力学特性非常复杂,具有高度的混沌性和随机性。这使得攻击者难以预测系统的行为和密钥,提高了加密的安全性。相较于低维混沌系统,五维无平衡点超混沌系统更具有不可预测性,增加了破解的难度。At present, the encryption method of digital image is not only time-consuming, but also difficult to meet the encryption requirements of modern digital image with large amount of data, high redundancy and high correlation between data points. Chaotic systems generally have lower dimensions and simpler dynamics, which lead to relatively predictable behavior. The attacker can deduce the key parameters or keys of the encryption by analyzing the dynamics of the system or by observing a small number of ciphertext and plaintext pairs, so as to crack the encryption. The dynamics of the five-dimensional non-equilibrium hyperchaotic system are very complex, with a high degree of chaos and randomness. This makes it difficult for attackers to predict the behavior of the system and keys, improving the security of encryption. Compared with the low-dimensional chaotic system, the five-dimensional non-equilibrium hyper-chaotic system is more unpredictable, which increases the difficulty of cracking.
发明内容Contents of the invention
本发明的目的在于提供一种基于五维无平衡点超混沌的数字图像加密方法,该方法利用超混沌隐藏吸引子的随机序列对明文进行置乱和扩散处理,获得类似随机噪声的密文,此方法提高了密钥敏感性,具有高度安全性、快速加密速度、适应性和灵活性、抗噪性能等优势。The purpose of the present invention is to provide a digital image encryption method based on five-dimensional non-equilibrium point hyperchaos, which uses the random sequence of hyperchaotic hidden attractors to scramble and diffuse the plaintext to obtain ciphertext similar to random noise, This method improves the key sensitivity and has the advantages of high security, fast encryption speed, adaptability and flexibility, and anti-noise performance.
本发明所采用的技术方案如下:The technical scheme adopted in the present invention is as follows:
一种基于五维无平衡点超混沌的数字图像加密方法,所述方法步骤如下:A digital image encryption method based on five-dimensional non-equilibrium point hyperchaos, the steps of the method are as follows:
步骤1,通过对五维无平衡点超混沌系统选取合适的参数及初值,通过特定的方法实现混沌密码生成模块产生五个随机矩阵,为后面D的扩散和置乱做准备;Step 1, by selecting appropriate parameters and initial values for the five-dimensional non-equilibrium point hyperchaotic system, the chaotic password generation module generates five random matrices through a specific method to prepare for the subsequent diffusion and scrambling of D;
步骤1具体按照以下步骤实施:Step 1 is specifically implemented according to the following steps:
步骤1.1,将[x0,y0,z0,u0,v0]作为五维无平衡点超混沌系统的初始值,取[0.1,0.1,-5,2.5,2],其中五维无平衡点超混沌系统(1)如下所示:Step 1.1, take [x 0 ,y 0 ,z 0 ,u 0 ,v 0 ] as the initial value of the five-dimensional non-equilibrium hyper-chaotic system, and take [0.1,0.1,-5,2.5,2], where the five-dimensional The non-equilibrium point hyperchaotic system (1) is as follows:
系统(1)中b,c为系统的控制参数,x,y,z,u,v为系统的状态变量,给定的明文灰度图像P大小为M×N,利用龙格库塔算法来迭代MN+r次,其中r=r1+r2+r3+r4,去除前面r个值,得到长度为MN的变量序列{xi},{yi},{zi},{wi},{vi},i=1,2,…MN;In system (1), b and c are the control parameters of the system, x, y, z, u, v are the state variables of the system, and the given plaintext gray image P has a size of M×N, and the Runge-Kutta algorithm is used to Iterate MN+r times, where r=r 1 +r 2 +r 3 +r 4 , remove the previous r values, and get a variable sequence {x i },{y i },{z i },{ w i },{v i }, i=1,2,...MN;
步骤1.2,对序列{xi},{yi},{zi},{wi},{vi},最后一位数值进行如下计算:Step 1.2, calculate the last digit of the sequence {x i },{y i },{z i },{w i },{v i }, as follows:
公式(2)的作用是将xMN,yMN,zMN,wMN,vMN大小限制在[-10,10];The function of formula (2) is to limit the size of x MN , y MN , z MN , w MN , and v MN to [-10,10];
步骤1.3,将作为系统(1)的初始值,迭代MN+r次,此时,r=r5+r2+r3+r4,去除前面r个值,得到长度为MN的变量序列/> Step 1.3, will As the initial value of system (1), iterate MN+r times, at this time, r=r 5 +r 2 +r 3 +r 4 , remove the previous r values, and obtain a variable sequence with length MN/>
步骤1.4,将上述步骤中的状态序列进行以下运算,得到五个随机矩阵X,Y,Z,W,V,X,V用于顺向扩散模块,Y,V用于逆向扩散模块,Z,W用于置乱模块;Step 1.4, perform the following operations on the state sequence in the above steps to obtain five random matrices X, Y, Z, W, V, X, V for the forward diffusion module, Y, V for the reverse diffusion module, Z, W is used to scramble the module;
u=1,2,…M,v=1,2,…N。X,V用于顺向扩散模块,Y,V用于逆向扩散模块,Z,W用于置乱模块;u=1,2,...M, v=1,2,...N. X, V are used for forward diffusion module, Y, V are used for reverse diffusion module, Z, W are used for scrambling module;
步骤2,对原始明文图像P进行顺向扩散处理,将明文P转化成矩阵R;步骤2具体按Step 2, perform forward diffusion processing on the original plaintext image P, and convert the plaintext P into a matrix R; Step 2 is specifically as follows
照以下步骤实施:Follow the steps below to implement:
步骤2.1,将P(1,j)转化成R(1,j),j=2,3,…N;Step 2.1, convert P(1,j) into R(1,j), j=2,3,...N;
R(1,1)=mod(P(1,1)+X(1,1)+V(1,1)+r1+r3+r5,256) (4)R(1,1)=mod(P(1,1)+X(1,1)+V(1,1)+r 1 +r 3 +r 5 ,256) (4)
R(1,j)=mod(P(1,j)+X(1,j)+R(1,j-1)+V(1,j),256) (5)R(1,j)=mod(P(1,j)+X(1,j)+R(1,j-1)+V(1,j),256) (5)
步骤2.2,将P(i,1)转化成R(i,1),i=2,3,…M;Step 2.2, converting P(i,1) into R(i,1), i=2,3,...M;
R(i,1)=mod(P(i,1)+X(i,1)+V(i,1)+R(i-1,1),256) (6)R(i,1)=mod(P(i,1)+X(i,1)+V(i,1)+R(i-1,1),256) (6)
步骤2.3,将P(i,j)转化R(i,j),i=2,3,…M,j=2,3,…N;Step 2.3, converting P(i,j) into R(i,j), i=2,3,...M, j=2,3,...N;
R(i,j)=mod(P(i,j)+X(i-1,j)+V(i,j)+R(i,j-1)+R(i-1,j),256) (7)R(i,j)=mod(P(i,j)+X(i-1,j)+V(i,j)+R(i,j-1)+R(i-1,j), 256) (7)
步骤3,对矩阵R进行置乱处理,将步骤2的像素点置换位置;Step 3, scrambling the matrix R, and replacing the pixel points in step 2;
步骤3具体按照以下步骤实施:Step 3 is specifically implemented according to the following steps:
步骤3.1,计算R(i,j)所在行的全部元素(不含R(i,j))的和,记作rsi,即Step 3.1, calculate the sum of all elements (excluding R(i,j)) in the row where R(i,j) is located, denoted as rs i , namely
rsi=sum(R(i,1:N))-R(i,j) (8)rs i = sum(R(i,1:N))-R(i,j) (8)
步骤3.2,计算R(i,j)所在列的全部元素(不含R(i,j))的和,记作csj即Step 3.2, calculate the sum of all elements (excluding R(i,j)) in the column where R(i,j) is located, denoted as cs j
csj=sum(R(1:M,j))-R(i,j) (9)cs j = sum(R(1:M,j))-R(i,j) (9)
步骤3.3,计算参数的值;Step 3.3, Calculation Parameters value;
步骤3.4,按照步骤3.1至步骤3.3,先置乱元素R(M,1:N-1),再置乱元素R(1:M-1,N),然后自上而下从左到右来置乱元素R(1:M-1,1:N-1),最后再置乱元素R(M,N);Step 3.4, according to step 3.1 to step 3.3, first scramble the element R(M,1:N-1), then scramble the element R(1:M-1,N), and then from top to bottom from left to right Shuffle the element R(1:M-1,1:N-1), and finally shuffle the element R(M,N);
步骤4,将置乱后得到的图像记作D,进行逆向扩散处理,将矩阵D转换矩阵C,生成密文图像;Step 4, denote the image obtained after scrambling as D, perform reverse diffusion processing, convert matrix D to matrix C, and generate a ciphertext image;
步骤4具体按照以下步骤实施:Step 4 is specifically implemented according to the following steps:
步骤4.1,将D(M,j)转化成C(M,j),j=N-1,N-2,…1;Step 4.1, converting D(M,j) into C(M,j), j=N-1, N-2,...1;
C(M,N)=mod(D(M,N)+Y(M,N)+V(M,N)+r2+r4+r5,256) (12)C(M,N)=mod(D(M,N)+Y(M,N)+V(M,N)+r 2 +r 4 +r 5 ,256) (12)
C(M,j)=mod(D(M,j)+Y(M,j)+V(M,j)+C(M,j+1),256) (13)C(M,j)=mod(D(M,j)+Y(M,j)+V(M,j)+C(M,j+1),256) (13)
步骤4.2,将D(i,N)转化成C(i,N),i=M-1,M-2,…1;Step 4.2, converting D(i, N) into C(i, N), i=M-1, M-2,...1;
C(i,N)=mod(D(i,N)+Y(i,N)+V(i,N)+C(i+1,N),256) (14)C(i,N)=mod(D(i,N)+Y(i,N)+V(i,N)+C(i+1,N),256) (14)
步骤4.3,D(i,j)转化成C(i,j),j=N-1,N-2…1,i=M-1,M-2,…1;Step 4.3, D(i, j) is transformed into C(i, j), j=N-1, N-2...1, i=M-1, M-2,...1;
C(i,j)=mod(D(i,j)+Y(i,j)+V(i,j)+C(i+1,j)+C(i,j+1),256) (15)C(i,j)=mod(D(i,j)+Y(i,j)+V(i,j)+C(i+1,j)+C(i,j+1),256) (15)
通过步骤4.1至步骤4.3的逆向扩散处理,得到密文矩阵C,即得到加密图像。Through the reverse diffusion process from step 4.1 to step 4.3, the ciphertext matrix C is obtained, that is, the encrypted image is obtained.
本发明显著效果如下:The obvious effect of the present invention is as follows:
(1)本发明一种基于五维无平衡点超混沌系统的图像加密方法,五维无平衡点超混沌系统是一种高度复杂和不可预测的系统,具有极高的安全性。其非线性动力学特性和随机性质使得攻击者难以破解或逆向工程算法,从而保护图像的机密性。(1) The present invention is an image encryption method based on a five-dimensional non-equilibrium hyper-chaotic system. The five-dimensional non-equilibrium hyper-chaotic system is a highly complex and unpredictable system with extremely high security. Its nonlinear dynamics and random nature make it difficult for attackers to crack or reverse engineer the algorithm, thereby protecting the confidentiality of the image.
(2)本发明一种基于五维无平衡点超混沌系统的图像加密方法,该算法通过引入五个状态变量,利用五维超混沌系统对图像进行加密。这些变量之间的相互作用和混沌行为导致图像像素之间的复杂混淆,使得加密后的图像在视觉和统计特性上不再具有明显的相关性,增加了攻击者解密的难度。(2) An image encryption method based on a five-dimensional non-equilibrium hyper-chaotic system of the present invention, the algorithm utilizes a five-dimensional hyper-chaotic system to encrypt images by introducing five state variables. The interaction and chaotic behavior among these variables lead to complex confusion among image pixels, making the encrypted image no longer have obvious correlation in visual and statistical properties, increasing the difficulty for attackers to decrypt.
(3)本发明一种基于五维无平衡点超混沌系统的图像加密方法,生成五个随机矩阵,其中一个随机矩阵在顺向、逆向扩散中都有体现,且每个随机矩阵都可以看作是对图像进行不同维度上的扰动和混淆。通过引入五个随机矩阵,可以在更广泛的维度上操作图像像素,增加了加密的难度和复杂性。(3) An image encryption method based on a five-dimensional non-equilibrium hyperchaotic system of the present invention generates five random matrices, one of which is reflected in forward and reverse diffusion, and each random matrix can be viewed The operation is to perturb and confuse the image in different dimensions. By introducing five random matrices, image pixels can be manipulated in a wider range of dimensions, increasing the difficulty and complexity of encryption.
(4)本发明一种基于五维无平衡点超混沌系统的图像加密方法,可以增加随机性、维度和混淆性,提供更高的安全性和抵御攻击的能力。这种方法可以加强图像的保密性,使得加密后的图像更加安全和难以被破解。(4) An image encryption method based on a five-dimensional non-equilibrium hyperchaotic system of the present invention can increase randomness, dimension and confusion, and provide higher security and ability to resist attacks. This method can strengthen the confidentiality of the image, making the encrypted image more secure and difficult to be cracked.
附图说明Description of drawings
为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍。In order to more clearly illustrate the specific embodiments of the present invention or the technical solutions in the prior art, the following will briefly introduce the drawings that need to be used in the description of the specific embodiments or the prior art.
图1是本发明加密方法的图像加密流程图;Fig. 1 is the image encryption flowchart of encryption method of the present invention;
图2是本发明加密方法的五维无平衡点超混沌吸引子图;Fig. 2 is the five-dimensional non-equilibrium hyperchaotic attractor graph of encryption method of the present invention;
图3是本发明加密方法的五维无平衡点超混沌系统电路仿真图;Fig. 3 is a five-dimensional non-equilibrium hyperchaotic system circuit simulation diagram of the encryption method of the present invention;
图4是本发明加密方法的“Baboon”加密解密图;Fig. 4 is " Baboon " encryption and decryption figure of encryption method of the present invention;
图5是本发明加密方法的直方图;Fig. 5 is a histogram of the encryption method of the present invention;
图6是本发明加密方法的像素相关性分析图;Fig. 6 is a pixel correlation analysis diagram of the encryption method of the present invention;
图7是本发明加密方法的密钥敏感性测试图。Fig. 7 is a key sensitivity test diagram of the encryption method of the present invention.
具体实施方式Detailed ways
下面将结合附图对本发明的技术方案作进一步详细的说明。The technical solution of the present invention will be described in further detail below in conjunction with the accompanying drawings.
本发明一种基于五维无平衡点超混沌系统的图像加密方法,如图1所示,具体实施步骤如下所示:An image encryption method based on a five-dimensional non-equilibrium hyperchaotic system of the present invention, as shown in Figure 1, the specific implementation steps are as follows:
步骤1,通过对五维无平衡点超混沌系统选取合适的参数及初值,通过特定的方法实现混沌密码生成模块产生五个随机矩阵,为后面D的扩散和置乱做准备;Step 1, by selecting appropriate parameters and initial values for the five-dimensional non-equilibrium point hyperchaotic system, the chaotic password generation module generates five random matrices through a specific method to prepare for the subsequent diffusion and scrambling of D;
步骤1具体按照以下步骤实施:Step 1 is specifically implemented according to the following steps:
步骤1.1,将[x0,y0,z0,u0,v0]作为五维无平衡点超混沌系统的初始值,取[0.1,0.1,-5,2.5,2],其中五维无平衡点超混沌系统(1)如下所示:Step 1.1, take [x 0 ,y 0 ,z 0 ,u 0 ,v 0 ] as the initial value of the five-dimensional non-equilibrium hyper-chaotic system, and take [0.1,0.1,-5,2.5,2], where the five-dimensional The non-equilibrium point hyperchaotic system (1) is as follows:
系统(1)中b,c为系统的控制参数,x,y,z,u,v为系统的状态变量,由35x=0,x+y=0得到x=0,y=0,代入到2y2-xu-28.45,无法满足等式条件,因此系统(1)没有平衡点。In the system (1), b and c are the control parameters of the system, x, y, z, u, v are the state variables of the system, x=0, y=0 are obtained from 35x=0, x+y=0, and are substituted into 2y 2 -xu-28.45, cannot satisfy the condition of equality, so the system (1) has no equilibrium point.
固定参数b=c=1,初值选取(0.1,0.1,-5,2.5,2)时,系统(1)的部分相轨迹图为图2(a)和图2(b)。When the fixed parameter b=c=1 and the initial value is (0.1,0.1,-5,2.5,2), the partial phase locus diagrams of system (1) are shown in Fig. 2(a) and Fig. 2(b).
固定参数b=1,初值选取(0.1,0.1,-5,2.5,2),当c=0.25时,五维无平衡点超混沌系统(1)吸引子类型为图2(c)即一周期吸引子;The fixed parameter b=1, the initial value selection (0.1,0.1,-5,2.5,2), when c=0.25, the five-dimensional non-equilibrium point hyperchaotic system (1) attractor type is shown in Figure 2(c) that is periodic attractor;
当c=0.15时,五维无平衡点超混沌系统(1)吸引子类型为图2(d)即四周期吸引子;When c=0.15, the five-dimensional non-equilibrium point hyperchaotic system (1) attractor type is the four-period attractor in Figure 2(d);
当c=0.17时,五维无平衡点超混沌系统(1)吸引子类型为图2(e)即准周期吸引子;When c=0.17, the attractor type of the five-dimensional non-equilibrium hyperchaotic system (1) is the quasi-periodic attractor in Figure 2(e);
当c=0.30时,五维无平衡点超混沌系统(1)吸引子类型为图2(f)即混沌吸引子;When c=0.30, the five-dimensional non-equilibrium hyperchaotic system (1) attractor type is shown in Figure 2(f), which is the chaotic attractor;
当c=0.50时,五维无平衡点超混沌系统(1)吸引子类型为图2(g)即超混沌吸引子;When c=0.50, the attractor type of the five-dimensional non-equilibrium hyperchaotic system (1) is the hyperchaotic attractor in Figure 2(g);
当c取不同值时的Lyapunov指数和吸引子类型,如表1所示:The Lyapunov exponent and attractor type when c takes different values are shown in Table 1:
表1当c取不同值时的Lyapunov指数和吸引子类型Table 1 Lyapunov exponent and attractor type when c takes different values
利用以上所示的系统(1),固定参数b=1,c=0.50,初值选取(0.1,0.1,-5,2.5,2),考虑给定的明文灰度图像P大小为M×N,利用龙格库塔算法来迭代MN+r次,其中r=r1+r2+r3+r4,去除前面r个值,得到长度为MN的变量序列{xi},{yi},{zi},{wi},{vi},i=1,2,…MN。Using the system (1) shown above, the fixed parameters b=1, c=0.50, the initial value selection (0.1,0.1,-5,2.5,2), considering the given plaintext grayscale image P size is M×N , use the Runge-Kutta algorithm to iterate MN+r times, where r=r 1 +r 2 +r 3 +r 4 , remove the previous r values, and obtain a variable sequence {xi }, { y i of length MN },{z i },{w i },{v i }, i=1,2,...MN.
步骤1.2,对序列{xi},{yi},{zi},{wi},{vi},最后一位数值进行如下计算:Step 1.2, calculate the last digit of the sequence {x i },{y i },{z i },{w i },{v i }, as follows:
公式(2)的作用是将xMN,yMN,zMN,wMN,vMN大小限制在[-10,10]。The function of formula (2) is to limit the sizes of x MN , y MN , z MN , w MN , and v MN to [-10,10].
步骤1.3,将作为系统(1)的初始值,迭代MN+r次,此时,r=r5+r2+r3+r4,去除前面r个值,得到长度为MN的变量序列/> Step 1.3, will As the initial value of system (1), iterate MN+r times, at this time, r=r 5 +r 2 +r 3 +r 4 , remove the previous r values, and obtain a variable sequence with length MN/>
步骤1.4,将上述步骤中的状态序列进行以下运算,得到五个随机矩阵X,Y,Z,W,V,X,V用于顺向扩散模块,Y,V用于逆向扩散模块,Z,W用于置乱模块。Step 1.4, perform the following operations on the state sequence in the above steps to obtain five random matrices X, Y, Z, W, V, X, V for the forward diffusion module, Y, V for the reverse diffusion module, Z, W is used to scramble modules.
u=1,2,…M,v=1,2,…N。X,V用于顺向扩散模块,Y,V用于逆向扩散模块,Z,W用于置乱模块。u=1,2,...M, v=1,2,...N. X, V are for the forward diffusion module, Y, V are for the reverse diffusion module, and Z, W are for the scrambling module.
步骤2,对原始明文图像P进行顺向扩散处理,将明文P转化成矩阵R;步骤2具体按Step 2, perform forward diffusion processing on the original plaintext image P, and convert the plaintext P into a matrix R; Step 2 is specifically as follows
照以下步骤实施:Follow the steps below to implement:
步骤2.1,将P(1,j)转化成R(1,j),j=2,3,…N。Step 2.1, convert P(1,j) into R(1,j), j=2,3,...N.
R(1,1)=mod(P(1,1)+X(1,1)+V(1,1)+r1+r3+r5,256) (4)R(1,1)=mod(P(1,1)+X(1,1)+V(1,1)+r 1 +r 3 +r 5 ,256) (4)
R(1,j)=mod(P(1,j)+X(1,j)+R(1,j-1)+V(1,j),256) (5)R(1,j)=mod(P(1,j)+X(1,j)+R(1,j-1)+V(1,j),256) (5)
步骤2.2,将P(i,1)转化成R(i,1),i=2,3,…M。Step 2.2, convert P(i,1) into R(i,1), i=2,3,...M.
R(i,1)=mod(P(i,1)+X(i,1)+V(i,1)+R(i-1,1),256) (6)R(i,1)=mod(P(i,1)+X(i,1)+V(i,1)+R(i-1,1),256) (6)
步骤2.3,将P(i,j)转化R(i,j),i=2,3,…M,j=2,3,…N。Step 2.3, converting P(i,j) into R(i,j), i=2,3,...M, j=2,3,...N.
R(i,j)=mod(P(i,j)+X(i-1,j)+V(i,j)+R(i,j-1)+R(i-1,j),256) (7)R(i,j)=mod(P(i,j)+X(i-1,j)+V(i,j)+R(i,j-1)+R(i-1,j), 256) (7)
步骤3,对矩阵R进行置乱处理,将步骤2的像素点置换位置;Step 3, scrambling the matrix R, and replacing the pixel points in step 2;
步骤3具体按照以下步骤实施:Step 3 is specifically implemented according to the following steps:
步骤3.1,计算R(i,j)所在行的全部元素(不含R(i,j))的和,记作rsi,即Step 3.1, calculate the sum of all elements (excluding R(i,j)) in the row where R(i,j) is located, denoted as rs i , namely
rsi=sum(R(i,1:N))-R(i,j) (8)rs i = sum(R(i,1:N))-R(i,j) (8)
步骤3.2,计算R(i,j)所在列的全部元素(不含R(i,j))的和,记作csj即Step 3.2, calculate the sum of all elements (excluding R(i,j)) in the column where R(i,j) is located, denoted as cs j
csj=sum(R(1:M,j))-R(i,j) (9)cs j = sum(R(1:M,j))-R(i,j) (9)
步骤3.3,计算参数的值。Step 3.3, Calculation Parameters value.
步骤3.4,按照步骤3.1至步骤3.3,先置乱元素R(M,1:N-1),再置乱元素R(1:M-1,N),然后自上而下从左到右来置乱元素R(1:M-1,1:N-1),最后再置乱元素R(M,N)。Step 3.4, according to step 3.1 to step 3.3, first scramble the element R(M,1:N-1), then scramble the element R(1:M-1,N), and then from top to bottom from left to right Scramble the elements R(1:M-1,1:N-1), and finally scramble the elements R(M,N).
步骤4,将置乱后得到的图像记作D,进行逆向扩散处理,将矩阵D转换矩阵C,生成密文图像。Step 4, denote the image obtained after scrambling as D, perform reverse diffusion processing, transform matrix D into matrix C, and generate a ciphertext image.
步骤4具体按照以下步骤实施:Step 4 is specifically implemented according to the following steps:
步骤4.1,将D(M,j)转化成C(M,j),j=N-1,N-2,…1。Step 4.1, converting D(M,j) into C(M,j), j=N-1, N-2,...1.
C(M,N)=mod(D(M,N)+Y(M,N)+V(M,N)+r2+r4+r5,256) (12)C(M,N)=mod(D(M,N)+Y(M,N)+V(M,N)+r 2 +r 4 +r 5 ,256) (12)
C(M,j)=mod(D(M,j)+Y(M,j)+V(M,j)+C(M,j+1),256) (13)C(M,j)=mod(D(M,j)+Y(M,j)+V(M,j)+C(M,j+1),256) (13)
步骤4.2,将D(i,N)转化成C(i,N),i=M-1,M-2,…1。Step 4.2, convert D(i,N) into C(i,N), i=M-1, M-2,...1.
C(i,N)=mod(D(i,N)+Y(i,N)+V(i,N)+C(i+1,N),256) (14)C(i,N)=mod(D(i,N)+Y(i,N)+V(i,N)+C(i+1,N),256) (14)
步骤4.3,D(i,j)转化成C(i,j),j=N-1,N-2…1,i=M-1,M-2,…1。Step 4.3, D(i,j) is transformed into C(i,j), j=N-1, N-2...1, i=M-1, M-2,...1.
C(i,j)=mod(D(i,j)+Y(i,j)+V(i,j)+C(i+1,j)+C(i,j+1),256) (15)C(i,j)=mod(D(i,j)+Y(i,j)+V(i,j)+C(i+1,j)+C(i,j+1),256) (15)
通过步骤4.1至步骤4.3的逆向扩散处理,得到密文矩阵C,即得到加密图像。Through the reverse diffusion process from step 4.1 to step 4.3, the ciphertext matrix C is obtained, that is, the encrypted image is obtained.
对本发明一种基于五维无平衡点超混沌系统的图像加密方法,进行性能测试与分析,具体包括以下部分:A kind of image encryption method based on five-dimensional non-equilibrium point hyperchaotic system of the present invention, carry out performance test and analysis, specifically include the following parts:
①加解密效果分析①Analysis of encryption and decryption effects
②直方图分析② Histogram analysis
③信息熵分析③Information entropy analysis
④相邻像素相关性分析④Adjacent pixel correlation analysis
⑤密钥敏感性分析⑤Key sensitivity analysis
⑥运行效率分析⑥Operation efficiency analysis
为证明本发明的普适性,测试图像全部从国际标准测试图像库中选取。In order to prove the universality of the present invention, the test images are all selected from the international standard test image library.
加解密效果分析Analysis of encryption and decryption effects
选择“Baboon”图(512×512)做加解密测试,如图4所示;从图4(b)可以看出加密后的图像信息呈现为无视觉信息的噪声,很好的隐藏了原始图像信息;用正确密钥解密后的图像与原始图像完全相同,如图4(c)所示。表明,本发明的算法能够实现对图像的加密与解密,是可行的。Select the "Baboon" image (512×512) to do the encryption and decryption test, as shown in Figure 4; from Figure 4(b), it can be seen that the encrypted image information appears as noise without visual information, which well hides the original image information; the image decrypted with the correct key is exactly the same as the original image, as shown in Figure 4(c). It shows that the algorithm of the present invention can realize the encryption and decryption of the image, and it is feasible.
直方图分析Histogram analysis
直方图用于分析数字图像中各灰度值出现的频率,加密图像的理想直方图应是平坦的,在图5(a)中,明文直方图是不平坦的,在图5(b)中,加密图像的直方图是平坦的。可以看出,本发明的算法得到的密文图像可以很好地隐藏有用的信息,同时也可以抵御统计攻击。The histogram is used to analyze the frequency of each gray value in the digital image. The ideal histogram of the encrypted image should be flat. In Figure 5(a), the plaintext histogram is not flat, and in Figure 5(b) , the histogram of the encrypted image is flat. It can be seen that the ciphertext image obtained by the algorithm of the present invention can well hide useful information, and can also resist statistical attacks.
信息熵分析Information entropy analysis
平坦的直方图所对应的图像具有较大的信息熵。它反映了图像信息的不确定性,信息熵越大,不确定性越大,可视信息越少,安全性就越高。信息熵数学公式如下:The image corresponding to the flat histogram has larger information entropy. It reflects the uncertainty of image information, the greater the information entropy, the greater the uncertainty, and the less visible information, the higher the security. The mathematical formula of information entropy is as follows:
其中,h(l)是灰度值l出现的概率,L是像素的灰度等级数,对于完全随机图像,若灰度等级数L=256,其信息熵的理论值为Hl=8。表2给出了三个图像信息熵测试结果。从表2可以看出,明文的信息熵与Hi有着较大的区别,加密图像的信息熵接近Hi。因此,本发明的算法,密文的可视信息极少,安全性极高。Among them, h(l) is the probability of occurrence of gray value l, and L is the number of gray levels of pixels. For a completely random image, if the number of gray levels is L=256, the theoretical value of its information entropy is H l =8. Table 2 shows the test results of three image information entropy. It can be seen from Table 2 that the information entropy of the plaintext is quite different from H i , and the information entropy of the encrypted image is close to H i . Therefore, in the algorithm of the present invention, the visible information of the ciphertext is very little, and the security is extremely high.
表2信息熵测试结果Table 2 Information entropy test results
相邻像素相关性分析Adjacent Pixel Correlation Analysis
相邻像素点之间的相关性的程度可以作为评价加密算法性能好坏的一个重要指标,即就是计算相邻像素点之间的相关系数。原文图像在水平、垂直和对角线方向上的相邻像素具有很强的相关性,加密图像的相邻像素应该不具有明显的相关性。图像相邻像素点之间的相关系数的绝对值越靠近0,说明该加密算法的性能越好。The degree of correlation between adjacent pixels can be used as an important index to evaluate the performance of the encryption algorithm, that is, to calculate the correlation coefficient between adjacent pixels. The adjacent pixels of the original image in the horizontal, vertical and diagonal directions have a strong correlation, and the adjacent pixels of the encrypted image should not have obvious correlation. The closer the absolute value of the correlation coefficient between adjacent pixels of the image is to 0, the better the performance of the encryption algorithm.
假设从考察图像中随机选取N对相邻像素点,记录灰度值为Assuming that N pairs of adjacent pixels are randomly selected from the survey image, the recorded gray value is
(ui,vi),i=1,2,3…N计算图像的相关系数rxy可以通过以下公式:(u i , v i ), i=1,2,3...N Calculate the correlation coefficient r xy of the image through the following formula:
对于本发明测试,其相邻像素相关系数的计算结果如表3所示,相关情况如图6所示。这些图像可以定性说明该加密方案性能较好,可以有效的去除相邻像素点的相关性。For the test of the present invention, the calculation results of the correlation coefficients of adjacent pixels are shown in Table 3, and the related situation is shown in FIG. 6 . These images can qualitatively show that the encryption scheme has better performance and can effectively remove the correlation of adjacent pixels.
表3相邻像素相关系数Table 3 Adjacent pixel correlation coefficient
密钥敏感性分析Key Sensitivity Analysis
对原始密钥做出微小的改变,得到新的密钥。利用两个密钥分别得到不同的密文图像,通过分析两幅密文图像的差别情况,进而来判断该加密算法是否具有密钥敏感性。Make a small change to the original key to get a new key. Using two keys to obtain different ciphertext images respectively, by analyzing the difference between the two ciphertext images, it is judged whether the encryption algorithm has key sensitivity.
定性分析:为测试密钥敏感性,使用参数b=1,c=0.50,初值选取(0.1,0.1,-5,2.5,2),密钥选取K1=[0.1 0.1 -5 2.5 2 123 205 131 74 33],K2=[0.1+h 0.1 -5 2.52 123 205 131 74 33]。对“Baboon”进行加解密。图7(c)表示用正确密钥解密的图像,图7(f)表示正确密钥作微小改变后的解密的图像。Qualitative analysis: To test the sensitivity of the key, use parameters b=1, c=0.50, select the initial value (0.1,0.1,-5,2.5,2), and select the key K1=[0.1 0.1 -5 2.5 2 123 205 131 74 33], K2 = [0.1+h 0.1 -5 2.52 123 205 131 74 33]. Encrypt and decrypt "Baboon". Figure 7(c) shows the image decrypted with the correct key, and Figure 7(f) shows the decrypted image with the correct key slightly altered.
定量分析:一般用NPCR(像素变化率)和UACI(归一化平均变化强度)来衡量敏感性,对于任意图像大小为M×N,记作R1,R2,NPCR和UACI的计算公式如下:Quantitative analysis: NPCR (pixel rate of change) and UACI (normalized average change intensity) are generally used to measure sensitivity. For any image size of M×N, it is recorded as R 1 and R 2 . The calculation formulas of NPCR and UACI are as follows :
对于本发明的测试,从密钥空间内随机选取8组密钥。实验8次,每次为一组密钥中的某一元素添加一个增量,且每次操作的元素不同。其中x0,y0,z0,u0,v0的改变量为1/h。计算8次实验得到的NPCR和UACI并求取平均值,结果如表4所示。从表4的结果可以看出,NPCR和UACI的值都非常接近于理想值。因此,本发明的图像加密算法具有很强的抗差分攻击能力。For the test of the present invention, 8 groups of keys are randomly selected from the key space. Experiment 8 times, add an increment to a certain element in a group of keys each time, and the elements of each operation are different. Where x 0 , y 0 , z 0 , u 0 , v 0 change by 1/h. Calculate the NPCR and UACI obtained from 8 experiments and calculate the average value. The results are shown in Table 4. From the results in Table 4, it can be seen that the values of NPCR and UACI are very close to the ideal values. Therefore, the image encryption algorithm of the present invention has strong anti-differential attack capability.
表4密文敏感性测试结果Table 4 Ciphertext sensitivity test results
运行效率分析Operational Efficiency Analysis
为了衡量本发明的加解密运行效率,此次在MATLAB环境下对不同大小的图像进行加密测试,加密30次取其平均时间,如表5所示。从表5中可以看出,本发明的图像加密算法是有效的,而且速度非常快。In order to measure the encryption and decryption operation efficiency of the present invention, the encryption test is performed on images of different sizes under the MATLAB environment, and the average time of encryption is taken 30 times, as shown in Table 5. It can be seen from Table 5 that the image encryption algorithm of the present invention is effective and very fast.
表5加解密平均运行时间Table 5 Encryption and decryption average running time
本发明公开了一种基于五维无平衡点超混沌系统的图像加密方法,利用五维超混沌隐藏吸引子的随机序列对明文进行置乱和扩散处理,获得类似随机噪声的密文。本发明基于五维无平衡点超混沌系统的图像加密算法具有高度的安全性、混淆性和快速的加密速度,提高了密钥敏感性,适用于大规模数据,并且具有强大的抗攻击能力。使得该方法成为一种可行的选择,用于保护图像的隐私和机密性。The invention discloses an image encryption method based on a five-dimensional non-equilibrium hyperchaotic system, which uses a random sequence of five-dimensional hyperchaotic hidden attractors to scramble and diffuse plaintext to obtain ciphertext similar to random noise. The image encryption algorithm based on the five-dimensional non-equilibrium point hyperchaotic system of the present invention has high security, confusion and fast encryption speed, improves key sensitivity, is suitable for large-scale data, and has strong anti-attack ability. making this method a viable option for preserving the privacy and confidentiality of images.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310694717.XA CN116707754A (en) | 2023-06-13 | 2023-06-13 | A digital image encryption method based on five-dimensional non-equilibrium point hyperchaos |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310694717.XA CN116707754A (en) | 2023-06-13 | 2023-06-13 | A digital image encryption method based on five-dimensional non-equilibrium point hyperchaos |
Publications (1)
Publication Number | Publication Date |
---|---|
CN116707754A true CN116707754A (en) | 2023-09-05 |
Family
ID=87828843
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202310694717.XA Pending CN116707754A (en) | 2023-06-13 | 2023-06-13 | A digital image encryption method based on five-dimensional non-equilibrium point hyperchaos |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN116707754A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117040745A (en) * | 2023-10-10 | 2023-11-10 | 中国电子科技集团公司第三十研究所 | Key extraction method, device, equipment and medium based on conservative hyperchaotic system |
-
2023
- 2023-06-13 CN CN202310694717.XA patent/CN116707754A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117040745A (en) * | 2023-10-10 | 2023-11-10 | 中国电子科技集团公司第三十研究所 | Key extraction method, device, equipment and medium based on conservative hyperchaotic system |
CN117040745B (en) * | 2023-10-10 | 2023-12-12 | 中国电子科技集团公司第三十研究所 | Key extraction method, device, equipment and medium based on conservative hyperchaotic system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111105339B (en) | Image encryption method based on multidimensional chaotic system and Joseph scrambling | |
Zhu et al. | 2D logistic-modulated-sine-coupling-logistic chaotic map for image encryption | |
CN110086601B (en) | Joseph traversal and hyperchaotic system image encryption method based on pixel value association | |
CN103491279B (en) | The 4-neighborhood XOR image encryption method of Hyperchaotic Lorenz system | |
CN110086600B (en) | An Image Encryption Method Based on Hyperchaotic System and Variable Step Joseph Problem | |
CN115665340B (en) | Image encryption method in remote fault diagnosis system | |
CN107590394B (en) | An Image Encryption Method Based on Chaotic Map and Bit Reorganization | |
CN114549266B (en) | Image encryption method based on DNA replacement rule and chaotic system | |
Liu et al. | Cryptanalysis and enhancement of an image encryption scheme based on bit-plane extraction and multiple chaotic maps | |
CN111683191A (en) | A fast chaotic image encryption method with simultaneous row and column scrambling and diffusion | |
CN107451948A (en) | Image Encrypt and Decrypt method and system based on chaos and DNA dynamic plane computings | |
CN117499005A (en) | Image encryption method based on 4D chaotic system | |
CN117440101A (en) | Image encryption algorithm and electronic equipment based on multi-chaotic system and circular DNA operation | |
CN112765635B (en) | Image Encryption Method Based on Coupled Image Lattice Model | |
CN118474267A (en) | Image processing method based on chaotic system applying inverse cosine function | |
CN116707754A (en) | A digital image encryption method based on five-dimensional non-equilibrium point hyperchaos | |
CN118018659A (en) | Image encryption and decryption method and system based on SM2 and DNA | |
CN115776368A (en) | Image encryption method, electronic equipment and storage medium based on Logistic mapping scrambling offset | |
Yassir et al. | Hybrid Image Encryption Technique for Securing Color Images Transmitted Over Cloud Networks. | |
CN115170380A (en) | Image layered scrambling encryption method based on chaotic mapping | |
Tomer et al. | Review on different chaotic based image encryption techniques | |
CN114422104B (en) | Bit-level image encryption method based on composite Tent chaotic mapping | |
CN113645367B (en) | Batch image combination encryption method and device | |
Fu et al. | A novel parallel image encryption scheme using chaos | |
Seyedzadeh et al. | Image encryption scheme based on Choquet fuzzy integral with pseudo-random keystream generator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |