[go: up one dir, main page]

CN116685140A - Manufacturing method of semiconductor device, semiconductor device and stacking device - Google Patents

Manufacturing method of semiconductor device, semiconductor device and stacking device Download PDF

Info

Publication number
CN116685140A
CN116685140A CN202210157645.0A CN202210157645A CN116685140A CN 116685140 A CN116685140 A CN 116685140A CN 202210157645 A CN202210157645 A CN 202210157645A CN 116685140 A CN116685140 A CN 116685140A
Authority
CN
China
Prior art keywords
layer
layers
channel
trench
dielectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210157645.0A
Other languages
Chinese (zh)
Inventor
邵光速
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changxin Memory Technologies Inc
Original Assignee
Changxin Memory Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changxin Memory Technologies Inc filed Critical Changxin Memory Technologies Inc
Priority to CN202210157645.0A priority Critical patent/CN116685140A/en
Priority to PCT/CN2022/098047 priority patent/WO2023155339A1/en
Publication of CN116685140A publication Critical patent/CN116685140A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D1/00Resistors, capacitors or inductors
    • H10D1/60Capacitors
    • H10D1/68Capacitors having no potential barriers
    • H10D1/692Electrodes
    • H10D1/711Electrodes having non-planar surfaces, e.g. formed by texturisation
    • H10D1/714Electrodes having non-planar surfaces, e.g. formed by texturisation having horizontal extensions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/58Structural electrical arrangements for semiconductor devices not otherwise provided for, e.g. in combination with batteries
    • H01L23/64Impedance arrangements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D1/00Resistors, capacitors or inductors
    • H10D1/60Capacitors
    • H10D1/68Capacitors having no potential barriers
    • H10D1/692Electrodes
    • H10D1/711Electrodes having non-planar surfaces, e.g. formed by texturisation
    • H10D1/716Electrodes having non-planar surfaces, e.g. formed by texturisation having vertical extensions

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Semiconductor Memories (AREA)

Abstract

本公开实施例公开了一种半导体器件的制造方法、半导体器件及堆叠器件,所述制造方法包括:在衬底上形成共用下极板;在共用下极板上形成隔离层以及被隔离层限定的沿第一方向延伸且沿第二方向排布的多个牺牲层;在牺牲层上形成沿第一方向延伸的第一导电层;在第一导电层、牺牲层及隔离层上形成第一绝缘层;刻蚀第一绝缘层,以形成沿第二方向延伸并暴露出多个牺牲层的第一沟槽;通过第一沟槽移除牺牲层,形成多个与第一沟槽连通的孔洞结构;在孔洞结构、第一沟槽内分别形成第一介质层、第二介质层;刻蚀第一绝缘层,以在第二介质层的两侧分别形成第二沟槽、第三沟槽;在第二沟槽、第三沟槽内分别形成第二导电层、第三导电层。

The embodiment of the present disclosure discloses a manufacturing method of a semiconductor device, a semiconductor device and a stacked device. The manufacturing method includes: forming a common lower plate on a substrate; forming an isolation layer on the common lower plate and being defined by the isolation layer A plurality of sacrificial layers extending along the first direction and arranged along the second direction; forming a first conductive layer extending along the first direction on the sacrificial layer; forming a first conductive layer on the first conductive layer, the sacrificial layer and the isolation layer an insulating layer; etching the first insulating layer to form a first trench extending along the second direction and exposing a plurality of sacrificial layers; removing the sacrificial layer through the first trench to form a plurality of channels connected to the first trench A hole structure; respectively forming a first dielectric layer and a second dielectric layer in the hole structure and the first trench; etching the first insulating layer to form a second trench and a third trench on both sides of the second dielectric layer Groove; forming a second conductive layer and a third conductive layer in the second groove and the third groove respectively.

Description

一种半导体器件的制造方法、半导体器件及堆叠器件Manufacturing method of semiconductor device, semiconductor device and stacked device

技术领域technical field

本公开涉及半导体制造领域,尤其涉及一种半导体器件的制造方法、半导体器件及堆叠器件。The present disclosure relates to the field of semiconductor manufacturing, and in particular to a manufacturing method of a semiconductor device, a semiconductor device and a stacked device.

背景技术Background technique

半导体器件,例如动态随机存储器(DRAM),通常包括衬底、位于衬底内的晶体管以及位于衬底上的电容,所述电容用于存储电荷,所述晶体管和所述电容构成存储单元。A semiconductor device, such as a dynamic random access memory (DRAM), generally includes a substrate, a transistor in the substrate, and a capacitor on the substrate, the capacitor is used to store charges, and the transistor and the capacitor constitute a storage unit.

然而,在相关技术中,所述电容通常沿一个固定的方向延伸,电容的表面积较小,导致电容的电荷存储量较低;此外,所述电容往往具有较大的深度,单位体积内能够容纳的电容较少,半导体器件的存储密度较低。However, in related technologies, the capacitor usually extends along a fixed direction, and the surface area of the capacitor is small, resulting in a low charge storage capacity of the capacitor; in addition, the capacitor often has a large depth, which can accommodate The capacitance of the semiconductor device is less, and the storage density of the semiconductor device is lower.

发明内容Contents of the invention

本公开实施例提供一种半导体器件的制造方法,包括:An embodiment of the present disclosure provides a method for manufacturing a semiconductor device, including:

提供衬底;provide the substrate;

在所述衬底上形成共用下极板;forming a common lower plate on the substrate;

在所述共用下极板上形成隔离层以及被所述隔离层限定的沿第一方向延伸的多个牺牲层,多个所述牺牲层沿第二方向排列分布;Forming an isolation layer and a plurality of sacrificial layers extending along the first direction defined by the isolation layer on the common lower electrode plate, and the plurality of sacrificial layers are arranged and distributed along the second direction;

在多个所述牺牲层上形成多个沿所述第一方向延伸的第一导电层;forming a plurality of first conductive layers extending along the first direction on the plurality of sacrificial layers;

在所述第一导电层、所述牺牲层及所述隔离层上形成第一绝缘层;forming a first insulating layer on the first conductive layer, the sacrificial layer and the isolation layer;

刻蚀所述第一绝缘层,以形成沿所述第二方向延伸的第一沟槽,所述第一沟槽暴露出多个所述牺牲层;etching the first insulating layer to form a first trench extending along the second direction, the first trench exposing a plurality of the sacrificial layers;

通过所述第一沟槽移除多个所述牺牲层,形成多个与所述第一沟槽连通的孔洞结构;removing a plurality of the sacrificial layers through the first trench to form a plurality of hole structures communicating with the first trench;

在多个所述孔洞结构内形成第一介质层,在所述第一沟槽内形成第二介质层;forming a first dielectric layer in the plurality of hole structures, and forming a second dielectric layer in the first groove;

刻蚀所述第一绝缘层,以形成多个暴露出所述第一介质层的第二沟槽,以及多个暴露出所述共用下极板的第三沟槽,所述第二沟槽与所述第三沟槽设置在所述第二介质层的两侧;Etching the first insulating layer to form a plurality of second grooves exposing the first dielectric layer, and a plurality of third grooves exposing the common lower plate, the second grooves and the third trench are arranged on both sides of the second dielectric layer;

在所述第二沟槽、所述第三沟槽内分别形成第二导电层、第三导电层。A second conductive layer and a third conductive layer are respectively formed in the second trench and the third trench.

在一些实施例中,通过所述第一沟槽移除多个所述牺牲层,包括:在所述第一沟槽内通入蚀刻液,所述蚀刻液移除多个所述牺牲层;其中,所述牺牲层的刻蚀速率大于所述隔离层的刻蚀速率。In some embodiments, removing the plurality of sacrificial layers through the first trench includes: passing an etching solution into the first trench, and the etching solution removes the plurality of sacrificial layers; Wherein, the etching rate of the sacrificial layer is greater than the etching rate of the isolation layer.

在一些实施例中,在形成所述第一绝缘层之后,所述方法还包括:In some embodiments, after forming the first insulating layer, the method further includes:

在所述第一绝缘层上形成多个沿所述第一方向延伸的沟道层以及位于多个所述沟道层之间的掩埋层,多个所述沟道层沿所述第二方向排布。A plurality of channel layers extending along the first direction and a buried layer between the plurality of channel layers are formed on the first insulating layer, and the plurality of channel layers extend along the second direction arranged.

在一些实施例中,在形成所述第一沟槽之前形成所述沟道层及所述掩埋层,所述第一沟槽、所述第二沟槽、所述第三沟槽均贯穿所述沟道层;所述方法还包括:In some embodiments, the channel layer and the buried layer are formed before forming the first trench, and the first trench, the second trench, and the third trench all pass through the The channel layer; the method also includes:

在所述沟道层和所述掩埋层内形成沿所述第二方向延伸并切断所述沟道层的第一分隔层,所述第一分隔层和所述第一沟槽将所述沟道层分隔为分立的有源区。A first spacer layer extending in the second direction and cutting the channel layer is formed in the channel layer and the buried layer, the first spacer layer and the first trench divide the trench The channel layer is divided into discrete active regions.

在一些实施例中,在形成所述第二导电层和所述第三导电层之后形成所述沟道层及所述掩埋层,所述沟道层及所述掩埋层覆盖所述第一绝缘层、所述第二导电层、所述第三导电层以及所述第二介质层,所述沟道层与所述第二导电层及所述第三导电层接触;所述方法还包括:In some embodiments, the channel layer and the buried layer are formed after the second conductive layer and the third conductive layer are formed, and the channel layer and the buried layer cover the first insulating layer. layer, the second conductive layer, the third conductive layer, and the second dielectric layer, the channel layer is in contact with the second conductive layer and the third conductive layer; the method also includes:

在所述沟道层和所述掩埋层内形成沿所述第二方向延伸并切断多个所述沟道层的第一分隔层、第二分隔层,所述第一分隔层和所述第二分隔层将所述沟道层分隔为分立的有源区;其中,所述第二分隔层覆盖所述第二介质层。A first spacer layer and a second spacer layer extending along the second direction and cutting off a plurality of the channel layers are formed in the channel layer and the buried layer, and the first spacer layer and the first spacer layer Two separation layers separate the channel layer into separate active regions; wherein, the second separation layer covers the second dielectric layer.

在一些实施例中,所述方法还包括:In some embodiments, the method also includes:

在所述沟道层及所述掩埋层上形成第三介质层,在所述第三介质层上形成字线材料层;forming a third dielectric layer on the channel layer and the buried layer, and forming a word line material layer on the third dielectric layer;

刻蚀所述字线材料层形成沿所述第二方向延伸的字线层;etching the word line material layer to form a word line layer extending along the second direction;

在所述衬底上形成第四介质层,所述第四介质层覆盖所述第三介质层、所述字线层。A fourth dielectric layer is formed on the substrate, and the fourth dielectric layer covers the third dielectric layer and the word line layer.

在一些实施例中,所述方法还包括:In some embodiments, the method also includes:

在所述第四介质层上形成第二绝缘层;forming a second insulating layer on the fourth dielectric layer;

刻蚀所述第二绝缘层、所述第四介质层、所述第三介质层至暴露所述沟道层,形成多个沿所述第二方向排布的位线接触孔;Etching the second insulating layer, the fourth dielectric layer, and the third dielectric layer to expose the channel layer, forming a plurality of bit line contact holes arranged along the second direction;

在所述位线接触孔内形成位线接触插塞;forming a bit line contact plug in the bit line contact hole;

在所述位线接触插塞及所述第二绝缘层上形成多条沿所述第一方向延伸的位线层,多条所述位线层沿所述第二方向排布。A plurality of bit line layers extending along the first direction are formed on the bit line contact plug and the second insulating layer, and the plurality of bit line layers are arranged along the second direction.

本公开实施例还提供了一种半导体器件,包括:An embodiment of the present disclosure also provides a semiconductor device, including:

衬底以及位于所述衬底上的共用下极板;a substrate and a common lower plate on said substrate;

位于所述共用下极板上的隔离层以及被所述隔离层限定的多个沿第一方向延伸的第一介质层,多个所述第一介质层沿第二方向排列分布;An isolation layer located on the common lower electrode plate and a plurality of first dielectric layers extending along the first direction defined by the isolation layer, and the plurality of first dielectric layers are arranged and distributed along the second direction;

多个第一导电层,分别位于多个所述第一介质层上且沿所述第一方向延伸;a plurality of first conductive layers respectively located on the plurality of first dielectric layers and extending along the first direction;

第一绝缘层,覆盖所述第一导电层、所述第一介质层及所述隔离层;所述第一绝缘层内具有沿所述第二方向延伸的第一沟槽,以及设置在所述第一沟槽两侧的多个第二沟槽和多个第三沟槽;其中,所述第二沟槽暴露出所述第一介质层,所述第三沟槽暴露出所述共用下极板;A first insulating layer covering the first conductive layer, the first dielectric layer, and the isolation layer; the first insulating layer has a first groove extending along the second direction, and is disposed on the first insulating layer. A plurality of second grooves and a plurality of third grooves on both sides of the first groove; wherein, the second grooves expose the first dielectric layer, and the third grooves expose the common lower plate;

第二介质层、第二导电层及第三导电层,分别位于所述第一沟槽、所述第二沟槽及所述第三沟槽内。The second dielectric layer, the second conductive layer and the third conductive layer are respectively located in the first trench, the second trench and the third trench.

在一些实施例中,在所述第一方向上,所述第一导电层的两端相对于所述第一介质层的两端向内缩进;在所述第二方向上,所述第一导电层的两端相对于所述第一介质层的两端向外凸出。In some embodiments, in the first direction, both ends of the first conductive layer are indented inwardly relative to both ends of the first dielectric layer; in the second direction, the first The two ends of a conductive layer protrude outward relative to the two ends of the first dielectric layer.

在一些实施例中,所述半导体器件还包括:位于所述第一绝缘层上的多个沿所述第一方向延伸的沟道层以及位于多个所述沟道层之间的掩埋层,多个所述沟道层沿所述第二方向排布。In some embodiments, the semiconductor device further includes: a plurality of channel layers extending along the first direction on the first insulating layer and a buried layer between the plurality of channel layers, A plurality of the channel layers are arranged along the second direction.

在一些实施例中,所述第一沟槽、所述第二沟槽、所述第三沟槽均贯穿所述沟道层;所述半导体器件还包括:沿所述第二方向延伸的第一分隔层,所述第一分隔层位于所述沟道层和所述掩埋层内并切断多个所述沟道层,所述第一分隔层和所述第一沟槽将所述沟道层分隔为分立的有源区。In some embodiments, the first trench, the second trench, and the third trench all penetrate the channel layer; the semiconductor device further includes: a first trench extending along the second direction a spacer layer, the first spacer layer is located in the channel layer and the buried layer and cuts off a plurality of the channel layers, the first spacer layer and the first trench divide the channel The layers are separated into discrete active regions.

在一些实施例中,所述沟道层位于所述第二导电层、所述第三导电层、所述第二介质层上方,所述沟道层与所述第二导电层、所述第三导电层接触;所述半导体器件还包括:沿所述第二方向延伸的第一分隔层、第二分隔层,所述第一分隔层及所述第二分隔层位于所述沟道层和所述掩埋层内并切断多个所述沟道层,所述第一分隔层和所述第二分隔层将所述沟道层分隔为多个有源区;其中,所述第二分隔层覆盖所述第二介质层。In some embodiments, the channel layer is located above the second conductive layer, the third conductive layer, and the second dielectric layer, and the channel layer and the second conductive layer, the first Three conductive layer contacts; the semiconductor device further includes: a first separation layer and a second separation layer extending along the second direction, the first separation layer and the second separation layer are located between the channel layer and the second separation layer In the buried layer and cut off a plurality of the channel layers, the first separation layer and the second separation layer separate the channel layer into a plurality of active regions; wherein the second separation layer covering the second dielectric layer.

在一些实施例中,所述半导体器件还包括:第三介质层,所述第三介质层覆盖所述沟道层和所述掩埋层;沿所述第二方向延伸的字线层,所述字线层位于所述第三介质层上;第四介质层,所述第四介质层覆盖所述第三介质层、所述字线层。In some embodiments, the semiconductor device further includes: a third dielectric layer covering the channel layer and the buried layer; a word line layer extending along the second direction, the The word line layer is located on the third dielectric layer; the fourth dielectric layer covers the third dielectric layer and the word line layer.

在一些实施例中,所述半导体器件还包括:第二绝缘层,所述第二绝缘层覆盖所述第四介质层;多条沿所述第一方向延伸的位线层,位于所述第二绝缘层上且沿所述第二方向排布;位线接触插塞,所述位线接触插塞与所述位线层及所述沟道层连接。In some embodiments, the semiconductor device further includes: a second insulating layer covering the fourth dielectric layer; a plurality of bit line layers extending along the first direction, located on the fourth dielectric layer On the two insulating layers and arranged along the second direction; a bit line contact plug, the bit line contact plug is connected with the bit line layer and the channel layer.

本公开实施例还提供一种堆叠器件,包括:An embodiment of the present disclosure also provides a stacked device, including:

衬底以及堆叠在所述衬底上的多个存储结构;a substrate and a plurality of memory structures stacked on the substrate;

所述存储结构包括:The storage structure includes:

共用下极板;Common lower plate;

位于所述共用下极板上的隔离层以及被所述隔离层限定的多个沿第一方向延伸的第一介质层,多个所述第一介质层沿第二方向排列分布;An isolation layer located on the common lower electrode plate and a plurality of first dielectric layers extending along the first direction defined by the isolation layer, and the plurality of first dielectric layers are arranged and distributed along the second direction;

多个第一导电层,分别位于多个所述第一介质层上且沿所述第一方向延伸;a plurality of first conductive layers respectively located on the plurality of first dielectric layers and extending along the first direction;

第一绝缘层,覆盖所述第一导电层、所述第一介质层及所述隔离层;所述第一绝缘层内具有沿所述第二方向延伸的第一沟槽,以及设置在所述第一沟槽两侧的多个第二沟槽和多个第三沟槽;其中,所述第二沟槽暴露出所述第一导电层,所述第三沟槽暴露出所述共用下极板;A first insulating layer covering the first conductive layer, the first dielectric layer, and the isolation layer; the first insulating layer has a first groove extending along the second direction, and is disposed on the first insulating layer. A plurality of second grooves and a plurality of third grooves on both sides of the first groove; wherein, the second grooves expose the first conductive layer, and the third grooves expose the common lower plate;

第二介质层、第二导电层及第三导电层,分别位于所述第一沟槽、所述第二沟槽及所述第三沟槽内。The second dielectric layer, the second conductive layer and the third conductive layer are respectively located in the first trench, the second trench and the third trench.

本公开实施例公开了一种半导体器件的制造方法、半导体器件及堆叠器件,其中,所述制造方法包括:提供衬底;在所述衬底上形成共用下极板;在所述共用下极板上形成隔离层以及被所述隔离层限定的沿第一方向延伸的多个牺牲层,多个所述牺牲层沿第二方向排列分布;在多个所述牺牲层上形成多个沿所述第一方向延伸的第一导电层;在所述第一导电层、所述牺牲层及所述隔离层上形成第一绝缘层;刻蚀所述第一绝缘层,以形成沿所述第二方向延伸的第一沟槽,所述第一沟槽暴露出多个所述牺牲层;通过所述第一沟槽移除多个所述牺牲层,形成多个与所述第一沟槽连通的孔洞结构;在多个所述孔洞结构内形成第一介质层,在所述第一沟槽内形成第二介质层;刻蚀所述第一绝缘层,以形成多个暴露出所述第一介质层的第二沟槽,以及多个暴露出所述共用下极板的第三沟槽,所述第二沟槽与所述第三沟槽设置在所述第二介质层的两侧;在所述第二沟槽、所述第三沟槽内分别形成第二导电层、第三导电层。本公开实施例提供的共用下极板、第一导电层、第二导电层、第三导电层以及第一介质层和第二介质层构成用于存储电荷的电容,其中,所述第一导电层与所述第二导电层、所述第三导电层的延伸方向不同,即本公开实施例中的电容沿两个不同的方向延伸,与相关技术中仅沿一个方向延伸的电容相比,本公开实施例提供的电容具有更大的表面积,从而可以具有更大的电荷存储量;同时,与相关技术中的电容相比,本公开实施例中的电容可以具有较小的深度,使得所述半导体器件在单位体积内能够容纳更多的电容,可以提高半导体器件的存储密度。此外,本公开实施例中不需要设置用于支撑电容的支撑结构,简化了半导体器件的制造工艺。An embodiment of the present disclosure discloses a manufacturing method of a semiconductor device, a semiconductor device, and a stacked device, wherein the manufacturing method includes: providing a substrate; forming a common lower plate on the substrate; An isolation layer and a plurality of sacrificial layers extending along the first direction defined by the isolation layer are formed on the board, and the plurality of sacrificial layers are arranged and distributed along the second direction; a first conductive layer extending in the first direction; a first insulating layer is formed on the first conductive layer, the sacrificial layer and the isolation layer; the first insulating layer is etched to form a The first trenches extending in two directions, the first trenches expose a plurality of the sacrificial layers; the plurality of sacrificial layers are removed through the first trenches to form a plurality of the first trenches A connected hole structure; forming a first dielectric layer in the plurality of hole structures, forming a second dielectric layer in the first trench; etching the first insulating layer to form a plurality of exposed The second groove of the first dielectric layer, and a plurality of third grooves exposing the common lower plate, the second groove and the third groove are arranged on both sides of the second dielectric layer side; forming a second conductive layer and a third conductive layer in the second trench and the third trench, respectively. The common lower plate, the first conductive layer, the second conductive layer, the third conductive layer, the first dielectric layer and the second dielectric layer provided by the embodiments of the present disclosure constitute a capacitor for storing charges, wherein the first conductive layer is different from the extension direction of the second conductive layer and the third conductive layer, that is, the capacitance in the embodiments of the present disclosure extends in two different directions, compared with the capacitance in the related art that only extends in one direction, The capacitor provided by the embodiment of the present disclosure has a larger surface area, so that it can have a larger charge storage capacity; at the same time, compared with the capacitor in the related art, the capacitor in the embodiment of the present disclosure can have a smaller depth, so that the The semiconductor device can accommodate more capacitors per unit volume, which can increase the storage density of the semiconductor device. In addition, in the embodiments of the present disclosure, there is no need to provide a support structure for supporting capacitors, which simplifies the manufacturing process of the semiconductor device.

本公开的一个或多个实施例的细节在下面的附图和描述中提出。本公开的其它特征和优点将从说明书附图以及权利要求书变得明显。The details of one or more embodiments of the disclosure are set forth in the accompanying drawings and the description below. Other features and advantages of the disclosure will be apparent from the description, drawings, and claims.

附图说明Description of drawings

为了更清楚地说明本公开实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the technical solutions of the embodiments of the present disclosure, the following will briefly introduce the accompanying drawings required in the embodiments. Obviously, the accompanying drawings in the following description are only some embodiments of the present disclosure. Those of ordinary skill in the art can also obtain other drawings based on these drawings without any creative effort.

图1为本公开实施例提供的半导体器件的制造方法流程框图;FIG. 1 is a flow chart of a method for manufacturing a semiconductor device provided by an embodiment of the present disclosure;

图2a至图18b为本公开实施例提供的半导体器件的工艺流程图;2a to 18b are process flow diagrams of semiconductor devices provided by embodiments of the present disclosure;

图19a至图25b为本公开另一实施例提供的半导体器件的工艺流程图;19a to 25b are process flow charts of a semiconductor device provided by another embodiment of the present disclosure;

图26为本公开实施例提供的堆叠器件的示意图。FIG. 26 is a schematic diagram of a stacked device provided by an embodiment of the present disclosure.

具体实施方式Detailed ways

下面将参照附图更详细地描述本公开公开的示例性实施方式。虽然附图中显示了本公开的示例性实施方式,然而应当理解,可以以各种形式实现本公开,而不应被这里阐述的具体实施方式所限制。相反,提供这些实施方式是为了能够更透彻地理解本公开,并且能够将本公开公开的范围完整的传达给本领域的技术人员。Exemplary embodiments of the present disclosure will be described in more detail below with reference to the accompanying drawings. Although exemplary embodiments of the present disclosure are shown in the drawings, it should be understood that the present disclosure may be embodied in various forms and should not be limited to the specific embodiments set forth herein. Rather, these embodiments are provided so that the present disclosure can be more thoroughly understood and the scope of the present disclosure can be fully conveyed to those skilled in the art.

在下文的描述中,给出了大量具体的细节以便提供对本公开更为彻底的理解。然而,对于本领域技术人员而言显而易见的是,本公开可以无需一个或多个这些细节而得以实施。在其他的例子中,为了避免与本公开发生混淆,对于本领域公知的一些技术特征未进行描述;即,这里不描述实际实施例的全部特征,不详细描述公知的功能和结构。In the following description, numerous specific details are given in order to provide a more thorough understanding of the present disclosure. It will be apparent, however, to one skilled in the art that the present disclosure may be practiced without one or more of these details. In other instances, in order to avoid confusion with the present disclosure, some technical features known in the art are not described; that is, all features of the actual embodiment are not described here, and well-known functions and structures are not described in detail.

在附图中,为了清楚,层、区、元件的尺寸以及其相对尺寸可能被夸大。自始至终相同附图标记表示相同的元件。In the drawings, the size of layers, regions, elements and their relative sizes may be exaggerated for clarity. Like reference numerals refer to like elements throughout.

应当明白,当元件或层被称为“在……上”、“与……相邻”、“连接到”或“耦合到”其它元件或层时,其可以直接地在其它元件或层上、与之相邻、连接或耦合到其它元件或层,或者可以存在居间的元件或层。相反,当元件被称为“直接在……上”、“与……直接相邻”、“直接连接到”或“直接耦合到”其它元件或层时,则不存在居间的元件或层。应当明白,尽管可使用术语第一、第二、第三等描述各种元件、部件、区、层和/或部分,这些元件、部件、区、层和/或部分不应当被这些术语限制。这些术语仅仅用来区分一个元件、部件、区、层或部分与另一个元件、部件、区、层或部分。因此,在不脱离本公开教导之下,下面讨论的第一元件、部件、区、层或部分可表示为第二元件、部件、区、层或部分。而当讨论的第二元件、部件、区、层或部分时,并不表明本公开必然存在第一元件、部件、区、层或部分。It will be understood that when an element or layer is referred to as being "on," "adjacent to," "connected to" or "coupled to" another element or layer, it can be directly on the other element or layer. , adjacent to, connected to, or coupled to other elements or layers, or intervening elements or layers may be present. In contrast, when an element is referred to as being "directly on," "directly adjacent to," "directly connected to" or "directly coupled to" another element or layer, there are no intervening elements or layers present. It will be understood that, although the terms first, second, third etc. may be used to describe various elements, components, regions, layers and/or sections, these elements, components, regions, layers and/or sections should not be limited by these terms. These terms are only used to distinguish one element, component, region, layer or section from another element, component, region, layer or section. Thus, a first element, component, region, layer or section discussed below could be termed a second element, component, region, layer or section without departing from the teachings of the present disclosure. Whereas a second element, component, region, layer or section is discussed, it does not indicate that the present disclosure necessarily presents a first element, component, region, layer or section.

空间关系术语例如“在……下”、“在……下面”、“下面的”、“在……之下”、“在……之上”、“上面的”等,在这里可为了方便描述而被使用从而描述图中所示的一个元件或特征与其它元件或特征的关系。应当明白,除了图中所示的取向以外,空间关系术语意图还包括使用和操作中的器件的不同取向。例如,如果附图中的器件翻转,然后,描述为“在其它元件下面”或“在其之下”或“在其下”元件或特征将取向为在其它元件或特征“上”。因此,示例性术语“在……下面”和“在……下”可包括上和下两个取向。器件可以另外地取向(旋转90度或其它取向)并且在此使用的空间描述语相应地被解释。Spatial terms such as "below...", "below...", "below", "below...", "on...", "above" and so on, can be used here for convenience are used in description to describe the relationship of one element or feature to other elements or features shown in the figures. It will be understood that the spatially relative terms are intended to encompass different orientations of the device in use and operation in addition to the orientation depicted in the figures. For example, if the device in the figures is turned over, elements or features described as "below" or "beneath" or "beneath" other elements or features would then be oriented "above" the other elements or features. Thus, the exemplary terms "below" and "beneath" can encompass both an orientation of above and below. The device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatial descriptors used herein interpreted accordingly.

在此使用的术语的目的仅在于描述具体实施例并且不作为本公开的限制。在此使用时,单数形式的“一”、“一个”和“所述/该”也意图包括复数形式,除非上下文清楚指出另外的方式。还应明白术语“组成”和/或“包括”,当在该说明书中使用时,确定所述特征、整数、步骤、操作、元件和/或部件的存在,但不排除一个或更多其它的特征、整数、步骤、操作、元件、部件和/或组的存在或添加。在此使用时,术语“和/或”包括相关所列项目的任何及所有组合。The terminology used herein is for the purpose of describing particular embodiments only and is not to be taken as a limitation of the present disclosure. As used herein, the singular forms "a", "an" and "the/the" are intended to include the plural forms as well, unless the context clearly dictates otherwise. It should also be understood that the terms "consists of" and/or "comprising", when used in this specification, identify the presence of stated features, integers, steps, operations, elements and/or parts, but do not exclude one or more other Presence or addition of features, integers, steps, operations, elements, parts and/or groups. As used herein, the term "and/or" includes any and all combinations of the associated listed items.

半导体器件,例如动态随机存储器(DRAM),通常包括衬底、位于衬底内的晶体管以及位于衬底上的电容,所述电容用于存储电荷,所述晶体管和所述电容构成存储单元。A semiconductor device, such as a dynamic random access memory (DRAM), generally includes a substrate, a transistor in the substrate, and a capacitor on the substrate, the capacitor is used to store charges, and the transistor and the capacitor constitute a storage unit.

然而,在相关技术中,所述电容通常沿一个固定的方向延伸,电容的表面积较小,导致电容的电荷存储量较低;此外,所述电容往往具有较大的深度,单位体积内能够容纳的电容较少,半导体器件的存储密度较低。However, in related technologies, the capacitor usually extends along a fixed direction, and the surface area of the capacitor is small, resulting in a low charge storage capacity of the capacitor; in addition, the capacitor often has a large depth, which can accommodate The capacitance of the semiconductor device is less, and the storage density of the semiconductor device is lower.

基于此,提出了本公开实施例的以下技术方案:Based on this, the following technical solutions of the disclosed embodiments are proposed:

本公开实施例提供了一种半导体器件的制造方法,具体请参见图1。如图所示,所述方法包括以下步骤:An embodiment of the present disclosure provides a method for manufacturing a semiconductor device, please refer to FIG. 1 for details. As shown, the method includes the following steps:

步骤101、提供衬底;Step 101, providing a substrate;

步骤102、在所述衬底上形成共用下极板;Step 102, forming a common lower plate on the substrate;

步骤103、在所述共用下极板上形成隔离层以及被所述隔离层限定的沿第一方向延伸的多个牺牲层,多个所述牺牲层沿第二方向排列分布;Step 103, forming an isolation layer and a plurality of sacrificial layers extending along the first direction defined by the isolation layer on the common lower electrode plate, and the plurality of sacrificial layers are arranged and distributed along the second direction;

步骤104、在多个所述牺牲层上形成多个沿所述第一方向延伸的第一导电层;Step 104, forming a plurality of first conductive layers extending along the first direction on the plurality of sacrificial layers;

步骤105、在所述第一导电层、所述牺牲层及所述隔离层上形成第一绝缘层;Step 105, forming a first insulating layer on the first conductive layer, the sacrificial layer and the isolation layer;

步骤106、刻蚀所述第一绝缘层,以形成沿所述第二方向延伸的第一沟槽,所述第一沟槽暴露出多个所述牺牲层;Step 106, etching the first insulating layer to form a first trench extending along the second direction, the first trench exposing a plurality of the sacrificial layers;

步骤107、通过所述第一沟槽移除多个所述牺牲层,形成多个与所述第一沟槽连通的孔洞结构;Step 107, removing a plurality of the sacrificial layers through the first trench to form a plurality of hole structures communicating with the first trench;

步骤108、在多个所述孔洞结构内形成第一介质层,在所述第一沟槽内形成第二介质层;Step 108, forming a first dielectric layer in the plurality of hole structures, and forming a second dielectric layer in the first trenches;

步骤109、刻蚀所述第一绝缘层,以形成多个暴露出所述第一介质层的第二沟槽,以及多个暴露出所述共用下极板的第三沟槽,所述第二沟槽与所述第三沟槽设置在所述第二介质层的两侧;Step 109, etching the first insulating layer to form a plurality of second grooves exposing the first dielectric layer, and a plurality of third grooves exposing the common lower plate, the first The second groove and the third groove are arranged on both sides of the second dielectric layer;

步骤110、在所述第二沟槽、所述第三沟槽内分别形成第二导电层、第三导电层。Step 110 , forming a second conductive layer and a third conductive layer in the second trench and the third trench respectively.

本公开实施例提供的共用下极板、第一导电层、第二导电层、第三导电层以及第一介质层和第二介质层构成用于存储电荷的电容,所述第一导电层与所述第二导电层、所述第三导电层的延伸方向不同,即本公开实施例中的电容沿两个不同的方向延伸,与相关技术中仅沿一个方向延伸的电容相比,本公开实施例提供的电容具有更大的表面积,从而可以具有更大的电荷存储量;同时,本公开实施例中的电容可以具有较小的深度,使得所述半导体器件在单位体积内能够容纳更多的电容,可以提高半导体器件的存储密度。此外,本公开实施例中不需要设置用于支撑电容的支撑结构,简化了半导体器件的制造工艺。The common lower plate, the first conductive layer, the second conductive layer, the third conductive layer, the first dielectric layer and the second dielectric layer provided by the embodiments of the present disclosure form a capacitor for storing charges, and the first conductive layer and The extension directions of the second conductive layer and the third conductive layer are different, that is, the capacitance in the embodiment of the present disclosure extends along two different directions. Compared with the capacitance extending in only one direction in the related art, the present disclosure The capacitor provided by the embodiment has a larger surface area, so it can have a larger charge storage capacity; at the same time, the capacitor in the embodiment of the present disclosure can have a smaller depth, so that the semiconductor device can accommodate more charges per unit volume. Capacitance can increase the storage density of semiconductor devices. In addition, in the embodiments of the present disclosure, there is no need to provide a support structure for supporting capacitors, which simplifies the manufacturing process of the semiconductor device.

本公开实施例提供的制造方法,可以用于制造动态随机存储器(DRAM),但不限于此,任何具有电容的半导体器件都可以采用本申请实施例提供的方法来制造。The manufacturing method provided by the embodiments of the present disclosure can be used to manufacture dynamic random access memory (DRAM), but is not limited thereto. Any semiconductor device with capacitance can be manufactured using the method provided by the embodiments of the present application.

下面结合附图对本公开的具体实施方式做详细的说明。在详述本公开实施例时,为便于说明,示意图会不依一般比例做局部放大,而且所述示意图只是示例,其在此不应限制本公开的保护范围。The specific implementation manners of the present disclosure will be described in detail below in conjunction with the accompanying drawings. When describing the embodiments of the present disclosure in detail, for the convenience of illustration, the schematic diagrams will not be partially enlarged according to the general scale, and the schematic diagrams are only examples, which should not limit the protection scope of the present disclosure.

图2a至图18b为本公开实施例提供的半导体器件的工艺流程图,图19a至图25b为本公开另一实施例提供的半导体器件的工艺流程图;其中,图2a、图3a、图4a、图5a、图6a、图7a、图8a、图9a、图10a、图11a、图12a、图13a、图14a、图15a、图16a、图17a、图18a为本公开实施例提供的半导体器件的制造方法在不同工艺步骤中的俯视示意图,图2b、图3b、图4b、图5b、图6b、图7b、图8b、图9b、图10b、图11b、图12b、图13b、图14b、图15b、图16b、图17b、图18b分别为沿着图2a、图3a、图4a、图5a、图6a、图7a、图8a、图9a、图10a、图11a、图12a、图13a、图14a、图15a、图16a、图17a、图18a的线AA'截取的剖面结构示意图;图19a、图20a、图21a、图22a、图23a、图24a、图25a为本公开另一实施例提供的半导体器件的制造方法在不同工艺步骤中的俯视示意图,图19b、图20b、图21b、图22b、图23b、图24b、图25b分别为沿着图19a、图20a、图21a、图22a、图23a、图24a、图25a的线AA'截取的剖面结构示意图。以下结合图2a至图25b对本公开实施例提供的半导体器件的制造方法再作进一步详细的说明。Figures 2a to 18b are process flow charts of semiconductor devices provided by embodiments of the present disclosure, and Figures 19a to 25b are process flow charts of semiconductor devices provided by another embodiment of the present disclosure; wherein, Figure 2a, Figure 3a, and Figure 4a , Figure 5a, Figure 6a, Figure 7a, Figure 8a, Figure 9a, Figure 10a, Figure 11a, Figure 12a, Figure 13a, Figure 14a, Figure 15a, Figure 16a, Figure 17a, Figure 18a are semiconductors provided by embodiments of the present disclosure The schematic top view of the manufacturing method of the device in different process steps, Fig. 2b, Fig. 3b, Fig. 4b, Fig. 5b, Fig. 6b, Fig. 7b, Fig. 8b, Fig. 9b, Fig. 10b, Fig. 11b, Fig. 12b, Fig. 13b, Fig. 14b, FIG. 15b, FIG. 16b, FIG. 17b, and FIG. 18b are respectively along FIG. 2a, FIG. 3a, FIG. 4a, FIG. 5a, FIG. 6a, FIG. 7a, FIG. 8a, FIG. Fig. 13a, Fig. 14a, Fig. 15a, Fig. 16a, Fig. 17a, Fig. 17a, Fig. 17a, Fig. 17a, Fig. 18a is a schematic cross-sectional structural diagram taken along the line AA'; Fig. 19a, Fig. 20a, Fig. 21a, Fig. 22a, Fig. 23a, Fig. 24a, Fig. 25a are the present disclosure Another embodiment provides a schematic top view of a semiconductor device manufacturing method in different process steps, Figure 19b, Figure 20b, Figure 21b, Figure 22b, Figure 23b, Figure 24b, Figure 25b are respectively along Figure 19a, Figure 20a, 21a, 22a, 23a, 24a, 25a are schematic cross-sectional structural diagrams taken along line AA'. The manufacturing method of the semiconductor device provided by the embodiment of the present disclosure will be further described in detail below with reference to FIGS. 2 a to 25 b.

首先,执行步骤101,如图2a至图2b所示,提供衬底20。Firstly, step 101 is executed, as shown in FIG. 2 a to FIG. 2 b , a substrate 20 is provided.

所述衬底可以为半导体衬底,并且可以包括至少一个单质半导体材料(例如为硅(Si)衬底、锗(Ge)衬底)、至少一个III-V化合物半导体材料、至少一个II-VI化合物半导体材料、至少一个有机半导体材料或者在本领域已知的其他半导体材料。在一具体实施例中,所述衬底为硅衬底,所述硅衬底可经掺杂或未经掺杂。The substrate may be a semiconductor substrate, and may include at least one elemental semiconductor material (such as a silicon (Si) substrate, a germanium (Ge) substrate), at least one III-V compound semiconductor material, at least one II-VI A compound semiconductor material, at least one organic semiconductor material, or other semiconductor materials known in the art. In a specific embodiment, the substrate is a silicon substrate, which may be doped or undoped.

接着,执行步骤102,如图3a至图3b所示,在所述衬底20上形成共用下极板32。Next, step 102 is performed, as shown in FIG. 3 a to FIG. 3 b , forming a common lower plate 32 on the substrate 20 .

所述共用下极板32的材料可以包括钨(W)、铜(Cu)、钛(Ti)、钽(Ta)、氮化钛(TiN)、氮化钽(TaN)、金属硅化物、金属合金中的一种或多种,例如,氮化钛(TiN)。The material of the common lower plate 32 may include tungsten (W), copper (Cu), titanium (Ti), tantalum (Ta), titanium nitride (TiN), tantalum nitride (TaN), metal silicide, metal One or more of alloys, for example, titanium nitride (TiN).

再次参考图3b,在一实施例中,在所述衬底20上形成共用下极板32之前,所述方法还包括:在所述衬底20上形成层间绝缘层31,所述层间绝缘层31位于所述共用下极板32的下方,用于电隔离所述衬底20和所述共用下极板32。所述层间绝缘层31可以使用化学气相沉积(CVD)、等离子增强CVD(PECVD)、物理气相沉积(PVD)、原子层沉积(ALD)等工艺形成,可选的,在形成所述层间绝缘层31之后,还可采用平坦化工艺,如化学机械研磨(CMP)和/或刻蚀工艺,使所述层间绝缘层31的上表面更为平坦。所述层间绝缘层31的材料可以为氧化物,例如,氧化硅。Referring to FIG. 3b again, in one embodiment, before forming the common lower plate 32 on the substrate 20, the method further includes: forming an interlayer insulating layer 31 on the substrate 20, the interlayer The insulating layer 31 is located under the common lower plate 32 for electrically isolating the substrate 20 and the common lower plate 32 . The interlayer insulating layer 31 can be formed by chemical vapor deposition (CVD), plasma enhanced CVD (PECVD), physical vapor deposition (PVD), atomic layer deposition (ALD), etc. After the insulating layer 31 , a planarization process, such as chemical mechanical polishing (CMP) and/or etching process, can also be used to make the upper surface of the interlayer insulating layer 31 more flat. The material of the interlayer insulating layer 31 may be oxide, for example, silicon oxide.

接着,执行步骤103,如图4a至图4b所示,在所述共用下极板32上形成隔离层33以及被所述隔离层33限定的沿第一方向延伸的多个牺牲层34,多个所述牺牲层34沿第二方向排列分布。Next, step 103 is executed, as shown in FIG. 4a to FIG. 4b, an isolation layer 33 and a plurality of sacrificial layers 34 extending along the first direction defined by the isolation layer 33 are formed on the common lower electrode plate 32. The sacrificial layers 34 are arranged and distributed along the second direction.

在一实施例中,所述第一方向、所述第二方向与所述衬底20的表面平行。在一些实施例中,所述第一方向与所述第二方向垂直。但不限于此,所述第一方向也可以与所述第二方向斜交。In an embodiment, the first direction and the second direction are parallel to the surface of the substrate 20 . In some embodiments, the first direction is perpendicular to the second direction. But not limited thereto, the first direction may also be oblique to the second direction.

需要说明的是,多个所述牺牲层34的数量及排布方式不限于图4a所示,所述牺牲层34的数量还可以更多,多个所述牺牲层34还可以呈阵列排布。在一实施例中,多个所述牺牲层34分别沿所述第一方向和所述第二方向呈阵列排布。It should be noted that the number and arrangement of the multiple sacrificial layers 34 are not limited to those shown in FIG. . In one embodiment, the plurality of sacrificial layers 34 are respectively arranged in an array along the first direction and the second direction.

如图4b所示,所述牺牲层34的下表面与所述共用下极板32接触,所述牺牲层34的上表面与所述隔离层33的上表面齐平。所述隔离层33和所述牺牲层34的形成方法例如可以是:首先,在所述共用下极板32上形成所述隔离层33;然后,在所述隔离层33上形成多个暴露所述共用下极板32且沿所述第一方向延伸的开口(未标识),多个所述开口(未标识)沿所述第二方向排布;最后在所述开口(未标识)内形成所述牺牲层34。所述隔离层33的材料为绝缘材料。后续将执行刻蚀工艺去除所述牺牲层34并保留所述隔离层33,因此,在预设的刻蚀条件下,所述牺牲层34的刻蚀速率应远大于所述隔离层33的刻蚀速率,即所述牺牲层34和所述隔离层33具有较大的刻蚀选择比,从而能够在后续工艺中仅移除所述牺牲层34,保留所述隔离层33。在一具体实施例中,所述刻蚀选择比的范围大于10,例如在20至100之间,所述牺牲层34的材料例如为多晶硅等,所述隔离层33的材料例如为氮化硅等。As shown in FIG. 4 b , the lower surface of the sacrificial layer 34 is in contact with the common lower electrode plate 32 , and the upper surface of the sacrificial layer 34 is flush with the upper surface of the isolation layer 33 . The formation method of the isolation layer 33 and the sacrificial layer 34 may be, for example: first, the isolation layer 33 is formed on the common lower plate 32; The opening (not marked) that shares the lower plate 32 and extends along the first direction, and a plurality of the openings (not marked) are arranged along the second direction; finally formed in the opening (not marked) The sacrificial layer 34 . The material of the isolation layer 33 is insulating material. Subsequently, an etching process will be performed to remove the sacrificial layer 34 and retain the isolation layer 33. Therefore, under preset etching conditions, the etching rate of the sacrificial layer 34 should be much higher than that of the isolation layer 33. The etch rate, that is, the sacrificial layer 34 and the isolation layer 33 have a relatively large etching selectivity, so that only the sacrificial layer 34 can be removed and the isolation layer 33 can be retained in a subsequent process. In a specific embodiment, the range of the etching selectivity ratio is greater than 10, such as between 20 and 100, the material of the sacrificial layer 34 is, for example, polysilicon, and the material of the isolation layer 33 is, for example, silicon nitride wait.

接着,执行步骤104,如图5a至图5b所示,在多个所述牺牲层34上形成多个沿所述第一方向延伸的第一导电层35。Next, step 104 is performed, as shown in FIG. 5 a to FIG. 5 b , forming a plurality of first conductive layers 35 extending along the first direction on the plurality of sacrificial layers 34 .

在一些实施例中,在所述第一方向上,所述第一导电层35的两端相对于所述牺牲层34的两端向内缩进,如此,可以避免所述第一导电层35的两端与其他导电层接触;在所述第二方向上,所述第一导电层35的两端相对于所述牺牲层34的两端向外凸出,如此,所述第一导电层35具有更大的表面积,提高了后续工艺中形成的电容C(参见图11a至图11b)的表面积,从而可以提高半所述电容C的电荷存储量。所述第一导电层35的材料可以包括钨(W)、铜(Cu)、钛(Ti)、钽(Ta)、氮化钛(TiN)、氮化钽(TaN)、金属硅化物、金属合金中的一种或多种,例如,氮化钛(TiN)。在一实施例中,所述第一导电层35的材料与所述共用下极板32的材料相同。In some embodiments, in the first direction, the two ends of the first conductive layer 35 are indented inwardly relative to the two ends of the sacrificial layer 34 , so that the first conductive layer 35 can be avoided The two ends of the first conductive layer 35 are in contact with other conductive layers; in the second direction, the two ends of the first conductive layer 35 protrude outward relative to the two ends of the sacrificial layer 34, so that the first conductive layer 35 has a larger surface area, which increases the surface area of the capacitor C (see FIG. 11 a to FIG. 11 b ) formed in the subsequent process, so that half of the charge storage capacity of the capacitor C can be increased. The material of the first conductive layer 35 may include tungsten (W), copper (Cu), titanium (Ti), tantalum (Ta), titanium nitride (TiN), tantalum nitride (TaN), metal silicide, metal One or more of alloys, for example, titanium nitride (TiN). In one embodiment, the material of the first conductive layer 35 is the same as that of the common lower plate 32 .

接着,执行步骤105,如图6a至图6b所示,在所述第一导电层35、所述牺牲层34及所述隔离层33上形成第一绝缘层36。Next, step 105 is performed, as shown in FIGS. 6 a to 6 b , forming a first insulating layer 36 on the first conductive layer 35 , the sacrificial layer 34 and the isolation layer 33 .

所述第一绝缘层36的材料可以为氧化物,例如氧化硅。在一实施例中,所述第一绝缘层36的材料与所述层间绝缘层31的材料相同。The material of the first insulating layer 36 may be oxide, such as silicon oxide. In one embodiment, the material of the first insulating layer 36 is the same as that of the interlayer insulating layer 31 .

接着,执行步骤106,如图7a至图7b所示,刻蚀所述第一绝缘层36,以形成沿所述第二方向延伸的第一沟槽T1,所述第一沟槽T1暴露出多个所述牺牲层34。Next, step 106 is performed, as shown in FIG. 7a to FIG. multiple sacrificial layers 34 .

在一实施例中,沿垂直于所述衬底20表面的方向从上往下刻蚀所述第一绝缘层36以形成所述第一沟槽T1,所述第一沟槽T1向下延伸的方向垂直于所述衬底20的表面。In one embodiment, the first insulating layer 36 is etched from top to bottom along a direction perpendicular to the surface of the substrate 20 to form the first trench T1, and the first trench T1 extends downward. The direction is perpendicular to the surface of the substrate 20 .

在一实施例中,在形成所述第一沟槽T1的过程中,在刻蚀所述第一绝缘层36之后,还包括刻蚀部分所述牺牲层34和/或部分所述隔离层33至暴露出所述共用下极板32,所述第一沟槽T1的侧壁暴露出多个所述牺牲层34,同时暴露出位于多个所述牺牲层34之间的所述隔离层33。在一些实施例中,所述第一沟槽T1的侧壁暴露出所述牺牲层34在所述第一方向上的两个端部中的一个。In one embodiment, during the process of forming the first trench T1, after etching the first insulating layer 36, etching part of the sacrificial layer 34 and/or part of the isolation layer 33 is further included. until the common lower plate 32 is exposed, the sidewall of the first trench T1 exposes a plurality of sacrificial layers 34 , and at the same time exposes the isolation layer 33 between the plurality of sacrificial layers 34 . In some embodiments, the sidewall of the first trench T1 exposes one of the two ends of the sacrificial layer 34 in the first direction.

接着,执行步骤107,如图8a至图8b所示,通过所述第一沟槽T1移除多个所述牺牲层34,形成多个与所述第一沟槽T1连通的孔洞结构S1。Next, step 107 is executed, as shown in FIG. 8 a to FIG. 8 b , removing a plurality of the sacrificial layers 34 through the first trenches T1 to form a plurality of hole structures S1 communicating with the first trenches T1 .

在一实施例中,通过所述第一沟槽T1移除多个所述牺牲层34,包括:在所述第一沟槽T1内通入蚀刻液,所述蚀刻液移除多个所述牺牲层34;其中,所述牺牲层34的刻蚀速率大于所述隔离层33的刻蚀速率,如此,在去除所述牺牲层34形成多个所述孔洞结构S1的同时保留所述隔离层33,多个所述孔洞结构S1沿第一方向延伸并沿第二方向排布,且多个所述孔洞结构S1之间由所述隔离层33分隔开。In one embodiment, removing the plurality of sacrificial layers 34 through the first trench T1 includes: passing an etchant into the first trench T1, and the etchant removes the plurality of sacrificial layers 34 . Sacrificial layer 34; wherein, the etching rate of the sacrificial layer 34 is greater than the etching rate of the isolation layer 33, so that the isolation layer is retained while the sacrificial layer 34 is removed to form a plurality of hole structures S1 33 , the plurality of hole structures S1 extend along the first direction and are arranged along the second direction, and the plurality of hole structures S1 are separated by the isolation layer 33 .

接着,执行步骤108,如图9a至图9b所示,在多个所述孔洞结构S1内形成第一介质层41,在所述第一沟槽T1内形成第二介质层42。Next, step 108 is executed, as shown in FIG. 9a to FIG. 9b , forming a first dielectric layer 41 in the plurality of hole structures S1 , and forming a second dielectric layer 42 in the first trench T1 .

这里,所述第一介质层41的数量为多个,多个所述第一介质层41沿所述第一方向延伸并沿所述第二方向排布;所述第二介质层42沿所述第二方向延伸,并与多个所述第一介质层41彼此连接。所述第一介质层41的材料和所述第二介质层42的材料可以为高介电常数材料,例如可以为氧化钽、氧化铪、氧化锆、氧化铌、氧化钛、氧化钡、氧化锶、氧化钇、氧化镧、氧化镨或者钛酸锶钡等。在一更具体的实施例中,所述第一介质层41的材料和所述第二介质层42的材料相同。Here, the number of the first dielectric layer 41 is multiple, and the multiple first dielectric layers 41 extend along the first direction and are arranged along the second direction; the second dielectric layer 42 is arranged along the second direction. extending in the second direction and connected to a plurality of the first dielectric layers 41 . The material of the first dielectric layer 41 and the material of the second dielectric layer 42 can be high dielectric constant materials, such as tantalum oxide, hafnium oxide, zirconium oxide, niobium oxide, titanium oxide, barium oxide, strontium oxide , yttrium oxide, lanthanum oxide, praseodymium oxide or barium strontium titanate, etc. In a more specific embodiment, the material of the first dielectric layer 41 is the same as that of the second dielectric layer 42 .

接着,执行步骤109,如图10a至图10b所示,刻蚀所述第一绝缘层36,以形成多个暴露出所述第一介质层41的第二沟槽T2,以及多个暴露出所述共用下极板32的第三沟槽T3,所述第二沟槽T2与所述第三沟槽T3设置在所述第二介质层42的两侧。Next, step 109 is performed, as shown in FIG. 10a to FIG. The third trench T3 of the common lower plate 32 , the second trench T2 and the third trench T3 are disposed on both sides of the second dielectric layer 42 .

如图10b所示,所述第二沟槽T2的底部暴露出所述第一介质层41,所述第二沟槽T2的侧壁暴露出所述第一导电层35;在形成所述第三沟槽T3的过程中,在刻蚀所述第一绝缘层36之后,还包括刻蚀所述隔离层33至暴露所述共用下极板32。As shown in FIG. 10b, the bottom of the second trench T2 exposes the first dielectric layer 41, and the sidewall of the second trench T2 exposes the first conductive layer 35; During the process of the three trenches T3, after etching the first insulating layer 36 , it also includes etching the isolation layer 33 to expose the common lower electrode plate 32 .

在一实施例中,多个所述第二沟槽T2和多个所述第三沟槽T3均与所述衬底20的表面垂直,且均沿所述第二方向排布。在一些实施例中,所述第二沟槽T2和所述第三沟槽T3对称地设置在所述第二介质层42的两侧。In one embodiment, the plurality of second trenches T2 and the plurality of third trenches T3 are perpendicular to the surface of the substrate 20 and arranged along the second direction. In some embodiments, the second trench T2 and the third trench T3 are symmetrically disposed on two sides of the second dielectric layer 42 .

接着,执行步骤110,如图11a至11b所示,在所述第二沟槽T2、所述第三沟槽T3内分别形成第二导电层43、第三导电层44。Next, step 110 is executed, as shown in FIGS. 11 a to 11 b , forming a second conductive layer 43 and a third conductive layer 44 in the second trench T2 and the third trench T3 respectively.

所述第二导电层43的数量、所述第三导电层44的数量均为多个,多个所述第二导电层43、多个所述第三导电层44分别在所述第二介质层42的两侧沿第二方向排布,且多个所述第二导电层43与多个所述第一导电层35一一对应连接,多个所述第三导电层44与所述共用下极板32相连接。The number of the second conductive layer 43 and the number of the third conductive layer 44 are multiple, and the multiple second conductive layers 43 and the multiple third conductive layers 44 are respectively in the second medium The two sides of the layer 42 are arranged along the second direction, and the multiple second conductive layers 43 are connected to the multiple first conductive layers 35 in one-to-one correspondence, and the multiple third conductive layers 44 are connected to the common The lower pole plate 32 is connected.

本公开实施例通过先形成所述第一介质层41并在所述第一沟槽T1内形成所述第二介质层42,再在所述第二介质层42的两侧分别形成与所述第一导电层35连接的所述第二导电层43、与所述共用下极板32连接的所述第三导电层44,而非先在所述第一沟槽T1内形成所述第二导电层43,如此,在所述第一沟槽T1的底部暴露出所述共用下极板32的情况下,避免了所述第二导电层43同时与所述第一导电层35和所述共用下极板32连接,避免出现短路现象。所述共用下极板32、多个所述第一导电层35、多个所述第二导电层43、多个所述第三导电层44、多个所述第一介质层41以及所述第二介质层42构成多个用于存储电荷的电容C,多个所述电容C沿第二方向排布。所述第一导电层35与所述第二导电层43、所述第三导电层44的延伸方向不同,即本公开实施例中的电容C沿两个不同的方向延伸,与相关技术中仅沿一个方向延伸的电容相比,本公开实施例提供的电容C具有更大的表面积,从而可以具有更大的电荷存储量;同时,与相关技术中的电容相比,本公开实施例中的电容C可以具有较小的深度,使得所述半导体器件在单位体积内能够容纳更多的电容C,可以提高半导体器件的存储密度。此外,本公开实施例提供的电容C被所述第一绝缘层36掩埋,因此所述电容C的结构更加稳固,不需要额外设置用于支撑所述电容C的支撑结构,且多个所述电容C具有相同的所述共用下极板32,简化了所述半导体器件的制造工艺。In the embodiment of the present disclosure, the first dielectric layer 41 is firstly formed and the second dielectric layer 42 is formed in the first trench T1, and then the two sides of the second dielectric layer 42 are formed respectively. The second conductive layer 43 connected to the first conductive layer 35 and the third conductive layer 44 connected to the common lower plate 32, instead of forming the second conductive layer in the first trench T1 first The conductive layer 43, in this way, in the case where the bottom of the first trench T1 exposes the common lower plate 32, it is avoided that the second conductive layer 43 is simultaneously connected with the first conductive layer 35 and the The common lower plate 32 is connected to avoid short circuit phenomenon. The common lower plate 32, a plurality of the first conductive layers 35, a plurality of the second conductive layers 43, a plurality of the third conductive layers 44, a plurality of the first dielectric layers 41 and the The second dielectric layer 42 forms a plurality of capacitors C for storing charges, and the plurality of capacitors C are arranged along the second direction. The extending direction of the first conductive layer 35 is different from that of the second conductive layer 43 and the third conductive layer 44, that is, the capacitance C in the embodiment of the present disclosure extends along two different directions, which is different from that in the related art only Compared with the capacitance extending in one direction, the capacitor C provided by the embodiment of the present disclosure has a larger surface area, so that it can have a larger charge storage capacity; at the same time, compared with the capacitor in the related art, the capacitor C in the embodiment of the disclosure The capacitor C may have a smaller depth, so that the semiconductor device can accommodate more capacitors C per unit volume, which can increase the storage density of the semiconductor device. In addition, the capacitance C provided by the embodiment of the present disclosure is buried by the first insulating layer 36, so the structure of the capacitance C is more stable, no additional supporting structure for supporting the capacitance C is required, and multiple of the capacitance C The capacitor C has the same common lower plate 32, which simplifies the manufacturing process of the semiconductor device.

需要说明的是,所述电容C的数量及排布方式不限于图11a所示,所述电容C的数量可以更多,多个所述电容C可以呈阵列排布。在一实施例中,多个所述电容C分别沿所述第一方向和所述第二方向呈阵列排布。在一些实施例中,在所述第一方向上,所述第一导电层35的两端相对于所述第一介质层41的两端向内缩进,如此,避免了在所述第一方向上相邻的两个所述电容C中的一者的所述第一导电层35与另一者的所述第三导电层44彼此连接,由此能够减少漏电。It should be noted that the number and arrangement of the capacitors C are not limited to those shown in FIG. 11 a , the number of the capacitors C can be more, and a plurality of the capacitors C can be arranged in an array. In an embodiment, the plurality of capacitors C are respectively arranged in an array along the first direction and the second direction. In some embodiments, in the first direction, the two ends of the first conductive layer 35 are indented inwardly relative to the two ends of the first dielectric layer 41, thus avoiding the The first conductive layer 35 of one of the two adjacent capacitors C in the direction and the third conductive layer 44 of the other are connected to each other, thereby reducing electric leakage.

所述第二导电层43和所述第三导电层44的材料可以包括钨(W)、铜(Cu)、钛(Ti)、钽(Ta)、氮化钛(TiN)、氮化钽(TaN)、金属硅化物、金属合金中的一种或多种。在一实施例中,所述第二导电层43、所述第三导电层44的材料与所述共用下极板32的材料相同,例如,氮化钛(TiN)。The material of the second conductive layer 43 and the third conductive layer 44 may include tungsten (W), copper (Cu), titanium (Ti), tantalum (Ta), titanium nitride (TiN), tantalum nitride ( TaN), one or more of metal silicides, metal alloys. In an embodiment, the material of the second conductive layer 43 and the third conductive layer 44 is the same as that of the common lower plate 32 , for example, titanium nitride (TiN).

在一实施例中,在形成所述第一绝缘层36之后,所述方法还包括:在所述第一绝缘层36上形成多个沿所述第一方向延伸的沟道层37以及位于多个所述沟道层37之间的掩埋层38,多个所述沟道层37沿所述第二方向排布,如图12a至图12b所示。In an embodiment, after the first insulating layer 36 is formed, the method further includes: forming a plurality of channel layers 37 extending along the first direction on the first insulating layer 36 and A buried layer 38 between a plurality of channel layers 37, and a plurality of channel layers 37 are arranged along the second direction, as shown in FIGS. 12a to 12b.

在一实施例中,所述沟道层37的材料包括硅、锗、硅锗、氧化铟、氧化锡、铟锌氧化物、锡锌氧化物、铝锌氧化物、铟镓氧化物、铟镓锌氧化物、铟铝锌氧化物、铟锡锌氧化物、锡镓锌氧化物、铝镓锌氧化物、锡铝锌氧化物中的一种或多种。所述沟道层37可经掺杂或未经掺杂。当使用铟镓锌氧化物(IGZO)材料作为所述沟道层37时,能够提高电子迁移率,从而提高写入速度。In one embodiment, the material of the channel layer 37 includes silicon, germanium, silicon germanium, indium oxide, tin oxide, indium zinc oxide, tin zinc oxide, aluminum zinc oxide, indium gallium oxide, indium gallium oxide, One or more of zinc oxide, indium aluminum zinc oxide, indium tin zinc oxide, tin gallium zinc oxide, aluminum gallium zinc oxide, tin aluminum zinc oxide. The channel layer 37 can be doped or undoped. When an indium gallium zinc oxide (IGZO) material is used as the channel layer 37 , electron mobility can be improved, thereby increasing the writing speed.

再次参见图12a至图12b,在一具体实施例中,在形成所述第二导电层43和所述第三导电层44之后形成所述沟道层37及所述掩埋层38,所述沟道层37及所述掩埋层38覆盖所述第一绝缘层36、所述第二导电层43、所述第三导电层44以及所述第二介质层42,所述沟道层37与所述第二导电层43及所述第三导电层44接触;所述方法还包括:在所述沟道层37和所述掩埋层38内形成沿所述第二方向延伸并切断多个所述沟道层37的第一分隔层39、第二分隔层53,所述第一分隔层39和所述第二分隔层53将所述沟道层37分隔为分立的有源区AA;其中,所述第二分隔层53覆盖所述第二介质层42,且与所述第二介质层42接触。所述有源区AA的数量为多个,多个所述有源区AA沿第二方向排布。在一更具体的实施例中,所述第二分隔层53和所述第二介质层42在垂直于所述衬底20的方向上的投影重叠。12a to 12b again, in a specific embodiment, the channel layer 37 and the buried layer 38 are formed after the second conductive layer 43 and the third conductive layer 44 are formed, and the channel layer 37 and the buried layer 38 are formed. The channel layer 37 and the buried layer 38 cover the first insulating layer 36, the second conductive layer 43, the third conductive layer 44 and the second dielectric layer 42, and the channel layer 37 and the The second conductive layer 43 and the third conductive layer 44 are in contact; the method further includes: forming in the channel layer 37 and the buried layer 38 a plurality of The first separation layer 39 and the second separation layer 53 of the channel layer 37, the first separation layer 39 and the second separation layer 53 separate the channel layer 37 into discrete active regions AA; wherein, The second separation layer 53 covers the second dielectric layer 42 and is in contact with the second dielectric layer 42 . There are multiple active areas AA, and the multiple active areas AA are arranged along the second direction. In a more specific embodiment, projections of the second spacer layer 53 and the second dielectric layer 42 in a direction perpendicular to the substrate 20 overlap.

在一实施例中,所述有源区AA包括位于所述有源区AA的一端且与所述第一分隔层39相邻的第一源/漏掺杂区(未标识)、位于所述有源区AA的另一端且与所述第二导电层43接触的第二源/漏掺杂区(未标识),所述第一源/漏掺杂区(未标识)和所述第二源/漏掺杂区(未标识)可以通过离子注入的方式形成于所述有源区AA内。在一具体实施例中,所述第一源/漏掺杂区(未标识)和所述第二源/漏掺杂区(未标识)的导电类型相同,如n型。在一更具体的实施例中,所述有源区AA的中间区域具有p型掺杂。In one embodiment, the active region AA includes a first source/drain doped region (not marked) located at one end of the active region AA and adjacent to the first spacer layer 39 , located at the The other end of the active region AA and the second source/drain doped region (unmarked) in contact with the second conductive layer 43, the first source/drain doped region (unmarked) and the second Source/drain doped regions (not marked) can be formed in the active region AA by means of ion implantation. In a specific embodiment, the first source/drain doped region (not marked) and the second source/drain doped region (not marked) have the same conductivity type, such as n-type. In a more specific embodiment, the middle region of the active region AA has p-type doping.

在一实施例中,所述方法还包括:In one embodiment, the method also includes:

在所述沟道层37及所述掩埋层38上形成第三介质层45,在所述第三介质层45上形成字线材料层46,如图13a至图13b所示;A third dielectric layer 45 is formed on the channel layer 37 and the buried layer 38, and a word line material layer 46 is formed on the third dielectric layer 45, as shown in FIGS. 13a to 13b;

刻蚀所述字线材料层46形成沿所述第二方向延伸的字线层47,如图14a至图14b所示;Etching the word line material layer 46 to form a word line layer 47 extending along the second direction, as shown in FIGS. 14a to 14b;

在所述衬底20上形成第四介质层48,所述第四介质层48覆盖所述第三介质层45、所述字线层47,如图15a至图15b所示。A fourth dielectric layer 48 is formed on the substrate 20, and the fourth dielectric layer 48 covers the third dielectric layer 45 and the word line layer 47, as shown in FIGS. 15a to 15b.

所述字线材料层46可以包括钨(W)、铜(Cu)、钛(Ti)、钽(Ta)、氮化钛(TiN)、氮化钽(TaN)、金属硅化物、金属合金中的一种或多种。再次参考图13a至图13b,在一实施例中,所述字线材料层46包括第一子层461以及位于所述第一子层461上的第二子层462,所述第一子层461和所述第二子层462的材料不同;刻蚀所述字线材料层46以形成所述字线层47包括:刻蚀所述第二子层462形成第二字线子层472;刻蚀所述第一子层461形成第一字线子层471,如图14a至图14b所示。在一些实施例中,使用金属材料作为所述字线层47,能够减少电阻。The word line material layer 46 may include tungsten (W), copper (Cu), titanium (Ti), tantalum (Ta), titanium nitride (TiN), tantalum nitride (TaN), metal silicide, metal alloy one or more of . 13a to 13b again, in one embodiment, the word line material layer 46 includes a first sublayer 461 and a second sublayer 462 located on the first sublayer 461, the first sublayer 461 and the second sublayer 462 are made of different materials; etching the word line material layer 46 to form the word line layer 47 includes: etching the second sublayer 462 to form a second word line sublayer 472; The first sublayer 461 is etched to form a first word line sublayer 471, as shown in FIGS. 14a to 14b. In some embodiments, metal material is used as the word line layer 47 to reduce resistance.

在一实施例中,所述字线层47形成于所述第一分隔层39和所述第二导电层43之间,所述第一导电层35和所述第一介质层41位于所述字线层47的下方,如此所述字线层47下方的空间得以利用,提高了所述半导体器件的空间利用率,进一步提高了所述半导体器件的存储密度。在一些实施例中,所述字线层47设置于所述有源区AA的中间区域的上方,将所述第一源/漏掺杂区(未标识)和所述第二源/漏掺杂区(未标识)分隔开。In one embodiment, the word line layer 47 is formed between the first spacer layer 39 and the second conductive layer 43, the first conductive layer 35 and the first dielectric layer 41 are located between the Under the word line layer 47, the space under the word line layer 47 can be utilized, which improves the space utilization rate of the semiconductor device and further increases the storage density of the semiconductor device. In some embodiments, the word line layer 47 is disposed above the middle region of the active region AA, and the first source/drain doped region (not marked) and the second source/drain doped region Miscellaneous regions (not labeled) are separated.

在一实施例中,所述第三介质层45同时覆盖所述第一分隔层39和所述第二分隔层53。所述第三介质层45的材料可以包括氧化物,例如氧化硅。所述第四介质层48的材料包括但不限于氮化物,例如氮化硅,用于保护所述第三介质层45及所述字线层47。In one embodiment, the third dielectric layer 45 covers both the first separation layer 39 and the second separation layer 53 . The material of the third dielectric layer 45 may include oxide, such as silicon oxide. The material of the fourth dielectric layer 48 includes but not limited to nitride, such as silicon nitride, which is used to protect the third dielectric layer 45 and the word line layer 47 .

在一实施例中,所述方法还包括:In one embodiment, the method also includes:

在所述第四介质层48上形成第二绝缘层49;刻蚀所述第二绝缘层49、所述第四介质层48、所述第三介质层45至暴露所述沟道层37,形成多个沿所述第二方向排布的位线接触孔S2,如图16a至图16b所示;Forming a second insulating layer 49 on the fourth dielectric layer 48; etching the second insulating layer 49, the fourth dielectric layer 48, and the third dielectric layer 45 to expose the channel layer 37, forming a plurality of bit line contact holes S2 arranged along the second direction, as shown in FIGS. 16a to 16b;

在所述位线接触孔S2内形成位线接触插塞51,如图17a至图17b所示;Forming a bit line contact plug 51 in the bit line contact hole S2, as shown in FIGS. 17a to 17b;

在所述位线接触插塞51及所述第二绝缘层49上形成多条沿所述第一方向延伸的位线层52,多条所述位线层52沿所述第二方向排布,如图18a至图18b所示。A plurality of bit line layers 52 extending along the first direction are formed on the bit line contact plug 51 and the second insulating layer 49, and the plurality of bit line layers 52 are arranged along the second direction , as shown in Figure 18a to Figure 18b.

这里,所述位线接触孔S2位于所述第一分隔层39和所述字线层47之间,暴露所述有源区AA,所述位线层52通过所述位线接触插塞51与所述有源区AA接触。在一实施例中,在第一方向上,所述有源区AA的数量为多个,每一所述位线层52与多个所述有源区AA连接。在一具体实施例中,所述位线层52与所述第一源/漏掺杂区(未标识)连接。所述位线层52、所述位线接触插塞51的材料可以包括钨(W)、铜(Cu)、钛(Ti)、钽(Ta)、氮化钛(TiN)、氮化钽(TaN)、金属硅化物、金属合金中的一种或多种。Here, the bit line contact hole S2 is located between the first spacer layer 39 and the word line layer 47, exposing the active area AA, and the bit line layer 52 passes through the bit line contact plug 51. in contact with the active area AA. In one embodiment, in the first direction, there are multiple active areas AA, and each bit line layer 52 is connected to multiple active areas AA. In a specific embodiment, the bit line layer 52 is connected to the first source/drain doped region (not marked). The material of the bit line layer 52 and the bit line contact plug 51 may include tungsten (W), copper (Cu), titanium (Ti), tantalum (Ta), titanium nitride (TiN), tantalum nitride ( TaN), one or more of metal silicides, metal alloys.

图12a至图18b示出的沟道层37和掩埋层38是在形成所述第二导电层43和所述第三导电层44之后形成的。在本公开的另一实施例中,在形成所述第一沟槽T1之前形成所述沟道层37及所述掩埋层38,所述第一沟槽T1、所述第二沟槽T2、所述第三沟槽T3均贯穿所述沟道层37,如图19a至图25b所示。The channel layer 37 and the buried layer 38 shown in FIGS. 12 a to 18 b are formed after the second conductive layer 43 and the third conductive layer 44 are formed. In another embodiment of the present disclosure, the channel layer 37 and the buried layer 38 are formed before forming the first trench T1, the first trench T1, the second trench T2, The third trenches T3 all penetrate the channel layer 37 , as shown in FIGS. 19 a to 25 b .

具体地,如图19a至图19b所示,在形成所述第一沟槽T1之前,在所述第一绝缘层36上形成多个沿所述第一方向延伸、沿所述第二方向排布的沟道层37以及位于多个所述沟道层37之间的掩埋层38。Specifically, as shown in FIG. 19a to FIG. 19b, before forming the first trench T1, a plurality of rows extending along the first direction and extending along the second direction are formed on the first insulating layer 36. The channel layer 37 is distributed and the buried layer 38 is located between a plurality of the channel layers 37 .

接着,如图20a至图20b所示,刻蚀所述沟道层37、所述掩埋层38及所述第一绝缘层36,以形成沿所述第二方向延伸的第一沟槽T1,所述第一沟槽T1暴露出多个所述牺牲层34。Next, as shown in FIGS. 20a to 20b , etching the channel layer 37 , the buried layer 38 and the first insulating layer 36 to form a first trench T1 extending along the second direction, The first trench T1 exposes a plurality of the sacrificial layers 34 .

再次参考图19a至图20b,在一实施例中,所述方法还包括:在所述沟道层37和所述掩埋层38内形成沿所述第二方向延伸并切断所述沟道层37的第一分隔层39,所述第一分隔层39和所述第一沟槽T1将所述沟道层37分隔为分立的有源区AA。Referring again to FIGS. 19a to 20b , in an embodiment, the method further includes: forming in the channel layer 37 and the buried layer 38 a channel extending along the second direction and cutting off the channel layer 37 . The first separation layer 39 and the first trench T1 separate the channel layer 37 into discrete active regions AA.

接着,如图21a至图21b所示,通过所述第一沟槽T1移除多个所述牺牲层34,形成多个与所述第一沟槽T1连通的孔洞结构S1。Next, as shown in FIGS. 21 a to 21 b , a plurality of the sacrificial layers 34 are removed through the first trenches T1 to form a plurality of hole structures S1 communicating with the first trenches T1 .

接着,如图22a至图22b所示,在多个所述孔洞结构S1内形成第一介质层41,在所述第一沟槽T1内形成第二介质层42。Next, as shown in FIGS. 22 a to 22 b , a first dielectric layer 41 is formed in the plurality of hole structures S1 , and a second dielectric layer 42 is formed in the first trench T1 .

接着,如图23a至图23b所示,刻蚀所述沟道层37、所述第一绝缘层36,以形成多个暴露出所述第一介质层41的第二沟槽T2,以及多个暴露出所述共用下极板32的第三沟槽T3,所述第二沟槽T2与所述第三沟槽T3设置在所述第二介质层42的两侧。Next, as shown in FIGS. 23a to 23b, the channel layer 37 and the first insulating layer 36 are etched to form a plurality of second trenches T2 exposing the first dielectric layer 41, and a plurality of A third trench T3 exposing the common lower plate 32 , the second trench T2 and the third trench T3 are arranged on both sides of the second dielectric layer 42 .

接着,如图24a至图24b所示,在所述第二沟槽T2、所述第三沟槽T3内分别形成第二导电层43、第三导电层44。Next, as shown in FIGS. 24 a to 24 b , a second conductive layer 43 and a third conductive layer 44 are respectively formed in the second trench T2 and the third trench T3 .

最后,如图25a至图25b所示,以与前述实施例相同的方式形成所述第三介质层45、所述字线层47、所述第四介质层48、所述第二绝缘层49、所述位线接触孔S2、所述位线接触插塞51以及所述位线层52,所述第三介质层45覆盖所述沟道层37、所述掩埋层38、所述第一分隔层39、所述第二导电层43、所述第三导电层44以及所述第二介质层42。上述各层在前述实施例均已介绍,此处不再赘述。Finally, as shown in FIG. 25a to FIG. 25b, the third dielectric layer 45, the word line layer 47, the fourth dielectric layer 48, and the second insulating layer 49 are formed in the same manner as in the previous embodiment. , the bit line contact hole S2, the bit line contact plug 51 and the bit line layer 52, the third dielectric layer 45 covers the channel layer 37, the buried layer 38, the first The separation layer 39 , the second conductive layer 43 , the third conductive layer 44 and the second dielectric layer 42 . The above layers have been introduced in the foregoing embodiments, and will not be repeated here.

应当说明的是,本领域技术人员能够对上述步骤顺序进行变换而并不离开本公开的保护范围。It should be noted that those skilled in the art can change the order of the above steps without departing from the protection scope of the present disclosure.

本公开实施例还提供了一种半导体器件,如图18a至图18b所示,包括:衬底20以及位于所述衬底20上的共用下极板32;位于所述共用下极板32上的隔离层33以及被所述隔离层33限定的多个沿第一方向延伸的第一介质层41,多个所述第一介质层41沿第二方向排列分布;多个第一导电层35,分别位于多个所述第一介质层41上且沿所述第一方向延伸;第一绝缘层36,覆盖所述第一导电层35、所述第一介质层41及所述隔离层33;所述第一绝缘层36内具有沿所述第二方向延伸的第一沟槽T1,以及设置在所述第一沟槽T1两侧的多个第二沟槽T2和多个第三沟槽T3;其中,所述第二沟槽T2暴露出所述第一介质层41,所述第三沟槽T3暴露出所述共用下极板32;第二介质层42、第二导电层43及第三导电层44,分别位于所述第一沟槽T1、所述第二沟槽T2及所述第三沟槽T3内。An embodiment of the present disclosure also provides a semiconductor device, as shown in FIG. 18a to FIG. 18b , including: a substrate 20 and a common lower plate 32 on the substrate 20; The isolation layer 33 and the plurality of first dielectric layers 41 extending along the first direction defined by the isolation layer 33, the plurality of first dielectric layers 41 are arranged and distributed along the second direction; the plurality of first conductive layers 35 , respectively located on a plurality of the first dielectric layers 41 and extending along the first direction; a first insulating layer 36 covering the first conductive layer 35 , the first dielectric layer 41 and the isolation layer 33 ; The first insulating layer 36 has a first trench T1 extending along the second direction, and a plurality of second trenches T2 and a plurality of third trenches arranged on both sides of the first trench T1 Groove T3; wherein, the second trench T2 exposes the first dielectric layer 41, and the third trench T3 exposes the common lower plate 32; the second dielectric layer 42, the second conductive layer 43 and the third conductive layer 44 are respectively located in the first trench T1 , the second trench T2 and the third trench T3 .

所述衬底可以为半导体衬底,并且可以包括至少一个单质半导体材料(例如为硅(Si)衬底、锗(Ge)衬底)、至少一个III-V化合物半导体材料、至少一个II-VI化合物半导体材料、至少一个有机半导体材料或者在本领域已知的其他半导体材料。在一具体实施例中,所述衬底为硅衬底,所述硅衬底可经掺杂或未经掺杂。The substrate may be a semiconductor substrate, and may include at least one elemental semiconductor material (such as a silicon (Si) substrate, a germanium (Ge) substrate), at least one III-V compound semiconductor material, at least one II-VI A compound semiconductor material, at least one organic semiconductor material, or other semiconductor materials known in the art. In a specific embodiment, the substrate is a silicon substrate, which may be doped or undoped.

在一实施例中,所述第一方向、所述第二方向与所述衬底20的表面平行。在一些实施例中,所述第一方向与所述第二方向垂直。但不限于此,所述第一方向也可以与所述第二方向斜交。In an embodiment, the first direction and the second direction are parallel to the surface of the substrate 20 . In some embodiments, the first direction is perpendicular to the second direction. But not limited thereto, the first direction may also be oblique to the second direction.

如图18b所示,所述第一介质层41的下表面与所述共用下极板32接触,所述第一介质层41的上表面与所述隔离层33的上表面齐平。所述隔离层33的材料为绝缘材料,例如为氧化硅。As shown in FIG. 18 b , the lower surface of the first dielectric layer 41 is in contact with the common lower electrode plate 32 , and the upper surface of the first dielectric layer 41 is flush with the upper surface of the isolation layer 33 . The material of the isolation layer 33 is an insulating material, such as silicon oxide.

在一实施例中,所述第一沟槽T1的底部暴露出所述共用下极板32,所述第一沟槽T1的侧壁暴露出多个所述第一介质层41,位于所述第一沟槽T1内的所述第二介质层42沿所述第二方向延伸并与多个所述第一介质层41相连接。在一具体的实施例中,所述第一沟槽T1的侧壁暴露出所述第一介质层41在所述第一方向上的两个端部中的一个。所述第一介质层41的材料和所述第二介质层42的材料可以为高介电常数材料,例如可以为氧化钽、氧化铪、氧化锆、氧化铌、氧化钛、氧化钡、氧化锶、氧化钇、氧化镧、氧化镨或者钛酸锶钡等。在一实施例中,所述第一介质层41的材料和所述第二介质层42的材料相同。In one embodiment, the bottom of the first trench T1 exposes the common lower electrode plate 32, and the sidewall of the first trench T1 exposes a plurality of the first dielectric layers 41, located in the The second dielectric layer 42 in the first trench T1 extends along the second direction and is connected to a plurality of the first dielectric layers 41 . In a specific embodiment, the sidewall of the first trench T1 exposes one of the two ends of the first dielectric layer 41 in the first direction. The material of the first dielectric layer 41 and the material of the second dielectric layer 42 can be high dielectric constant materials, such as tantalum oxide, hafnium oxide, zirconium oxide, niobium oxide, titanium oxide, barium oxide, strontium oxide , yttrium oxide, lanthanum oxide, praseodymium oxide or barium strontium titanate, etc. In one embodiment, the material of the first dielectric layer 41 is the same as that of the second dielectric layer 42 .

在一实施例中,所述第一沟槽T1、多个所述第二沟槽T2、多个所述第三沟槽T3均与所述衬底20的表面垂直,所述第二介质层42、所述第二导电层43、所述第三导电层44亦均与所述衬底20的表面垂直。In one embodiment, the first trench T1, the plurality of second trenches T2, and the plurality of third trenches T3 are all perpendicular to the surface of the substrate 20, and the second dielectric layer 42 . Both the second conductive layer 43 and the third conductive layer 44 are also perpendicular to the surface of the substrate 20 .

多个所述第二沟槽T2、多个所述第三沟槽T3分别在所述第一沟槽T1的两侧沿所述第二方向排布;所述第二导电层43的数量、所述第三导电层44的数量均为多个,多个所述第二导电层43、多个所述第三导电层44分别在所述第二介质层42的两侧沿第二方向排布,且多个所述第二导电层43与多个所述第一导电层35一一对应连接,多个所述第三导电层44与所述共用下极板32相连接。在一实施例中,所述第二沟槽T2和所述第三沟槽T3对称地设置在所述第一沟槽T1的两侧,所述第二导电层43、所述第三导电层44对称地设置在所述第二介质层42的两侧。所述共用下极板32、所述第一导电层35、所述第二导电层43以及所述第三导电层44的材料可以包括钨(W)、铜(Cu)、钛(Ti)、钽(Ta)、氮化钛(TiN)、氮化钽(TaN)、金属硅化物、金属合金中的一种或多种。在一实施例中,所述第一导电层35、所述第二导电层43以及所述第三导电层44的材料与所述共用下极板32的材料相同,例如,氮化钛(TiN)。A plurality of the second trenches T2 and a plurality of the third trenches T3 are respectively arranged on both sides of the first trench T1 along the second direction; the number of the second conductive layer 43, The number of the third conductive layers 44 is multiple, and the plurality of second conductive layers 43 and the plurality of third conductive layers 44 are respectively arranged on both sides of the second dielectric layer 42 along the second direction. The multiple second conductive layers 43 are connected to the multiple first conductive layers 35 in one-to-one correspondence, and the multiple third conductive layers 44 are connected to the common lower plate 32 . In one embodiment, the second trench T2 and the third trench T3 are symmetrically arranged on both sides of the first trench T1, and the second conductive layer 43 and the third conductive layer 44 are symmetrically arranged on both sides of the second dielectric layer 42 . The materials of the common lower plate 32, the first conductive layer 35, the second conductive layer 43 and the third conductive layer 44 may include tungsten (W), copper (Cu), titanium (Ti), One or more of tantalum (Ta), titanium nitride (TiN), tantalum nitride (TaN), metal silicide, and metal alloys. In one embodiment, the material of the first conductive layer 35, the second conductive layer 43 and the third conductive layer 44 is the same as that of the common lower plate 32, for example, titanium nitride (TiN ).

所述共用下极板32、多个所述第一导电层35、多个所述第二导电层43、多个所述第三导电层44、多个所述第一介质层41以及所述第二介质层42组成多个用于存储电荷的电容C,多个所述电容C沿第二方向排布。所述第一导电层35与所述第二导电层43、所述第三导电层44的延伸方向不同,即本公开实施例中的电容C沿两个不同的方向延伸,与相关技术中仅沿一个方向延伸的电容相比,本公开实施例提供的电容C具有更大的表面积,从而可以具有更大的电荷存储量;同时,与相关技术中的电容相比,本公开实施例中的电容C可以具有较小的深度,使得所述半导体器件在单位体积内能够容纳更多的电容C,可以提高半导体器件的存储密度。此外,本公开实施例中不需要设置用于支撑所述电容C的支撑结构,且多个所述电容C具有相同的所述共用下极板32,简化了所述半导体器件的制造工艺。The common lower plate 32, a plurality of the first conductive layers 35, a plurality of the second conductive layers 43, a plurality of the third conductive layers 44, a plurality of the first dielectric layers 41 and the The second dielectric layer 42 forms a plurality of capacitors C for storing charges, and the plurality of capacitors C are arranged along the second direction. The extending direction of the first conductive layer 35 is different from that of the second conductive layer 43 and the third conductive layer 44, that is, the capacitance C in the embodiment of the present disclosure extends along two different directions, which is different from that in the related art only Compared with the capacitance extending in one direction, the capacitor C provided by the embodiment of the present disclosure has a larger surface area, so that it can have a larger charge storage capacity; at the same time, compared with the capacitor in the related art, the capacitor C in the embodiment of the disclosure The capacitor C may have a smaller depth, so that the semiconductor device can accommodate more capacitors C per unit volume, which can increase the storage density of the semiconductor device. In addition, in the embodiment of the present disclosure, there is no need to provide a support structure for supporting the capacitors C, and multiple capacitors C have the same common lower plate 32 , which simplifies the manufacturing process of the semiconductor device.

多个所述电容C还可以呈阵列排布。在一实施例中,多个所述电容C分别沿所述第一方向和所述第二方向呈阵列排布。在一些实施例中,在所述第一方向上,所述第一导电层35的两端相对于所述第一介质层41的两端向内缩进,如此,避免了在所述第一方向上相邻的两个所述电容C中的一者的所述第一导电层35与另一者的所述第三导电层44彼此连接;在所述第二方向上,所述第一导电层35的两端相对于所述第一介质层41的两端向外凸出,如此,所述第一导电层35具有更大的表面积,提高了所述电容C的电荷存储量。A plurality of capacitors C may also be arranged in an array. In an embodiment, the plurality of capacitors C are respectively arranged in an array along the first direction and the second direction. In some embodiments, in the first direction, the two ends of the first conductive layer 35 are indented inwardly relative to the two ends of the first dielectric layer 41, thus avoiding the The first conductive layer 35 of one of the two capacitors C adjacent in the direction is connected to the third conductive layer 44 of the other; in the second direction, the first Both ends of the conductive layer 35 protrude outward relative to both ends of the first dielectric layer 41 , so that the first conductive layer 35 has a larger surface area, which increases the charge storage capacity of the capacitor C.

在一实施例中,所述半导体器件还包括层间绝缘层31,所述层间绝缘层31位于所述共用下极板32的下方,用于电隔离所述衬底20和所述共用下极板32。所述层间绝缘层31的材料可以为氧化物,例如,氧化硅。In one embodiment, the semiconductor device further includes an interlayer insulating layer 31, and the interlayer insulating layer 31 is located under the common lower plate 32 for electrically isolating the substrate 20 from the common lower plate. plate 32. The material of the interlayer insulating layer 31 may be oxide, for example, silicon oxide.

在一实施例中,所述半导体器件还包括:位于所述第一绝缘层36上的多个沿所述第一方向延伸的沟道层37以及位于多个所述沟道层37之间的掩埋层38,多个所述沟道层37沿所述第二方向排布。In an embodiment, the semiconductor device further includes: a plurality of channel layers 37 extending along the first direction located on the first insulating layer 36 and a plurality of channel layers 37 located between the plurality of channel layers 37 The buried layer 38 and the plurality of channel layers 37 are arranged along the second direction.

如图所示,在一具体的实施例中,所述沟道层37位于所述第二导电层43、所述第三导电层44、所述第二介质层42上方,所述沟道层37与所述第二导电层43、所述第三导电层44接触;所述半导体器件还包括:沿所述第二方向延伸的第一分隔层39、第二分隔层53,所述第一分隔层39及所述第二分隔层53位于所述沟道层37和所述掩埋层38内并切断多个所述沟道层37,所述第一分隔层39和所述第二分隔层53将所述沟道层37分隔为多个有源区AA;其中,所述第二分隔层53覆盖所述第二介质层42。所述有源区AA的数量为多个,多个所述有源区AA沿所述第二方向排布。在一更具体的实施例中,所述第二分隔层53和所述第二介质层42在垂直于所述衬底20的方向上的投影重叠。As shown in the figure, in a specific embodiment, the channel layer 37 is located above the second conductive layer 43, the third conductive layer 44, and the second dielectric layer 42, and the channel layer 37 is in contact with the second conductive layer 43 and the third conductive layer 44; the semiconductor device further includes: a first separation layer 39 extending along the second direction, a second separation layer 53, the first The separation layer 39 and the second separation layer 53 are located in the channel layer 37 and the buried layer 38 and cut off a plurality of the channel layers 37, the first separation layer 39 and the second separation layer 53 divides the channel layer 37 into a plurality of active regions AA; wherein, the second separation layer 53 covers the second dielectric layer 42 . There are multiple active areas AA, and the multiple active areas AA are arranged along the second direction. In a more specific embodiment, projections of the second spacer layer 53 and the second dielectric layer 42 in a direction perpendicular to the substrate 20 overlap.

在一实施例中,所述有源区AA包括位于所述有源区AA的一端且与所述第一分隔层39相邻的第一源/漏掺杂区(未标识)、位于所述有源区AA的另一端且与所述第二导电层43接触的第二源/漏掺杂区(未标识),所述第一源/漏掺杂区(未标识)和所述第二源/漏掺杂区(未标识)可以通过离子注入的方式形成于所述有源区AA内。在一具体实施例中,所述第一源/漏掺杂区(未标识)和所述第二源/漏掺杂区(未标识)的导电类型相同,如n型。在一更具体的实施例中,所述有源区AA的中间区域具有p型掺杂。In one embodiment, the active region AA includes a first source/drain doped region (not marked) located at one end of the active region AA and adjacent to the first spacer layer 39 , located at the The other end of the active region AA and the second source/drain doped region (unmarked) in contact with the second conductive layer 43, the first source/drain doped region (unmarked) and the second Source/drain doped regions (not marked) can be formed in the active region AA by means of ion implantation. In a specific embodiment, the first source/drain doped region (not marked) and the second source/drain doped region (not marked) have the same conductivity type, such as n-type. In a more specific embodiment, the middle region of the active region AA has p-type doping.

在一实施例中,所述半导体器件还包括:第三介质层45,所述第三介质层45覆盖所述沟道层37和所述掩埋层38;沿所述第二方向延伸的字线层47,所述字线层47位于所述第三介质层45上;第四介质层48,所述第四介质层48覆盖所述第三介质层45、所述字线层47。In an embodiment, the semiconductor device further includes: a third dielectric layer 45 covering the channel layer 37 and the buried layer 38; word lines extending along the second direction layer 47 , the word line layer 47 is located on the third dielectric layer 45 ; a fourth dielectric layer 48 , the fourth dielectric layer 48 covers the third dielectric layer 45 and the word line layer 47 .

在一实施例中,所述第三介质层45同时覆盖所述第一分隔层39和所述第二分隔层53。所述第三介质层45的材料可以包括氧化物,例如氧化硅。In one embodiment, the third dielectric layer 45 covers both the first separation layer 39 and the second separation layer 53 . The material of the third dielectric layer 45 may include oxide, such as silicon oxide.

在一实施例中,所述字线层47位于所述第一分隔层39和所述第二导电层43之间,所述第一导电层35和所述第一介质层41位于所述字线层47的下方,如此所述字线层47下方的空间得以利用,提高了所述半导体器件的空间利用率,进一步提高了所述半导体器件的存储密度。在一具体实施例中,所述字线层47设置于所述有源区AA的中间区域的上方,将所述第一源/漏掺杂区(未标识)和所述第二源/漏掺杂区(未标识)分隔开。所述字线层47的材料可以包括钨(W)、铜(Cu)、钛(Ti)、钽(Ta)、氮化钛(TiN)、氮化钽(TaN)、金属硅化物、金属合金中的一种或多种。在一实施例中,所述字线层47包括第一字线子层471以及位于所述第一字线子层471上的第二字线子层472,所述第一字线子层471和所述第二字线子层472的材料不同。所述第四介质层48的材料包括但不限于氮化物,例如氮化硅,用于保护所述第三介质层45及所述字线层47。In one embodiment, the word line layer 47 is located between the first spacer layer 39 and the second conductive layer 43, and the first conductive layer 35 and the first dielectric layer 41 are located between the word line Under the line layer 47, the space under the word line layer 47 can be utilized, which improves the space utilization rate of the semiconductor device and further increases the storage density of the semiconductor device. In a specific embodiment, the word line layer 47 is disposed above the middle region of the active region AA, and the first source/drain doped region (not marked) and the second source/drain Doped regions (not labeled) are separated. The material of the word line layer 47 may include tungsten (W), copper (Cu), titanium (Ti), tantalum (Ta), titanium nitride (TiN), tantalum nitride (TaN), metal silicide, metal alloy one or more of. In one embodiment, the word line layer 47 includes a first word line sublayer 471 and a second word line sublayer 472 located on the first word line sublayer 471, the first word line sublayer 471 It is different from the material of the second word line sublayer 472 . The material of the fourth dielectric layer 48 includes but not limited to nitride, such as silicon nitride, which is used to protect the third dielectric layer 45 and the word line layer 47 .

在一实施例中,所述半导体器件还包括:第二绝缘层49,所述第二绝缘层49覆盖所述第四介质层48;多条沿所述第一方向延伸的位线层52,位于所述第二绝缘层49上且沿所述第二方向排布;位线接触插塞51,所述位线接触插塞51与所述位线层52及所述沟道层37连接。In an embodiment, the semiconductor device further includes: a second insulating layer 49 covering the fourth dielectric layer 48; a plurality of bit line layers 52 extending along the first direction, Located on the second insulating layer 49 and arranged along the second direction; a bit line contact plug 51 , the bit line contact plug 51 is connected to the bit line layer 52 and the channel layer 37 .

这里,所述位线接触插塞51位于所述第一分隔层39和所述字线层47之间,所述位线层52通过所述位线接触插塞51与所述有源区AA接触。在一实施例中,在第一方向上,所述有源区AA的数量为多个,每一所述位线层52与多个所述有源区AA连接。在一具体实施例中,所述位线层52与所述第一源/漏掺杂区(未标识)连接。所述位线层52、所述位线接触插塞51的材料可以包括钨(W)、铜(Cu)、钛(Ti)、钽(Ta)、氮化钛(TiN)、氮化钽(TaN)、金属硅化物、金属合金中的一种或多种。Here, the bit line contact plug 51 is located between the first spacer layer 39 and the word line layer 47, and the bit line layer 52 is connected to the active area AA through the bit line contact plug 51. touch. In one embodiment, in the first direction, there are multiple active areas AA, and each bit line layer 52 is connected to multiple active areas AA. In a specific embodiment, the bit line layer 52 is connected to the first source/drain doped region (not marked). The material of the bit line layer 52 and the bit line contact plug 51 may include tungsten (W), copper (Cu), titanium (Ti), tantalum (Ta), titanium nitride (TiN), tantalum nitride ( TaN), one or more of metal silicides, metal alloys.

图18a至图18b示出的沟道层37和掩埋层38是在形成所述第二导电层43和所述第三导电层44之后形成的。在本公开的另一实施例中,也可以在形成所述第一沟槽T1之前形成所述沟道层37及所述掩埋层38,如图25a至图25b所示。在该实施例中,在形成所述第一沟槽T1之前,在所述第一绝缘层36上形成所述沟道层37及所述掩埋层38,接着形成所述第一沟槽T1、所述第一介质层41、所述第二介质层42、所述第二沟槽T2、所述第三沟槽T3、所述第二导电层43及所述第三导电层44,所述第一沟槽T1、所述第二沟槽T2、所述第三沟槽T3均贯穿所述沟道层37;所述半导体器件还包括:沿所述第二方向延伸的第一分隔层39,所述第一分隔层39位于所述沟道层37和所述掩埋层38内并切断多个所述沟道层37,所述第一分隔层39和所述第一沟槽T1将所述沟道层37分隔为分立的有源区AA;最后,以与前述实施例相同的方式形成所述第三介质层45、所述字线层47、所述第四介质层48、所述第二绝缘层49、所述位线接触插塞51以及所述位线层52,所述第三介质层45覆盖所述沟道层37、所述掩埋层38、所述第一分隔层39、所述第二导电层43、所述第三导电层44以及所述第二介质层42。上述各层在前述实施例均已介绍,此处不再赘述。The channel layer 37 and the buried layer 38 shown in FIGS. 18 a to 18 b are formed after the second conductive layer 43 and the third conductive layer 44 are formed. In another embodiment of the present disclosure, the channel layer 37 and the buried layer 38 may also be formed before forming the first trench T1 , as shown in FIGS. 25 a to 25 b . In this embodiment, before forming the first trench T1, the channel layer 37 and the buried layer 38 are formed on the first insulating layer 36, and then the first trench T1, The first dielectric layer 41, the second dielectric layer 42, the second trench T2, the third trench T3, the second conductive layer 43 and the third conductive layer 44, the The first trench T1, the second trench T2, and the third trench T3 all penetrate the channel layer 37; the semiconductor device further includes: a first separation layer 39 extending along the second direction , the first spacer layer 39 is located in the channel layer 37 and the buried layer 38 and cuts off a plurality of the channel layers 37, the first spacer layer 39 and the first trench T1 separate the The channel layer 37 is divided into discrete active regions AA; finally, the third dielectric layer 45, the word line layer 47, the fourth dielectric layer 48, the The second insulating layer 49 , the bit line contact plug 51 and the bit line layer 52 , the third dielectric layer 45 covers the channel layer 37 , the buried layer 38 , and the first spacer layer 39 , the second conductive layer 43 , the third conductive layer 44 and the second dielectric layer 42 . The above layers have been introduced in the foregoing embodiments, and will not be repeated here.

本公开实施例还提供了一种堆叠器件,如图26所示,包括:衬底20以及堆叠在所述衬底20上的多个存储结构30;所述存储结构30包括:共用下极板32;位于所述共用下极板32上的隔离层33以及被所述隔离层33限定的多个沿第一方向延伸的第一介质层41,多个所述第一介质层41沿第二方向排列分布;多个第一导电层35,分别位于多个所述第一介质层41上且沿所述第一方向延伸;第一绝缘层36,覆盖所述第一导电层35、所述第一介质层41及所述隔离层33;所述第一绝缘层36内具有沿所述第二方向延伸的第一沟槽T1,以及设置在所述第一沟槽T1两侧的多个第二沟槽T2和多个第三沟槽T3;其中,所述第二沟槽T2暴露出所述第一介质层41,所述第三沟槽T3暴露出所述共用下极板32;第二介质层42、第二导电层43及第三导电层44,分别位于所述第一沟槽T1、所述第二沟槽T2及所述第三沟槽T3内。本公开实施例通过在衬底20上叠置多个存储结构30,多个所述存储结构30之间通过层间绝缘层31(例如,氧化硅层)隔开,堆叠设置的存储结构30提高了存储器件的集成度和存储密度。An embodiment of the present disclosure also provides a stacked device, as shown in FIG. 26 , including: a substrate 20 and a plurality of storage structures 30 stacked on the substrate 20; the storage structures 30 include: a common lower plate 32; the isolation layer 33 located on the common lower plate 32 and the plurality of first dielectric layers 41 extending along the first direction defined by the isolation layer 33, and the plurality of first dielectric layers 41 extending along the second direction direction arrangement and distribution; a plurality of first conductive layers 35 are respectively located on a plurality of the first dielectric layers 41 and extend along the first direction; a first insulating layer 36 covers the first conductive layers 35, the The first dielectric layer 41 and the isolation layer 33; the first insulating layer 36 has a first trench T1 extending along the second direction, and a plurality of trenches arranged on both sides of the first trench T1 A second trench T2 and a plurality of third trenches T3; wherein, the second trench T2 exposes the first dielectric layer 41, and the third trench T3 exposes the common lower plate 32; The second dielectric layer 42 , the second conductive layer 43 and the third conductive layer 44 are located in the first trench T1 , the second trench T2 and the third trench T3 respectively. In the embodiment of the present disclosure, a plurality of storage structures 30 are stacked on the substrate 20, and the plurality of storage structures 30 are separated by an interlayer insulating layer 31 (for example, a silicon oxide layer), and the stacked storage structures 30 are improved. The integration and storage density of memory devices.

应当说明的是,以上所述,仅为本公开的可选实施例而已,并非用于限定本公开的保护范围,凡在本公开的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本公开的保护范围之内。It should be noted that the above descriptions are only optional embodiments of the present disclosure, and are not used to limit the protection scope of the present disclosure. Any modifications, equivalent replacements and improvements made within the spirit and principles of the present disclosure, etc. , should be included within the protection scope of the present disclosure.

Claims (15)

1. A method of manufacturing a semiconductor device, comprising:
providing a substrate;
forming a common bottom plate on the substrate;
forming an isolation layer and a plurality of sacrificial layers which are defined by the isolation layer and extend along a first direction on the shared lower polar plate, wherein the sacrificial layers are distributed in a second direction;
forming a plurality of first conductive layers extending in the first direction on the plurality of sacrificial layers;
forming a first insulating layer on the first conductive layer, the sacrificial layer and the isolation layer;
etching the first insulating layer to form a first trench extending along the second direction, wherein the first trench exposes a plurality of the sacrificial layers;
removing the sacrificial layers through the first grooves to form a plurality of hole structures communicated with the first grooves;
forming a first dielectric layer in the hole structures and forming a second dielectric layer in the first groove;
Etching the first insulating layer to form a plurality of second grooves exposing the first dielectric layer and a plurality of third grooves exposing the common lower electrode plate, wherein the second grooves and the third grooves are arranged on two sides of the second dielectric layer;
and forming a second conductive layer and a third conductive layer in the second groove and the third groove respectively.
2. The method of manufacturing of claim 1, wherein removing the plurality of sacrificial layers through the first trench comprises: introducing etching liquid into the first groove, wherein the etching liquid removes the plurality of sacrificial layers; wherein the etching rate of the sacrificial layer is greater than the etching rate of the isolation layer.
3. The manufacturing method according to claim 1, wherein after forming the first insulating layer, the method further comprises:
a plurality of channel layers extending in the first direction and a buried layer located between the plurality of channel layers are formed on the first insulating layer, the plurality of channel layers being arranged in the second direction.
4. The method of manufacturing according to claim 3, wherein the channel layer and the buried layer are formed before the first trench is formed, and the first trench, the second trench, and the third trench each penetrate through the channel layer; the method further comprises the steps of:
A first separation layer is formed within the channel layer and the buried layer extending in the second direction and cutting off the channel layer, the first separation layer and the first trench separating the channel layer into discrete active regions.
5. The manufacturing method according to claim 3, wherein the channel layer and the buried layer are formed after the second conductive layer and the third conductive layer are formed, the channel layer and the buried layer cover the first insulating layer, the second conductive layer, the third conductive layer, and the second dielectric layer, and the channel layer is in contact with the second conductive layer and the third conductive layer; the method further comprises the steps of:
forming first and second separation layers within the channel layer and the buried layer, the first and second separation layers separating the channel layer into discrete active regions, the first and second separation layers extending in the second direction and cutting off the plurality of channel layers; wherein the second separation layer covers the second dielectric layer.
6. A method of manufacturing according to claim 3, wherein the method further comprises:
forming a third dielectric layer on the channel layer and the buried layer, and forming a word line material layer on the third dielectric layer;
Etching the word line material layer to form a word line layer extending along the second direction;
and forming a fourth dielectric layer on the substrate, wherein the fourth dielectric layer covers the third dielectric layer and the word line layer.
7. The method of manufacturing according to claim 6, further comprising:
forming a second insulating layer on the fourth dielectric layer;
etching the second insulating layer, the fourth dielectric layer and the third dielectric layer until the channel layer is exposed, so as to form a plurality of bit line contact holes which are distributed along the second direction;
forming a bit line contact plug in the bit line contact hole;
and forming a plurality of bit line layers extending along the first direction on the bit line contact plug and the second insulating layer, wherein the plurality of bit line layers are arranged along the second direction.
8. A semiconductor device, the semiconductor device comprising:
a substrate and a common bottom plate on the substrate;
the isolation layers are positioned on the shared lower polar plate, the first dielectric layers are limited by the isolation layers and extend along a first direction, and the first dielectric layers are distributed in a second direction;
a plurality of first conductive layers respectively located on the plurality of first dielectric layers and extending along the first direction;
A first insulating layer covering the first conductive layer, the first dielectric layer, and the isolation layer; the first insulating layer is internally provided with a first groove extending along the second direction, a plurality of second grooves and a plurality of third grooves which are arranged on two sides of the first groove; wherein the second trench exposes the first dielectric layer, and the third trench exposes the common lower plate;
the second dielectric layer, the second conductive layer and the third conductive layer are respectively positioned in the first groove, the second groove and the third groove.
9. The semiconductor device according to claim 8, wherein both ends of the first conductive layer are recessed with respect to both ends of the first dielectric layer in the first direction; in the second direction, both ends of the first conductive layer protrude outward with respect to both ends of the first dielectric layer.
10. The semiconductor device according to claim 8, wherein the semiconductor device further comprises: a plurality of channel layers extending in the first direction on the first insulating layer, and a buried layer between the plurality of channel layers, the plurality of channel layers being arranged in the second direction.
11. The semiconductor device of claim 10, wherein the first trench, the second trench, and the third trench each extend through the channel layer; the semiconductor device further includes: a first separation layer extending in the second direction, the first separation layer being located within the channel layer and the buried layer and cutting off a plurality of the channel layers, the first separation layer and the first trench separating the channel layers into discrete active regions.
12. The semiconductor device according to claim 10, wherein the channel layer is over the second conductive layer, the third conductive layer, and the second dielectric layer, the channel layer being in contact with the second conductive layer and the third conductive layer; the semiconductor device further includes: a first separation layer and a second separation layer extending in the second direction, the first separation layer and the second separation layer being located in the channel layer and the buried layer and cutting off the plurality of channel layers, the first separation layer and the second separation layer separating the channel layer into a plurality of active regions; wherein the second separation layer covers the second dielectric layer.
13. The semiconductor device according to claim 10, wherein the semiconductor device further comprises: the third dielectric layer covers the channel layer and the buried layer; a word line layer extending along the second direction, the word line layer being located on the third dielectric layer; and the fourth dielectric layer covers the third dielectric layer and the word line layer.
14. The semiconductor device according to claim 13, wherein the semiconductor device further comprises: a second insulating layer covering the fourth dielectric layer; a plurality of bit line layers extending in the first direction, located on the second insulating layer and arranged in the second direction; and the bit line contact plug is connected with the bit line layer and the channel layer.
15. A stacked device, the stacked device comprising:
a substrate and a plurality of memory structures stacked on the substrate;
the storage structure includes:
sharing a lower polar plate;
the isolation layers are positioned on the shared lower polar plate, the first dielectric layers are limited by the isolation layers and extend along a first direction, and the first dielectric layers are distributed in a second direction;
A plurality of first conductive layers respectively located on the plurality of first dielectric layers and extending along the first direction;
a first insulating layer covering the first conductive layer, the first dielectric layer, and the isolation layer; the first insulating layer is internally provided with a first groove extending along the second direction, a plurality of second grooves and a plurality of third grooves which are arranged on two sides of the first groove; wherein the second trench exposes the first conductive layer, and the third trench exposes the common lower plate;
the second dielectric layer, the second conductive layer and the third conductive layer are respectively positioned in the first groove, the second groove and the third groove.
CN202210157645.0A 2022-02-21 2022-02-21 Manufacturing method of semiconductor device, semiconductor device and stacking device Pending CN116685140A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202210157645.0A CN116685140A (en) 2022-02-21 2022-02-21 Manufacturing method of semiconductor device, semiconductor device and stacking device
PCT/CN2022/098047 WO2023155339A1 (en) 2022-02-21 2022-06-10 Manufacturing method for semiconductor device, semiconductor device, and stacked device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210157645.0A CN116685140A (en) 2022-02-21 2022-02-21 Manufacturing method of semiconductor device, semiconductor device and stacking device

Publications (1)

Publication Number Publication Date
CN116685140A true CN116685140A (en) 2023-09-01

Family

ID=87577433

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210157645.0A Pending CN116685140A (en) 2022-02-21 2022-02-21 Manufacturing method of semiconductor device, semiconductor device and stacking device

Country Status (2)

Country Link
CN (1) CN116685140A (en)
WO (1) WO2023155339A1 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5703012B2 (en) * 2010-12-20 2015-04-15 ピーエスフォー ルクスコ エスエイアールエルPS4 Luxco S.a.r.l. Semiconductor device and data processing system using the semiconductor device
KR20120133137A (en) * 2011-05-30 2012-12-10 에스케이하이닉스 주식회사 Method for Manufacturing Semiconductor Device
US9177872B2 (en) * 2011-09-16 2015-11-03 Micron Technology, Inc. Memory cells, semiconductor devices, systems including such cells, and methods of fabrication
KR20160133031A (en) * 2015-05-11 2016-11-22 에스케이하이닉스 주식회사 Semiconductor device comprising capacitor and method of manufacturing the same
US11462541B2 (en) * 2018-12-17 2022-10-04 Intel Corporation Memory cells based on vertical thin-film transistors
CN113161483B (en) * 2021-04-07 2022-06-10 长鑫存储技术有限公司 Method for manufacturing semiconductor device and semiconductor device

Also Published As

Publication number Publication date
WO2023155339A1 (en) 2023-08-24

Similar Documents

Publication Publication Date Title
US8575680B2 (en) Semiconductor device having air gap and method of fabricating the same
CN114725065A (en) semiconductor memory device
TW201340295A (en) Semiconductor component and method of manufacturing same
KR20040079523A (en) Semiconductor device having capacitor-under-bitline structure and method of manufacturing the same
US20220352173A1 (en) Semiconductor device
WO2024192874A1 (en) Transistor, 3d stacked semiconductor device and manufacturing method therefor, and electronic device
CN116782644B (en) Semiconductor device, method of manufacturing the same, and electronic apparatus
US20230180460A1 (en) Memory device and method for manufacturing memory device
CN108075038A (en) Dynamic RAM and forming method thereof
TW202339206A (en) Semiconductor device
WO2023134308A1 (en) Semiconductor device and manufacturing method therefor
JP7457140B2 (en) Semiconductor structure and its manufacturing method
EP4328968B1 (en) Semiconductor structure and manufacturing method therefor, memory chip and electronic device
US9831248B1 (en) Embedded DRAM cells having capacitors within trench silicide trenches of a semiconductor structure
WO2023155339A1 (en) Manufacturing method for semiconductor device, semiconductor device, and stacked device
WO2023245803A1 (en) Semiconductor structure and manufacturing method therefor, and memory
CN118317602B (en) Semiconductor device, method of manufacturing the same, and electronic apparatus
US20240147692A1 (en) Semiconductor memory devices and method of manufacturing the same
US20240244825A1 (en) Semiconductor device
US20230389268A1 (en) Semiconductor structure and manufacturing method thereof
US20240074150A1 (en) Semiconductor device
US20240292596A1 (en) Semiconductor device including capacitor and method of fabricating the same
WO2025118331A1 (en) Semiconductor device and manufacturing method therefor
WO2023201825A1 (en) Semiconductor device and manufacturing method therefor
CN117979688A (en) Semiconductor structure and manufacturing method thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination