CN116666405B - Device structure for testing surface leakage current and its preparation method and testing method - Google Patents
Device structure for testing surface leakage current and its preparation method and testing method Download PDFInfo
- Publication number
- CN116666405B CN116666405B CN202310947797.5A CN202310947797A CN116666405B CN 116666405 B CN116666405 B CN 116666405B CN 202310947797 A CN202310947797 A CN 202310947797A CN 116666405 B CN116666405 B CN 116666405B
- Authority
- CN
- China
- Prior art keywords
- leakage current
- metal layer
- testing
- surface leakage
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000012360 testing method Methods 0.000 title abstract description 51
- 238000002360 preparation method Methods 0.000 title abstract description 8
- 229910052751 metal Inorganic materials 0.000 abstract description 39
- 239000002184 metal Substances 0.000 abstract description 39
- 238000005530 etching Methods 0.000 abstract description 7
- 239000000463 material Substances 0.000 abstract description 6
- 238000000034 method Methods 0.000 description 11
- 238000000151 deposition Methods 0.000 description 7
- 239000003990 capacitor Substances 0.000 description 4
- 229910052581 Si3N4 Inorganic materials 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 3
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 3
- 229910052814 silicon oxide Inorganic materials 0.000 description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000005566 electron beam evaporation Methods 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 238000009616 inductively coupled plasma Methods 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 238000007740 vapor deposition Methods 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000002161 passivation Methods 0.000 description 1
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Chemical compound [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/50—Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
- G01R31/52—Testing for short-circuits, leakage current or ground faults
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/14—Metallic material, boron or silicon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/24—Vacuum evaporation
- C23C14/28—Vacuum evaporation by wave energy or particle radiation
- C23C14/30—Vacuum evaporation by wave energy or particle radiation by electron bombardment
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry, e.g. infrared or optical thermometry
- G01J5/90—Testing, inspecting or checking operation of radiation pyrometers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F39/00—Integrated devices, or assemblies of multiple devices, comprising at least one element covered by group H10F30/00, e.g. radiation detectors comprising photodiode arrays
- H10F39/10—Integrated devices
- H10F39/107—Integrated devices having multiple elements covered by H10F30/00 in a repetitive configuration, e.g. radiation detectors comprising photodiode arrays
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- General Physics & Mathematics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Organic Chemistry (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Testing Of Individual Semiconductor Devices (AREA)
- Testing Or Measuring Of Semiconductors Or The Like (AREA)
- Photometry And Measurement Of Optical Pulse Characteristics (AREA)
Abstract
本发明提供一种用于测试表面漏电流的器件结构及其制备方法和测试方法。对红外材料的特定区域进行蚀刻,蚀刻深度达到下接触层;在下接触层的表面以及凸台外延层结构的侧壁表面沉积第一绝缘层;在第一绝缘层上沉积第一金属层;在第一金属层上沉积第二绝缘层;以及在第二绝缘层上沉积第二金属层。根据本发明实施例的用于测试红外焦平面探测器表面漏电流的器件结构及其制备方法以及用于测试红外焦平面探测器表面漏电流的测试方法,可以直接测试像元面阵中每一行的表面漏电流,无需借助辅助单元加以模拟表征,提高了表面漏电流测试的准确性和便利性。
The invention provides a device structure for testing surface leakage current, a preparation method and a testing method thereof. Etch a specific area of the infrared material to an etching depth reaching the lower contact layer; deposit a first insulating layer on the surface of the lower contact layer and the sidewall surface of the boss epitaxial layer structure; deposit a first metal layer on the first insulating layer; deposit a second insulating layer on the first metal layer; and deposit a second metal layer on the second insulating layer. According to the device structure and preparation method for testing the surface leakage current of an infrared focal plane detector and the testing method for testing the surface leakage current of an infrared focal plane detector according to the embodiments of the present invention, each row in the pixel array can be directly tested. The surface leakage current does not need to be simulated and characterized with the help of auxiliary units, which improves the accuracy and convenience of surface leakage current testing.
Description
技术领域Technical field
本发明涉及红外焦平面探测器技术领域,尤其涉及一种用于测试表面漏电流的器件结构及其制备方法和测试方法。The invention relates to the technical field of infrared focal plane detectors, and in particular to a device structure for testing surface leakage current and its preparation method and testing method.
背景技术Background technique
红外焦平面探测器是一种同时实现红外信息的获取和进行信息处理的成像传感器,其在军用民用等领域都有着广泛的应用。Infrared focal plane detector is an imaging sensor that simultaneously acquires infrared information and processes information. It is widely used in military and civilian fields.
在研究红外探测器器件结构设计及像元刻蚀与钝化工艺对表面漏电流的影响中,如图1所示,需要从像元面阵10周围设置的测试单元2的 I-V 特性中分离出表面漏电流与体暗电流,以便辅助表征像元面阵10中像元1的性能。表面漏电流是一种与器件尺寸相关的暗电流,而器件的体暗电流密度与尺寸无关。通常采取如下方法分离器件表面漏电流与体暗电流:在像元面阵10周围制备不同单元大小的测试单元2,然后通过以下公式(1-1)分离出测试单元的体暗电流与表面漏电流:In studying the impact of the infrared detector device structure design and the pixel etching and passivation process on the surface leakage current, as shown in Figure 1, it is necessary to separate the I-V characteristics of the test unit 2 set around the pixel array 10 Surface leakage current and volume dark current are used to help characterize the performance of pixel 1 in the pixel array 10. Surface leakage current is a dark current that is related to the size of the device, while the bulk dark current density of the device is independent of size. The following method is usually adopted to separate the surface leakage current and bulk dark current of the device: prepare test units 2 of different unit sizes around the pixel array 10, and then separate the bulk dark current and surface leakage current of the test unit through the following formula (1-1) Current:
(1-1), (1-1),
其中,R 0 A为测试单元2的暗电流电阻;(R 0 A) Bulk 为R 0 A为测试单元2的体暗电流电阻;P为测试单元的周长;A为测试单元的上面积;ρ Surface 为测试单元的侧壁电阻率。Among them, R 0 A is the dark current resistance of test unit 2; (R 0 A) Bulk is R 0 A is the bulk dark current resistance of test unit 2; P is the perimeter of the test unit; A is the upper area of the test unit; ρSurface is the sidewall resistivity of the test unit.
现有的探测器像元的暗电流计算是通过面阵周围的测试单元进行辅助的模拟表征,无法测试面阵中实际像元的表面漏电流,与测试面阵中实际像元的表面漏电流仍有距离。The existing dark current calculation of detector pixels is based on auxiliary simulation representation through test units around the area array. It cannot test the surface leakage current of the actual pixels in the area array and test the surface leakage current of the actual pixels in the area array. There is still distance.
本发明试图解决以上问题,提供一种用于测试表面漏电流的器件结构及其制备方法和测试方法。The present invention attempts to solve the above problems and provide a device structure for testing surface leakage current, its preparation method and testing method.
发明内容Contents of the invention
本发明试图提供一种用于测试表面漏电流的器件结构及其制备方法和测试方法。The present invention attempts to provide a device structure for testing surface leakage current, its preparation method and testing method.
本发明第一方面提供一种用于测试红外焦平面探测器表面漏电流的器件结构的制备方法,包括:对红外材料的特定区域进行蚀刻,蚀刻深度达到下接触层,以使得一部分下接触层暴露在外同时在下接触层上形成多个凸台外延层结构,多个凸台外延层结构形成矩阵式分布从而形成面阵像元;在下接触层的表面以及凸台外延层结构的侧壁表面沉积第一绝缘层;在第一绝缘层上沉积第一金属层;在第一金属层上沉积第二绝缘层;以及在第二绝缘层上沉积第二金属层。A first aspect of the present invention provides a method for preparing a device structure for testing surface leakage current of an infrared focal plane detector, including: etching a specific area of the infrared material, and the etching depth reaches the lower contact layer, so that a part of the lower contact layer Exposed to the outside, multiple boss epitaxial layer structures are formed on the lower contact layer at the same time. The multiple boss epitaxial layer structures are distributed in a matrix to form an area array pixel; deposited on the surface of the lower contact layer and the side wall surface of the boss epitaxial layer structure a first insulating layer; depositing a first metal layer on the first insulating layer; depositing a second insulating layer on the first metal layer; and depositing a second metal layer on the second insulating layer.
进一步的,所述对红外材料的特定区域进行刻蚀采用电感耦合等离子体法。Furthermore, the inductively coupled plasma method is used to etch the specific area of the infrared material.
进一步的,所述第一绝缘层和所述第二绝缘层为厚度为100nm~300nm的硅氧化物、硅氮化物和/或铝氧化物。Further, the first insulating layer and the second insulating layer are silicon oxide, silicon nitride and/or aluminum oxide with a thickness of 100 nm to 300 nm.
进一步的,所述第一金属层和所述第二金属层为厚度为50nm~200nm的钛或金。Further, the first metal layer and the second metal layer are titanium or gold with a thickness of 50 nm to 200 nm.
进一步的,所述第一绝缘层和所述第二绝缘层采用等离子体化学增强气相沉积法来沉积。Further, the first insulating layer and the second insulating layer are deposited using a plasma chemically enhanced vapor deposition method.
进一步的,所述第一金属层和所述第二金属层采用电子束蒸镀法沉积。Further, the first metal layer and the second metal layer are deposited by electron beam evaporation.
本发明第二方面提供一种用于测试红外焦平面探测器表面漏电流的器件结构,其通过根据前述第一方面所述的用于测试红外焦平面探测器表面漏电流的器件结构的制备方法制备而得。A second aspect of the present invention provides a device structure for testing the surface leakage current of an infrared focal plane detector, which is prepared by the method for preparing a device structure for testing the surface leakage current of an infrared focal plane detector according to the first aspect. Prepared.
本发明第三方面提供一种用于测试红外焦平面探测器表面漏电流的测试方法,其使用根据前述第二方面所述的用于测试红外焦平面探测器表面漏电流的器件结构,包括:对于包含N(N为正整数)行的矩阵式分布的面阵像元,分别测量第一行像元至第N行像元中每一行像元的第一金属层与第二金属层之间的电容电压U;根据公式The third aspect of the present invention provides a testing method for testing the surface leakage current of an infrared focal plane detector, which uses the device structure for testing the surface leakage current of an infrared focal plane detector according to the aforementioned second aspect, including: For a matrix-distributed area array pixel containing N (N is a positive integer) rows, measure the distance between the first metal layer and the second metal layer of each row of pixels from the first row of pixels to the Nth row of pixels. The capacitor voltage U; according to the formula
,/>,/>, ,/> ,/> ,
计算出红外焦平面探测器的表面漏电流,其中,C为第一金属层与第二金属层之间的电容,ε为第二绝缘层的介电常数,S为第一金属层和第二金属层之间的重叠面积;d为第二绝缘层的膜层厚度,U为第一金属层和第二金属层之间的电容电压,Q为该行像元的表面漏电量,t为器件开始工作到电容电压稳定所需时间,I为该行像元的表面漏电流。Calculate the surface leakage current of the infrared focal plane detector, where C is the capacitance between the first metal layer and the second metal layer, ε is the dielectric constant of the second insulating layer, and S is the first metal layer and the second metal layer. The overlapping area between metal layers; d is the film thickness of the second insulating layer, U is the capacitance voltage between the first metal layer and the second metal layer, Q is the surface leakage amount of the row of pixels, t is the device The time required from the start of operation to the stabilization of the capacitor voltage, I is the surface leakage current of the row of pixels.
根据本发明的用于测试红外焦平面探测器表面漏电流的器件结构及其制备方法以及用于测试红外焦平面探测器表面漏电流的测试方法,可以直接测试像元面阵中每一行的表面漏电流,无需借助辅助单元加以模拟表征,提高了表面漏电流测试的准确性和便利性。According to the device structure and preparation method for testing the surface leakage current of an infrared focal plane detector and the testing method for testing the surface leakage current of an infrared focal plane detector of the present invention, the surface of each row in the pixel array can be directly tested. Leakage current does not need to be simulated and characterized with the help of auxiliary units, which improves the accuracy and convenience of surface leakage current testing.
附图说明Description of the drawings
图1为现有技术的用于测试红外焦平面探测器表面漏电流的测试方法的俯视示意图。Figure 1 is a schematic top view of a testing method for testing surface leakage current of an infrared focal plane detector in the prior art.
图2为蚀刻后的下接触层和凸台外延层结构的示意图。Figure 2 is a schematic diagram of the etched lower contact layer and boss epitaxial layer structure.
图3为根据本发明实施例的用于测试红外焦平面探测器表面漏电流的器件结构的剖视示意图。3 is a schematic cross-sectional view of a device structure for testing surface leakage current of an infrared focal plane detector according to an embodiment of the present invention.
图4为根据本发明实施例的用于测试红外焦平面探测器表面漏电流的器件结构的俯视示意图。FIG. 4 is a schematic top view of a device structure for testing surface leakage current of an infrared focal plane detector according to an embodiment of the present invention.
图5为根据本发明实施例的用于测试红外焦平面探测器表面漏电流的测试方法的俯视示意图。5 is a schematic top view of a testing method for testing surface leakage current of an infrared focal plane detector according to an embodiment of the present invention.
附图标记:Reference signs:
1:像元;10:像元面阵;2:测试单元;11:下接触层;12:凸台外延层结构;1: Pixel; 10: Pixel array; 2: Test unit; 11: Lower contact layer; 12: Boss epitaxial layer structure;
31:第一绝缘层;41:第一金属层;32:第二绝缘层;42:第二金属层。31: first insulating layer; 41: first metal layer; 32: second insulating layer; 42: second metal layer.
具体实施方式Detailed ways
为使对本发明的目的、构造、特征、及其功能有进一步的了解,兹配合实施例详细说明如下。In order to further understand the purpose, structure, characteristics, and functions of the present invention, detailed descriptions are given below with reference to the embodiments.
如图2-图4所示,本发明第一方面实施例提供一种用于测试红外焦平面探测器表面漏电流的器件结构的制备方法,包括:对红外材料的特定区域进行蚀刻,蚀刻深度达到下接触层,以使得一部分下接触层暴露在外同时在下接触层上形成多个凸台外延层结构,多个凸台外延层结构形成矩阵式分布从而形成面阵像元;在下接触层的表面以及凸台外延层结构的侧壁表面沉积第一绝缘层;在第一绝缘层上沉积第一金属层;在第一金属层上沉积第二绝缘层;以及在第二绝缘层上沉积第二金属层。As shown in Figures 2-4, the first embodiment of the present invention provides a method for preparing a device structure for testing surface leakage current of an infrared focal plane detector, including: etching a specific area of the infrared material, etching depth Reach the lower contact layer, so that a part of the lower contact layer is exposed and at the same time, multiple boss epitaxial layer structures are formed on the lower contact layer. The multiple boss epitaxial layer structures form a matrix distribution to form an area array pixel; on the surface of the lower contact layer and depositing a first insulating layer on the sidewall surface of the boss epitaxial layer structure; depositing a first metal layer on the first insulating layer; depositing a second insulating layer on the first metal layer; and depositing a second on the second insulating layer. metal layer.
如图2所示,对红外材料的特定区域进行蚀刻,蚀刻深度达到下接触层11,以使得一部分下接触层11暴露在外同时在下接触层11上形成多个凸台外延层结构12,多个凸台外延层结构形成矩阵式分布从而形成面阵像元。对红外材料的特定区域进行刻蚀可采用电感耦合等离子体法。As shown in FIG. 2 , a specific area of the infrared material is etched, and the etching depth reaches the lower contact layer 11 , so that a part of the lower contact layer 11 is exposed and at the same time, multiple boss epitaxial layer structures 12 are formed on the lower contact layer 11 . The boss epitaxial layer structure forms a matrix distribution to form an area array pixel. Inductively coupled plasma can be used to etch specific areas of infrared materials.
如图3和图4所示,在下接触层11的表面以及凸台外延层结构12的侧壁表面沉积第一绝缘层31;在第一绝缘层31上沉积第一金属层41;在第一金属层41上沉积第二绝缘层32;以及在第二绝缘层32上沉积第二金属层42。第一绝缘层31和第二绝缘层32为厚度为100nm~300nm的硅氧化物、硅氮化物和/或铝氧化物(SiOx/SiNx/AlOx),具体地,硅氧化物可以是SiO2,硅氮化物可以是Si3N4,铝氧化物可以是Al2O3。第一绝缘层31和第二绝缘层32可采用等离子体化学增强气相沉积法来沉积。第一金属层41和第二金属层42为厚度为50nm~200nm的钛或金。第一金属层41和第二金属层42可采用电子束蒸镀法沉积。As shown in Figures 3 and 4, a first insulating layer 31 is deposited on the surface of the lower contact layer 11 and the sidewall surface of the boss epitaxial layer structure 12; a first metal layer 41 is deposited on the first insulating layer 31; A second insulating layer 32 is deposited on the metal layer 41; and a second metal layer 42 is deposited on the second insulating layer 32. The first insulating layer 31 and the second insulating layer 32 are silicon oxide, silicon nitride and/or aluminum oxide (SiO x /SiN x /AlO x ) with a thickness of 100 nm ~ 300 nm. Specifically, the silicon oxide can be SiO 2 , the silicon nitride may be Si 3 N 4 , and the aluminum oxide may be Al 2 O 3 . The first insulating layer 31 and the second insulating layer 32 may be deposited using a plasma chemically enhanced vapor deposition method. The first metal layer 41 and the second metal layer 42 are titanium or gold with a thickness of 50 nm to 200 nm. The first metal layer 41 and the second metal layer 42 can be deposited by electron beam evaporation.
本发明第二方面实施例提供一种用于测试红外焦平面探测器表面漏电流的器件结构,如图3和图4所示,其通过根据前述第一方面实施例所述的用于测试红外焦平面探测器表面漏电流的器件结构的制备方法制备而得。The second embodiment of the present invention provides a device structure for testing the surface leakage current of an infrared focal plane detector, as shown in Figures 3 and 4. The device structure of the focal plane detector surface leakage current is prepared by a method.
本发明第三方面实施例提供一种用于测试红外焦平面探测器表面漏电流的测试方法,其使用根据前述第二方面实施例所述的用于测试红外焦平面探测器表面漏电流的器件结构(如图3和图4所示),包括:A third embodiment of the present invention provides a testing method for testing the surface leakage current of an infrared focal plane detector, which uses the device for testing the surface leakage current of an infrared focal plane detector according to the aforementioned second embodiment. Structure (shown in Figures 3 and 4), including:
对于包含N(N为正整数)行的矩阵式分布的面阵像元,分别测量第一行像元至第N行像元中每一行像元的第一金属层与第二金属层之间的电容电压U;For a matrix-distributed area array pixel containing N (N is a positive integer) rows, measure the distance between the first metal layer and the second metal layer of each row of pixels from the first row of pixels to the Nth row of pixels. The capacitor voltage U;
根据公式According to the formula
(1-2), (1-2),
(1-3), (1-3),
(1-4), (1-4),
可推导出can be derived
(1-5), (1-5),
而后可计算出红外焦平面探测器的表面漏电流,其中,Then the surface leakage current of the infrared focal plane detector can be calculated, where,
C为第一金属层与第二金属层之间的电容,C is the capacitance between the first metal layer and the second metal layer,
ε为第二绝缘层的介电常数,ε is the dielectric constant of the second insulating layer,
S为第一金属层和第二金属层之间的重叠面积,S is the overlapping area between the first metal layer and the second metal layer,
d为第二绝缘层的膜层厚度,d is the film thickness of the second insulating layer,
U为第一金属层和第二金属层之间的电容电压,U is the capacitance voltage between the first metal layer and the second metal layer,
Q为该行像元的表面漏电量,Q is the surface leakage amount of the row of pixels,
t为器件开始工作到电容电压稳定所需时间,t is the time required from the device starting to work until the capacitor voltage stabilizes,
I为该行像元的表面漏电流。I is the surface leakage current of the row of pixels.
根据本发明实施例的用于测试红外焦平面探测器表面漏电流的器件结构及其制备方法以及用于测试红外焦平面探测器表面漏电流的测试方法,可以直接测试像元面阵中每一行的表面漏电流,无需借助辅助单元加以模拟表征,提高了表面漏电流测试的准确性和便利性。According to the device structure and preparation method for testing the surface leakage current of an infrared focal plane detector and the testing method for testing the surface leakage current of an infrared focal plane detector according to the embodiments of the present invention, each row in the pixel array can be directly tested. The surface leakage current does not need to be simulated and characterized with the help of auxiliary units, which improves the accuracy and convenience of surface leakage current testing.
本发明的描述中,需要理解的是,术语“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。In the description of the present invention, it should be understood that the terms "longitudinal", "transverse", "length", "width", "thickness", "upper", "lower", "front", "rear", "left" ", "right", "vertical", "horizontal", "top", "bottom", "inner", "outer" orientation or positional relationship are only for convenience of describing the present invention and simplifying the description, rather than indicating or It is implied that the device or element referred to must have a specific orientation, be constructed and operate in a specific orientation and is therefore not to be construed as a limitation of the invention.
本发明已由上述相关实施例加以描述,然而上述实施例仅为实施本发明的范例。必需指出的是,已揭露的实施例并未限制本发明的范围。相反地,在不脱离本发明的精神和范围内所作的更动与润饰,均属本发明的专利保护范围。The present invention has been described by the above-mentioned relevant embodiments, but the above-mentioned embodiments are only examples of implementing the present invention. It must be noted that the disclosed embodiments do not limit the scope of the present invention. On the contrary, any changes and modifications made without departing from the spirit and scope of the present invention shall fall within the scope of patent protection of the present invention.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310947797.5A CN116666405B (en) | 2023-07-31 | 2023-07-31 | Device structure for testing surface leakage current and its preparation method and testing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310947797.5A CN116666405B (en) | 2023-07-31 | 2023-07-31 | Device structure for testing surface leakage current and its preparation method and testing method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN116666405A CN116666405A (en) | 2023-08-29 |
CN116666405B true CN116666405B (en) | 2023-09-26 |
Family
ID=87715729
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202310947797.5A Active CN116666405B (en) | 2023-07-31 | 2023-07-31 | Device structure for testing surface leakage current and its preparation method and testing method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN116666405B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117855340B (en) * | 2024-03-07 | 2024-05-17 | 山西创芯光电科技有限公司 | Indium column preparation method for reducing blind pixel rate of infrared detector |
CN119595126A (en) * | 2025-02-12 | 2025-03-11 | 山西创芯光电科技有限公司 | A fault diagnosis method and system for multi-color infrared detectors |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007100538A2 (en) * | 2006-02-22 | 2007-09-07 | Redlen Technologies | Method of making segmented contacts for radiation detectors using direct photolithography |
JP2018006415A (en) * | 2016-06-28 | 2018-01-11 | 富士通株式会社 | Infrared sensing element infrared detector, infrared sensing element array, and method for sensing infrared light by use of infrared sensing element |
KR20180044681A (en) * | 2016-10-24 | 2018-05-03 | 엘지디스플레이 주식회사 | Digital x-ray detector for improving read out efficiency and method for fabricationg thereof |
CN108878572A (en) * | 2018-07-10 | 2018-11-23 | 京东方科技集团股份有限公司 | Photosensitive element, photoelectric sensing detection substrate and its manufacturing method |
CN109786510A (en) * | 2019-03-11 | 2019-05-21 | 中国科学院上海微系统与信息技术研究所 | Preparation method of a quaternary detector and indium gallium arsenide bismuth quaternary detector obtained therefrom |
CN110176507A (en) * | 2019-05-31 | 2019-08-27 | 厦门市三安集成电路有限公司 | Passivating structure and photodiode of a kind of table top PIN and preparation method thereof |
CN110491796A (en) * | 2019-08-23 | 2019-11-22 | 上海华虹宏力半导体制造有限公司 | Electric leakage current test structure of 3D Magnetic Sensor and forming method thereof |
EP3758073A1 (en) * | 2018-03-29 | 2020-12-30 | JX Nippon Mining & Metals Corporation | Radiation detection element, and method for manufacturing same |
CN112635581A (en) * | 2020-12-30 | 2021-04-09 | 安徽光智科技有限公司 | Infrared detector and preparation method thereof |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4342774B2 (en) * | 2002-07-10 | 2009-10-14 | シャープ株式会社 | Photoelectric conversion amount detection method, photoelectric conversion device, image input method and image input device, two-dimensional image sensor, and two-dimensional image sensor driving method |
US8112240B2 (en) * | 2005-04-29 | 2012-02-07 | Abbott Diabetes Care Inc. | Method and apparatus for providing leak detection in data monitoring and management systems |
JP2012195514A (en) * | 2011-03-17 | 2012-10-11 | Seiko Epson Corp | Substrate with element, infrared sensor, and through electrode formation method |
-
2023
- 2023-07-31 CN CN202310947797.5A patent/CN116666405B/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007100538A2 (en) * | 2006-02-22 | 2007-09-07 | Redlen Technologies | Method of making segmented contacts for radiation detectors using direct photolithography |
JP2018006415A (en) * | 2016-06-28 | 2018-01-11 | 富士通株式会社 | Infrared sensing element infrared detector, infrared sensing element array, and method for sensing infrared light by use of infrared sensing element |
KR20180044681A (en) * | 2016-10-24 | 2018-05-03 | 엘지디스플레이 주식회사 | Digital x-ray detector for improving read out efficiency and method for fabricationg thereof |
EP3758073A1 (en) * | 2018-03-29 | 2020-12-30 | JX Nippon Mining & Metals Corporation | Radiation detection element, and method for manufacturing same |
CN108878572A (en) * | 2018-07-10 | 2018-11-23 | 京东方科技集团股份有限公司 | Photosensitive element, photoelectric sensing detection substrate and its manufacturing method |
CN109786510A (en) * | 2019-03-11 | 2019-05-21 | 中国科学院上海微系统与信息技术研究所 | Preparation method of a quaternary detector and indium gallium arsenide bismuth quaternary detector obtained therefrom |
CN110176507A (en) * | 2019-05-31 | 2019-08-27 | 厦门市三安集成电路有限公司 | Passivating structure and photodiode of a kind of table top PIN and preparation method thereof |
CN110491796A (en) * | 2019-08-23 | 2019-11-22 | 上海华虹宏力半导体制造有限公司 | Electric leakage current test structure of 3D Magnetic Sensor and forming method thereof |
CN112635581A (en) * | 2020-12-30 | 2021-04-09 | 安徽光智科技有限公司 | Infrared detector and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN116666405A (en) | 2023-08-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN116666405B (en) | Device structure for testing surface leakage current and its preparation method and testing method | |
EP2762866B1 (en) | CMOS gas sensor and method for manufacturing the same | |
CN108780823A (en) | Multi-well selenium device and manufacturing method thereof | |
CN101608962A (en) | A kind of micro Pirani gage | |
US20220033247A1 (en) | Micro-electro-mechanical system silicon on insulator pressure sensor and method for preparing same | |
US11742435B2 (en) | Integrated capacitor and method of producing an integrated capacitor | |
US8884241B2 (en) | Incident capacitive sensor | |
CN108321291A (en) | Hall sensor and preparation method thereof with two-dimensional electron gas channel barrier layer partial groove structure | |
CN105841852A (en) | Doping silylene based MEMS piezoresistive pressure sensor and manufacturing method thereof | |
US20170254704A1 (en) | Thermal pattern sensor with bolometers under capsule(s) | |
CN104833996B (en) | The array gamma irradiation dosimeter of FBAR structures on diaphragm | |
US8933711B2 (en) | Capacitive sensor radiation measurement | |
CN113686483B (en) | A resonant differential pressure sensor with integrated temperature sensor and its preparation method | |
Hourdakis et al. | Three-dimensional vertical Si nanowire MOS capacitor model structure for the study of electrical versus geometrical Si nanowire characteristics | |
CN114804007B (en) | A MEMS vacuum gauge based on porous silicon insulation layer and its preparation method | |
US11427465B2 (en) | Capacitive sensors having temperature stable output | |
CN106129138B (en) | Anti-crosstalk infrared detector pixel structure and preparation method thereof | |
CN106918397B (en) | MEMS device, MEMS temperature sensor and respective production method | |
CN116847720A (en) | Cross-shaped high-temperature three-dimensional Hall sensor and preparation method thereof | |
CN107331675A (en) | A kind of infrared detector and preparation method thereof | |
CN109728123A (en) | Ultra-thin silicon PIN radiation detector based on bonded substrate and preparation method thereof | |
US20250113735A1 (en) | Infrared imaging microbolometer | |
CN114812843B (en) | High-temperature sensor based on multilayer film thermal protection and preparation method thereof | |
CN115057406B (en) | MEMS vacuum gauge based on snake-shaped porous silicon heat insulation layer and preparation method thereof | |
WO2016059912A1 (en) | Silicon carbide semiconductor device manufacturing method and silicon carbide semiconductor device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |