CN116679329A - Beidou space-time reference accurate characterization method and system based on state domain space - Google Patents
Beidou space-time reference accurate characterization method and system based on state domain space Download PDFInfo
- Publication number
- CN116679329A CN116679329A CN202310974056.6A CN202310974056A CN116679329A CN 116679329 A CN116679329 A CN 116679329A CN 202310974056 A CN202310974056 A CN 202310974056A CN 116679329 A CN116679329 A CN 116679329A
- Authority
- CN
- China
- Prior art keywords
- satellite
- ssr
- pseudorange
- phase
- space
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000012512 characterization method Methods 0.000 title claims abstract description 18
- 238000012937 correction Methods 0.000 claims abstract description 51
- 238000000034 method Methods 0.000 claims abstract description 17
- 230000036962 time dependent Effects 0.000 claims abstract description 12
- 238000004364 calculation method Methods 0.000 claims description 3
- 239000005433 ionosphere Substances 0.000 abstract description 2
- 230000006870 function Effects 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 239000013598 vector Substances 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000011664 signaling Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S19/00—Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
- G01S19/38—Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
- G01S19/39—Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
- G01S19/396—Determining accuracy or reliability of position or pseudorange measurements
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S19/00—Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
- G01S19/01—Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
- G01S19/03—Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers
- G01S19/07—Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers providing data for correcting measured positioning data, e.g. DGPS [differential GPS] or ionosphere corrections
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S19/00—Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
- G01S19/01—Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
- G01S19/13—Receivers
- G01S19/35—Constructional details or hardware or software details of the signal processing chain
- G01S19/37—Hardware or software details of the signal processing chain
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A90/00—Technologies having an indirect contribution to adaptation to climate change
- Y02A90/10—Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation
Landscapes
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Signal Processing (AREA)
- Position Fixing By Use Of Radio Waves (AREA)
Abstract
Description
技术领域technical field
本发明涉及卫星导航定位技术领域,特别涉及一种基于状态域空间的北斗时空基准精确表征方法和系统。The invention relates to the technical field of satellite navigation and positioning, in particular to a method and system for accurately representing Beidou time-space references based on state domain space.
背景技术Background technique
对于标准化状态域空间表达(SSR)全球导航卫星系统(GNSS)改正数据格式的需求早在多年前已经达成共识,当时国际GNSS服务(IGS)开发并分析了精密单点定位(PPP)技术,工业界提出使用PPP-RTK技术。RTCM特别委员会SC-104于2007年成立了一个工作组。SSR技术被广泛认为是先进且灵活的GNSS改正方法,因为它在支持无限的用户量、不同类型的应用以及支持各种现代GNSS、频率和信号方面具有可拓展的优势。The need for a standardized State Space Representation (SSR) Global Navigation Satellite System (GNSS) correction data format was agreed many years ago when the International GNSS Service (IGS) developed and analyzed the Precision Point Positioning (PPP) technology, industry The world proposes to use PPP-RTK technology. RTCM Special Committee SC-104 formed a working group in 2007. SSR technology is widely regarded as an advanced and flexible GNSS correction method because of its scalability advantages in supporting an unlimited number of users, different types of applications, and supporting various modern GNSS, frequencies, and signals.
RTCM-SSR工作组定义了SSR概念,以及针对所有精度种类的实时的可靠性消息,包括模糊度分辨率(RTK质量)。其拟议的时间表/工作计划包括以下主要步骤:阶段1,卫星轨道、卫星时钟和卫星码偏差信息,使双频接收机实现基于伪距的实时(RT)-PPP;阶段2,垂直总电子含量(VTEC)电离层信息,使单频接收器实现基于伪距的RT-PPP;卫星相位偏差信息,实现基于相位的RT-PPP;阶段3,电离层倾斜总电子含量(STEC)和对流层信息,实现PPP-RTK;阶段4,压缩以减少带宽。The RTCM-SSR working group defined the SSR concept and real-time reliability messages for all precision classes, including ambiguity resolution (RTK quality). Its proposed timeline/work plan includes the following major steps: Phase 1, satellite orbit, satellite clock, and satellite code bias information to enable dual-frequency receivers for pseudorange-based real-time (RT)-PPP; phase 2, vertical total electronic Content (VTEC) ionospheric information, enabling pseudorange-based RT-PPP for single-frequency receivers; satellite phase bias information, enabling phase-based RT-PPP; Phase 3, ionospheric tilted total electron content (STEC) and tropospheric information , to achieve PPP-RTK; stage 4, compression to reduce bandwidth.
GPS和GLONASS的标准化RTCM-SSR信息首次发表于2011年7月1日,在“RTCMSTANDARD 10403.1”的修正1-5中。到目前为止,只有RTCM第1阶段的信息被标准化,而且只有覆盖GPS和GLONASS的信息。随后,IGS开发并发布了一种开放的格式标准,包括用于多GNSS SSR改正的第1和第2阶段消息。特别是支持IGS的实时服务以及更广泛的研究和科学应用。虽然使用了不同的消息格式,但IGS-SSR的基本内容与RTCM-SSR的内容兼容。Standardized RTCM-SSR information for GPS and GLONASS was first published on July 1, 2011, in Amendments 1-5 of "RTCMSTANDARD 10403.1". So far only RTCM Phase 1 information has been standardized, and only that covering GPS and GLONASS. Subsequently, IGS developed and published an open format standard including Phase 1 and Phase 2 messages for multi-GNSS SSR corrections. In particular, it supports the real-time services of the IGS and wider research and scientific applications. Although a different message format is used, the basic content of IGS-SSR is compatible with that of RTCM-SSR.
现有北斗导航系统缺乏基于状态域的时空基准表征方法,原有基于观测域的时空基准表征方法无法实现非差非组合的导航定位,其对于主站观测的依赖使其在可用性、灵活性、用户数量等方面都受到诸多限制。本发明旨在通过建立基于状态域空间的北斗时空基准精确表征方法,支撑非差非组合北斗导航定位的实现。The existing Beidou navigation system lacks a space-time benchmark representation method based on the state domain. The original space-time reference representation method based on the observation domain cannot achieve non-difference and non-combined navigation and positioning. The number of users and other aspects are subject to many restrictions. The present invention aims to support the realization of non-difference and non-combined Beidou navigation and positioning by establishing an accurate characterization method of Beidou space-time reference based on state domain space.
发明内容Contents of the invention
为克服现有技术中存在的问题,本发明的目的是提供一种基于状态域空间的北斗时空基准精确表征方法和系统。该方法针对北斗的观测误差来源,建立观测方程,独立解算各个观测误差,形成一种不依赖主站观测的,精度可比实时相对定位(RTK)的,实时绝对定位(PPP-RTK)方法。In order to overcome the problems existing in the prior art, the object of the present invention is to provide a method and system for accurately characterization of the Beidou space-time reference based on the state domain space. According to the source of Beidou's observation errors, the method establishes observation equations, independently solves each observation error, and forms a real-time absolute positioning (PPP-RTK) method that does not rely on the observation of the main station and has an accuracy comparable to that of real-time relative positioning (RTK).
本发明由下述技术方案实现:The present invention is realized by following technical scheme:
本发明提供了一种基于状态域空间的北斗时空基准精确表征方法,包括如下步骤:The present invention provides an accurate characterization method of the Beidou space-time reference based on the state domain space, comprising the following steps:
步骤1,通过SSR卫星轨道改正信息,得到卫星的位置;Step 1, obtain the position of the satellite through the SSR satellite orbit correction information;
步骤2,通过SSR卫星时钟改正,得到卫星的时钟;Step 2, correcting the SSR satellite clock to obtain the satellite clock;
步骤3,通过SSR卫星偏差改正,得到不包含单独时间依赖性偏差的伪距和相位观测;Step 3, through SSR satellite bias correction, obtain pseudorange and phase observations that do not contain individual time-dependent bias;
步骤4,通过SSR垂直总电子含量(VTEC)信息,得到倾斜总电子含量(STEC)信息,进而得到不包含电离层偏差的伪距和相位观测;Step 4, through the vertical total electron content (VTEC) information of the SSR, the oblique total electron content (STEC) information is obtained, and then the pseudorange and phase observations without ionospheric bias are obtained;
步骤5,通过SSR用户测距精度(URA)指标,经由表格得到用户测距精度。Step 5, according to the SSR user ranging accuracy (URA) index, the user ranging accuracy is obtained through the table.
进一步的,步骤1中,SSR卫星轨道改正信息使用卫星固定坐标系,其包含径向、切向和法向三个方向的轨道改正参数。Further, in step 1, the SSR satellite orbit correction information uses a satellite fixed coordinate system, which includes orbit correction parameters in three directions: radial, tangential and normal.
进一步的,步骤2中,SSR卫星轨道改正是对依据GNSS-ICD算法的卫星广播参数计算的卫星轨道的改正,SSR卫星时钟改正也由依据GNSS-ICD算法的特定GNSS卫星广播参数用相应的计算得出。Further, in step 2, the SSR satellite orbit correction is the correction of the satellite orbit calculated based on the satellite broadcast parameters of the GNSS-ICD algorithm, and the SSR satellite clock correction is also calculated according to the specific GNSS satellite broadcast parameters of the GNSS-ICD algorithm. inferred.
进一步的,步骤3中,不包含单独时间依赖性偏差的伪距和相位/>观测由伪距和相位原始观测通过如下数学表达获得:Further, in step 3, pseudoranges that do not contain individual time-dependent biases and phase /> Observations are obtained from pseudorange and phase raw observations through the following mathematical expression:
, ,
, ,
其中,和/>分别对应伪距和相位的SSR偏差改正,/>和/>分别为伪距和相位原始观测。in, and /> SSR bias correction corresponding to pseudorange and phase respectively, /> and /> are pseudorange and phase raw observations, respectively.
进一步的,步骤5中,通过每颗卫星的SSR URA消息得到SSR用户测距精度指标,经由指标与数值的对应关系,转换成用户测距精度。Further, in step 5, the SSR user ranging accuracy index is obtained through the SSR URA message of each satellite, and converted into the user ranging accuracy through the corresponding relationship between the index and the value.
本发明还涉及一种基于状态域空间的北斗时空基准精确表征系统,包括:The present invention also relates to a Beidou space-time reference accurate characterization system based on state domain space, including:
卫星位置获取模块,用于通过SSR卫星轨道改正信息,得到卫星的位置;The satellite position acquisition module is used to correct the information through the SSR satellite orbit to obtain the position of the satellite;
卫星时钟获取模块,用于通过SSR卫星时钟改正,得到卫星的时钟;The satellite clock acquisition module is used for correcting the SSR satellite clock to obtain the satellite clock;
伪距和相位观测模块,用于通过SSR卫星偏差改正,得到不包含单独时间依赖性偏差的伪距和相位观测;The pseudorange and phase observation module is used to obtain pseudorange and phase observations that do not contain individual time-dependent biases through SSR satellite bias correction;
不包含电离层偏差的伪距和相位观测模块,用于通过SSR垂直总电子含量(VTEC)信息,得到倾斜总电子含量(STEC)信息,进而得到不包含电离层偏差的伪距和相位观测;The pseudorange and phase observation module without ionospheric bias is used to obtain the tilted total electron content (STEC) information through the SSR vertical total electron content (VTEC) information, and then obtain the pseudorange and phase observation without ionospheric bias;
用户测距精度模块,用于通过SSR用户测距精度(URA)指标,经由表格得到用户测距精度。The user ranging accuracy module is configured to use the SSR user ranging accuracy (URA) index to obtain the user ranging accuracy through a table.
本发明还涉及一种电子设备,所述电子设备包括:The present invention also relates to an electronic device comprising:
至少一个处理器;以及,at least one processor; and,
与所述至少一个处理器通信连接的存储器;其中,a memory communicatively coupled to the at least one processor; wherein,
所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行所述的方法。The memory stores instructions executable by the at least one processor, the instructions are executed by the at least one processor to enable the at least one processor to perform the method.
本发明还涉及一种非暂态计算机可读存储介质,该非暂态计算机可读存储介质存储计算机指令,该计算机指令用于使该计算机执行所述的方法。The present invention also relates to a non-transitory computer-readable storage medium storing computer instructions for causing the computer to execute the method.
本发明的技术方案能实现如下有益的技术效果:The technical solution of the present invention can realize the following beneficial technical effects:
本发明通过建立基于SSR的北斗时空基准,解决非差非组合的北斗导航定位技术问题,最终实现PPP-RTK,其在支持无限的用户量、不同类型的应用以及支持各种现代GNSS、频率和信号方面具有可拓展的优势。The present invention solves the problem of non-difference and non-combined Beidou navigation and positioning technology by establishing the SSR-based Beidou space-time reference, and finally realizes PPP-RTK, which supports unlimited users, different types of applications, and various modern GNSS, frequency and The signaling aspect has the advantage of being scalable.
附图说明Description of drawings
图1为本发明的基于状态域空间的北斗时空基准精确表征方法的流程示意图;Fig. 1 is a schematic flow diagram of the Beidou space-time reference accurate characterization method based on the state domain space of the present invention;
图2为本发明的基于状态域空间的北斗时空基准精确表征方法的流程图。Fig. 2 is a flow chart of the accurate characterization method of the Beidou space-time reference based on the state domain space of the present invention.
具体实施方式Detailed ways
为使本发明的目的、技术方案和优点更加清楚明了,下面结合具体实施方式并参照附图,对本发明进一步详细说明。应该理解,这些描述只是示例性的,而并非要限制本发明的范围。此外,在以下说明中,省略了对公知结构和技术的描述,以避免不必要地混淆本发明的概念。In order to make the object, technical solution and advantages of the present invention clearer, the present invention will be further described in detail below in combination with specific embodiments and with reference to the accompanying drawings. It should be understood that these descriptions are exemplary only, and are not intended to limit the scope of the present invention. Also, in the following description, descriptions of well-known structures and techniques are omitted to avoid unnecessarily obscuring the concept of the present invention.
下面结合附图及实施例对本发明进行详细说明。The present invention will be described in detail below in conjunction with the accompanying drawings and embodiments.
本发明提供了一种基于状态域空间的北斗时空基准精确表征方法,包括如下步骤:The present invention provides an accurate characterization method of the Beidou space-time reference based on the state domain space, comprising the following steps:
步骤1、通过SSR卫星轨道改正信息,得到卫星的位置。Step 1. Obtain the position of the satellite through the SSR satellite orbit correction information.
SSR卫星轨道改正信息使用卫星固定坐标系,其包含径向、切向和法向三个方向的轨道改正参数。The SSR satellite orbit correction information uses a satellite fixed coordinate system, which includes orbit correction parameters in three directions: radial, tangential and normal.
轨道和时钟电文要与从卫星广播电文获得的相应值相结合。北斗导航卫星使用的广播导航电文类型见表1。Orbit and clock messages are combined with corresponding values obtained from satellite broadcast messages. The types of broadcast navigation messages used by Beidou navigation satellites are shown in Table 1.
表1 北斗广播电文类型Table 1 Beidou broadcast message types
, ,
具体的,SSR卫星轨道改正信息包括轨道改正参数,轨道改正参数/>向量包括径向(radial)、切向(along)和法向(cross)三个方向。卫星位置改正参数/>由轨道改正参数/>转换可得,具体如下:Specifically, the SSR satellite orbit correction information includes orbit correction parameters , orbit correction parameters /> Vectors include three directions: radial, along and cross. Satellite position correction parameters /> Correct parameters by orbit /> The conversion is available as follows:
, ,
, ,
, ,
, ,
其中,即广播星历的卫星位置,/>为/>的速度即广播星历的卫星速度,/>,/>,/>分别代表径向、切向和法向的单位向量。in, That is, the satellite position of the broadcast ephemeris, /> for /> The speed of is the satellite speed of the broadcast ephemeris, /> , /> , /> Unit vectors representing the radial, tangential, and normal directions, respectively.
通过进一步与广播星历的卫星位置结合,计算出卫星的位置/>,其计算公式如下:By further satellite position with broadcast ephemeris Combined to calculate the position of the satellite /> , its calculation formula is as follows:
, ,
步骤2、通过SSR卫星时钟改正,得到卫星的时钟。Step 2. Correct the SSR satellite clock to obtain the satellite clock.
SSR轨道改正是对依据GNSS-ICD算法的卫星广播参数计算的卫星轨道的改正。SSR卫星时钟改正也由依据GNSS-ICD算法的特定GNSS卫星广播参数用相应的计算得出。SSR改正不是针对任何特定GNSS广播改正项本身定义的改正。The SSR orbit correction is a correction to the satellite orbit calculated based on the satellite broadcast parameters of the GNSS-ICD algorithm. SSR satellite clock corrections are also computed accordingly from specific GNSS satellite broadcast parameters according to the GNSS-ICD algorithm. SSR corrections are not corrections defined per se for any particular GNSS broadcast correction.
SSR时钟改正包括对应广播卫星时钟的时钟改正的参数,下式表示描述了某一时间段内的时钟差异:SSR clock corrections include parameters for clock corrections corresponding to broadcast satellite clocks , the following expression describes the clock difference in a certain period of time:
, ,
其中,为SSR卫星钟改正信息的多项式系数,/>为当前时间,/>为SSR卫星钟改正信息的获取时间,/>为SSR卫星钟高频改正信息。in, Polynomial coefficients for SSR satellite clock correction information, /> for the current time, /> Acquisition time for SSR satellite clock correction information, /> High frequency correction information for SSR satellite clocks.
结合广播卫星时钟,得到卫星的时钟如下:Combined with the broadcast satellite clock, the satellite clock is obtained as follows:
, ,
其中,为依据GNSS-ICD算法的卫星广播参数算出的卫星时间,/>为SSR卫星钟改正信息。in, is the satellite time calculated based on the satellite broadcast parameters of the GNSS-ICD algorithm, /> Correction information for SSR satellite clock.
步骤3、通过SSR卫星偏差改正,得到不包含单独时间依赖性偏差的伪距和相位观测。Step 3. Obtain pseudorange and phase observations that do not contain individual time-dependent biases through SSR satellite bias correction.
GNSS卫星传输的每个信号都会产生一个单独的时间依赖性偏差,表示为硬件和软件延迟的函数。在GNSS伪距(PR)和相位(PHR)(载波相位)观测方程中,单个卫星信号偏差与卫星钟差之间存在线性依赖关系。因此,在估计过程中完全分离所有偏差和时钟参数是不可能的。克服这个问题的解决方案之一是定义“卫星偏差基准”,将某个信号或信号的线性组合的偏差设置为零。例如,GPS广播时钟改正是基于:P1和P2信号(RINEX观测码C1P和C2P)的无电离层组合是无偏的。IGS的卫星钟产品也采用了类似的惯例,应用偏差基准将把所有剩余偏差转化为相对于偏差基准的相对偏差。Each signal transmitted by a GNSS satellite produces an individual time-dependent bias expressed as a function of hardware and software delays. In the GNSS pseudorange (PR) and phase (PHR) (carrier phase) observation equations, there is a linear dependence between individual satellite signal biases and satellite clock errors. Therefore, it is impossible to completely separate all bias and clock parameters during estimation. One of the solutions to overcome this problem is to define a "satellite bias reference", which sets the bias of a certain signal or a linear combination of signals to zero. For example, GPS broadcast clock corrections are based on the fact that the ionosphere-free combination of the P1 and P2 signals (RINEX observation codes C1P and C2P) is unbiased. A similar convention is followed for IGS satellite clock products, applying a bias reference will convert any remaining bias into relative deviations from the bias reference.
为了避免在SSR标准的定义中使用偏差基准约定,SSR卫星偏差改正信息中包含绝对信号偏差。每个支持的信号部分都需要传输一个偏差参数。这增加了一个附加参数所需的位数,但为服务提供者选择支持的信号和偏差基准定义提供了最大的灵活性。伪距和相位偏差消息包含绝对值,但也可以通过将其中一个偏差设置为零来支持DCBs的使用。In order to avoid using the bias reference convention in the definition of the SSR standard, the absolute signal bias is included in the SSR satellite bias correction information. Each supported signal part needs to transmit a bias parameter. This adds an additional parameter to the number of bits required, but provides maximum flexibility for service providers to choose supported signal and bias reference definitions. The pseudorange and phase bias messages contain absolute values, but can also support the use of DCBs by setting one of the biases to zero.
不包含单独时间依赖性偏差的伪距和相位/>观测由伪距和相位原始观测通过如下数学表达获得:Pseudoranges that do not contain individual time-dependent biases and phase /> Observations are obtained from pseudorange and phase raw observations through the following mathematical expression:
, ,
, ,
其中,和/>分别对应伪距和相位的SSR偏差改正,/>和/>则为原始观测。in, and /> SSR bias correction corresponding to pseudorange and phase respectively, /> and /> is the original observation.
步骤4、通过SSR垂直总电子含量(VTEC)信息,得到倾斜总电子含量(STEC)信息,进而得到不包含电离层偏差的伪距和相位观测。Step 4. Obtain the tilted total electron content (STEC) information through the vertical total electron content (VTEC) information of the SSR, and then obtain the pseudorange and phase observations that do not include ionospheric bias.
电离层垂直TEC (VTEC)是用球谐函数来表达的。球谐函数保证电离层模型的全球性和连续性,而且也可以应用于区域表示。它是多级电离层改正的第一个组成部分。The ionospheric vertical TEC (VTEC) is expressed by spherical harmonics. Spherical harmonics ensure global and continuous ionospheric models and can also be applied to regional representations. It is the first component of the multilevel ionospheric correction.
网格高分辨率模型用来实现区域/大陆块级的VTEC表示。A high-resolution grid model is used to realize the VTEC representation at the region/continental block level.
, ,
其中,和/>分别代表球谐函数的最大阶和级,/>和/>为当前的阶和级,/>和/>分别代表余弦和正弦的系数,/>为电离层穿刺点偏移,/>为电离层穿刺点经度,/>为电离层穿刺点纬度,/>是拉格朗日函数。进一步通过卫星在接收机的球位置高度角/>,和球中心角/>,可得到该层的STEC。in, and /> represent the maximum order and order of spherical harmonics, respectively, /> and /> for the current rank and level, /> and /> represent the coefficients of cosine and sine, respectively, /> is the ionospheric puncture point offset, /> is the longitude of the ionospheric puncture point, /> is the latitude of the ionospheric puncture point, /> is a Lagrangian function. further pass the altitude angle of the satellite at the receiver's spherical position /> , and the central angle of the sphere /> , the STEC of this layer can be obtained.
, ,
因此,电离层对于伪距和相位观测的影响和/>可以表示为:Therefore, the impact of the ionosphere on pseudorange and phase observations and /> It can be expressed as:
, ,
, ,
步骤5、通过SSR用户测距精度(URA)指标,经由表格得到用户测距精度。Step 5. According to the user ranging accuracy (URA) index of the SSR, the user ranging accuracy is obtained through a table.
每个状态参数不是独立的。例如,时钟和径向轨道状态参数是相关的。SSR用户测距精度(URA),即无故障状态下用来约束卫星钟差和星历误差所引起的用户测距误差(URE)的最小标准差,属于无偏高斯分布。其作为单一的统计指标用来描述所有非色散状态参数的质量。通过每颗卫星的SSR URA消息得到SSR用户测距精度指标,经由指标与数值的对应关系,转换成用户测距精度。SSR URA指标与用户测距精度的对应关系如下表。Each state parameter is not independent. For example, clock and radial orbit state parameters are related. SSR User Ranging Accuracy (URA), that is, the minimum standard deviation of User Ranging Error (URE) caused by constraining satellite clock error and ephemeris error in the no-fault state, belongs to the unbiased Gaussian distribution. It is used as a single statistical index to describe the quality of all non-dispersive state parameters. The SSR user ranging accuracy index is obtained through the SSR URA message of each satellite, and converted into the user ranging accuracy through the corresponding relationship between the index and the value. The corresponding relationship between SSR URA indicators and user ranging accuracy is shown in the following table.
表2 SSR URA 指标与用户测距精度的对应关系表Table 2 Correspondence between SSR URA index and user ranging accuracy
, ,
综上,通过步骤1-4完成对误差源的独立,建立观测模型,进而解算观测模型完成定位;通过步骤5评定非色散参数的质量。In summary, the independence of the error source is completed through steps 1-4, the observation model is established, and then the observation model is solved to complete the positioning; the quality of the non-dispersive parameters is evaluated through step 5.
本发明针对北斗导航系统,结合国际先进的状态域空间标准,提供一种基于状态域空间的北斗时空基准精确表征方法。填补国内在自主研制的卫星导航系统SSR表达方法上的空白,后续为北斗相关实时服务的各种定位模式(单频/多频、伪距/相位RT-PPP和PPP-RTK)提供改正信息基础标准。Aiming at the Beidou navigation system, the present invention provides an accurate characterization method of the Beidou space-time reference based on the state domain space in combination with the international advanced state domain space standard. Fill in the gap in the expression method of the self-developed satellite navigation system SSR in China, and provide correction information basis for various positioning modes (single-frequency/multi-frequency, pseudo-range/phase RT-PPP and PPP-RTK) of Beidou-related real-time services standard.
本发明还涉及一种基于状态域空间的北斗时空基准精确表征系统,包括:The present invention also relates to a Beidou space-time reference accurate characterization system based on state domain space, including:
卫星位置获取模块,用于通过SSR卫星轨道改正信息,得到卫星的位置;The satellite position acquisition module is used to correct the information through the SSR satellite orbit to obtain the position of the satellite;
卫星时钟获取模块,用于通过SSR卫星时钟改正,得到卫星的时钟;The satellite clock acquisition module is used for correcting the SSR satellite clock to obtain the satellite clock;
伪距和相位观测模块,用于通过SSR卫星偏差改正,得到不包含单独时间依赖性偏差的伪距和相位观测;The pseudorange and phase observation module is used to obtain pseudorange and phase observations that do not contain individual time-dependent biases through SSR satellite bias correction;
不包含电离层偏差的伪距和相位观测模块,用于通过SSR垂直总电子含量(VTEC)信息,得到倾斜总电子含量(STEC)信息,进而得到不包含电离层偏差的伪距和相位观测;The pseudorange and phase observation module without ionospheric bias is used to obtain the tilted total electron content (STEC) information through the SSR vertical total electron content (VTEC) information, and then obtain the pseudorange and phase observation without ionospheric bias;
用户测距精度模块,用于通过SSR用户测距精度(URA)指标,经由表格得到用户测距精度。The user ranging accuracy module is configured to use the SSR user ranging accuracy (URA) index to obtain the user ranging accuracy through a table.
本发明还涉及一种电子设备,所述电子设备包括:The present invention also relates to an electronic device comprising:
至少一个处理器;以及,at least one processor; and,
与所述至少一个处理器通信连接的存储器;其中,a memory communicatively coupled to the at least one processor; wherein,
所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行所述的方法。The memory stores instructions executable by the at least one processor, the instructions are executed by the at least one processor to enable the at least one processor to perform the method.
本发明还涉及一种非暂态计算机可读存储介质,该非暂态计算机可读存储介质存储计算机指令,该计算机指令用于使该计算机执行所述的方法。The present invention also relates to a non-transitory computer-readable storage medium storing computer instructions for causing the computer to execute the method.
综上所述,本发明提供了一种基于状态域空间的北斗时空基准精确表征方法和系统,包括如下步骤:通过SSR卫星轨道改正信息,得到卫星的位置;通过SSR卫星时钟改正,得到卫星的时钟;通过SSR卫星偏差改正,得到不包含单独时间依赖性偏差的伪距和相位观测;通过SSR垂直总电子含量(VTEC)信息,得到倾斜总电子含量(STEC)信息,进而得到不包含电离层偏差的伪距和相位观测;通过SSR用户测距精度(URA)指标,经由表格得到用户测距精度。本发明通过建立基于SSR的北斗时空基准,解决非差非组合的北斗导航定位技术问题,最终实现PPP-RTK,在支持无限的用户量、不同类型应用以及支持各种现代GNSS、频率和信号方面具有可拓展的优势。To sum up, the present invention provides a method and system for accurate characterization of the BeiDou space-time reference based on the state domain space, including the following steps: obtaining the position of the satellite by correcting the information of the SSR satellite orbit; obtaining the position of the satellite by correcting the SSR satellite clock Clock; through SSR satellite bias correction, obtain pseudo-range and phase observations that do not contain individual time-dependent bias; through SSR vertical total electron content (VTEC) information, obtain tilted total electron content (STEC) information, and then obtain ionospheric The pseudo-range and phase observation of the deviation; through the SSR user ranging accuracy (URA) index, the user ranging accuracy is obtained through the table. The present invention solves the problem of non-difference and non-combined Beidou navigation and positioning technology by establishing the SSR-based Beidou space-time reference, and finally realizes PPP-RTK, which supports unlimited users, different types of applications, and supports various modern GNSS, frequencies and signals. It has the advantage of being scalable.
应当理解的是,本发明的上述具体实施方式仅仅用于示例性说明或解释本发明的原理,而不构成对本发明的限制。因此,在不偏离本发明的精神和范围的情况下所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。此外,本发明所附权利要求旨在涵盖落入所附权利要求范围和边界、或者这种范围和边界的等同形式内的全部变化和修改例。It should be understood that the above specific embodiments of the present invention are only used to illustrate or explain the principle of the present invention, and not to limit the present invention. Therefore, any modification, equivalent replacement, improvement, etc. made without departing from the spirit and scope of the present invention shall fall within the protection scope of the present invention. Furthermore, it is intended that the appended claims of the present invention embrace all changes and modifications that come within the scope and metesques of the appended claims, or equivalents of such scope and metes and bounds.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310974056.6A CN116679329A (en) | 2023-08-04 | 2023-08-04 | Beidou space-time reference accurate characterization method and system based on state domain space |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310974056.6A CN116679329A (en) | 2023-08-04 | 2023-08-04 | Beidou space-time reference accurate characterization method and system based on state domain space |
Publications (1)
Publication Number | Publication Date |
---|---|
CN116679329A true CN116679329A (en) | 2023-09-01 |
Family
ID=87782329
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202310974056.6A Pending CN116679329A (en) | 2023-08-04 | 2023-08-04 | Beidou space-time reference accurate characterization method and system based on state domain space |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN116679329A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117471511A (en) * | 2023-12-27 | 2024-01-30 | 武汉大学 | Satellite-ground integrated PPP-RTK precision positioning service method and system for communication base station planning |
CN118826832A (en) * | 2024-06-24 | 2024-10-22 | 武汉大学 | A regional short message encoding method and a positioning method based on regional short message |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5428358A (en) * | 1994-05-03 | 1995-06-27 | The United States Of America As Represented By The Secretary Of The Navy | Apparatus and method for ionospheric mapping |
EP3035080A1 (en) * | 2014-12-16 | 2016-06-22 | Trimble Navigation Limited | Navigation satellite system positioning involving the generation of correction information |
CN109061676A (en) * | 2018-07-03 | 2018-12-21 | 千寻位置网络有限公司 | A kind of transmission method and system, localization method and terminal of positioning amendment data |
CN109709591A (en) * | 2018-12-07 | 2019-05-03 | 中国科学院光电研究院 | A GNSS high-precision positioning method for intelligent terminals |
CN111970043A (en) * | 2020-08-05 | 2020-11-20 | 火眼位置数智科技服务有限公司 | Text generation method and device |
CN113447958A (en) * | 2020-03-25 | 2021-09-28 | 千寻位置网络有限公司 | Integrity monitoring method and system for regional ionosphere STEC correction number |
CN115453593A (en) * | 2022-09-30 | 2022-12-09 | 中国科学院上海天文台 | Fixed ambiguity precise point positioning method, device and medium based on short message |
CN115575984A (en) * | 2021-06-21 | 2023-01-06 | 韩国电子通信研究院 | Method and apparatus for transmitting and receiving feature information of GNSS subframe |
CN115902968A (en) * | 2022-12-05 | 2023-04-04 | 中国电子科技集团公司第五十四研究所 | PPP terminal positioning method based on Beidou third GEO broadcast enhancement information |
CN116449400A (en) * | 2023-06-19 | 2023-07-18 | 武汉大学 | A Beidou-3 PPP service real-time satellite clock error evaluation method and system |
-
2023
- 2023-08-04 CN CN202310974056.6A patent/CN116679329A/en active Pending
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5428358A (en) * | 1994-05-03 | 1995-06-27 | The United States Of America As Represented By The Secretary Of The Navy | Apparatus and method for ionospheric mapping |
EP3035080A1 (en) * | 2014-12-16 | 2016-06-22 | Trimble Navigation Limited | Navigation satellite system positioning involving the generation of correction information |
CN109061676A (en) * | 2018-07-03 | 2018-12-21 | 千寻位置网络有限公司 | A kind of transmission method and system, localization method and terminal of positioning amendment data |
CN109709591A (en) * | 2018-12-07 | 2019-05-03 | 中国科学院光电研究院 | A GNSS high-precision positioning method for intelligent terminals |
CN113447958A (en) * | 2020-03-25 | 2021-09-28 | 千寻位置网络有限公司 | Integrity monitoring method and system for regional ionosphere STEC correction number |
CN111970043A (en) * | 2020-08-05 | 2020-11-20 | 火眼位置数智科技服务有限公司 | Text generation method and device |
CN115575984A (en) * | 2021-06-21 | 2023-01-06 | 韩国电子通信研究院 | Method and apparatus for transmitting and receiving feature information of GNSS subframe |
CN115453593A (en) * | 2022-09-30 | 2022-12-09 | 中国科学院上海天文台 | Fixed ambiguity precise point positioning method, device and medium based on short message |
CN115902968A (en) * | 2022-12-05 | 2023-04-04 | 中国电子科技集团公司第五十四研究所 | PPP terminal positioning method based on Beidou third GEO broadcast enhancement information |
CN116449400A (en) * | 2023-06-19 | 2023-07-18 | 武汉大学 | A Beidou-3 PPP service real-time satellite clock error evaluation method and system |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117471511A (en) * | 2023-12-27 | 2024-01-30 | 武汉大学 | Satellite-ground integrated PPP-RTK precision positioning service method and system for communication base station planning |
CN117471511B (en) * | 2023-12-27 | 2024-03-08 | 武汉大学 | Satellite-ground integrated PPP-RTK precision positioning service method and system for communication base station planning |
CN118826832A (en) * | 2024-06-24 | 2024-10-22 | 武汉大学 | A regional short message encoding method and a positioning method based on regional short message |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109001972B (en) | Beidou wide-area time service system and method | |
CN103852773B (en) | A kind of alignment system based on cloud computing technology and localization method | |
CN116679329A (en) | Beidou space-time reference accurate characterization method and system based on state domain space | |
US9019157B2 (en) | Method and apparatus for position determination with extended SPS orbit information | |
KR20210008384A (en) | Rapid precision positioning method and system | |
CN110208835B (en) | Cross-system tight combination differential positioning method based on ionosphere combination | |
CN114791614A (en) | Clock error forecasting method and device | |
CN111856534B (en) | Dual-mode GNSS carrier precision single-point positioning method and system for intelligent terminals | |
CN116540280B (en) | Comprehensive processing method and system for state domain correction information of multi-frequency satellite navigation data | |
CN115933356B (en) | A high-precision time synchronization system and method for a virtual atomic clock | |
CN104111467A (en) | Network real time kinematic (RTK) instant locating method based on big dipper tri-band wide-lane combination | |
CN112285749B (en) | Method and device for processing original observation data of global navigation satellite system and storage medium | |
Gu et al. | Real-time precise point positioning based on BDS-3 global short message communication | |
CN111929705A (en) | Positioning method and device based on dynamic reference station, electronic equipment and storage medium | |
CN115469335B (en) | Ionosphere delay correction method and system based on quasi-four-dimensional model | |
CN114563806B (en) | A PPP-RTK real-time positioning method and system for Android mobile devices | |
Song et al. | Real-time multi-GNSS precise point positioning with ambiguity resolution based on the BDS-3 global short-message communication function | |
CN115453593A (en) | Fixed ambiguity precise point positioning method, device and medium based on short message | |
Sturze et al. | Real-time PPP using open CORS networks and RTCM standards | |
CN116540278B (en) | A benchmark dynamic maintenance method and system for cloud-edge-device collaboration | |
CN117970403A (en) | Star-ground fusion positioning method based on PPP-RTK and related equipment | |
CN110095796A (en) | A kind of real-time dynamic precision navigation locating method of cross-system MW tight integration | |
CN116736382A (en) | A method and system for extracting coseismic displacements using Beidou short messages | |
US20240337755A1 (en) | Precise positioning engine (ppe) base station swap handling | |
CN114252898B (en) | Displacement monitoring method, device, system and electronic equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20230901 |