[go: up one dir, main page]

CN116651456B - 一种生物相容性析氢电催化剂及其制备方法和应用 - Google Patents

一种生物相容性析氢电催化剂及其制备方法和应用 Download PDF

Info

Publication number
CN116651456B
CN116651456B CN202310527298.0A CN202310527298A CN116651456B CN 116651456 B CN116651456 B CN 116651456B CN 202310527298 A CN202310527298 A CN 202310527298A CN 116651456 B CN116651456 B CN 116651456B
Authority
CN
China
Prior art keywords
biocompatible
microbial
hydrogen evolution
carbon dioxide
terephthalic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202310527298.0A
Other languages
English (en)
Other versions
CN116651456A (zh
Inventor
李中坚
修思源
杨彬
侯阳
雷乐成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN202310527298.0A priority Critical patent/CN116651456B/zh
Publication of CN116651456A publication Critical patent/CN116651456A/zh
Application granted granted Critical
Publication of CN116651456B publication Critical patent/CN116651456B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/62Carboxylic acid esters
    • C12P7/625Polyesters of hydroxy carboxylic acids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/396Distribution of the active metal ingredient
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/396Distribution of the active metal ingredient
    • B01J35/398Egg yolk like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/6350.5-1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/054Electrodes comprising electrocatalysts supported on a carrier
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Zoology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Catalysts (AREA)
  • Inert Electrodes (AREA)

Abstract

本发明公开了一种生物相容性析氢电催化剂及其制备方法和应用,属于能源转化和电催化剂技术领域,该电催化剂包括碳纳米管和金属镍纳米颗粒,金属镍纳米颗粒包裹于含微孔和介孔结构的碳纳米管内;制备方法包括:将对苯二甲酸和乙酸镍分别溶解于N,N‑二甲基甲酰胺中得到对苯二甲酸溶液和乙酸镍溶液,将乙酸镍溶液滴加到对苯二甲酸溶液中,加热搅拌反应后收集固体产物,洗涤烘干后得到Ni‑PTA金属有机框架;将Ni‑PTA金属有机框架在惰性气体氛围下高温煅烧,冷却后酸洗,得到所述的生物相容性析氢电催化剂。该电催化剂在中性溶液中具有低镍离子溶出和低活性氧类物质产生的优点,生物相容性好,能够应用于微生物电催化转化二氧化碳。

Description

一种生物相容性析氢电催化剂及其制备方法和应用
技术领域
本发明涉及能源转化和电催化剂技术领域,具体涉及一种生物相容性析氢电催化剂及其制备方法和应用。
背景技术
微生物电合成是微生物利用电能作为还原力将CO2、葡萄糖或其它底物还原合成为各种化学品的过程,其系统包括阳极(对电极)、参比电极和阴极(工作电极),微生物电合成通过原位电解水产生H2和O2,为微生物的生长代谢提供电子和能量,进一步利用微生物自身的代谢过程实现CO2的高值化转化。近年来,利用微生物电合成系统固定CO2生产聚β-羟基丁酸酯、生物燃料或多种复杂多碳产物已成为当今研究热点。该技术作为一种绿色可持续的生物固碳技术,不仅能够生产高附加值化学品,还能同时实现温室气体CO2的固定,提供了CO2转化为多碳化合物的平台。
野生型杀虫贪铜菌(Cupriavidus necator)作为一种典型的氢氧化固碳微生物,已经被广泛研究用于CO2向生物质或聚β-羟基丁酸酯的转化。以Cupriavidus necator作为底盘细胞,加以基因改造,能够实现从CO2到多种生物燃料如异丙醇和异丁醇的生产,以及高附加值产物如番茄红素和α-葎草烯的合成。
另外,公开号为CN107354478A的中国专利文献公开了在阴极使用混合厌氧微生物还原二氧化碳的方法,所述混合厌氧微生物包括Proteobacteria,Firmicutes和Bacteroidetes,该方法可以利用常见电极材料实现二氧化碳还原成挥发性脂肪酸,利用驯化富集的混菌体系产生有高附加值的物质。
为了微生物培养液环境中原位电解水反应更加高效,提高电能的转化效率,析氢电催化剂被应用在微生物电合成系统的阴极,用来降低析氢反应的过电势。然而,电催化过程中析氢催化剂内金属元素的溶解和积累会抑制固碳微生物的活性。25μmol L-1的Co2+和Ni2+已经具有明显的细胞毒性。此外,对于好氧微生物来说,氧气在阴极被还原产生的副产物活性氧类物质,包括H2O2和HO·等,这些ROS可以破坏DNA、脂质和蛋白质,影响微生物的代谢和增殖。因此,阴极析氢电催化剂的生物相容性严重影响微生物电合成系统中微生物的生长和代谢,进而影响了CO2向高附加值产物的转化。因此,设计出一种能够同时降低金属离子溶出和ROS产生,具有优异生物相容性的析氢电催化剂是现有技术亟需解决的问题。
发明内容
本发明提供了一种生物相容性析氢电催化剂,该电催化剂包括碳纳米管和金属镍纳米颗粒,金属镍纳米颗粒包裹于含微孔和介孔结构的碳纳米管内;该电催化剂具有的限域结构能够显著降低应用过程中金属镍的溶出,以及减少催化副产物活性氧ROS的产生,具有优异生物相容性。
具体采用的技术方案如下:
一种生物相容性析氢电催化剂,包括60-80wt%碳纳米管和20-40wt%金属镍纳米颗粒,所述的金属镍纳米颗粒包裹于含微孔和介孔结构的碳纳米管内;优选的,所述的生物相容性析氢电催化剂具有孔径低于3nm的微孔和孔径为3-5nm的介孔。
本发明提供的生物相容性析氢电催化剂具有特定的结构,金属镍纳米颗粒包裹于碳纳米管中,该电催化剂具有的限域结构能够显著降低应用过程中金属镍的溶出,以及减少催化副产物活性氧ROS的产生,具有优异生物相容性,在微生物电催化转化二氧化碳中具有较好的应用前景。
本发明还提供了所述的生物相容性析氢电催化剂的制备方法,包括以下步骤:
(1)将对苯二甲酸和乙酸镍分别溶解于N,N-二甲基甲酰胺中得到对苯二甲酸溶液和乙酸镍溶液,将乙酸镍溶液滴加到对苯二甲酸溶液中,加热搅拌反应后收集固体产物,洗涤烘干后得到Ni-PTA金属有机框架。
(2)将步骤(1)得到的Ni-PTA金属有机框架在惰性气体氛围下高温煅烧,冷却后得到黑色粉末,酸洗后得到所述的生物相容性析氢电催化剂。
本发明以乙酸镍为镍源,以对苯二甲酸为有机配体,首先合成Ni-PTA金属有机框架,进一步对其进行煅烧和酸洗操作,得到所述的生物相容性析氢电催化剂。
优选的,步骤(1)中,对苯二甲酸溶液的浓度为0.1-0.3mol L-1;乙酸镍溶液的浓度为0.1-0.3mol L-1;对苯二甲酸溶液与乙酸镍溶液的体积比为1:1-2。
优选的,加热搅拌反应的条件为80-120℃,2-8h。
优选的,步骤(2)中,惰性气体氛围为氮气气氛,煅烧温度为700~900℃,煅烧时间为2~3h。煅烧气氛、温度、时间影响催化剂产物的导电性、比表面积和镍金属纳米颗粒的分散性,在上述优选的条件下,得到的产物催化剂催化析氢反应的活性更高。
进一步优选的,高温煅烧的升温速率为5~10℃min-1。升温速率过快,将影响碳纳米管的形成。
优选的,步骤(2)中,使用0.5mol L-1的硫酸酸洗,酸洗时间为12~24h。在上述优选的酸洗条件下,能够充分去除暴露在碳纳米管外的金属镍纳米颗粒。
本发明还公开了所述的生物相容性析氢电催化剂在微生物电催化转化二氧化碳中的应用,优选的,应用微生物电合成系统,将所述的生物相容性析氢电催化剂负载在阴极上,降低阴极析氢反应的过电势,促进需氧微生物或厌氧微生物固定CO2并将其转化为高附加值产物,如聚β-羟基丁酸酯等。
本发明还提供了一种微生物电催化转化二氧化碳的方法,包括以下步骤:构建三电极体系,以负载所述的生物相容性析氢电催化剂的碳电极为阴极,以Ag/AgCl为参比电极,以铂电极为阳极,阴极、参比电极、阳极与电化学工作站构成闭合回路,以需氧微生物培养液作为电解液,接通电化学工作站,接种需氧微生物,控制初始接种时电解液的OD600为0.2~0.3,在室温、-0.9~-1.2V(相对于饱和银/氯化银电极)的阴极电压下运行,将CO2转化为高附加值产物。
优选的,所述的需氧微生物为杀虫贪铜菌(Cupriavidus necator),电解液选用本领域技术人员公知的杀虫贪铜菌的液体培养液;所述的高附加值产物为聚β-羟基丁酸酯。经试验证明,所述的生物相容性析氢电催化剂在微生物电合成系统中能够和Cupriavidusnecator实现良好耦合,实现CO2到聚β-羟基丁酸酯的高值化转化。
与现有技术相比,本发明的有益效果在于:
(1)本发明提供的生物相容性析氢电催化剂具有特定的结构,该生物相容性析氢电催化剂包括碳纳米管和金属镍纳米颗粒,金属镍纳米颗粒包裹于含微孔和介孔结构的碳纳米管内,碳纳米管的限域作用抑制了金属镍的溶出,使得该电催化剂具有低金属镍离子溶出的特点,进而显著降低了金属离子溶出造成的细胞毒性。
(2)当该生物相容性析氢电催化剂用于微生物电催化转化二氧化碳时,其在中性的微生物培养液中催化析氢性能良好,稳定催化时间长达160h,具有较好的催化性能和稳定性,且产生的副产物活性氧类物质(如H2O2、HO·等)较少,表现出优异生物相容性,在微生物电催化转化二氧化碳领域应用前景广泛。
附图说明
图1为实施例1制得的生物相容性析氢电催化剂的孔径分布图。
图2为实施例1制得的生物相容性析氢电催化剂的SEM图。
图3为实施例1制得的生物相容性析氢电催化剂的TEM图。
图4为实施例1制得的生物相容性析氢电催化剂的在微生物培养液中电解水析氢反应的极化曲线图,扫描速率为2mV s-1
图5是应用例1的微生物电合成系统运行过程中H2O2浓度随时间积累图。
图6是应用例1的微生物电合成系统运行过程中HO·浓度随时间积累图。
图7为应用例2的微生物电合成系统运行过程中金属镍离子的溶出浓度曲线。
图8为应用例3中微生物电催化转化二氧化碳产生的聚β-羟基丁酸酯的浓度曲线。
具体实施方式
下面结合实施例与附图,进一步阐明本发明。应理解,这些实施例仅用于说明本发明,而不用于限制本发明的范围。下列实施例中未注明具体条件的操作方法,通常按照常规条件,或按照制造厂商所建议的条件。
实施例中使用的杀虫贪铜菌(Cupriavidus necator),购买于北京北纳创联生物技术研究院,货号为BNCC137386。
实施例1
(1)将0.332g对苯二甲酸加入到10mL N,N-二甲基甲酰胺中,在120℃油浴中,以500rpm转速搅拌直至溶解;称取0.75g四水合乙酸镍放入15mL N,N-二甲基甲酰胺中,超声30min分散直至溶解;得到浓度均为0.2mol L-1的对苯二甲酸溶液与乙酸镍溶液;将乙酸镍溶液缓慢滴加到对苯二甲酸溶液中,所得混合溶液在120℃油浴下不断搅拌,反应8h后,离心收集淡绿色固体产物,用N,N-二甲基甲酰胺反复洗涤后置于60℃烘箱中干燥,得到Ni-PTA金属有机框架。
(2)将获得的Ni-PTA金属有机框架置于管式炉中,在氮气氛围下以5℃min-1的速率升温至800℃煅烧3h,冷却至室温,得到黑色产物;黑色产物用0.5mol L-1的硫酸酸洗24h,得到所述的生物相容性析氢电催化剂。
对该生物相容性析氢电催化剂进行表征可知,该生物相容性析氢电催化剂中金属镍的含量为30wt%,金属镍纳米颗粒的平均粒径为10-20nm,该生物相容性析氢电催化剂的比表面积为162m2 g-1,孔容为0.53cm3 g-1。孔径分布结果如图1所示,该电催化剂中存在低于3nm的微孔和3-5nm的介孔。
分别通过扫描电镜技术(SEM)和透射电镜技术(TEM)观察该生物相容性析氢电催化剂的微观结构,如图2和图3所示,可见金属镍纳米颗粒被碳纳米管包裹。金属镍纳米颗粒调控了其周围碳层的电子云密度,作为该电催化剂在中性环境中电解水析氢反应的活性位点。
以微生物培养液作为电解液,利用线性扫描伏安法测量该电催化剂析氢性能,扫描速率为2mV s-1。如图4的极化曲线图所示,该电催化剂在在微生物培养液中过电势为444mV。其中,过电势为电流密度为10mA cm-2时测得电位与理论电位的差值。这一结果说明该电催化剂在微生物培养液中具有较好的电催化析氢性能。
实施例2
本实施例中,所述的生物相容性析氢电催化剂的制备方法与实施例1中的区别仅在于,对苯二甲酸溶液的浓度为0.1mol L-1,乙酸镍溶液的浓度为0.1mol L-1;加热搅拌反应的条件为80℃,6h。
实施例3
本实施例中,所述的生物相容性析氢电催化剂的制备方法与实施例1中的区别仅在于,高温煅烧的温度为700℃,煅烧时间为2h,升温速率为10℃min-1,酸洗时间为12h。
应用例1
需氧微生物Cupriavidus necator培养液的配方如下:9g L-1Na2HPO4·12H2O,1.5gL-1KH2PO4,0.2g L-1(NH4)2SO4,80mg L-1MgSO4·7H2O,1mg L-1CaSO4·2H2O,50mg L-1柠檬酸铁,200mg L-1NaHCO3,1.5mg L-1NTA,0.3mg L-1H3BO3,0.2mg L-1CoCl2·6H2O,0.1mg L- 1ZnSO4·7H2O,0.03mg L-1MnCl2·4H2O,0.03mg L-1Na2MoO4·2H2O,0.02mg L-1NiCl2·6H2O,0.01mg L-1CuSO4·5H2O。
称取15mg实施例1制备的生物相容性析氢电催化剂,与0.15mL0.5wt.%Nafion溶液(由5wt.%Nafion溶液用无水乙醇稀释获得,5wt.%Nafion溶液购买于杜邦公司)和1.35mL无水乙醇混合后,超声2h混合均匀得到混合溶液。将混合溶液滴在碳纸上,得到催化剂负载量为1mg cm-2的微生物电合成系统阴极;构建三电极体系,1cm*1cm的铂网电极作为阳极,参比电极为饱和银/氯化银电极,阴极、参比电极、阳极与电化学工作站构成闭合回路。加入微生物培养液作为电解液,接通电化学工作站。在30℃下,控制阴极电压为-0.9V,在0,10,30,60,120min时取样1mL,检测电解液中H2O2浓度,结果如图5所示,副产物H2O2浓度最高仅为7μmol L-1
同上,在上述条件下,0min,10min,30min,1h,2h,3h,5h,24h,48h和96h时取样1mL,检测电解液中HO·浓度,结果如图6所示,HO·浓度在96h后累积产生浓度仅为0.7μmol L-1
由于微生物本身就具有一定抵抗活性氧类物质的能力,并且其体内的部分代谢活动同样需要活性氧类物质的参与,同时相关实验和文献的记载也能够证明,上述浓度的H2O2和HO·不会对微生物造成任何细胞毒性。
应用例2
微生物活化后使用步骤如下:从琼脂平板上取一个菌落,在LB培养基中培养约12小时,然后将细菌溶液离心(7000rpm,10分钟),用微生物培养液反复洗涤三次;将菌液重新分散到含有10μg ml-1硫酸庆大霉素的微生物培养液中。通入混合气(H2:CO2:O2=80:15:5)培养48小时后,将培养的Cupriavidus necator接种到含有150毫升微生物培养液的反应器中。
构建三电极体系的微生物电合成系统(同应用例1),将反应装置高温灭菌后备用。以应用例1中的Cupriavidus necator培养液作为电解液,接通电化学工作站,接种Cupriavidus necator菌液,控制初始接种时电解液的OD600为0.2~0.3,在30℃下,控制阴极电压为-0.9V(相对于饱和银/氯化银电极)。每24h通入CO2 15min,并取样2mL。样品离心后检测上清液中金属镍的浓度。结果如图7所示,金属镍离子的浓度始终低于0.1mg L-1
应用例3
构建三电极体系的微生物电合成系统(同应用例1),将反应装置高温灭菌后备用。以应用例1中的Cupriavidus necator培养液作为电解液,接通电化学工作站,接种Cupriavidus necator菌液,控制初始接种时电解液的OD600为0.2~0.3,在30℃下,分别控制阴极电压为-0.9V,-1.0V,-1.1V和-1.2V(相对于饱和银/氯化银电极),在上述条件下运行,每24h通入CO2 15min,并取样2mL。
样品离心后检测沉淀物中聚β-羟基丁酸酯浓度,结果如图8所示。阴极电压(绝对值)增加,氢气产量升高,聚β-羟基丁酸酯积累速度加快,产量显著提升。
上述应用例只是提供所述的生物相容性析氢电催化剂的可能的应用方式,除了上述的单腔室微生物电合成系统外,该电催化剂还可以用于构建双腔室微生物电合成系统。以上仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此。
以上所述的实施例对本发明的技术方案进行了详细说明,应理解的是以上所述的仅为本发明的具体实施例,并不用于限制本发明,凡在本发明的原则范围内所做的任何修改、补充或类似方式替代等,均应包含在本发明的保护范围之内。

Claims (7)

1. 一种用于微生物电催化转化二氧化碳的生物相容性析氢电催化剂,其特征在于,包括60-80 wt%碳纳米管和20-40 wt%金属镍纳米颗粒,所述的金属镍纳米颗粒包裹于含微孔和介孔结构的碳纳米管内;
所述的用于微生物电催化转化二氧化碳的生物相容性析氢电催化剂的制备方法包括以下步骤:
(1)将对苯二甲酸和乙酸镍分别溶解于N,N-二甲基甲酰胺中得到对苯二甲酸溶液和乙酸镍溶液,将乙酸镍溶液滴加到对苯二甲酸溶液中,加热搅拌反应后收集固体产物,洗涤烘干后得到Ni-PTA金属有机框架;
(2)将步骤(1)得到的Ni-PTA金属有机框架在惰性气体氛围下高温煅烧,冷却后得到黑色粉末,酸洗后得到所述的用于微生物电催化转化二氧化碳的生物相容性析氢电催化剂;
步骤(1)中,对苯二甲酸溶液的浓度为0.1-0.3 mol L-1;乙酸镍溶液的浓度为0.1-0.3mol L-1;对苯二甲酸溶液与乙酸镍溶液的体积比为1:1-2;加热搅拌反应的条件为80-120℃,2-8 h;
步骤(2)中,惰性气体氛围为氮气气氛,煅烧温度为700~900℃,煅烧时间为2~3 h。
2.根据权利要求1所述的用于微生物电催化转化二氧化碳的生物相容性析氢电催化剂的制备方法,其特征在于,包括以下步骤:
(1)将对苯二甲酸和乙酸镍分别溶解于N,N-二甲基甲酰胺中得到对苯二甲酸溶液和乙酸镍溶液,将乙酸镍溶液滴加到对苯二甲酸溶液中,加热搅拌反应后收集固体产物,洗涤烘干后得到Ni-PTA金属有机框架;
(2)将步骤(1)得到的Ni-PTA金属有机框架在惰性气体氛围下高温煅烧,冷却后得到黑色粉末,酸洗后得到所述的用于微生物电催化转化二氧化碳的生物相容性析氢电催化剂;
步骤(1)中,对苯二甲酸溶液的浓度为0.1-0.3 mol L-1;乙酸镍溶液的浓度为0.1-0.3mol L-1;对苯二甲酸溶液与乙酸镍溶液的体积比为1:1-2;加热搅拌反应的条件为80-120℃,2-8 h;
步骤(2)中,惰性气体氛围为氮气气氛,煅烧温度为700~900℃,煅烧时间为2~3 h。
3. 根据权利要求2所述的用于微生物电催化转化二氧化碳的生物相容性析氢电催化剂的制备方法,其特征在于,步骤(2)中,高温煅烧的升温速率为5~10℃ min-1
4. 根据权利要求2所述的用于微生物电催化转化二氧化碳的生物相容性析氢电催化剂的制备方法,其特征在于,步骤(2)中,使用硫酸酸洗12~24 h。
5.根据权利要求1所述的用于微生物电催化转化二氧化碳的生物相容性析氢电催化剂在微生物电催化转化二氧化碳中的应用。
6.根据权利要求5所述的用于微生物电催化转化二氧化碳的生物相容性析氢电催化剂在微生物电催化转化二氧化碳中的应用,其特征在于,应用微生物电合成系统,将所述的用于微生物电催化转化二氧化碳的生物相容性析氢电催化剂负载在阴极上,促进需氧微生物或厌氧微生物固定CO2并将其转化为高附加值产物。
7. 一种微生物电催化转化二氧化碳的方法,包括以下步骤:构建三电极体系,以负载权利要求1所述的用于微生物电催化转化二氧化碳的生物相容性析氢电催化剂的碳电极为阴极,以Ag/AgCl为参比电极,以铂电极为阳极,阴极、参比电极、阳极与电化学工作站构成闭合回路,以需氧微生物培养液作为电解液,接通电化学工作站,接种需氧微生物,控制初始接种时电解液的OD600为0.2~0.3,在室温、-0.9~-1.2 V的阴极电压下运行,将CO2转化为高附加值产物。
CN202310527298.0A 2023-05-11 2023-05-11 一种生物相容性析氢电催化剂及其制备方法和应用 Active CN116651456B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310527298.0A CN116651456B (zh) 2023-05-11 2023-05-11 一种生物相容性析氢电催化剂及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310527298.0A CN116651456B (zh) 2023-05-11 2023-05-11 一种生物相容性析氢电催化剂及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN116651456A CN116651456A (zh) 2023-08-29
CN116651456B true CN116651456B (zh) 2024-08-06

Family

ID=87725172

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310527298.0A Active CN116651456B (zh) 2023-05-11 2023-05-11 一种生物相容性析氢电催化剂及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN116651456B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109772407A (zh) * 2019-02-01 2019-05-21 浙江大学 镍纳米颗粒负载的镍氮共掺杂的碳纳米片电催化剂及制备方法和应用
CN111659401A (zh) * 2020-06-30 2020-09-15 齐鲁工业大学 一种三维多孔碳纳米管石墨烯复合膜及其制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101508503B (zh) * 2009-03-31 2010-12-01 南通大学 降解废水中持久性有机污染物的耦合生化反应器
CN104064791B (zh) * 2014-02-26 2017-01-11 武汉科技大学 一种微生物燃料电池生物电催化逆转化反应器以及烟气co2的净化方法和co2生物合成燃料的制备方法
US20190301029A1 (en) * 2016-11-03 2019-10-03 Musc Foundation For Research Development Bioelectrosynthesis of organic compounds
CN109304201B (zh) * 2017-07-28 2021-08-06 中国石油化工股份有限公司 碳包覆过渡金属纳米复合材料及其制备方法和应用
CN113231095A (zh) * 2021-05-08 2021-08-10 南京工业大学 一种氮化碳异质结光催化剂及其制备方法和应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109772407A (zh) * 2019-02-01 2019-05-21 浙江大学 镍纳米颗粒负载的镍氮共掺杂的碳纳米片电催化剂及制备方法和应用
CN111659401A (zh) * 2020-06-30 2020-09-15 齐鲁工业大学 一种三维多孔碳纳米管石墨烯复合膜及其制备方法

Also Published As

Publication number Publication date
CN116651456A (zh) 2023-08-29

Similar Documents

Publication Publication Date Title
Park et al. Enhanced electrical contact of microbes using Fe3O4/CNT nanocomposite anode in mediator-less microbial fuel cell
Zhang et al. A graphene modified anode to improve the performance of microbial fuel cells
CN104269566B (zh) 一种氮掺杂多孔碳纳米片复合材料的制备方法和应用
Qiao et al. Electrocatalysis in microbial fuel cells—from electrode material to direct electrochemistry
CN113437314B (zh) 氮掺杂碳负载低含量钌和Co2P纳米粒子的三功能电催化剂及其制备方法和应用
CN109546157B (zh) 一种铜、氮化钴与碳原位复合电极的制备方法
Zhu et al. Fe 3 O 4/granular activated carbon as an efficient three-dimensional electrode to enhance the microbial electrosynthesis of acetate from CO 2
CN108585044B (zh) 一种具有mylikes结构的Co-MoO2纳米球的简单制备及电催化应用
Thapa et al. Xerogel based catalyst for improved cathode performance in microbial fuel cells
CN101552340B (zh) 一种海洋酵母的用途和相应微生物燃料电池及制备方法
CN114164452A (zh) 一种制备超薄钒酸钴纳米片负载金属单原子催化剂的方法
CN107335433B (zh) 一种氧化钼基高效电催化析氢催化剂的制备方法
Yu et al. Recoverable hybrid enzymatic biofuel cell with molecular oxygen-independence
Thatikayala et al. MnO2/reduced graphene oxide nanohybrids as a cathode catalyst for the microbial reduction of CO2 to acetate and isobutyric acid
CN109371418B (zh) 一种利用石墨烯-泡沫铜复合阴极提高生物还原co2电合成乙酸的方法
CN113118451B (zh) 一种应用于高效二氧化碳还原反应生成一氧化碳的镁单原子催化剂的制备方法
CN109759066B (zh) 一种硼掺杂石墨烯负载的钴镍双金属氧化物析氧催化剂的制备方法
CN112951623A (zh) 铜钴锌复合自支撑纳米阵列电极材料及其制备方法和应用
CN113737218A (zh) 铜基石墨烯气凝胶复合催化剂、气体扩散电极和应用
Yin et al. Co3O4/C derived from ZIF-67 cathode enhances the microbial electrosynthesis of acetate from CO2
CN116651456B (zh) 一种生物相容性析氢电催化剂及其制备方法和应用
Zheng et al. Interface design for enhancing carbon dioxide electrolysis in a fluidized electrode of photoelectrochemical cell
Thatikayala et al. A mesoporous silica-supported CeO 2/cellulose cathode catalyst for efficient bioelectrochemical reduction of inorganic carbon to biofuels
CN113249752B (zh) 一种Fe2P-WOx析氧电催化剂制备方法
WO2023279406A1 (zh) 一种负载型催化剂的制备方法及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant