CN116666406A - Front-illuminated image sensor and method of forming the same - Google Patents
Front-illuminated image sensor and method of forming the same Download PDFInfo
- Publication number
- CN116666406A CN116666406A CN202210146486.4A CN202210146486A CN116666406A CN 116666406 A CN116666406 A CN 116666406A CN 202210146486 A CN202210146486 A CN 202210146486A CN 116666406 A CN116666406 A CN 116666406A
- Authority
- CN
- China
- Prior art keywords
- doped region
- type doped
- region
- substrate
- type
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 36
- 239000000758 substrate Substances 0.000 claims abstract description 113
- 238000007599 discharging Methods 0.000 claims abstract description 9
- 238000005468 ion implantation Methods 0.000 claims description 30
- 238000005530 etching Methods 0.000 claims description 6
- 230000015572 biosynthetic process Effects 0.000 claims description 2
- 230000002093 peripheral effect Effects 0.000 abstract description 7
- 238000010521 absorption reaction Methods 0.000 abstract description 2
- 239000000463 material Substances 0.000 description 16
- 229910052581 Si3N4 Inorganic materials 0.000 description 8
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 8
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 8
- 229920002120 photoresistant polymer Polymers 0.000 description 8
- 229910052710 silicon Inorganic materials 0.000 description 8
- 239000010703 silicon Substances 0.000 description 8
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 8
- 229910052814 silicon oxide Inorganic materials 0.000 description 8
- 239000004065 semiconductor Substances 0.000 description 4
- 238000013461 design Methods 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 238000002955 isolation Methods 0.000 description 3
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 3
- 239000002210 silicon-based material Substances 0.000 description 3
- 238000003491 array Methods 0.000 description 2
- 238000005286 illumination Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000012995 silicone-based technology Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F39/00—Integrated devices, or assemblies of multiple devices, comprising at least one element covered by group H10F30/00, e.g. radiation detectors comprising photodiode arrays
- H10F39/011—Manufacture or treatment of image sensors covered by group H10F39/12
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D89/00—Aspects of integrated devices not covered by groups H10D84/00 - H10D88/00
- H10D89/60—Integrated devices comprising arrangements for electrical or thermal protection, e.g. protection circuits against electrostatic discharge [ESD]
- H10D89/601—Integrated devices comprising arrangements for electrical or thermal protection, e.g. protection circuits against electrostatic discharge [ESD] for devices having insulated gate electrodes, e.g. for IGFETs or IGBTs
- H10D89/931—Integrated devices comprising arrangements for electrical or thermal protection, e.g. protection circuits against electrostatic discharge [ESD] for devices having insulated gate electrodes, e.g. for IGFETs or IGBTs characterised by the dispositions of the protective arrangements
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F39/00—Integrated devices, or assemblies of multiple devices, comprising at least one element covered by group H10F30/00, e.g. radiation detectors comprising photodiode arrays
- H10F39/80—Constructional details of image sensors
- H10F39/803—Pixels having integrated switching, control, storage or amplification elements
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Solid State Image Pick-Up Elements (AREA)
Abstract
本发明公开了一种前照式图像传感器及其形成方法,该方法包括:在衬底内形成第一N型掺杂区;其中,所述衬底包括像素阵列区;在所述衬底内形成将像素阵列区包围的第二N型掺杂区;其中,所述第二N型掺杂区与所述第一N型掺杂区相连接,并接某一电位的正电压;其中,所述第一N型掺杂区与所述第二N型掺杂区构成将像素阵列区产生的过量电荷排出的排出路径。本发明在重掺杂P型衬底和感光单元底部之间,增加一层N型埋层,接高电势,吸走溢出电子,实现“高光溢出保护功能”;同时,在像素阵列区和外围的逻辑电路区之间增加N型掺杂区以连接N型埋层,接高电势以实现吸走溢出电子,防止衬底电子和外围电路电子对读出信号的影响,实现高信噪比。
The invention discloses a front-illuminated image sensor and a forming method thereof. The method comprises: forming a first N-type doped region in a substrate; wherein, the substrate includes a pixel array region; forming a second N-type doped region surrounding the pixel array region; wherein, the second N-type doped region is connected to the first N-type doped region and connected to a positive voltage of a certain potential; wherein, The first N-type doped region and the second N-type doped region constitute a discharge path for discharging excess charge generated in the pixel array region. In the present invention, an N-type buried layer is added between the heavily doped P-type substrate and the bottom of the photosensitive unit, connected to a high potential, and the overflow electrons are sucked away to realize the "high light overflow protection function"; at the same time, in the pixel array area and the periphery An N-type doped region is added between the logic circuit regions to connect the N-type buried layer, and a high potential is connected to realize the absorption of overflow electrons, to prevent the influence of substrate electrons and peripheral circuit electrons on the readout signal, and to achieve a high signal-to-noise ratio.
Description
技术领域technical field
本发明属于半导体制造领域,尤其涉及一种前照式图像传感器及其形成方法。The invention belongs to the field of semiconductor manufacturing, in particular to a front-illuminated image sensor and a forming method thereof.
背景技术Background technique
互补金属氧化物半导体图像传感器(CMOS Image Sensor,CIS)是将光学图像转化为电信号的半导体器件。CIS包括用于感光的光接收部件(通常称为光电二极管)和用于将所感测的光处理为电信号的逻辑电路。Complementary metal oxide semiconductor image sensor (CMOS Image Sensor, CIS) is a semiconductor device that converts optical images into electrical signals. A CIS includes a light-receiving component (often called a photodiode) for sensing light and a logic circuit for processing the sensed light into an electrical signal.
当下主流的CIS采用硅基工艺,包括感光像素阵列、遮黑像素阵列和外围逻辑电路(器件)。随着半导体集成电路制造工艺的提升,像素尺寸得以不断减小。同时,安防监控、机器视觉、车载影像等新兴场景应用,对CIS的性能提出了更高要求。当CIS处于高亮场景时,像素感光单元的光生电子会超出像素满阱容量(Full Well Capacity, FWC),多余的电子会溢出至相邻的像素,使得相邻像素感光过度,导致“高光溢出”,画面浮散,严重降低成像质量。当CIS处于暗光场景时,低照度下产生的电信号较弱,且外围电路不可避免地带来部分噪声,两者都严重影响信号采集和图像质量。The current mainstream CIS uses silicon-based technology, including photosensitive pixel arrays, blackout pixel arrays, and peripheral logic circuits (devices). With the improvement of the semiconductor integrated circuit manufacturing process, the pixel size can be continuously reduced. At the same time, emerging scene applications such as security monitoring, machine vision, and vehicle imaging have put forward higher requirements for the performance of CIS. When the CIS is in a bright scene, the photogenerated electrons of the pixel photosensitive unit will exceed the full well capacity (Full Well Capacity, FWC) of the pixel, and the excess electrons will overflow to the adjacent pixels, making the adjacent pixels oversensitive, resulting in "highlight overflow" ", the picture is floating, which seriously reduces the image quality. When the CIS is in a dark scene, the electrical signal generated under low illumination is weak, and the peripheral circuits inevitably bring some noise, both of which seriously affect signal acquisition and image quality.
针对低照度噪声,目前业界常用的优化方法是提升传感器灵敏度和像素满阱容量以降低读取噪声,得以呈现出更清晰、更细腻的图像质量。一种解决方案是,采用带有背面深沟槽隔离(Backside Deep Trench Isolation,BDTI)结构的高分辨率背照式图像传感器,一是减少金属挡光以提高传感器灵敏度,二是利用BDTI隔离像素与像素间的光学和电学串扰。此外,虽然设计时已考虑到外围器件对像素的影响,在像素区域和外围逻辑区域填充浅槽隔离,但信噪比提升的效果并不理想。背照式图像传感器,在提升像素满阱容量的同时,需要考虑如何降低“高光溢出”,因而需要在像素阵列区额外设计“高光溢出保护”功能模块,吸走溢出电荷,减少对相邻像素的串扰。For low-illumination noise, the current optimization method commonly used in the industry is to increase sensor sensitivity and pixel full well capacity to reduce read noise and present clearer and more delicate image quality. One solution is to use a high-resolution back-illuminated image sensor with a Backside Deep Trench Isolation (BDTI) structure, one is to reduce metal blocking light to improve sensor sensitivity, and the other is to use BDTI to isolate pixels Optical and electrical crosstalk with pixels. In addition, although the influence of peripheral devices on pixels has been considered in the design, shallow trench isolation is filled in the pixel area and peripheral logic area, but the effect of improving the signal-to-noise ratio is not ideal. For back-illuminated image sensors, while increasing the full well capacity of pixels, it is necessary to consider how to reduce "blooming", so it is necessary to design an additional "blooming protection" function module in the pixel array area to absorb overflowing charges and reduce damage to adjacent pixels. crosstalk.
相比于前照式图像传感器,背照式图像传感器的成本更高,且需要单独像素设计以解决“高光溢出”和低照度噪声问题。传统的前照式图像传感器,工艺更加成熟,在成本上有巨大优势。Compared to front-illuminated image sensors, back-illuminated image sensors are more expensive and require individual pixel designs to address "blooming" and low-light noise issues. The traditional front-illuminated image sensor has a more mature process and has a huge advantage in cost.
发明内容Contents of the invention
为了解决现有技术存在的问题,提出了一种兼具“高光溢出保护”功能和低读取噪声的一体化的技术方案。In order to solve the problems existing in the prior art, an integrated technical solution with the function of "overlight overflow protection" and low read noise is proposed.
一方面,本发明提出了一种前照式图像传感器的形成方法,包括:在衬底内形成第一N型掺杂区;其中,所述衬底包括像素阵列区;在所述衬底内形成将像素阵列区包围的第二N型掺杂区;其中,所述第二N型掺杂区与所述第一N型掺杂区相连接,并接某一电位的正电压;其中,所述第一N 型掺杂区与所述第二N型掺杂区构成将像素阵列区产生的过量电荷排出的排出路径。In one aspect, the present invention provides a method for forming a front-illuminated image sensor, including: forming a first N-type doped region in a substrate; wherein, the substrate includes a pixel array region; forming a second N-type doped region surrounding the pixel array region; wherein, the second N-type doped region is connected to the first N-type doped region and connected to a positive voltage of a certain potential; wherein, The first N-type doped region and the second N-type doped region constitute a discharge path for discharging excess charge generated in the pixel array region.
在一些实施例中,所述衬底至少包括重掺杂P型衬底、依次形成于所述重掺杂P型衬底上的所述第一N型掺杂区和第一P型掺杂区;所述在衬底内形成第一N型掺杂区包括:在所述重掺杂P型衬底上外延生长形成所述第一N型掺杂区;在所述第一N型掺杂区外延生长形成所述第一P型掺杂区。In some embodiments, the substrate at least includes a heavily doped P-type substrate, the first N-type doped region and the first P-type doped region sequentially formed on the heavily doped P-type substrate. region; said forming a first N-type doped region in the substrate includes: forming said first N-type doped region by epitaxial growth on said heavily doped P-type substrate; said first N-type doped region The impurity region is epitaxially grown to form the first P-type doped region.
在一些实施例中,所述在所述衬底内形成将像素阵列区包围的第二N型掺杂区包括:通过离子注入,在像素阵列区对应的所述第一P型掺杂区内形成感光单元阵列;通过离子注入,在所述衬底内形成将像素阵列区包围的第二N型掺杂区。In some embodiments, the formation of the second N-type doped region surrounding the pixel array region in the substrate includes: ion implantation in the first P-type doped region corresponding to the pixel array region A photosensitive unit array is formed; a second N-type doped region surrounding the pixel array region is formed in the substrate by ion implantation.
在一些实施例中,所述在所述衬底内形成将像素阵列区包围的第二N型掺杂区包括:通过刻蚀,在像素阵列区对应的所述第一P型掺杂区内形成多个第一沟槽,以及在像素阵列区外围对应的所述第一P型掺杂区内形成第二沟槽;通过离子注入,在所述第二沟槽下方形成第三N型掺杂区;在所述多个第一沟槽外延填充第四N型掺杂区,以形成感光单元阵列,以及在所述第二沟槽外延填充第五N掺杂区;其中,由第三N掺杂区和所述第五掺杂区组成所述第二N型掺杂区;其中,所述第三N型掺杂区将所述第五掺杂区与所述第一N掺杂区相连接。In some embodiments, the forming of the second N-type doped region surrounding the pixel array region in the substrate includes: by etching, in the first P-type doped region corresponding to the pixel array region Forming a plurality of first trenches, and forming second trenches in the first P-type doped region corresponding to the periphery of the pixel array region; forming a third N-type doped region under the second trenches by ion implantation The impurity region; the fourth N-type doped region is epitaxially filled in the plurality of first trenches to form a photosensitive cell array, and the fifth N-doped region is epitaxially filled in the second trench; wherein, the third The N-doped region and the fifth doped region form the second N-type doped region; wherein, the third N-type doped region combines the fifth doped region and the first N-doped region area connected.
在一些实施例中,所述衬底至少包括重掺杂P型衬底、形成于所述重掺杂P型衬底上的第一P型掺杂区;所述在衬底内形成第一N型掺杂区包括:在所述重掺杂P型衬底上外延生长形成所述第一P型掺杂区;通过离子注入,在所述第一P型掺杂区内形成所述第一N型掺杂区。In some embodiments, the substrate at least includes a heavily doped P-type substrate, a first P-type doped region formed on the heavily doped P-type substrate; The N-type doped region includes: forming the first P-type doped region by epitaxial growth on the heavily doped P-type substrate; forming the first P-type doped region in the first P-type doped region by ion implantation. an N-type doped region.
在一些实施例中,所述在所述衬底内形成将像素阵列区包围的第二N型掺杂区包括:通过离子注入,在像素阵列区形成感光单元阵列;通过离子注入,在所述衬底内形成将像素阵列区包围的第二N型掺杂区。In some embodiments, forming the second N-type doped region surrounding the pixel array region in the substrate includes: forming a photosensitive unit array in the pixel array region by ion implantation; A second N-type doped region surrounding the pixel array region is formed in the substrate.
在一些实施例中,所述在所述衬底内形成将像素阵列区包围的第二N型掺杂区包括:通过刻蚀,在像素阵列区对应的所述第一P型掺杂区内形成多个第一沟槽,以及在像素阵列区外围对应的所述第一P型掺杂区内形成第二沟槽;通过离子注入,在所述第二沟槽下方形成第三N型掺杂区;在所述多个第一沟槽外延填充第四N型掺杂区,以形成感光单元阵列,以及在所述第二沟槽外延填充第五N掺杂区;其中,由第三N掺杂区和所述第五掺杂区组成所述第二N型掺杂区;其中,所述第三N型掺杂区将所述第五掺杂区与所述第一N掺杂区相连接。In some embodiments, the forming of the second N-type doped region surrounding the pixel array region in the substrate includes: by etching, in the first P-type doped region corresponding to the pixel array region Forming a plurality of first trenches, and forming second trenches in the first P-type doped region corresponding to the periphery of the pixel array region; forming a third N-type doped region under the second trenches by ion implantation The impurity region; the fourth N-type doped region is epitaxially filled in the plurality of first trenches to form a photosensitive cell array, and the fifth N-doped region is epitaxially filled in the second trench; wherein, the third The N-doped region and the fifth doped region form the second N-type doped region; wherein, the third N-type doped region combines the fifth doped region and the first N-doped region area connected.
在一些实施例中,所述衬底还包括逻辑电路区;所述第二N型掺杂区将所述逻辑电路区包围。In some embodiments, the substrate further includes a logic circuit region; the second N-type doped region surrounds the logic circuit region.
另一方面,本发明还提供了一种前照式图像传感器,包括:衬底,其像素阵列区;第一N型掺杂区,其设置在所述衬底内;将像素阵列区包围的第二N型掺杂区,其设置在所述衬底内,且位于所述第一N型掺杂区上方;其中,所述第二N型掺杂区与所述第一N型掺杂区相连接,并接某一电位的正电压;其中,所述第一N 型掺杂区与所述第二N型掺杂区构成将像素阵列区产生的过量电荷排出的排出路径。On the other hand, the present invention also provides a front-illuminated image sensor, comprising: a substrate with a pixel array region; a first N-type doped region disposed in the substrate; A second N-type doped region, which is disposed in the substrate and located above the first N-type doped region; wherein, the second N-type doped region is the same as the first N-type doped region Regions are connected and connected to a positive voltage of a certain potential; wherein, the first N-type doped region and the second N-type doped region form a discharge path for discharging excess charges generated in the pixel array region.
在一些实施例中,所述衬底还包括逻辑电路区;所述第二N型掺杂区将所述逻辑电路区包围。In some embodiments, the substrate further includes a logic circuit region; the second N-type doped region surrounds the logic circuit region.
与现有技术相比,本发明实施例的技术方案具有以下有益效果。Compared with the prior art, the technical solutions of the embodiments of the present invention have the following beneficial effects.
在本发明实施例中,基于现有的前照式图像传感器结构,在重掺杂P型衬底和像素感光单元底部的P型隔离层之间,增加一层N型埋层,接高电势,吸走溢出电子,实现“高光溢出保护功能”;同时,在像素阵列区和外围的逻辑电路区之间增加N型离子注入以连接N型埋层,接高电势,因此在实现吸走溢出电子的同时,防止衬底电子和外围电路电子对读出信号的影响,实现高信噪比。In the embodiment of the present invention, based on the existing front-illuminated image sensor structure, an N-type buried layer is added between the heavily doped P-type substrate and the P-type isolation layer at the bottom of the pixel photosensitive unit, connected to a high potential , take away the overflow electrons, and realize the "high light overflow protection function"; at the same time, increase the N-type ion implantation between the pixel array area and the peripheral logic circuit area to connect the N-type buried layer, and connect the high potential, so in the realization of the absorption overflow At the same time, it prevents the influence of substrate electronics and peripheral circuit electronics on the readout signal, and achieves a high signal-to-noise ratio.
附图说明Description of drawings
本发明附图构成本说明书的一部分、用于进一步理解本发明,附图示出了本发明的实施例,并与说明书一起用来说明本发明的原理。The accompanying drawings of the present invention constitute a part of this specification and are used for further understanding of the present invention. The accompanying drawings show embodiments of the present invention and are used together with the description to illustrate the principles of the present invention.
图1为本发明实施例的一种前照式图像传感器的形成方法;FIG. 1 is a method for forming a front-illuminated image sensor according to an embodiment of the present invention;
图2至图4为本发明一实施例的前照式图像传感器的截面示意图;2 to 4 are schematic cross-sectional views of a front-illuminated image sensor according to an embodiment of the present invention;
图5至图8为本发明另一实施例的前照式图像传感器的截面示意图;5 to 8 are schematic cross-sectional views of a front-illuminated image sensor according to another embodiment of the present invention;
图9至图12为本发明另一实施例的前照式图像传感器的截面示意图;9 to 12 are schematic cross-sectional views of a front-illuminated image sensor according to another embodiment of the present invention;
图13至图17为本发明另一实施例的前照式图像传感器的截面示意图。13 to 17 are schematic cross-sectional views of a front-illuminated image sensor according to another embodiment of the present invention.
具体实施方式Detailed ways
以下详细说明都是例示性的,旨在对本发明提供进一步的说明。除非另有指明,本文使用的所有技术和科学术语具有与本发明所属技术领域的普通技术人员通常理解的相同含义。The following detailed description is exemplary and intended to provide further explanation of the present invention. Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs.
图1为本发明一实施例的一种前照式图像传感器的形成方法,该方法包括以下步骤。FIG. 1 is a method for forming a front-illuminated image sensor according to an embodiment of the present invention. The method includes the following steps.
步骤S1:在衬底内形成第一N型掺杂区;其中,所述衬底包括像素阵列区。Step S1: forming a first N-type doped region in a substrate; wherein, the substrate includes a pixel array region.
步骤S2:在所述衬底内形成将像素阵列区包围的第二N型掺杂区;其中,所述第二N型掺杂区与所述第一N型掺杂区相连接,并接某一电位的正电压;其中,所述第一N 型掺杂区与所述第二N型掺杂区构成将像素阵列区产生的过量电荷排出的排出路径。Step S2: forming a second N-type doped region surrounding the pixel array region in the substrate; wherein, the second N-type doped region is connected to the first N-type doped region and connected to Positive voltage of a certain potential; wherein, the first N-type doped region and the second N-type doped region form a discharge path for discharging excess charges generated in the pixel array region.
以下结合附图对图1的前照式图像传感器的形成方法进行详细描述。The method for forming the front-illuminated image sensor in FIG. 1 will be described in detail below with reference to the accompanying drawings.
图2至图4为本发明一实施例的前照式图像传感器的截面示意图。以下结合附图2至图4对图1的前照式图像传感器的形成方法的各个步骤进行详细描述。2 to 4 are schematic cross-sectional views of a front-illuminated image sensor according to an embodiment of the present invention. Each step of the method for forming the front-illuminated image sensor in FIG. 1 will be described in detail below with reference to FIGS. 2 to 4 .
对于步骤S1,参考图2,在衬底10内形成第一N型掺杂区102;其中,所述衬底10包括逻辑电路区和像素阵列区。For step S1 , referring to FIG. 2 , a first N-type doped region 102 is formed in the substrate 10 ; wherein, the substrate 10 includes a logic circuit region and a pixel array region.
具体地,所述衬底10至少包括重掺杂P型衬底101、依次形成于所述重掺杂P型衬底上的所述第一N型掺杂区102和第一P型掺杂区103。重掺杂P型衬底101可以为单晶硅材料。需要说明的是,可以在重掺杂P型衬底101上形成多层不同掺杂类型的掺杂区,在此不再赘述。Specifically, the substrate 10 at least includes a heavily doped P-type substrate 101, the first N-type doped region 102 and the first P-type doped region 102 sequentially formed on the heavily doped P-type substrate. District 103. The heavily doped P-type substrate 101 may be a single crystal silicon material. It should be noted that multiple layers of doped regions of different doping types may be formed on the heavily doped P-type substrate 101 , which will not be repeated here.
在一具体实施方式中,所述在衬底10内形成第一N型掺杂区102包括以下步骤。In a specific implementation manner, the forming of the first N-type doped region 102 in the substrate 10 includes the following steps.
在所述重掺杂P型衬底101上外延生长形成所述第一N型掺杂区102。The first N-type doped region 102 is formed by epitaxial growth on the heavily doped P-type substrate 101 .
在所述第一N型掺杂区102外延生长形成所述第一P型掺杂区103。对于外延工艺的具体参数,在此不再赘述。The first P-type doped region 103 is formed by epitaxial growth in the first N-type doped region 102 . The specific parameters of the epitaxial process will not be repeated here.
对于步骤S2,参考图3和图4,在所述衬底10内形成将像素阵列区包围的第二N型掺杂区12;其中,所述第二N型掺杂区12与所述第一N型掺杂区102相连接,并接某一电位的正电压;其中,所述第一N 型掺杂区102与所述第二N型掺杂区12构成将像素阵列区产生的过量电荷排出的排出路径。For step S2, referring to FIG. 3 and FIG. 4, a second N-type doped region 12 surrounding the pixel array region is formed in the substrate 10; wherein, the second N-type doped region 12 and the first An N-type doped region 102 is connected and connected to a positive voltage of a certain potential; wherein, the first N-type doped region 102 and the second N-type doped region 12 form an excess voltage generated by the pixel array region. The discharge path for charge discharge.
具体地,所述在所述衬底内形成将像素阵列区包围的第二N型掺杂区包括以下步骤。Specifically, forming the second N-type doped region surrounding the pixel array region in the substrate includes the following steps.
参考图3,通过离子注入,在像素阵列区对应的所述第一P型掺杂区103内形成感光单元阵列11。Referring to FIG. 3 , by ion implantation, a photosensitive cell array 11 is formed in the first P-type doped region 103 corresponding to the pixel array region.
具体地,可以在衬底10上方形成图形化的掩膜层(图未示出)。掩膜层的材料可以为光阻材料、氮化硅、氧化硅、氮氧化硅等。对于离子注入的工艺参数,在此不再赘述。Specifically, a patterned mask layer (not shown in the figure) may be formed on the substrate 10 . The material of the mask layer may be photoresist material, silicon nitride, silicon oxide, silicon oxynitride and the like. The process parameters of the ion implantation will not be repeated here.
参考图4,通过离子注入,在所述衬底10内形成将像素阵列区包围的第二N型掺杂区12。具体地,可以在衬底10上方形成图形化的掩膜层(图未示出)。掩膜层的材料可以为光阻材料、氮化硅、氧化硅、氮氧化硅等。对于离子注入的工艺参数,在此不再赘述。Referring to FIG. 4 , the second N-type doped region 12 surrounding the pixel array region is formed in the substrate 10 by ion implantation. Specifically, a patterned mask layer (not shown in the figure) may be formed on the substrate 10 . The material of the mask layer may be photoresist material, silicon nitride, silicon oxide, silicon oxynitride and the like. The process parameters of the ion implantation will not be repeated here.
所述第二N型掺杂区12与所述第一N型掺杂区102相连接,并接某一电位的正电压(例如,2.8V或3.3V);其中,所述第一N 型掺杂区102与所述第二N型掺杂区12构成将像素阵列区产生的过量电荷排出的排出路径。所述第二N型掺杂区12作为垂直溢出漏极(VerticalOver Flow Drain,VOFD),其与所述第一N掺杂区102共同构成溢出漏极。The second N-type doped region 12 is connected to the first N-type doped region 102 and connected to a positive voltage of a certain potential (for example, 2.8V or 3.3V); wherein, the first N-type The doped region 102 and the second N-type doped region 12 form a discharge path for discharging excess charges generated in the pixel array region. The second N-type doped region 12 serves as a vertical overflow drain (Vertical Over Flow Drain, VOFD), which together with the first N-doped region 102 constitutes an overflow drain.
在一具体实施方式中,所述第二N型掺杂区12将所述逻辑电路区包围。In a specific implementation manner, the second N-type doped region 12 surrounds the logic circuit region.
图5至图8为本发明另一实施例的前照式图像传感器的截面示意图。以下结合附图5至图8对图1的前照式图像传感器的形成方法的各个步骤进行详细描述。5 to 8 are schematic cross-sectional views of a front-illuminated image sensor according to another embodiment of the present invention. Each step of the method for forming the front-illuminated image sensor in FIG. 1 will be described in detail below with reference to FIGS. 5 to 8 .
对于步骤S1,参考图5,在衬底10内形成第一N型掺杂区102;其中,所述衬底10包括逻辑电路区和像素阵列区。For step S1 , referring to FIG. 5 , a first N-type doped region 102 is formed in the substrate 10 ; wherein, the substrate 10 includes a logic circuit region and a pixel array region.
具体地,所述衬底10至少包括重掺杂P型衬底101、依次形成于所述重掺杂P型衬底上的所述第一N型掺杂区102和第一P型掺杂区103。重掺杂P型衬底101可以为单晶硅材料。需要说明的是,可以在重掺杂P型衬底101上形成多层不同掺杂类型的掺杂区,在此不再赘述。Specifically, the substrate 10 at least includes a heavily doped P-type substrate 101, the first N-type doped region 102 and the first P-type doped region 102 sequentially formed on the heavily doped P-type substrate. District 103. The heavily doped P-type substrate 101 may be a single crystal silicon material. It should be noted that multiple layers of doped regions of different doping types may be formed on the heavily doped P-type substrate 101 , which will not be repeated here.
在一具体实施方式中,所述在衬底10内形成第一N型掺杂区102包括:在所述重掺杂P型衬底101上外延生长形成所述第一N型掺杂区102;在所述第一N型掺杂区102外延生长形成所述第一P型掺杂区103。对于外延工艺的具体参数,在此不再赘述。In a specific implementation manner, the forming of the first N-type doped region 102 in the substrate 10 includes: forming the first N-type doped region 102 by epitaxial growth on the heavily doped P-type substrate 101 ; forming the first P-type doped region 103 by epitaxial growth in the first N-type doped region 102 . The specific parameters of the epitaxial process will not be repeated here.
对于步骤S2,参考图6至图8,在所述衬底10内形成将像素阵列区包围的第二N型掺杂区12;其中,所述第二N型掺杂区12与所述第一N型掺杂区102相连接,并接某一电位的正电压;其中,所述第一N 型掺杂区102与所述第二N型掺杂区12构成将像素阵列区产生的过量电荷排出的排出路径。For step S2, referring to FIG. 6 to FIG. 8, a second N-type doped region 12 surrounding the pixel array region is formed in the substrate 10; wherein, the second N-type doped region 12 and the first An N-type doped region 102 is connected and connected to a positive voltage of a certain potential; wherein, the first N-type doped region 102 and the second N-type doped region 12 form an excess voltage generated by the pixel array region. The discharge path for charge discharge.
具体地,所述在所述衬底10内形成将像素阵列区包围的第二N型掺杂区12可以包括以下步骤。Specifically, forming the second N-type doped region 12 surrounding the pixel array region in the substrate 10 may include the following steps.
参考图6,通过刻蚀,在像素阵列区对应的所述第一P型掺杂区103内形成多个第一沟槽11a,以及在像素阵列区外围对应的所述第一P型掺杂区103内形成第二沟槽11b。Referring to FIG. 6, by etching, a plurality of first grooves 11a are formed in the first P-type doped region 103 corresponding to the pixel array region, and the first P-type doped regions corresponding to the periphery of the pixel array region A second trench 11 b is formed in the region 103 .
参考图7,通过离子注入,在所述第二沟槽11b下方形成第三N型掺杂区121。具体地,可以在衬底10上方形成图形化的掩膜层(图未示出)。掩膜层的材料可以为光阻材料、氮化硅、氧化硅、氮氧化硅等。对于离子注入的工艺参数,在此不再赘述。Referring to FIG. 7 , a third N-type doped region 121 is formed under the second trench 11 b by ion implantation. Specifically, a patterned mask layer (not shown in the figure) may be formed on the substrate 10 . The material of the mask layer may be photoresist material, silicon nitride, silicon oxide, silicon oxynitride and the like. The process parameters of the ion implantation will not be repeated here.
参考图8,在所述多个第一沟槽11a外延填充第四N型掺杂区11,以形成感光单元阵列11,以及在所述第二沟槽11b外延填充第五N掺杂区122。其中,由第三N掺杂区121和所述第五掺杂区122组成所述第二N型掺杂区12;其中,所述第三N型掺杂区121将所述第五掺杂区122与所述第一N掺杂区102相连接。所述第二N型掺杂区12作为VOFD,其与所述第一N掺杂区102共同构成溢出漏极。Referring to FIG. 8, the fourth N-type doped region 11 is epitaxially filled in the plurality of first trenches 11a to form the photosensitive cell array 11, and the fifth N-doped region 122 is epitaxially filled in the second trench 11b. . Wherein, the second N-type doped region 12 is composed of the third N-doped region 121 and the fifth doped region 122; wherein, the third N-type doped region 121 combines the fifth doped region The region 122 is connected to the first N-doped region 102 . The second N-type doped region 12 serves as a VOFD, which together with the first N-doped region 102 constitutes an overflow drain.
在一具体实施方式中,所述第二N型掺杂区12将所述逻辑电路区包围。In a specific implementation manner, the second N-type doped region 12 surrounds the logic circuit region.
图9至图12为本发明另一实施例的前照式图像传感器的截面示意图。以下结合附图9至图12对图1的前照式图像传感器的形成方法的各个步骤进行详细描述。9 to 12 are schematic cross-sectional views of a front-illuminated image sensor according to another embodiment of the present invention. Each step of the method for forming the front-illuminated image sensor in FIG. 1 will be described in detail below with reference to FIGS. 9 to 12 .
对于步骤S1,参考图9和图10,在衬底10内形成第一N型掺杂区102;其中,所述衬底10包括逻辑电路区和像素阵列区。For step S1 , referring to FIG. 9 and FIG. 10 , a first N-type doped region 102 is formed in the substrate 10 ; wherein, the substrate 10 includes a logic circuit region and a pixel array region.
具体地,所述衬底10至少包括重掺杂P型衬底101、形成于所述重掺杂P型衬底上的第一P型掺杂区103。重掺杂P型衬底101可以为单晶硅材料。需要说明的是,可以在重掺杂P型衬底101上形成多层不同掺杂类型的掺杂区,在此不再赘述。Specifically, the substrate 10 at least includes a heavily doped P-type substrate 101 and a first P-type doped region 103 formed on the heavily doped P-type substrate. The heavily doped P-type substrate 101 may be a single crystal silicon material. It should be noted that multiple layers of doped regions of different doping types may be formed on the heavily doped P-type substrate 101 , which will not be repeated here.
在一具体实施方式中,所述在衬底10内形成第一N型掺杂区102包括以下步骤。In a specific implementation manner, the forming of the first N-type doped region 102 in the substrate 10 includes the following steps.
参考图9在所述重掺杂P型衬底101上外延生长形成所述第一P型掺杂区103;对于外延工艺的具体参数,在此不再赘述。Referring to FIG. 9 , the first P-type doped region 103 is epitaxially grown on the heavily doped P-type substrate 101 ; specific parameters of the epitaxial process will not be repeated here.
参考图10,通过离子注入,在所述第一P型掺杂区103内形成所述第一N型掺杂区102。具体地,可以在衬底10上方形成图形化的掩膜层(图未示出)。掩膜层的材料可以为光阻材料、氮化硅、氧化硅、氮氧化硅等。对于离子注入的工艺参数,在此不再赘述。Referring to FIG. 10 , the first N-type doped region 102 is formed in the first P-type doped region 103 by ion implantation. Specifically, a patterned mask layer (not shown in the figure) may be formed on the substrate 10 . The material of the mask layer may be photoresist material, silicon nitride, silicon oxide, silicon oxynitride and the like. The process parameters of the ion implantation will not be repeated here.
对于步骤S2,参考图11和图12,在所述衬底10内形成将像素阵列区包围的第二N型掺杂区12;其中,所述第二N型掺杂区12与所述第一N型掺杂区102相连接,并接某一电位的正电压;其中,所述第一N 型掺杂区102与所述第二N型掺杂区12构成将像素阵列区产生的过量电荷排出的排出路径。For step S2, referring to FIG. 11 and FIG. 12 , a second N-type doped region 12 surrounding the pixel array region is formed in the substrate 10; wherein, the second N-type doped region 12 and the first An N-type doped region 102 is connected and connected to a positive voltage of a certain potential; wherein, the first N-type doped region 102 and the second N-type doped region 12 form an excess voltage generated by the pixel array region. The discharge path for charge discharge.
具体地,所述在所述衬底10内形成将像素阵列区包围的第二N型掺杂区12可以包括以下步骤。Specifically, forming the second N-type doped region 12 surrounding the pixel array region in the substrate 10 may include the following steps.
参考图11,通过离子注入,在像素阵列区形成感光单元阵列11。具体地,可以在衬底10上方形成图形化的掩膜层(图未示出)。掩膜层的材料可以为光阻材料、氮化硅、氧化硅、氮氧化硅等。对于离子注入的工艺参数,在此不再赘述。Referring to FIG. 11 , by ion implantation, a photosensitive unit array 11 is formed in the pixel array area. Specifically, a patterned mask layer (not shown in the figure) may be formed on the substrate 10 . The material of the mask layer may be photoresist material, silicon nitride, silicon oxide, silicon oxynitride and the like. The process parameters of the ion implantation will not be repeated here.
参考图12,通过离子注入,在所述衬底10内形成将像素阵列区包围的第二N型掺杂区12。具体地,可以在衬底10上方形成图形化的掩膜层(图未示出)。掩膜层的材料可以为光阻材料、氮化硅、氧化硅、氮氧化硅等。对于离子注入的工艺参数,在此不再赘述。Referring to FIG. 12 , by ion implantation, a second N-type doped region 12 surrounding the pixel array region is formed in the substrate 10 . Specifically, a patterned mask layer (not shown in the figure) may be formed on the substrate 10 . The material of the mask layer may be photoresist material, silicon nitride, silicon oxide, silicon oxynitride and the like. The process parameters of the ion implantation will not be repeated here.
所述第二N型掺杂区12与所述第一N型掺杂区102相连接,并接某一电位的正电压(例如,2.8V或3.3V);其中,所述第一N 型掺杂区102与所述第二N型掺杂区12构成将像素阵列区产生的过量电荷排出的排出路径。所述第二N型掺杂区12作为垂直溢出漏极VOFD,其与所述第一N掺杂区102共同构成溢出漏极。The second N-type doped region 12 is connected to the first N-type doped region 102 and connected to a positive voltage of a certain potential (for example, 2.8V or 3.3V); wherein, the first N-type The doped region 102 and the second N-type doped region 12 form a discharge path for discharging excess charges generated in the pixel array region. The second N-type doped region 12 serves as a vertical overflow drain VOFD, which together with the first N-type doped region 102 forms an overflow drain.
在一具体实施方式中,所述第二N型掺杂区12将所述逻辑电路区包围。In a specific implementation manner, the second N-type doped region 12 surrounds the logic circuit region.
图13至图17为本发明另一实施例的前照式图像传感器的截面示意图。以下结合附图13至图17对图1的前照式图像传感器的形成方法的各个步骤进行详细描述。13 to 17 are schematic cross-sectional views of a front-illuminated image sensor according to another embodiment of the present invention. Each step of the method for forming the front-illuminated image sensor in FIG. 1 will be described in detail below with reference to FIGS. 13 to 17 .
对于步骤S1,参考图13和图14,在衬底10内形成第一N型掺杂区102;其中,所述衬底10包括逻辑电路区和像素阵列区。For step S1 , referring to FIG. 13 and FIG. 14 , a first N-type doped region 102 is formed in the substrate 10 ; wherein, the substrate 10 includes a logic circuit region and a pixel array region.
具体地,所述衬底10至少包括重掺杂P型衬底101、形成于所述重掺杂P型衬底上的第一P型掺杂区103。需要说明的是,可以在重掺杂P型衬底101上形成多层不同掺杂类型的掺杂区,在此不再赘述。Specifically, the substrate 10 at least includes a heavily doped P-type substrate 101 and a first P-type doped region 103 formed on the heavily doped P-type substrate. It should be noted that multiple layers of doped regions of different doping types may be formed on the heavily doped P-type substrate 101 , which will not be repeated here.
在一具体实施方式中,所述在衬底10内形成第一N型掺杂区102包括以下步骤。In a specific implementation manner, the forming of the first N-type doped region 102 in the substrate 10 includes the following steps.
参考图13在所述重掺杂P型衬底101上外延生长形成所述第一P型掺杂区103;对于外延工艺的具体参数,在此不再赘述。Referring to FIG. 13 , the first P-type doped region 103 is epitaxially grown on the heavily doped P-type substrate 101 ; specific parameters of the epitaxial process will not be repeated here.
参考图14,通过离子注入,在所述第一P型掺杂区103内形成所述第一N型掺杂区102。具体地,可以在衬底10上方形成图形化的掩膜层(图未示出)。掩膜层的材料可以为光阻材料、氮化硅、氧化硅、氮氧化硅等。对于离子注入的工艺参数,在此不再赘述。Referring to FIG. 14 , the first N-type doped region 102 is formed in the first P-type doped region 103 by ion implantation. Specifically, a patterned mask layer (not shown in the figure) may be formed on the substrate 10 . The material of the mask layer may be photoresist material, silicon nitride, silicon oxide, silicon oxynitride and the like. The process parameters of the ion implantation will not be repeated here.
对于步骤S2,参考图15至图17,在所述衬底10内形成将像素阵列区包围的第二N型掺杂区12;其中,所述第二N型掺杂区12与所述第一N型掺杂区102相连接,并接某一电位的正电压;其中,所述第一N 型掺杂区102与所述第二N型掺杂区12构成将像素阵列区产生的过量电荷排出的排出路径。For step S2, referring to FIG. 15 to FIG. 17, a second N-type doped region 12 surrounding the pixel array region is formed in the substrate 10; wherein, the second N-type doped region 12 and the first An N-type doped region 102 is connected and connected to a positive voltage of a certain potential; wherein, the first N-type doped region 102 and the second N-type doped region 12 form an excess voltage generated by the pixel array region. The discharge path for charge discharge.
具体地,所述在所述衬底10内形成将像素阵列区包围的第二N型掺杂区12可以包括以下步骤。Specifically, forming the second N-type doped region 12 surrounding the pixel array region in the substrate 10 may include the following steps.
参考图15,通过刻蚀,在像素阵列区对应的所述第一P型掺杂区103内形成多个第一沟槽11a,以及在像素阵列区外围对应的所述第一P型掺杂区103内形成第二沟槽11b。Referring to FIG. 15, by etching, a plurality of first trenches 11a are formed in the first P-type doped region 103 corresponding to the pixel array region, and the first P-type doped regions corresponding to the periphery of the pixel array region A second trench 11 b is formed in the region 103 .
参考图16,通过离子注入,在所述第二沟槽11b下方形成第三N型掺杂区121。具体地,可以在衬底10上方形成图形化的掩膜层(图未示出)。掩膜层的材料可以为光阻材料、氮化硅、氧化硅、氮氧化硅等。对于离子注入的工艺参数,在此不再赘述。Referring to FIG. 16 , a third N-type doped region 121 is formed under the second trench 11 b by ion implantation. Specifically, a patterned mask layer (not shown in the figure) may be formed on the substrate 10 . The material of the mask layer may be photoresist material, silicon nitride, silicon oxide, silicon oxynitride and the like. The process parameters of the ion implantation will not be repeated here.
参考图17,在所述多个第一沟槽11a外延填充第四N型掺杂区11,以形成感光单元阵列11,以及在所述第二沟槽11b外延填充第五N掺杂区122。其中,由第三N掺杂区121和所述第五掺杂区122组成所述第二N型掺杂区12;其中,所述第三N型掺杂区121将所述第五掺杂区122与所述第一N掺杂区102相连接。所述第二N型掺杂区12作为VOFD,其与所述第一N掺杂区102共同构成溢出漏极。Referring to FIG. 17, the fourth N-type doped region 11 is epitaxially filled in the plurality of first trenches 11a to form the photosensitive cell array 11, and the fifth N-doped region 122 is epitaxially filled in the second trench 11b. . Wherein, the second N-type doped region 12 is composed of the third N-doped region 121 and the fifth doped region 122; wherein, the third N-type doped region 121 combines the fifth doped region The region 122 is connected to the first N-doped region 102 . The second N-type doped region 12 serves as a VOFD, which together with the first N-doped region 102 constitutes an overflow drain.
在一具体实施方式中,所述第二N型掺杂区12将所述逻辑电路区包围。In a specific implementation manner, the second N-type doped region 12 surrounds the logic circuit region.
本发明实施例还提供了一种前照式图像传感器,包括:衬底,其像素阵列区;第一N型掺杂区,其设置在所述衬底内;将像素阵列区包围的第二N型掺杂区,其设置在所述衬底内,且位于所述第一N型掺杂区上方;其中,所述第二N型掺杂区与所述第一N型掺杂区相连接,并接某一电位的正电压;其中,所述第一N 型掺杂区与所述第二N型掺杂区构成将像素阵列区产生的过量电荷排出的排出路径。An embodiment of the present invention also provides a front-illuminated image sensor, including: a substrate, the pixel array area; a first N-type doped area, which is arranged in the substrate; a second pixel array area surrounded by An N-type doped region, which is disposed in the substrate and located above the first N-type doped region; wherein, the second N-type doped region is the same as the first N-type doped region connected, and connected in parallel to a positive voltage of a certain potential; wherein, the first N-type doped region and the second N-type doped region form a discharge path for discharging excess charges generated in the pixel array region.
在一具体实施方式中,所述衬底10还包括逻辑电路区;所述第二N型掺杂区12将所述逻辑电路区包围。In a specific implementation manner, the substrate 10 further includes a logic circuit region; the second N-type doped region 12 surrounds the logic circuit region.
虽然本发明披露如上,但本发明并非限定于此。任何本领域技术人员,在不脱离本发明的精神和范围内,均可作各种更动与修改,因此本发明的保护范围应当以权利要求所限定的范围为准。Although the present invention is disclosed above, the present invention is not limited thereto. Any person skilled in the art can make various changes and modifications without departing from the spirit and scope of the present invention, so the protection scope of the present invention should be based on the scope defined in the claims.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210146486.4A CN116666406A (en) | 2022-02-17 | 2022-02-17 | Front-illuminated image sensor and method of forming the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210146486.4A CN116666406A (en) | 2022-02-17 | 2022-02-17 | Front-illuminated image sensor and method of forming the same |
Publications (1)
Publication Number | Publication Date |
---|---|
CN116666406A true CN116666406A (en) | 2023-08-29 |
Family
ID=87714056
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210146486.4A Pending CN116666406A (en) | 2022-02-17 | 2022-02-17 | Front-illuminated image sensor and method of forming the same |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN116666406A (en) |
-
2022
- 2022-02-17 CN CN202210146486.4A patent/CN116666406A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7875918B2 (en) | Multilayer image sensor pixel structure for reducing crosstalk | |
US9373657B2 (en) | System and method for fabricating a 3D image sensor structure | |
US9070611B2 (en) | Image sensor with controllable vertically integrated photodetectors | |
US7821046B2 (en) | Methods, structures and sytems for an image sensor device for improving quantum efficiency of red pixels | |
KR20080019231A (en) | Color pixel with anti-blooming isolation and formation method | |
US8829637B2 (en) | Image sensor with controllable vertically integrated photodetectors using a buried layer | |
US8730362B2 (en) | Image sensor with controllable vertically integrated photodetectors | |
US20090065829A1 (en) | Image Sensor and Method for Manufacturing the Same | |
US8946612B2 (en) | Image sensor with controllable vertically integrated photodetectors | |
US20230107371A1 (en) | Global Shutter CMOS Image Sensor and Method for Making the Same | |
KR100997343B1 (en) | Image sensor and manufacturing method | |
US8736728B2 (en) | Image sensor with controllable vertically integrated photodetectors | |
KR100898473B1 (en) | Image Sensor | |
US20080017893A1 (en) | Back-lit image sensor | |
KR100997328B1 (en) | Image sensor and manufacturing method | |
KR100997329B1 (en) | Image sensor and manufacturing method | |
CN116666406A (en) | Front-illuminated image sensor and method of forming the same | |
KR100898471B1 (en) | Image sensor and manufacturing method | |
KR101063651B1 (en) | Image sensor and manufacturing method | |
CN112563299B (en) | CMOS image sensor and preparation method thereof | |
US20240387567A1 (en) | Backside deep trench isolation structure for leakage suppression | |
CN117199087A (en) | Image sensor and forming method thereof | |
KR100898472B1 (en) | Method for Manufacturing Image Sensor | |
CN104282697B (en) | The forming method of imaging sensor | |
KR20220116847A (en) | Image Sensing device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |