[go: up one dir, main page]

CN116650827A - Flow Pulsatility Control System of ECMO Centrifugal Blood Pump Based on RBF Neural Network - Google Patents

Flow Pulsatility Control System of ECMO Centrifugal Blood Pump Based on RBF Neural Network Download PDF

Info

Publication number
CN116650827A
CN116650827A CN202310742773.6A CN202310742773A CN116650827A CN 116650827 A CN116650827 A CN 116650827A CN 202310742773 A CN202310742773 A CN 202310742773A CN 116650827 A CN116650827 A CN 116650827A
Authority
CN
China
Prior art keywords
blood pump
blood
centrifugal
neural network
centrifugal blood
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310742773.6A
Other languages
Chinese (zh)
Inventor
庄健
张雪峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Jiaotong University
Original Assignee
Xian Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Jiaotong University filed Critical Xian Jiaotong University
Priority to CN202310742773.6A priority Critical patent/CN116650827A/en
Publication of CN116650827A publication Critical patent/CN116650827A/en
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/30Medical purposes thereof other than the enhancement of the cardiac output
    • A61M60/36Medical purposes thereof other than the enhancement of the cardiac output for specific blood treatment; for specific therapy
    • A61M60/38Blood oxygenation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/20Type thereof
    • A61M60/205Non-positive displacement blood pumps
    • A61M60/216Non-positive displacement blood pumps including a rotating member acting on the blood, e.g. impeller
    • A61M60/226Non-positive displacement blood pumps including a rotating member acting on the blood, e.g. impeller the blood flow through the rotating member having mainly radial components
    • A61M60/232Centrifugal pumps
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/50Details relating to control
    • A61M60/508Electronic control means, e.g. for feedback regulation
    • A61M60/515Regulation using real-time patient data
    • A61M60/531Regulation using real-time patient data using blood pressure data, e.g. from blood pressure sensors
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/50ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for simulation or modelling of medical disorders
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Public Health (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Cardiology (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Anesthesiology (AREA)
  • Mechanical Engineering (AREA)
  • Hematology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Medical Informatics (AREA)
  • Data Mining & Analysis (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • Software Systems (AREA)
  • Mathematical Physics (AREA)
  • Artificial Intelligence (AREA)
  • Biophysics (AREA)
  • Computational Linguistics (AREA)
  • General Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Computing Systems (AREA)
  • Epidemiology (AREA)
  • Databases & Information Systems (AREA)
  • Pathology (AREA)
  • Primary Health Care (AREA)
  • Emergency Medicine (AREA)
  • External Artificial Organs (AREA)

Abstract

一种基于RBF神经网络的ECMO离心血泵流量搏动性控制系统,通过周期性改变离心血泵的转速,实现离心血泵血液流量的搏动性,包括主控制器模块、信号采集模块、电机驱动模块与人机交互模块;信号采集模块用于获取当前离心血泵的入口压力和出口压力以及患者的主动脉内血压;控制器模块根据患者的实际主动脉内血压以及期望的主动脉血压计算跟踪误差、跟踪误差的一阶微分等参数,根据计算得到的参数,使用预设的RBF神经网络自适应控制算法计算离心血泵所应当达到的转速,作为离心血泵‑血液循环耦合系统的控制量;本发明实现对ECMO血泵流量搏动性的控制,进而实现对患者主动脉血压波形的精确控制。

An ECMO centrifugal blood pump flow pulsatility control system based on RBF neural network, which realizes the pulsatility of centrifugal blood pump blood flow by periodically changing the rotational speed of the centrifugal blood pump, including the main controller module, signal acquisition module, and motor drive module Human-computer interaction module; the signal acquisition module is used to obtain the current inlet pressure and outlet pressure of the centrifugal blood pump and the patient's intra-aortic blood pressure; the controller module calculates the tracking error based on the patient's actual intra-aortic blood pressure and the expected aortic blood pressure , tracking error first-order differential and other parameters, according to the calculated parameters, use the preset RBF neural network adaptive control algorithm to calculate the rotational speed that the centrifugal blood pump should achieve, as the control amount of the centrifugal blood pump-blood circulation coupling system; The invention realizes the control of the flow pulsation of the ECMO blood pump, and further realizes the precise control of the patient's aortic blood pressure waveform.

Description

基于RBF神经网络的ECMO离心血泵流量搏动性控制系统Flow pulsatility control system of ECMO centrifugal blood pump based on RBF neural network

技术领域Technical Field

本发明属于复杂非线性系统的自适应控制技术领域,特别涉及基于RBF神经网络的ECMO离心血泵流量搏动性控制系统。The present invention belongs to the technical field of adaptive control of complex nonlinear systems, and in particular to an ECMO centrifugal blood pump flow pulsatility control system based on an RBF neural network.

背景技术Background Art

ECMO(Extracorporeal Membrane Oxygenation)中文名称为体外膜肺氧合,俗称“叶克膜”、“人工肺”,是一种医疗急救设备,用于对重症心肺功能衰竭患者提供持续的体外呼吸与循环,以维持患者生命。ECMO运转时,血液从静脉引出,通过膜肺氧合,排出二氧化碳,氧合血可回输静脉(V-V转流),也可回输动脉(V-A转流)。ECMO的本质是一种改良的人工心肺机,最核心的部分是膜肺和血泵,分别起人工肺和人工心的作用,可以对重症心肺功能衰竭患者进行长时间心肺支持,为危重症的抢救赢得宝贵的时间。ECMO (Extracorporeal Membrane Oxygenation) is called extracorporeal membrane oxygenation in Chinese, commonly known as "ECMO" or "artificial lung". It is a medical emergency device used to provide continuous extracorporeal respiration and circulation to patients with severe heart and lung failure in order to maintain the patient's life. When ECMO is in operation, blood is drawn from the veins, oxygenated through the membrane lung, and carbon dioxide is discharged. The oxygenated blood can be returned to the veins (V-V bypass) or to the arteries (V-A bypass). The essence of ECMO is a modified artificial heart-lung machine. The core parts are the membrane lung and blood pump, which act as artificial lungs and artificial hearts respectively. They can provide long-term cardiopulmonary support for patients with severe heart and lung failure, thus buying precious time for the rescue of critical illnesses.

RBF神经网络是一种前馈型神经网络,前馈型神经网络的特点在于该结构下的网络没有反馈环节的存在,前一层的输出直接构成后一层的输入;网络的输入层由源节点直接构成,接收外界输入的信息,输出层向外界导出神经网络的输出信号;输入、输出层与外界直接相连故被称为可见层,位于输入层与输出层之间的结构与外界无直接联系,被称为隐含层。RBF neural network is a feedforward neural network. The characteristic of feedforward neural network is that there is no feedback link in the network under this structure, and the output of the previous layer directly constitutes the input of the next layer; the input layer of the network is directly composed of source nodes, receiving external input information, and the output layer derives the output signal of the neural network to the outside world; the input and output layers are directly connected to the outside world, so they are called visible layers, and the structure between the input layer and the output layer has no direct connection with the outside world and is called the hidden layer.

RBF神经网络因隐含层激活函数为径向基函数而得名,是仅具有一层隐含层的前馈型神经网络,整体网络结构共三层;输入层为神经网络前端与外界的接口,负责接收输入信号并将信号导入隐含层;隐含层为网络核心,隐含层神经元通过激活函数将接收到的信号进行非线性变换,并将变换完的信号再经线性变换送至输出层;输出层为神经网络后端与外界的接口,负责整合网络输出并将其导出至外界。The RBF neural network is named because its hidden layer activation function is the radial basis function. It is a feedforward neural network with only one hidden layer. The overall network structure has three layers. The input layer is the interface between the front end of the neural network and the outside world. It is responsible for receiving input signals and importing the signals into the hidden layer. The hidden layer is the core of the network. The neurons in the hidden layer perform nonlinear transformations on the received signals through activation functions, and send the transformed signals to the output layer through linear transformation. The output layer is the interface between the back end of the neural network and the outside world. It is responsible for integrating the network output and exporting it to the outside world.

RBF神经网络的特点在于不通过权来连接输入层与隐含层,输入信号通过径向基函数直接映射至隐含层空间,从而实现信号从低维度到高维度的映射,使得输入信号在高维度线性可分;此映射为非线性映射且映射关系只与径向基函数参数有关,可通过调整径向基函数参数实现对输入映射的调整。但隐含层与输出层之间是依靠权来连接的,即隐含层空间到输出空间的映射是线性的。整个神经网络由输入到输出的映射是非线性的,而网络输出对可调参数而言却又是线性的,网络的权就可由线性方程组直接解出,从而大大加快了学习速度并避免了局部极小问题。The characteristic of RBF neural network is that the input layer and the hidden layer are not connected by weights. The input signal is directly mapped to the hidden layer space through the radial basis function, thereby realizing the mapping of the signal from low dimension to high dimension, making the input signal linearly separable in high dimension; this mapping is nonlinear and the mapping relationship is only related to the radial basis function parameters. The input mapping can be adjusted by adjusting the radial basis function parameters. However, the hidden layer and the output layer are connected by weights, that is, the mapping from the hidden layer space to the output space is linear. The mapping from input to output of the entire neural network is nonlinear, while the network output is linear for adjustable parameters. The weight of the network can be directly solved by a set of linear equations, which greatly speeds up the learning speed and avoids the local minimum problem.

当前,大多数ECMO中的离心血泵都以恒转速方式工作(李冠华,张钰,赵宗凯,等.ECMO搏动流产生装置:202121333914.1[P].2021-12-17)。恒定转速工作的离心血泵无法满足病人在不同活动状态和病理条件下(如高血压、低血压、血容量过高、血容量不足等)对于不同心输出量的要求(PATIBANDLA P K,RAJASEKARAN N S,SHELAR S B,etal.Evaluation of the effect of diminished pulsatility as seen in continuousflow ventricular assist devices on arterial endothelial cell phenotype andfunction[J].The Journal of Heart and Lung Transplantation,2016,35(7):930-932.DOI:10.1016/j.healun.2016.03.008.)。更为重要的是,恒定转速工作的离心血泵流不能对血管产生明显的脉动血流刺激,使血管的搏动性明显降低(SOUCY K G,KOENIG S C,GIRIDHARAN G A,et a1.Rotary pumps and diminished pulsatility:do we need apulse[J].ASAIO Journal,2013,59(4):355-366.DOI:10.1097/MAT.0b013e31829f9bb3.)。临床上已经报道了恒转速离心血泵降低的血管搏动性导致的各种并发症,如动静脉畸形、胃肠道出血、出血性中风、主动脉瓣关闭不全和瓣膜融合(SOUCY K G,KOENIG S C,GIRIDHARAN G A,et a1.Defining pulsatility during continuous-flow ventricularassist device support[J].The Journal of Heart and Lung Transplantation,2013,32(6):581-587.DOI:10.1016/j.healun.2013.02.010.)以及各种神经系统并发症(席绍松,朱英,刁孟元,等.心搏骤停后接受静脉动脉体外膜肺氧合支持患者的神经系统并发症分析[J].中国现代医生,2020,58(28):34-40.)等。Currently, most centrifugal blood pumps in ECMO operate at a constant speed (Li Guanhua, Zhang Yu, Zhao Zongkai, et al. ECMO pulsatile flow generating device: 202121333914.1 [P]. 2021-12-17). Centrifugal blood pumps operating at a constant speed cannot meet the patient's requirements for different cardiac outputs under different activity states and pathological conditions (such as hypertension, hypotension, hypervolemia, hypovolemia, etc.) (PATIBANDLA PK, RAJASEKARAN N S, SHELAR SB, et al. Evaluation of the effect of diminished pulsatility as seen in continuous flow ventricular assist devices on arterial endothelial cell phenotype and function [J]. The Journal of Heart and Lung Transplantation, 2016, 35 (7): 930-932. DOI: 10.1016/j.healun.2016.03.008.). More importantly, the centrifugal blood pump flow operating at a constant speed cannot produce obvious pulsating blood flow stimulation to the blood vessels, which significantly reduces the pulsatility of the blood vessels (SOUCY KG, KOENIG SC, GIRIDHARAN GA, et al. Rotary pumps and diminished pulsatility: do we need a pulse[J]. ASAIO Journal, 2013, 59(4): 355-366. DOI: 10.1097/MAT.0b013e31829f9bb3.). Various complications caused by the reduced vascular pulsatility of constant-speed centrifugal blood pumps have been reported clinically, such as arteriovenous malformations, gastrointestinal bleeding, hemorrhagic stroke, aortic regurgitation and valve fusion (SOUCY KG, KOENIG SC, GIRIDHARAN GA, et al. Defining pulsatility during continuous-flow ventricular assist device support [J]. The Journal of Heart and Lung Transplantation, 2013, 32(6): 581-587. DOI: 10.1016/j.healun.2013.02.010.) and various neurological complications (Xi Shaosong, Zhu Ying, Diao Mengyuan, et al. Analysis of neurological complications in patients receiving venoarterial extracorporeal membrane oxygenation support after cardiac arrest [J]. Chinese Modern Doctor, 2020, 58(28): 34-40.) etc.

发明内容Summary of the invention

为了克服上述现有技术的缺点,本发明的目的在于提供了一种基于RBF神经网络的ECMO离心血泵流量搏动性控制系统,通过RBF神经网络逼近理想控制律中的非线性项,实现对ECMO血泵流量搏动性的控制,进而实现对患者主动脉血压波形的精确控制。In order to overcome the shortcomings of the above-mentioned prior art, the purpose of the present invention is to provide an ECMO centrifugal blood pump flow pulsatility control system based on RBF neural network, which realizes the control of ECMO blood pump flow pulsatility by approximating the nonlinear terms in the ideal control law through RBF neural network, thereby realizing precise control of the patient's aortic blood pressure waveform.

一种基于RBF神经网络的ECMO离心血泵流量搏动性控制系统,通过周期性改变离心血泵的转速,实现离心血泵血液流量的搏动性,包括主控制器模块、信号采集模块、电机驱动模块与人机交互模块;主控制器模块使用基于RBF神经网络的自适应控制算法对离心血泵进行控制,根据患者的实际主动脉压和期望得到的主动脉压,计算离心血泵的转速。An ECMO centrifugal blood pump flow pulsatility control system based on RBF neural network realizes the pulsatility of the blood flow of the centrifugal blood pump by periodically changing the rotation speed of the centrifugal blood pump, and includes a main controller module, a signal acquisition module, a motor drive module and a human-computer interaction module; the main controller module uses an adaptive control algorithm based on RBF neural network to control the centrifugal blood pump, and calculates the rotation speed of the centrifugal blood pump according to the patient's actual aortic pressure and the expected aortic pressure.

所述的基于RBF神经网络的自适应控制算法采用具有自适应学习功能的径向基函数网络。The adaptive control algorithm based on RBF neural network adopts radial basis function network with adaptive learning function.

所述的周期性改变血泵转速的方式是根据预设的血压曲线或预设的描述血压的周期性函数进行调节。The manner of periodically changing the blood pump rotation speed is to adjust according to a preset blood pressure curve or a preset periodic function describing the blood pressure.

所述的基于RBF神经网络的自适应控制算法根据患者的实际主动脉压预测出相应的离心血泵转速,以维持相应的主动脉血压搏动性。The adaptive control algorithm based on the RBF neural network predicts the corresponding centrifugal blood pump speed according to the actual aortic pressure of the patient to maintain the corresponding aortic blood pressure pulsatility.

所述的一种基于RBF神经网络的ECMO离心血泵流量搏动性控制系统具有自动调节功能,能够根据患者的生理状态和需求自动调整离心血泵的转速以提供相应的血流搏动性。The ECMO centrifugal blood pump flow pulsatility control system based on the RBF neural network has an automatic adjustment function, and can automatically adjust the rotation speed of the centrifugal blood pump according to the patient's physiological state and needs to provide corresponding blood flow pulsatility.

所述的基于RBF神经网络的自适应控制算法建立方法如下:The method for establishing the adaptive control algorithm based on RBF neural network is as follows:

1)建立人体血液循环系统的数学模型;1) Establish a mathematical model of the human blood circulation system;

使用电网络来模拟人体血液循环系统的动力学特性,电网络中的电压对应血液循环系统中的血液,电流对应血液循环系统中的血液流量,电阻对应血液循环系统中的血流阻力,电容对应血液循环系统中的血管顺应性,电感对应血液循环系统中的血流惯性,二极管对应循环系统中的瓣膜,使用可控电压源与可控电流源的组合电路来模拟左右心室的收缩,所得到的血液循环系统的数学模型如下:An electrical network is used to simulate the dynamic characteristics of the human blood circulation system. The voltage in the electrical network corresponds to the blood in the blood circulation system, the current corresponds to the blood flow in the blood circulation system, the resistance corresponds to the blood flow resistance in the blood circulation system, the capacitance corresponds to the vascular compliance in the blood circulation system, the inductance corresponds to the blood flow inertia in the blood circulation system, and the diode corresponds to the valve in the circulation system. A combined circuit of a controllable voltage source and a controllable current source is used to simulate the contraction of the left and right ventricles. The resulting mathematical model of the blood circulation system is as follows:

方程中的各变量含义如下:x1:主动脉血压;x2:流入体循环动脉系统的血液体积流量;x3:体循环入口血压;x4:流入体循环静脉系统的血液体积流量;x5:体循环静脉系统及右心房入口血压;x6:左心室容积;x7:肺动脉血压;x8:流入肺循环动脉系统血液体积流量;x9:肺部血压;x10:流入肺循环静脉系统血液体积流量;x11:肺静脉及左心房部分血压;x12:左心室容积;R1:主动脉瓣阻力;R2:主动脉和体循环动脉系统阻力;R3:毛细血管和体循环静脉部分阻力;R4:%三尖瓣阻力;R5:%肺动脉瓣阻力;R6:肺动脉阻力;R7:肺部其他阻力;R8:二尖瓣阻力;RL:左心室内部粘性阻力;RR:右心室内部粘性阻力;L1:主动脉-体循环动脉惯性;L2:体循环经脉系统惯性;L3:肺动脉惯性;L4:肺静脉惯性;C1:主动脉顺应性;C2:体循环动脉系统顺应性;C3:体循环静脉系统顺应性;C4:肺动脉顺应性;C5:肺循环动脉系统顺应性;C6:肺循环静脉系统顺应性;Si(t):控制瓣膜Si开闭的函数,与瓣膜两端压差有关;ΔPi(t):瓣膜Si两侧的压差;The meanings of the variables in the equation are as follows: x1 : aortic blood pressure; x2 : blood volume flow into the systemic arterial system; x3 : systemic circulation inlet blood pressure; x4 : blood volume flow into the systemic venous system; x5 : systemic venous system and right atrium inlet blood pressure; x6 : left ventricular volume; x7 : pulmonary artery blood pressure; x8 : blood volume flow into the pulmonary arterial system; x9 : pulmonary blood pressure; x10 : blood volume flow into the pulmonary venous system; x11 : pulmonary vein and left atrium blood pressure; x12 : left ventricular volume; R1 : aortic valve resistance; R2 : aortic and systemic arterial resistance; R3 : capillary and systemic venous resistance; R4 : %tricuspid valve resistance; R5 : %pulmonary valve resistance; R6 : pulmonary artery resistance; R7 : other pulmonary resistance; R8 : mitral valve resistance; RL : left ventricular internal viscous resistance; RR : right ventricular internal viscous resistance; L1 : aorta-systemic artery inertia; L2 : systemic meridian system inertia; L3 : pulmonary artery inertia; L4 : pulmonary vein inertia; C1 : aortic compliance; C2 : systemic arterial system compliance; C3 : systemic venous system compliance; C4: pulmonary artery compliance; C5 : pulmonary arterial system compliance; C6 : pulmonary venous system compliance; S i (t): function that controls the opening and closing of valve S i , which is related to the pressure difference across the valve; ΔP i (t): pressure difference across the valve S i ;

省略上述方程组中与肺循环相关的方程;同时无需考虑上述方程组中与心室收缩相关的方程,故上述方程组简化为:The equations related to pulmonary circulation in the above equations are omitted; at the same time, the equations related to ventricular contraction in the above equations do not need to be considered, so the above equations are simplified to:

2)建立离心血泵的数学模型;2) Establish a mathematical model of the centrifugal blood pump;

使用如下方程描述ECMO设备中使用的离心血泵:The centrifugal blood pump used in ECMO equipment is described using the following equation:

其中Q表示离心血泵输出的血液流量,山表示离心血泵转速,Pout表示离心血泵出口压力,Pin表示离心血泵入口压力,β0、β1、β2是常数,根据离心血泵的实验数据通过最小二乘法拟合得到;Where Q represents the blood flow output by the centrifugal blood pump, σ represents the speed of the centrifugal blood pump, P out represents the outlet pressure of the centrifugal blood pump, P in represents the inlet pressure of the centrifugal blood pump, β 0 , β 1 , and β 2 are constants obtained by least squares fitting based on the experimental data of the centrifugal blood pump;

当离心血泵数学模型中的常数确定后,使用变量m1、m2、m3对离心血泵数学模型中的系数进行替换,离心血泵数学模型变为:When the constants in the centrifugal blood pump mathematical model are determined, the coefficients in the centrifugal blood pump mathematical model are replaced by variables m 1 , m 2 , and m 3 , and the centrifugal blood pump mathematical model becomes:

离心血泵-血液循环耦合系统模拟模块:将离心血泵的数学模型于与人体血液循环系统的数学模型进行联立,得到离心血泵-血液循环耦合系统的数学模型;Centrifugal blood pump-blood circulation coupling system simulation module: The mathematical model of the centrifugal blood pump is combined with the mathematical model of the human blood circulation system to obtain the mathematical model of the centrifugal blood pump-blood circulation coupling system;

离心血泵的入口直接与患者上下腔静脉连接处相连,近似认为离心血泵的入口压力即为人体血液循环系统中的体循环静脉系统及右心房入口血压,即认为Pin=x5;在耦合模型中离心血泵与循环系统之间增加一电阻Rp以表示氧合器中血液循环的阻力;The inlet of the centrifugal blood pump is directly connected to the junction of the superior and inferior vena cava of the patient. It is approximately considered that the inlet pressure of the centrifugal blood pump is the inlet blood pressure of the systemic venous system and the right atrium in the human blood circulation system, that is, it is considered that Pin = x5 ; in the coupling model, a resistor Rp is added between the centrifugal blood pump and the circulatory system to represent the resistance of blood circulation in the oxygenator;

对于离心血泵-循环系统耦合模型,选择新的状态变量如下:For the centrifugal blood pump-circulatory system coupling model, select the new state variables as follows:

z1:主动脉血压;z2:L1中的电流,流入体循环动脉系统的血液体积流量;z3:C2上的电压,体循环入口血压;z4:L2中的电流,流入体循环静脉系统的血液体积流量;z5:C3上的电压,体循环静脉系统及右心房血压;z6:离心血泵流量;z 1 : aortic blood pressure; z 2 : current in L1, blood volume flow into the systemic arterial system; z 3 : voltage on C2, systemic inlet blood pressure; z 4 : current in L2, blood volume flow into the systemic venous system; z 5 : voltage on C3, systemic venous system and right atrium blood pressure; z 6 : centrifugal blood pump flow;

设输入u为离心血泵转速的平方,输出y为主动脉血压,可得离心血泵-循环系统耦合模型的状态方程如下:Assuming that the input u is the square of the centrifugal blood pump speed and the output y is the aortic blood pressure, the state equation of the centrifugal blood pump-circulatory system coupling model is as follows:

离心血泵-循环系统耦合模型的输出方程如下:The output equation of the centrifugal blood pump-circulatory system coupling model is as follows:

y=z1y=z 1 .

3)基于Lyapunov稳定性理论设计系统的控制律和RBF神经网络的权值更新律;3) Design the control law of the system and the weight update law of the RBF neural network based on Lyapunov stability theory;

离心血泵-循环系统耦合模型的状态方程可知:The state equation of the centrifugal blood pump-circulatory system coupling model shows that:

再次对求导可得:Again The derivative is:

其中则上式可写作:make in The above formula can be written as:

系统的跟踪误差为:The tracking error of the system is:

e=y-yd=z1-z1d e=yy d =z 1 -z 1d

其中yd和z1d为期望的主动脉血压;Where y d and z 1d are the desired aortic blood pressures;

定义跟踪误差函数:Define the tracking error function:

其中λ>0,易知当s→0时,有e→0且故设计一控制律使得误差函数s渐进稳定于s=0点即可保证离心血泵-循环系统耦合模型控制的跟踪误差在e=0处渐进稳定;Where λ>0, it is easy to see that when s→0, e→0 and Therefore, designing a control law that makes the error function s asymptotically stable at s = 0 can ensure that the tracking error of the centrifugal blood pump-circulatory system coupling model control is asymptotically stable at e = 0;

构造Lyapunov函数:Construct the Lyapunov function:

可得:We can get:

得:make have to:

根据Lyapunov稳定性理论,需要使得负定,可令:According to Lyapunov stability theory, it is necessary to make Negative determination, we can order:

可解得理想控制器为:The ideal controller can be solved as:

其中η为大于零的常数,用来控制偏离零点的距离;选择使用RBF神经网络逼近函数 Where η is a constant greater than zero, used to control The distance from zero point; choose to use RBF neural network to approximate the function

RBF神经网络分为输入层、隐含层和输出层,其中隐含层神经元的激活函数的表达式为:The RBF neural network is divided into input layer, hidden layer and output layer, where the activation function of the hidden layer neurons is expressed as:

其中,x为神经元的输入向量,cj为第j个神经元激活函数的中心位置,bj为第j个神经元激活函数的宽度;Among them, x is the input vector of the neuron, c j is the center position of the jth neuron activation function, and b j is the width of the jth neuron activation function;

当使用RBF神经网络逼近函数f(x)时,一定存在一个理想的权值向量W*,使得:When using RBF neural network to approximate function f(x), there must be an ideal weight vector W * such that:

f(x)=W*Th(x)+∈f(x)=W *Th (x)+∈

其中W*为神经网络的理想权值向量,∈为神经网络的逼近误差,|∈|<∈N,∈N为任意的大于零的实数;使用RBF神经网络逼近函数令神经网络的实际输出为:Where W * is the ideal weight vector of the neural network, ∈ is the approximation error of the neural network, |∈|<∈ N , ∈ N is any real number greater than zero; use RBF neural network to approximate the function Let the actual output of the neural network be:

为RBF神经网络的实际权值向量,神经网络的逼近误差可表示为: is the actual weight vector of the RBF neural network, and the approximation error of the neural network can be expressed as:

其中权值逼近误差设计自适应律使得的值在处渐进稳定;设计同时描述跟踪误差和逼近误差的Lyapunov函数:The weight approximation error Design the adaptive law so that The value of Asymptotically stable at ; design a Lyapunov function that describes both the tracking error and the approximation error:

其中γ>0,得:Where γ>0, we get:

首先保证跟踪误差渐进稳定于0,设计控制律为:First, ensure that the tracking error is asymptotically stable to 0, and design the control law as:

当η>|∈|max时s∈-sηsgn(s)负定,取自适应律:When η>|∈| max , s∈-sηsgn(s) is negative definite, and the adaptive law is adopted:

得:have to:

当η>|∈|max负定,整个控制系统在跟踪误差和网络逼近误差都趋近于零处渐进稳定;When η>|∈| max Negative definite, the whole control system is asymptotically stable when both the tracking error and the network approximation error approach zero;

与现有技术相比,本发明的有益效果为:Compared with the prior art, the present invention has the following beneficial effects:

本发明通过周期性改变血泵的转速,实现血泵血液流量的搏动性,从而提高使用ECMO的患者的主动脉血压的搏动性;同时,本发明采用包含具有自适应学习功能的径向基函数神经网络的控制算法,使得本发明能够根据患者的生理状态和需求自动调整血泵的转速以提供适当的血流搏动性。The present invention achieves the pulsatility of the blood flow of the blood pump by periodically changing the rotation speed of the blood pump, thereby improving the pulsatility of the aortic blood pressure of patients using ECMO; at the same time, the present invention adopts a control algorithm including a radial basis function neural network with adaptive learning function, so that the present invention can automatically adjust the rotation speed of the blood pump according to the patient's physiological state and needs to provide appropriate blood flow pulsatility.

附图说明BRIEF DESCRIPTION OF THE DRAWINGS

图1为本发明系统结构简图。FIG1 is a simplified diagram of the system structure of the present invention.

图2为本发明实施例所使用的RBF神经网络结构示意图。FIG. 2 is a schematic diagram of the RBF neural network structure used in an embodiment of the present invention.

图3为本发明实施例构建的人体血液循环网络的模型示意图。FIG3 is a schematic diagram of a model of a human blood circulation network constructed according to an embodiment of the present invention.

具体实施方式DETAILED DESCRIPTION

下面结合附图和实施例对本发明做详细描述。The present invention is described in detail below with reference to the accompanying drawings and embodiments.

如图1所示,一种基于RBF神经网络的ECMO离心血泵流量搏动性控制系统,通过周期性改变离心血泵的转速,实现离心血泵血液流量的搏动性,从而提高患者的主动脉血压搏动性,包括:主控制器模块、信号采集模块、电机驱动模块与人机交互模块;As shown in FIG1 , an ECMO centrifugal blood pump flow pulsatility control system based on an RBF neural network realizes the pulsatility of the blood flow of the centrifugal blood pump by periodically changing the rotation speed of the centrifugal blood pump, thereby improving the aortic blood pressure pulsatility of the patient, and includes: a main controller module, a signal acquisition module, a motor drive module and a human-computer interaction module;

主控制器模块使用基于RBF神经网络的自适应控制算法对离心血泵进行控制,根据患者的实际主动脉压和期望得到的主动脉压,计算离心血泵的转速;基于RBF神经网络的自适应控制算法采用具有自适应学习功能的径向基函数网络,根据患者的实际主动脉压预测出适宜的离心血泵转速,以维持合适的主动脉血压搏动性。The main controller module uses an adaptive control algorithm based on RBF neural network to control the centrifugal blood pump and calculates the rotation speed of the centrifugal blood pump according to the patient's actual aortic pressure and the expected aortic pressure. The adaptive control algorithm based on RBF neural network uses a radial basis function network with adaptive learning function to predict the appropriate rotation speed of the centrifugal blood pump according to the patient's actual aortic pressure to maintain appropriate aortic blood pressure pulsatility.

所述的系统具有自动调节功能,能够根据患者的生理状态和需求自动调整离心血泵的转速以提供适当的血流搏动性。The system has an automatic regulating function and can automatically adjust the rotation speed of the centrifugal blood pump according to the patient's physiological state and needs to provide appropriate blood flow pulsatility.

主控制器模块采用ZYNQ系列芯片,具体型号为XC7Z020CLG400-2;The main controller module uses ZYNQ series chips, the specific model is XC7Z020CLG400-2;

信号采集模块通过在ECMO动脉插管内部和ECMO离心血泵入口处安装压力传感器以及在离心血泵出口管道上安装流量传感器,用于实时采集患者的主动脉压、离心血泵流量和其他相关参数;The signal acquisition module is used to collect the patient's aortic pressure, centrifugal blood pump flow and other related parameters in real time by installing pressure sensors inside the ECMO arterial cannula and at the inlet of the ECMO centrifugal blood pump, and installing flow sensors on the outlet pipe of the centrifugal blood pump;

电机驱动模块使用三相半桥驱动电路来驱动与离心血泵相连的无刷直流电机;The motor drive module uses a three-phase half-bridge drive circuit to drive a brushless DC motor connected to a centrifugal blood pump;

人机交互模块包括触摸屏与报警系统,触摸屏用于显示所述系统的重要运行参数与运行状态以及报警信息,同时用于实现控制指令的输入;报警系统用于监测离心血泵转速异常和患者主动脉血压异常,并发出相应的警报。The human-computer interaction module includes a touch screen and an alarm system. The touch screen is used to display the important operating parameters and operating status of the system and alarm information, and is also used to input control instructions; the alarm system is used to monitor abnormal centrifugal blood pump speed and abnormal patient aortic blood pressure, and issue corresponding alarms.

本系统的核心是基于RBF神经网络的自适应控制算法,以患者的实际主动脉压和期望得到的主动脉压作为输入,通过RBF神经网络计算得到离心血泵当前所应达到的转速;基于RBF神经网络的自适应控制算法中的RBF神经网络结构示意图如图2所示,RBF神经网络的特点在于不通过权来连接输入层与隐含层,输入信号通过径向基函数直接映射至隐含层空间,从而实现信号从低维度到高维度的映射,使得输入信号在高维度线性可分,此映射为非线性映射且映射关系只与径向基函数参数有关,可通过调整径向基函数参数实现对输入映射的调整;但隐含层与输出层之间是依靠权来连接的,即隐含层空间到输出空间的映射是线性的;整个神经网络由输入到输出的映射是非线性的,而网络输出对可调参数而言却又是线性的,网络的权就可由线性方程组直接解出,从而大大加快了学习速度并避免了局部极小问题。The core of this system is an adaptive control algorithm based on RBF neural network. The actual aortic pressure and the expected aortic pressure of the patient are used as inputs, and the speed that the centrifugal blood pump should currently reach is calculated by RBF neural network. The schematic diagram of the RBF neural network structure in the adaptive control algorithm based on RBF neural network is shown in Figure 2. The characteristic of RBF neural network is that the input layer and the hidden layer are not connected by weights. The input signal is directly mapped to the hidden layer space through the radial basis function, thereby realizing the mapping of the signal from low dimension to high dimension, so that the input signal can be linearly separated in high dimension. This mapping is nonlinear and the mapping relationship is only related to the radial basis function parameters. The input mapping can be adjusted by adjusting the radial basis function parameters. However, the hidden layer and the output layer are connected by weights, that is, the mapping from the hidden layer space to the output space is linear. The mapping from input to output of the entire neural network is nonlinear, while the network output is linear with respect to the adjustable parameters. The weight of the network can be directly solved by the linear equation group, thereby greatly accelerating the learning speed and avoiding the local minimum problem.

所述的基于RBF神经网络的自适应控制算法建立方法如下:The method for establishing the adaptive control algorithm based on RBF neural network is as follows:

1)使用电网络对人体血液循环网络进行模拟,电网络中的电压对应血液循环系统中的血液,电流对应血液循环系统中的血液流量,电阻对应血液循环系统中的血流阻力,电容对应血液循环系统中的血管顺应性,电感对应血液循环系统中的血流惯性,二极管对应循环系统中的瓣膜,使用可控电压源与可控电流源的组合电路来模拟左右心室的收缩,如图3所示,所得到的血液循环系统的数学模型如下:1) Use an electrical network to simulate the human blood circulation network. The voltage in the electrical network corresponds to the blood in the blood circulation system, the current corresponds to the blood flow in the blood circulation system, the resistance corresponds to the blood flow resistance in the blood circulation system, the capacitance corresponds to the vascular compliance in the blood circulation system, the inductance corresponds to the blood flow inertia in the blood circulation system, and the diode corresponds to the valve in the circulation system. Use a combination circuit of a controllable voltage source and a controllable current source to simulate the contraction of the left and right ventricles, as shown in Figure 3. The resulting mathematical model of the blood circulation system is as follows:

方程中的各变量含义如下:x1:主动脉血压;x2:流入体循环动脉系统的血液体积流量;x3:体循环入口血压;x4:流入体循环静脉系统的血液体积流量;x5:体循环静脉系统及右心房入口血压;x6:左心室容积;x7:肺动脉血压;x8:流入肺循环动脉系统血液体积流量;x9:肺部血压;x10:流入肺循环静脉系统血液体积流量;x11:肺静脉及左心房部分血压;x12:左心室容积;R1:主动脉瓣阻力;R2:主动脉和体循环动脉系统阻力;R3:毛细血管和体循环静脉部分阻力;R4:%三尖瓣阻力;R5:%肺动脉瓣阻力;R6:肺动脉阻力;R7:肺部其他阻力;R8:二尖瓣阻力;RL:左心室内部粘性阻力;RR:右心室内部粘性阻力;L1:主动脉-体循环动脉惯性;L2:体循环经脉系统惯性;L3:肺动脉惯性;L4:肺静脉惯性;C1:主动脉顺应性;C2:体循环动脉系统顺应性;C3:体循环静脉系统顺应性;C4:肺动脉顺应性;C5:肺循环动脉系统顺应性;C6:肺循环静脉系统顺应性;Si(t):控制瓣膜Si开闭的函数,与瓣膜两端压差有关;ΔPi(t):瓣膜Si两侧的压差;The meanings of the variables in the equation are as follows: x1 : aortic blood pressure; x2 : blood volume flow into the systemic arterial system; x3 : systemic circulation inlet blood pressure; x4 : blood volume flow into the systemic venous system; x5 : systemic venous system and right atrium inlet blood pressure; x6 : left ventricular volume; x7 : pulmonary artery blood pressure; x8 : blood volume flow into the pulmonary arterial system; x9 : pulmonary blood pressure; x10 : blood volume flow into the pulmonary venous system; x11 : pulmonary vein and left atrium blood pressure; x12 : left ventricular volume; R1 : aortic valve resistance; R2 : aortic and systemic arterial resistance; R3 : capillary and systemic venous resistance; R4 : %tricuspid valve resistance; R5 : %pulmonary valve resistance; R6 : pulmonary artery resistance; R7 : other pulmonary resistance; R8 : mitral valve resistance; RL : left ventricular internal viscous resistance; RR : right ventricular internal viscous resistance; L1 : aorta-systemic artery inertia; L2 : systemic meridian system inertia; L3 : pulmonary artery inertia; L4 : pulmonary vein inertia; C1 : aortic compliance; C2 : systemic arterial system compliance; C3 : systemic venous system compliance; C4: pulmonary artery compliance; C5 : pulmonary arterial system compliance; C6 : pulmonary venous system compliance; S i (t): function that controls the opening and closing of valve S i , which is related to the pressure difference across the valve; ΔP i (t): pressure difference across the valve S i ;

考虑ECMO的应用场景,患者适应ECMO时,不再有血液经由肺循环系统流动,因此可省略上述方程组中与肺循环相关的方程;同时在应用VA-ECMO的情况下,ECMO直接将血液由上下腔静脉交汇处泵送至主动脉,心脏的收缩和舒张几乎不直接影响循环系统的动力学特性,因此也无需考虑上述方程组中与心室收缩相关的方程,故上述方程组可以简化为:Considering the application scenario of ECMO, when the patient adapts to ECMO, blood no longer flows through the pulmonary circulation system, so the equations related to pulmonary circulation in the above equations can be omitted; at the same time, when VA-ECMO is used, ECMO directly pumps blood from the junction of the superior and inferior vena cava to the aorta, and the contraction and relaxation of the heart have almost no direct impact on the dynamic characteristics of the circulatory system. Therefore, there is no need to consider the equations related to ventricular contraction in the above equations, so the above equations can be simplified to:

2)建立离心血泵的数学模型;2) Establish a mathematical model of the centrifugal blood pump;

使用如下方程描述ECMO设备中使用的离心血泵:The centrifugal blood pump used in ECMO equipment is described using the following equation:

其中Q表示离心血泵输出的血液流量,山表示离心血泵转速,Pout表示离心血泵出口压力,Pin表示离心血泵入口压力,β0、β1、β2是常数,可根据离心血泵的实验数据通过最小二乘法拟合得到;Wherein, Q represents the blood flow output by the centrifugal blood pump, σ represents the rotation speed of the centrifugal blood pump, P out represents the outlet pressure of the centrifugal blood pump, P in represents the inlet pressure of the centrifugal blood pump, β 0 , β 1 , and β 2 are constants, which can be obtained by least squares fitting based on the experimental data of the centrifugal blood pump;

当离心血泵数学模型中的常数确定后,使用变量m1、m2、m3对离心血泵数学模型中的系数进行替换,离心血泵数学模型变为:When the constants in the centrifugal blood pump mathematical model are determined, the coefficients in the centrifugal blood pump mathematical model are replaced by variables m 1 , m 2 , and m 3 , and the centrifugal blood pump mathematical model becomes:

离心血泵-血液循环耦合系统模拟模块:将离心血泵的数学模型于与人体血液循环系统的数学模型进行联立,得到离心血泵-血液循环耦合系统的数学模型;Centrifugal blood pump-blood circulation coupling system simulation module: The mathematical model of the centrifugal blood pump is combined with the mathematical model of the human blood circulation system to obtain the mathematical model of the centrifugal blood pump-blood circulation coupling system;

考虑离心血泵的入口可以认为直接与患者上下腔静脉连接处相连,因此可近似认为离心血泵的入口压力即为人体血液循环系统中的体循环静脉系统及右心房入口血压,即认为Pin=x5;对于离心血泵的出口处,考虑到离心血泵出口与患者主动脉之间存在氧合器,因此在耦合模型中离心血泵与循环系统之间增加一电阻Rp以表示氧合器中血液循环的阻力;对于离心血泵-循环系统耦合模型,选择新的状态变量如下:Considering that the inlet of the centrifugal blood pump can be directly connected to the connection between the superior and inferior vena cava of the patient, it can be approximately considered that the inlet pressure of the centrifugal blood pump is the blood pressure of the systemic venous system and the right atrium in the human blood circulation system, that is, it is considered that Pin = x5 ; for the outlet of the centrifugal blood pump, considering that there is an oxygenator between the outlet of the centrifugal blood pump and the patient's aorta, a resistor Rp is added between the centrifugal blood pump and the circulatory system in the coupling model to represent the resistance of blood circulation in the oxygenator; for the centrifugal blood pump-circulatory system coupling model, the new state variables are selected as follows:

z1:主动脉血压;z2:L1中的电流,流入体循环动脉系统的血液体积流量;z3:C2上的电压,体循环入口血压;z4:L2中的电流,流入体循环静脉系统的血液体积流量;z5:C3上的电压,体循环静脉系统及右心房血压;z6:离心血泵流量;z 1 : aortic blood pressure; z 2 : current in L1, blood volume flow into the systemic arterial system; z 3 : voltage on C2, systemic inlet blood pressure; z 4 : current in L2, blood volume flow into the systemic venous system; z 5 : voltage on C3, systemic venous system and right atrium blood pressure; z 6 : centrifugal blood pump flow;

设输入u为离心血泵转速的平方,输出y为主动脉血压,可得离心血泵-循环系统耦合模型的状态方程如下:Assuming that the input u is the square of the centrifugal blood pump speed and the output y is the aortic blood pressure, the state equation of the centrifugal blood pump-circulatory system coupling model is as follows:

离心血泵-循环系统耦合模型的输出方程如下:The output equation of the centrifugal blood pump-circulatory system coupling model is as follows:

y=z1 y=z 1

3)基于Lyapunov稳定性理论设计系统的控制律和RBF神经网络的权值更新律;3) Design the control law of the system and the weight update law of the RBF neural network based on Lyapunov stability theory;

离心血泵-循环系统耦合模型的状态方程可知:The state equation of the centrifugal blood pump-circulatory system coupling model shows that:

再次对求导可得:Again The derivative is:

其中则上式可写作:make in The above formula can be written as:

系统的跟踪误差为:The tracking error of the system is:

e=y-yd=z1-z1d e=yy d =z 1 -z 1d

其中yd和z1d为期望的主动脉血压;Where y d and z 1d are the desired aortic blood pressures;

定义跟踪误差函数:Define the tracking error function:

其中λ>0,易知当s→0时,有e→0且故设计一控制律使得误差函数s渐进稳定于s=0点即可保证离心血泵-循环系统耦合模型控制的跟踪误差在e=0处渐进稳定;Where λ>0, it is easy to see that when s→0, e→0 and Therefore, designing a control law that makes the error function s asymptotically stable at s = 0 can ensure that the tracking error of the centrifugal blood pump-circulatory system coupling model control is asymptotically stable at e = 0;

构造Lyapunov函数:Construct the Lyapunov function:

可得:We can get:

得:make have to:

根据Lyapunov稳定性理论,需要使得负定,可令:According to Lyapunov stability theory, it is necessary to make Negative determination, we can order:

可解得理想控制器为:The ideal controller can be solved as:

其中η为大于零的常数,用来控制偏离零点的距离;上式中,函数的非线性程度较高,且难以求得其表达式,因此选择使用RBF神经网络逼近函数 Where η is a constant greater than zero, used to control The distance from zero; in the above formula, the function The nonlinearity is high and it is difficult to find its expression, so we choose to use RBF neural network to approximate the function

本发明使用的RBF神经网络中,输入层有5个神经元,隐含层有21个神经元,输出层有1个神经元,其中隐含层神经元的激活函数的一般表达式为:In the RBF neural network used in the present invention, the input layer has 5 neurons, the hidden layer has 21 neurons, and the output layer has 1 neuron, wherein the general expression of the activation function of the hidden layer neuron is:

其中,x为神经元的输入向量,cj为第j个神经元激活函数的中心位置,bj为第j个神经元激活函数的宽度;Among them, x is the input vector of the neuron, c j is the center position of the jth neuron activation function, and b j is the width of the jth neuron activation function;

理论上,RBF神经网络可以以任意精度逼近一个非线性函数,因此,当使用RBF神经网络逼近函数f(x)时,一定存在一个理想的权值向量W*,使得:Theoretically, RBF neural network can approximate a nonlinear function with arbitrary precision. Therefore, when using RBF neural network to approximate function f(x), there must be an ideal weight vector W * such that:

f(x)=W*Th(x)+∈f(x)=W *Th (x)+∈

其中W*为神经网络的理想权值向量,∈为神经网络的逼近误差,|∈|<∈N,∈N为任意的大于零的实数;因此,可以使用RBF神经网络逼近函数令神经网络的实际输出为:Where W * is the ideal weight vector of the neural network, ∈ is the approximation error of the neural network, |∈|<∈ N , ∈ N is any real number greater than zero; therefore, the RBF neural network can be used to approximate the function Let the actual output of the neural network be:

为RBF神经网络的实际权值向量,神经网络的逼近误差可表示为: is the actual weight vector of the RBF neural network, and the approximation error of the neural network can be expressed as:

其中权值逼近误差设计自适应律使得的值在处渐进稳定即可;为了使控制全局稳定,设计同时描述跟踪误差和逼近误差的Lyapunov函数:The weight approximation error Design the adaptive law so that The value of In order to make the control globally stable, a Lyapunov function that describes both the tracking error and the approximation error is designed:

其中γ>0,可得:Where γ>0, we can get:

首先保证跟踪误差渐进稳定于0,设计控制律为:First, ensure that the tracking error is asymptotically stable to 0, and design the control law as:

当η>|∈|max时s∈-sηsgn(s)负定,取自适应律:When η>|∈| max , s∈-sηsgn(s) is negative definite, and the adaptive law is adopted:

可得:We can get:

可知当η>|∈|max负定,整个控制系统在跟踪误差和网络逼近误差都趋近于零处渐进稳定;It can be seen that when η>|∈| max Negative definite, the whole control system is asymptotically stable when both the tracking error and the network approximation error approach zero;

基于RBF神经网络的自适应控制算法在主控制器模块中运行流程如下:The operation process of the adaptive control algorithm based on RBF neural network in the main controller module is as follows:

1)初始化;设定基于RBF神经网络的初始运行参数,运行参数包括:RBF神经网络中径向基函数的中心位置矩阵cij、径向基函数的宽度向量bj、RBF神经网络的权值向量W、误差函数中的常数λ、自适应增益矩阵T;1) Initialization; setting the initial operating parameters based on the RBF neural network, the operating parameters include: the center position matrix c ij of the radial basis function in the RBF neural network, the width vector b j of the radial basis function, the weight vector W of the RBF neural network, the constant λ in the error function, and the adaptive gain matrix T;

2)运行基于RBF神经网络的自适应控制算法;预设的RBF神经网络将根据当前权值和网络输入参数计算出当前的离心血泵-血液循环耦合系统的控制量,同时,预设的RBF神经网络的权值更新律会根据当前的跟踪误差实时修正RBF神经网络的权值向量,尽可能地减少跟踪误差。2) Run the adaptive control algorithm based on RBF neural network; the preset RBF neural network will calculate the control quantity of the current centrifugal blood pump-blood circulation coupling system according to the current weights and network input parameters. At the same time, the preset RBF neural network weight update law will correct the weight vector of the RBF neural network in real time according to the current tracking error to minimize the tracking error.

Claims (10)

1.一种基于RBF神经网络的ECMO离心血泵流量搏动性控制系统,其特征在于,通过周期性改变离心血泵的转速,实现离心血泵血液流量的搏动性,包括主控制器模块、信号采集模块、电机驱动模块与人机交互模块;主控制器模块使用基于RBF神经网络的自适应控制算法对离心血泵进行控制,根据患者的实际主动脉压和期望得到的主动脉压,计算离心血泵的转速。1. An ECMO centrifugal blood pump flow pulsatility control system based on RBF neural network, characterized in that the pulsatility of the blood flow of the centrifugal blood pump is achieved by periodically changing the rotation speed of the centrifugal blood pump, comprising a main controller module, a signal acquisition module, a motor drive module and a human-computer interaction module; the main controller module uses an adaptive control algorithm based on RBF neural network to control the centrifugal blood pump, and calculates the rotation speed of the centrifugal blood pump according to the patient's actual aortic pressure and the expected aortic pressure. 2.根据权利要求1所述的系统,其特征在于:所述的基于RBF神经网络的自适应控制算法采用具有自适应学习功能的径向基函数网络。2. The system according to claim 1 is characterized in that the adaptive control algorithm based on RBF neural network adopts a radial basis function network with adaptive learning function. 3.根据权利要求1所述的系统,其特征在于:所述的周期性改变血泵转速的方式是根据预设的血压曲线或预设的描述血压的周期性函数进行调节。3. The system according to claim 1 is characterized in that the manner of periodically changing the blood pump speed is adjusted according to a preset blood pressure curve or a preset periodic function describing blood pressure. 4.根据权利要求1所述的系统,其特征在于:所述的基于RBF神经网络的自适应控制算法根据患者的实际主动脉压预测出相应的离心血泵转速,以维持相应的主动脉血压搏动性。4. The system according to claim 1 is characterized in that the adaptive control algorithm based on the RBF neural network predicts the corresponding centrifugal blood pump speed according to the patient's actual aortic pressure to maintain the corresponding aortic blood pressure pulsatility. 5.根据权利要求1所述的系统,其特征在于:具有自动调节功能,能够根据患者的生理状态和需求自动调整离心血泵的转速以提供相应的血流搏动性。5. The system according to claim 1 is characterized in that it has an automatic adjustment function and can automatically adjust the rotation speed of the centrifugal blood pump according to the patient's physiological state and needs to provide corresponding blood flow pulsatility. 6.根据权利要求1所述的系统,其特征在于:所述的主控制器模块采用ZYNQ系列芯片,型号为XC7Z020CLG400-2。6. The system according to claim 1 is characterized in that: the main controller module adopts ZYNQ series chip, model number is XC7Z020CLG400-2. 7.根据权利要求1所述的系统,其特征在于:所述的数据采集模块通过在ECMO动脉插管内部和ECMO离心血泵入口处安装压力传感器以及在离心血泵出口管道上安装流量传感器,用于实时采集患者的主动脉压、离心血泵流量和其他相关参数。7. The system according to claim 1 is characterized in that: the data acquisition module is used to collect the patient's aortic pressure, centrifugal blood pump flow and other related parameters in real time by installing pressure sensors inside the ECMO arterial cannula and at the inlet of the ECMO centrifugal blood pump and installing a flow sensor on the outlet pipe of the centrifugal blood pump. 8.根据权利要求1所述的系统,其特征在于:所述的电机驱动模块使用三相半桥驱动电路来驱动与离心血泵相连的无刷直流电机。8. The system according to claim 1, characterized in that: the motor drive module uses a three-phase half-bridge drive circuit to drive a brushless DC motor connected to the centrifugal blood pump. 9.根据权利要求1所述的系统,其特征在于:所述的人机交互模块包括触摸屏与报警系统,触摸屏用于显示所述系统的运行参数与运行状态以及报警信息,同时用于实现控制指令的输入;报警系统用于监测血泵转速异常和患者主动脉血压异常,并发出相应的警报。9. The system according to claim 1 is characterized in that: the human-computer interaction module includes a touch screen and an alarm system, the touch screen is used to display the operating parameters and operating status of the system and alarm information, and is also used to input control instructions; the alarm system is used to monitor abnormal blood pump speed and abnormal patient aortic blood pressure, and issue corresponding alarms. 10.根据权利要求3所述的系统,其特征在于,所述的基于RBF神经网络的自适应控制算法建立方法如下:10. The system according to claim 3, characterized in that the method for establishing the adaptive control algorithm based on RBF neural network is as follows: 1)使用电网络对人体血液循环网络进行模拟,电网络中的电压对应血液循环系统中的血液,电流对应血液循环系统中的血液流量,电阻对应血液循环系统中的血流阻力,电容对应血液循环系统中的血管顺应性,电感对应血液循环系统中的血流惯性,二极管对应循环系统中的瓣膜,使用可控电压源与可控电流源的组合电路来模拟左右心室的收缩,所得到的血液循环系统的数学模型如下:1) Use an electrical network to simulate the human blood circulation network. The voltage in the electrical network corresponds to the blood in the blood circulation system, the current corresponds to the blood flow in the blood circulation system, the resistance corresponds to the blood flow resistance in the blood circulation system, the capacitance corresponds to the vascular compliance in the blood circulation system, the inductance corresponds to the blood flow inertia in the blood circulation system, and the diode corresponds to the valve in the circulation system. Use a combination circuit of a controllable voltage source and a controllable current source to simulate the contraction of the left and right ventricles. The resulting mathematical model of the blood circulation system is as follows: 方程中的各变量含义如下:x1:主动脉血压;x2:流入体循环动脉系统的血液体积流量;x3:体循环入口血压;x4:流入体循环静脉系统的血液体积流量;x5:体循环静脉系统及右心房入口血压;x6:左心室容积;x7:肺动脉血压;x8:流入肺循环动脉系统血液体积流量;x9:肺部血压;x10:流入肺循环静脉系统血液体积流量;x11:肺静脉及左心房部分血压;x12:左心室容积;R1:主动脉瓣阻力;R2:主动脉和体循环动脉系统阻力;R3:毛细血管和体循环静脉部分阻力;R4:%三尖瓣阻力;R5:%肺动脉瓣阻力;R6:肺动脉阻力;R7:肺部其他阻力;R8:二尖瓣阻力;RL:左心室内部粘性阻力;RR:右心室内部粘性阻力;L1:主动脉-体循环动脉惯性;L2:体循环经脉系统惯性;L3:肺动脉惯性;L4:肺静脉惯性;C1:主动脉顺应性;C2:体循环动脉系统顺应性;C3:体循环静脉系统顺应性;C4:肺动脉顺应性;C5:肺循环动脉系统顺应性;C6:肺循环静脉系统顺应性;Si(t):控制瓣膜Si开闭的函数,与瓣膜两端压差有关;ΔPi(t):瓣膜Si两侧的压差;The meanings of the variables in the equation are as follows: x1 : aortic blood pressure; x2 : blood volume flow into the systemic arterial system; x3 : systemic circulation inlet blood pressure; x4 : blood volume flow into the systemic venous system; x5 : systemic venous system and right atrium inlet blood pressure; x6 : left ventricular volume; x7 : pulmonary artery blood pressure; x8 : blood volume flow into the pulmonary arterial system; x9 : pulmonary blood pressure; x10 : blood volume flow into the pulmonary venous system; x11 : pulmonary vein and left atrium blood pressure; x12 : left ventricular volume; R1 : aortic valve resistance; R2 : aortic and systemic arterial resistance; R3 : capillary and systemic venous resistance; R4 : %tricuspid valve resistance; R5 : %pulmonary valve resistance; R6 : pulmonary artery resistance; R7 : other pulmonary resistance; R8 : mitral valve resistance; RL : left ventricular internal viscous resistance; RR : right ventricular internal viscous resistance; L1 : aorta-systemic artery inertia; L2 : systemic meridian system inertia; L3 : pulmonary artery inertia; L4 : pulmonary vein inertia; C1 : aortic compliance; C2 : systemic arterial system compliance; C3 : systemic venous system compliance; C4: pulmonary artery compliance; C5 : pulmonary arterial system compliance; C6 : pulmonary venous system compliance; S i (t): function that controls the opening and closing of valve S i , which is related to the pressure difference across the valve; ΔP i (t): pressure difference across the valve S i ; 省略上述方程组中与肺循环相关的方程;同时无需考虑上述方程组中与心室收缩相关的方程,上述方程组简化为:The equations related to pulmonary circulation in the above equations are omitted; and the equations related to ventricular contraction in the above equations do not need to be considered. The above equations are simplified to: 2)建立离心血泵数学模型;2) Establish a mathematical model of the centrifugal blood pump; 使用如下方程描述ECMO设备中使用的离心血泵:The centrifugal blood pump used in ECMO equipment is described using the following equation: 其中Q表示离心血泵输出的血液流量,山表示离心血泵转速,Pout表示离心血泵出口压力,Pin表示离心血泵入口压力,β0、β1、β2是常数,根据离心血泵的实验数据通过最小二乘法拟合得到;Where Q represents the blood flow output by the centrifugal blood pump, σ represents the speed of the centrifugal blood pump, P out represents the outlet pressure of the centrifugal blood pump, P in represents the inlet pressure of the centrifugal blood pump, β 0 , β 1 , and β 2 are constants obtained by least squares fitting based on the experimental data of the centrifugal blood pump; 当离心血泵数学模型中的常数确定后,使用变量m1、m2、m3对离心血泵数学模型中的系数进行替换,离心血泵数学模型变为:When the constants in the centrifugal blood pump mathematical model are determined, the coefficients in the centrifugal blood pump mathematical model are replaced by variables m 1 , m 2 , and m 3 , and the centrifugal blood pump mathematical model becomes: 离心血泵的入口直接与患者上下腔静脉连接处相连,认为离心血泵的入口压力即为人体血液循环系统中的体循环静脉系统及右心房入口血压,即认为Pin=x5;在耦合模型中离心血泵与循环系统之间增加一电阻Rp以表示氧合器中血液循环的阻力;The inlet of the centrifugal blood pump is directly connected to the junction of the superior and inferior vena cava of the patient. It is considered that the inlet pressure of the centrifugal blood pump is the inlet blood pressure of the systemic venous system and the right atrium in the human blood circulation system, that is, it is considered that Pin = x5 ; in the coupling model, a resistor Rp is added between the centrifugal blood pump and the circulatory system to represent the resistance of blood circulation in the oxygenator; 对于离心血泵-循环系统耦合模型,选择新的状态变量如下:For the centrifugal blood pump-circulatory system coupling model, select the new state variables as follows: z1:主动脉血压;z2:L1中的电流,流入体循环动脉系统的血液体积流量;z3:C2上的电压,体循环入口血压;z4:L2中的电流,流入体循环静脉系统的血液体积流量;z5:C3上的电压,体循环静脉系统及右心房血压;z6:离心血泵流量;z 1 : aortic blood pressure; z 2 : current in L1, blood volume flow into the systemic arterial system; z 3 : voltage on C2, systemic inlet blood pressure; z 4 : current in L2, blood volume flow into the systemic venous system; z 5 : voltage on C3, systemic venous system and right atrium blood pressure; z 6 : centrifugal blood pump flow; 设输入u为离心血泵转速的平方,输出y为主动脉血压,得离心血泵-循环系统耦合模型的状态方程如下:Assuming that the input u is the square of the centrifugal blood pump speed and the output y is the aortic blood pressure, the state equation of the centrifugal blood pump-circulatory system coupling model is as follows: 离心血泵-循环系统耦合模型的输出方程如下:The output equation of the centrifugal blood pump-circulatory system coupling model is as follows: y=z1 y=z 1 3)基于Lyapunov稳定性理论设计系统的控制律和RBF神经网络的权值更新律;3) Design the control law of the system and the weight update law of the RBF neural network based on Lyapunov stability theory; 由离心血泵-循环系统耦合模型的状态方程知:From the state equation of the centrifugal blood pump-circulatory system coupling model, we know: 再次对求导得:Again The derivative is: 其中则上式写作:make in The above formula is written as: 系统的跟踪误差为:The tracking error of the system is: e=y-yd=z1-z1d e=yy d =z 1 -z 1d 其中yd和z1d为期望的主动脉血压;Where y d and z 1d are the desired aortic blood pressures; 定义跟踪误差函数:Define the tracking error function: 其中λ>0,当s→0时,有e→0且故设计一控制律使得误差函数s渐进稳定于s=0点即保证离心血泵-循环系统耦合模型控制的跟踪误差在e=0处渐进稳定;Where λ>0, when s→0, e→0 and Therefore, a control law is designed to make the error function s asymptotically stable at s = 0, that is, to ensure that the tracking error of the centrifugal blood pump-circulatory system coupling model control is asymptotically stable at e = 0; 构造Lyapunov函数:Construct the Lyapunov function: 得:have to: 得:make have to: 根据Lyapunov稳定性理论,需要使得负定,令:According to Lyapunov stability theory, it is necessary to make Negative determination, order: 解得理想控制器为:The ideal controller is solved as: 其中η为大于零的常数,用来控制偏离零点的距离;选择使用RBF神经网络逼近函数 Where η is a constant greater than zero, used to control The distance from zero point; choose to use RBF neural network to approximate the function RBF神经网络分为输入层、隐含层和输出层,其中隐含层神经元的激活函数的表达式为:The RBF neural network is divided into input layer, hidden layer and output layer, where the activation function of the hidden layer neurons is expressed as: 其中,x为神经元的输入向量,cj为第j个神经元激活函数的中心位置,bj为第j个神经元激活函数的宽度;Among them, x is the input vector of the neuron, c j is the center position of the jth neuron activation function, and b j is the width of the jth neuron activation function; 当使用RBF神经网络逼近函数f(x)时,一定存在一个理想的权值向量W*,使得:When using RBF neural network to approximate function f(x), there must be an ideal weight vector W * such that: f(x)=W*Th(x)+∈f(x)=W *Th (x)+∈ 其中W*为神经网络的理想权值向量,∈为神经网络的逼近误差,|∈|<∈N,∈N为任意的大于零的实数;使用RBF神经网络逼近函数令神经网络的实际输出为:Where W * is the ideal weight vector of the neural network, ∈ is the approximation error of the neural network, |∈|<∈ N , ∈ N is any real number greater than zero; use RBF neural network to approximate the function Let the actual output of the neural network be: 为RBF神经网络的实际权值向量,神经网络的逼近误差表示为: is the actual weight vector of the RBF neural network, and the approximation error of the neural network is expressed as: 其中权值逼近误差设计自适应律使得的值在处渐进稳定;设计同时描述跟踪误差和逼近误差的Lyapunov函数:The weight approximation error Design the adaptive law so that The value of Asymptotically stable at ; design a Lyapunov function that describes both the tracking error and the approximation error: 其中γ>0,得:Where γ>0, we get: 首先保证跟踪误差渐进稳定于0,设计控制律为:First, ensure that the tracking error is asymptotically stable to 0, and design the control law as: 当η>|∈|max时s∈-sηsgn(s)负定,取自适应律:When η>|∈| max , s∈-sηsgn(s) is negative definite, and the adaptive law is adopted: 得:have to: 当η>|∈|max负定,整个控制系统在跟踪误差和网络逼近误差都趋近于零处渐进稳定。When η>|∈| max The whole control system is asymptotically stable when both the tracking error and the network approximation error approach zero.
CN202310742773.6A 2023-06-21 2023-06-21 Flow Pulsatility Control System of ECMO Centrifugal Blood Pump Based on RBF Neural Network Pending CN116650827A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310742773.6A CN116650827A (en) 2023-06-21 2023-06-21 Flow Pulsatility Control System of ECMO Centrifugal Blood Pump Based on RBF Neural Network

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310742773.6A CN116650827A (en) 2023-06-21 2023-06-21 Flow Pulsatility Control System of ECMO Centrifugal Blood Pump Based on RBF Neural Network

Publications (1)

Publication Number Publication Date
CN116650827A true CN116650827A (en) 2023-08-29

Family

ID=87713716

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310742773.6A Pending CN116650827A (en) 2023-06-21 2023-06-21 Flow Pulsatility Control System of ECMO Centrifugal Blood Pump Based on RBF Neural Network

Country Status (1)

Country Link
CN (1) CN116650827A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117727463A (en) * 2023-12-28 2024-03-19 中国药科大学 A QSP model based on the physiological mechanism of blood circulation and its application

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117727463A (en) * 2023-12-28 2024-03-19 中国药科大学 A QSP model based on the physiological mechanism of blood circulation and its application

Similar Documents

Publication Publication Date Title
Maughan et al. Effect of arterial impedance changes on the end-systolic pressure-volume relation.
US5098370A (en) Heart assist device
Boston et al. Hierarchical control of heart-assist devices
Ferreira et al. A control system for rotary blood pumps based on suction detection
Frazier et al. Optimization of axial-pump pressure sensitivity for a continuous-flow total artificial heart
CN113476737B (en) Method, device and storage medium for improving bionic pulsatility of blood flow of artificial heart pump
Stephens et al. In vitro evaluation of an immediate response Starling‐like controller for dual rotary blood pumps
CN116650827A (en) Flow Pulsatility Control System of ECMO Centrifugal Blood Pump Based on RBF Neural Network
Undar et al. Precise quantification of pulsatility is a necessity for direct comparisons of six different pediatric heart-lung machines in a neonatal CPB model
Melo et al. Feedback controller for restoring the basal hemodynamic condition with a rotary blood pump used as left ventricular assist device
Boston et al. Control issues in rotary heart assist devices
Boston et al. Intelligent control design for heart assist devices
EP3952737A1 (en) Cardiac device, method and computer program product
Yi Physiological control of rotary left ventricular assist device
CN219614552U (en) Non-constant pressure blood flow generator for ECMO
WO2025041515A1 (en) Control system of artificial heart, artificial heart system, and method of controlling rotary blood pump
WO2023140806A1 (en) A biventricular assist system
Faragallah Treatment-specific approaches for analysis and control of left ventricular assist devices
Simaan Modeling and control of the heart left ventricle supported with a rotary assist device
Wang et al. Modeling and Design of a Tandem Axial-flow Left Ventricular Assist System
CN118887853A (en) A right ventricular assist device body-lung dual circulation simulation system
Salesch et al. In vivo proof of concept of a pulsatile physiologic controller framework for ventricular assist devices
Boston et al. Hierarchical control for artificial hearts
CN119215323A (en) An adaptive driving method for a total artificial heart
Kim et al. Inflow Mechanism of the Double-membrane Electromechanical Total Artificial Heart

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination