[go: up one dir, main page]

CN116634861A - Rust resistance gene - Google Patents

Rust resistance gene Download PDF

Info

Publication number
CN116634861A
CN116634861A CN202180075248.2A CN202180075248A CN116634861A CN 116634861 A CN116634861 A CN 116634861A CN 202180075248 A CN202180075248 A CN 202180075248A CN 116634861 A CN116634861 A CN 116634861A
Authority
CN
China
Prior art keywords
plant
wheat
nucleic acid
nucleotide sequence
leu
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202180075248.2A
Other languages
Chinese (zh)
Inventor
P·N·多德斯
T·C·休伊特
R·玛果
N·M·厄派德海厄雅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commonwealth Scientific and Industrial Research Organization CSIRO
Original Assignee
Commonwealth Scientific and Industrial Research Organization CSIRO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commonwealth Scientific and Industrial Research Organization CSIRO filed Critical Commonwealth Scientific and Industrial Research Organization CSIRO
Priority claimed from PCT/IB2021/000608 external-priority patent/WO2022053866A1/en
Publication of CN116634861A publication Critical patent/CN116634861A/en
Pending legal-status Critical Current

Links

Landscapes

  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

The present application provides compositions and methods for enhancing the resistance of plants, particularly wheat and triticale plants, to stem rust caused by the wheat species rust graminis (Puccinia graminis f.sp.tritici). The compositions comprise nucleic acid molecules encoding resistance (R) gene products and variants thereof, and plants, seeds, and plant cells containing such nucleic acid molecules. The method for enhancing resistance of a plant to stem rust comprises introducing a nucleic acid molecule encoding an R gene product into a plant cell. Methods for using the resistant plants in agriculture to limit stem rust are also provided.

Description

秆锈病抗性基因Stem rust resistance gene

相关申请的交叉引用CROSS-REFERENCE TO RELATED APPLICATIONS

本申请要求2020年9月9日提交的美国临时专利申请号63/076,153和2020年12月18日提交的美国临时专利申请号63/127,220的权益;这两个美国临时专利申请均特此通过提及而以其整体合并入本文。This application claims the benefit of U.S. Provisional Patent Application No. 63/076,153, filed on September 9, 2020, and U.S. Provisional Patent Application No. 63/127,220, filed on December 18, 2020; both of which are hereby incorporated by reference into this document in their entirety.

对于作为文本文件提交的序列表的引用References to sequence listings submitted as text files

序列表的官方副本作为文件名为070294-0193SEQLST.TXT的ASCII格式的序列表(其创建于2021年9月7日并且具有44.3千字节的大小)经由EFS-Web以电子方式提交,并且与本说明书一同提交。在该ASCII格式的文档中所包含的序列表是本说明书的一部分,并且通过提及而以其整体合并入本文。An official copy of the sequence listing is submitted electronically via EFS-Web as a sequence listing in ASCII format with the file name 070294-0193SEQLST.TXT (created on September 7, 2021 and having a size of 44.3 kilobytes), and is submitted together with this specification. The sequence listing contained in this ASCII formatted document is part of this specification and is incorporated herein in its entirety by reference.

发明领域Field of the Invention

本发明涉及基因分离和植物改良的领域,特别地涉及通过使用疾病抗性基因来增强植物对于植物疾病的抗性。The present invention relates to the field of gene isolation and plant improvement, and in particular to enhancing plant resistance to plant diseases through the use of disease resistance genes.

发明背景Background of the Invention

植物疾病引起世界范围小麦生产的重大产量损失。在最具损害性的小麦疾病中包括锈病。由禾柄锈菌小麦小种(Puccinia graminis f.sp.tritici)(Pgt)引起的小麦秆锈病是今天影响小麦生产的最具毁灭性的疾病之一。虽然包含针对Pgt的抗性(R)基因的小麦植物已被证明在限制由小麦秆锈病引起的农艺学损失中是有效的,但是Pgt的新品种最近已经出现,对于其所述R基因是无效的。虽然可以使用杀有害生物剂来控制小麦秆锈病,但是杀有害生物剂价格昂贵并且与农业可持续集约化相冲突,并且在发展中国家中,对于自给农人来说完全负担不起杀有害生物剂。Plant diseases cause significant yield losses in wheat production worldwide. Among the most damaging wheat diseases is rust. Wheat stem rust, caused by Puccinia graminis f.sp.tritici (Pgt), is one of the most devastating diseases affecting wheat production today. Although wheat plants containing resistance (R) genes to Pgt have been shown to be effective in limiting agronomic losses caused by wheat stem rust, new varieties of Pgt have recently emerged for which the R gene is ineffective. Although pesticides can be used to control wheat stem rust, pesticides are expensive and conflict with sustainable intensification of agriculture, and in developing countries, pesticides are completely unaffordable for subsistence farmers.

农业可持续集约化将会需要增加使用遗传学解决办法来代替化学解决办法(例如,杀有害生物剂),以保护作物免于病原体和有害生物(Jones等人,(2014)Philos.T.Roy.Soc.B 369:20130087)。然而,传统的用于引入R基因的方法典型地牵涉长的育种时间线以打断与其他基因的有害等位基因的连锁。进一步地,当一次部署一个时,R基因在很少几个季节内就可以被克服(McDonald和Linde(2002)Annu.Rev.Phytopathol.40:349-379)。然而,分子克隆使得可能避免连锁累赘(linkage drag)并且同时引入多个R基因(Dangl等人,(2013)Science341:746-751),这应当延迟打破抗性的病原体品种进化并且因此提供更持久的抗性(McDonald和Linde(2002)Annu.Rev.Phytopathol.40:349-379)。Sustainable intensification of agriculture will require an increased use of genetic solutions to replace chemical solutions (e.g., pesticides) to protect crops from pathogens and pests (Jones et al., (2014) Philos. T. Roy. Soc. B 369: 20130087). However, traditional methods for introducing R genes typically involve long breeding timelines to break linkage with harmful alleles of other genes. Further, when deployed one at a time, R genes can be overcome in just a few seasons (McDonald and Linde (2002) Annu. Rev. Phytopathol. 40: 349-379). However, molecular cloning has made it possible to avoid linkage drag and introduce multiple R genes simultaneously (Dangl et al., (2013) Science 341:746-751), which should delay the evolution of resistance-breaking pathogen species and thus provide more durable resistance (McDonald and Linde (2002) Annu. Rev. Phytopathol. 40:349-379).

发明概述SUMMARY OF THE INVENTION

本发明提供了关于抗性(R)基因的核酸分子,所述抗性基因已知赋予植物以对于引起小麦秆锈病的病原体(禾柄锈菌小麦小种(Pgt))的至少一个品种的抗性。在一个实施方案中,本发明提供了核酸分子,其包含R基因Sr27及其变体,包括例如直向同源物和非天然出现的变体。The present invention provides nucleic acid molecules for resistance (R) genes known to confer resistance to plants to at least one variety of the pathogen causing wheat stem rust, Puccinia graminearum race (Pgt). In one embodiment, the present invention provides nucleic acid molecules comprising the R gene Sr27 and variants thereof, including, for example, orthologs and non-naturally occurring variants.

本发明进一步提供了在其基因组中包含一个或多个本发明的多核苷酸构建体的植物、植物细胞和种子。所述多核苷酸构建体包含编码本发明的抗性(R)蛋白的核苷酸序列。此类R蛋白由本发明的R基因编码。在一个优选的实施方案中,所述植物和种子为已经用一个或多个本发明的多核苷酸构建体进行转化的转基因小麦植物和种子。优选地,当与不包含所述多核苷酸构建体的对照小麦植物的抗性相比较时,此类小麦植物包含增强的对于引起小麦秆锈病的病原体(Pgt)的至少一个品种的抗性。The present invention further provides plants, plant cells and seeds comprising one or more polynucleotide constructs of the present invention in its genome. The polynucleotide constructs comprise nucleotide sequences encoding resistance (R) proteins of the present invention. Such R proteins are encoded by R genes of the present invention. In a preferred embodiment, the plants and seeds are transgenic wheat plants and seeds that have been transformed with one or more polynucleotide constructs of the present invention. Preferably, such wheat plants comprise enhanced resistance to at least one variety of the pathogen (Pgt) causing wheat stem rust when compared to the resistance of a control wheat plant that does not comprise the polynucleotide constructs.

本发明提供了用于增强植物(特别是小麦或黑小麦植物)对于由Pgt引起的秆锈病的抗性的方法。这样的方法包括将包含本发明的R基因的核苷酸序列的多核苷酸构建体引入到至少一个植物细胞中。在一些实施方案中,所述多核苷酸构建体或其部分被稳定地掺入到所述植物细胞的基因组中,而在另一些实施方案中,所述多核苷酸构建体未被稳定地掺入到所述植物细胞的基因组中。所述用于增强植物对于秆锈病的抗性的方法可以任选地进一步包括将所述植物细胞再生为在其基因组中包含所述多核苷酸构建体的植物。优选地,这样的植物包含相对于对照植物而言增强的对于由Pgt的至少一个品种引起的秆锈病的抗性。The present invention provides a method for enhancing the resistance of plants (particularly wheat or triticale plants) to stem rust caused by Pgt. Such a method comprises introducing a polynucleotide construct comprising the nucleotide sequence of the R gene of the present invention into at least one plant cell. In some embodiments, the polynucleotide construct or a portion thereof is stably incorporated into the genome of the plant cell, while in other embodiments, the polynucleotide construct is not stably incorporated into the genome of the plant cell. The method for enhancing the resistance of plants to stem rust may optionally further comprise regenerating the plant cell into a plant comprising the polynucleotide construct in its genome. Preferably, such a plant comprises enhanced resistance to stem rust caused by at least one variety of Pgt relative to a control plant.

另外,本发明提供了用于鉴定展示出新赋予的或增强的对于由Pgt引起的秆锈病的抗性的植物(特别是小麦或黑小麦植物)的方法。所述方法包括在所述植物中检测至少一个本发明的R基因(特别是Sr27)的存在。In addition, the present invention provides a method for identifying plants (particularly wheat or triticale plants) that exhibit newly conferred or enhanced resistance to stem rust caused by Pgt. The method comprises detecting the presence of at least one R gene of the present invention (particularly Sr27) in the plant.

还提供了在农作物生产中使用本发明的植物以限制由Pgt引起的秆锈病的方法。所述方法包括种植由本发明的植物所产生的种子,其中所述种子包含至少一个本发明的R基因核苷酸序列。所述方法进一步包括在有利于植物的生长和发育的条件下栽培所述植物,和任选地从所述植物收获至少一个种子或植物部分。Also provided are methods of using the plants of the invention in crop production to limit stem rust caused by Pgt. The methods include planting seeds produced by the plants of the invention, wherein the seeds comprise at least one R gene nucleotide sequence of the invention. The methods further include cultivating the plants under conditions conducive to the growth and development of the plants, and optionally harvesting at least one seed or plant part from the plants.

另外,提供了植物、植物部分、种子、植物细胞、其他宿主细胞、表达盒和载体,其包含本发明的核酸分子中的一个或多个。Additionally, plants, plant parts, seeds, plant cells, other host cells, expression cassettes and vectors are provided, comprising one or more of the nucleic acid molecules of the invention.

附图简述BRIEF DESCRIPTION OF THE DRAWINGS

图1为Sr27易感突变体的鉴定的照片图解说明。用Pgt21-0接种Coorong(上版图)和EMS-衍生的易感突变体1(下版图),并且在感染后14天进行拍照。Figure 1 is a photographic illustration of the identification of the Sr27 susceptible mutant. Coorong (upper panels) and EMS-derived susceptible mutant 1 (lower panels) were inoculated with Pgt21-0 and photographed 14 days after infection.

图2为在所指明的突变体M1、M3、M4和M6中具有氨基酸变化的Sr27蛋白的示意图。在NB-LRR捕获和测序后从野生型Coorong装配的两个重叠群(#5723和#2413)包含该基因的5’和3’区域。突变体M1和M4在重叠群5723中包含单碱基变化,而突变体M6在重叠群2413中包含单碱基变化。指出了在全长Sr27蛋白中由这些突变所引起的氨基酸变化。突变体M2不产生特异于这些重叠群的读段(read)并且因此可能包含缺失。通过PCR扩增确定突变体M3在该基因中包含另一个单核苷酸变化,其导致氨基酸变化。Fig. 2 is a schematic diagram of the Sr27 protein with amino acid changes in the indicated mutants M1, M3, M4 and M6. Two contigs (#5723 and #2413) assembled from the wild-type Coorong after NB-LRR capture and sequencing contain the 5' and 3' regions of the gene. Mutants M1 and M4 contain single base changes in contig 5723, while mutant M6 contains a single base change in contig 2413. The amino acid changes caused by these mutations in the full-length Sr27 protein are indicated. Mutant M2 does not produce reads specific to these contigs and therefore may contain deletions. Mutant M3 was determined by PCR amplification to contain another single nucleotide change in the gene, which results in an amino acid change.

图3为在黑小麦品系Coorong(包含Sr27)、Rongcoo(锈病易感的)和具有Sr27抗性基因的丢失的源自Coorong的突变体品系(Sr27突变体1)上Pgt21-0和三个自发突变体(21-M1、21-M2和21-M3)的感染表型的照片图解说明。图像在幼苗叶接种后14天拍摄。Figure 3 is a photographic illustration of the infection phenotype of Pgt21-0 and three spontaneous mutants (21-M1, 21-M2 and 21-M3) on triticale lines Coorong (containing Sr27), Rongcoo (rust susceptible) and a mutant line derived from Coorong with a loss of the Sr27 resistance gene (Sr27 mutant 1). Images were taken 14 days after seedling leaf inoculation.

图4为相对于染色体2B(带有阴影线的条)而言在Pgt21-0的三个Sr27-毒力突变体(M1、M2和M3)中的缺失的位置和大小(以kbp)的示意图。在所述染色体上的位置从5’末端起以1Mbp间隔指出,其中指出了着丝粒(CM)位置。所述缺失通过在Pgt21-0基因组序列上来自Pgt21-0和所述三个突变体的Illumina DNA序列读段的读段映射来进行检测。Fig. 4 is a schematic diagram of the position and size (in kbp) of the deletions in the three Sr27-virulence mutants (M1, M2 and M3) of Pgt21-0 relative to chromosome 2B (bar with hatching). The position on the chromosome is indicated at intervals of 1Mbp from the 5' end, wherein the centromere (CM) position is indicated. The deletion is detected by mapping the reads of the Illumina DNA sequence reads from Pgt21-0 and the three mutants on the Pgt21-0 genome sequence.

图5A和5B.对于Sr27具有毒力的Pgt的野外分离株在染色体2B上包含小的缺失。图5A为相对于染色体2B(灰色条)而言在所指明的来自澳大利亚(34-2,12和34-2,12,13)和南非(SA03、SA05、SA06、SA07)的六个Sr27-毒力分离株中的缺失的位置和大小(以kbp)的示意图。缺失通过在Pgt21-0基因组序列上来自这些分离株的Illumina DNA序列读段的读段映射来进行检测。相对于在34-2-12中缺失区域的边界,指出了(箭头)环绕AvrSr27座位的引物P423、P424和P426在染色体2B上的位置。图5B显示了在Sr27-毒力锈病分离株34-2-12中的13Kbp缺失的确证。在1%琼脂糖凝胶上进行分开后,显示了来自Pgt21-0和34-2,12的基因组DNA的PCR扩增产物。引物P383和P351被设计用于扩增作为在这两个分离株中相同的对照区域的AvrSr50基因的片段。Fig. 5A and 5B. field isolates of Pgt with virulence for Sr27 include small deletions on chromosome 2B. Fig. 5A is a schematic diagram of the position and size (in kbp) of the deletions in the six Sr27-virulence isolates indicated from Australia (34-2,12 and 34-2,12,13) and South Africa (SA03, SA05, SA06, SA07) relative to chromosome 2B (grey bars). The deletion is detected by mapping the reads of the Illumina DNA sequence reads from these isolates on the Pgt21-0 genomic sequence. Relative to the border of the missing region in 34-2-12, the positions of primers P423, P424 and P426 around the AvrSr27 seat on chromosome 2B are indicated (arrows). Fig. 5B shows the confirmation of the 13Kbp deletion in the Sr27-virulence rust isolate 34-2-12. PCR amplification products from genomic DNA of Pgt21-0 and 34-2,12 are shown after separation on a 1% agarose gel. Primers P383 and P351 were designed to amplify a fragment of the AvrSr50 gene as a control region that was identical in both isolates.

图6为由AvrSr27座位所编码的来自Pgt21-0的两个相关的分泌型AvrSr27蛋白变体的氨基酸序列比对。AvrSr27-1(SEQ ID NO:6)和AvrSr27-2(SEQ ID NO:8)在染色体2B上在无毒力等位基因处编码。显示了AvrSr27-1的氨基酸序列(单字母代码),其中在其他变体中的相同残基通过‘.’来指出。预测的信号肽区域加有下划线并且是粗体。Figure 6 is an amino acid sequence alignment of two related secreted AvrSr27 protein variants from Pgt21-0 encoded by the AvrSr27 locus. AvrSr27-1 (SEQ ID NO: 6) and AvrSr27-2 (SEQ ID NO: 8) are encoded on chromosome 2B at the avirulence allele. The amino acid sequence of AvrSr27-1 is shown (single letter code), where identical residues in other variants are indicated by '.' The predicted signal peptide region is underlined and in bold.

图7为显示了Sr27抗性功能的确证的图形表示。在共表达单独的Sr27或AvrSr27-1或AvrSr27-2,组合的Sr27和AvrSr27变体,Sr50加AvrSr27-1,或者Sr27加AvrSr50的原生质体中检测萤光素酶活性(发光单位,y-轴)。Figure 7 is a graphical representation showing confirmation of the resistance function of Sr27. Luciferase activity (luminescence units, y-axis) was measured in protoplasts co-expressing Sr27 alone or AvrSr27-1 or AvrSr27-2, combined Sr27 and AvrSr27 variants, Sr50 plus AvrSr27-1, or Sr27 plus AvrSr50.

图8为比较了Sr27氨基酸序列与已知的小麦抗性蛋白的蛋白质序列的最大似然系统发生树。比例尺显示了氨基酸序列趋异。Figure 8 is a maximum likelihood phylogenetic tree comparing the amino acid sequence of Sr27 with the protein sequences of known wheat resistance proteins. The scale bar shows the amino acid sequence divergence.

图9显示了包含Sr27转基因的示例性T1家族和对照植物的表型,所述植物用秆锈病品种98-1,2,3,5,6进行感染并且在感染后10天进行评分。图像了显示来自两个包含Sr27转基因的转基因品系(PC311.3和PC311.17)、一个从组织培养物恢复的非转基因品系(PC311.16)、易感亲本Fielder、包含天然Sr27基因的Chinese Spring WRT258.5和易感亲本Chinese Spring(CS)的代表性T1植物。Figure 9 shows the phenotype of exemplary T1 families containing Sr27 transgenes and control plants infected with stem rust varieties 98-1, 2, 3, 5, 6 and scored 10 days after infection. Images show representative T1 plants from two transgenic lines containing the Sr27 transgene (PC311.3 and PC311.17), one non-transgenic line recovered from tissue culture (PC311.16), the susceptible parent Fielder, Chinese Spring WRT258.5 containing the native Sr27 gene, and the susceptible parent Chinese Spring (CS).

序列表Sequence Listing

使用对于核苷酸碱基的标准字母缩写以及对于氨基酸的单字母或三字母代码来显示在随附的序列表、附图中所列出的核苷酸和氨基酸序列以及在下文中所阐述的那些。所述核苷酸序列遵循在序列的5'末端处开始并且向3'末端前进(即,在每一行中从左至右)的标准惯例。仅显示每个核苷酸序列的一条链,但是应当理解通过对所展示的链的任何提及而包括了互补链。所述氨基酸序列遵循在序列的氨基末端处开始并且向羧基末端前进(即,在每一行中从左至右)的标准惯例。The nucleotide and amino acid sequences listed in the accompanying sequence table, the accompanying drawings, and those described below are shown using standard letter abbreviations for nucleotide bases and single-letter or three-letter codes for amino acids. The nucleotide sequences follow the standard convention of starting at the 5' end of the sequence and advancing to the 3' end (i.e., from left to right in each row). Only one chain of each nucleotide sequence is shown, but it should be understood that the complementary chain is included by any reference to the displayed chain. The amino acid sequences follow the standard convention of starting at the amino-terminal end of the sequence and advancing to the carboxyl-terminal end (i.e., from left to right in each row).

SEQ ID NO:1阐述了包含来自黑小麦(×Triticosecale Wittmack)栽培种Coorong的R基因(Sr27)的核苷酸序列。所述核苷酸序列以5’至3’方向包含:在核苷酸1-39处的5'-非翻译区(5'-UTR)、蛋白质编码区40-872、在核苷酸873-1779处的内含子、在核苷酸1780-3814处的蛋白质编码区、在核苷酸3815-3817处的TGA终止密码子和在核苷酸3818-3956处的3'-非翻译区(3'-UTR)。SEQ ID NO: 1 sets forth a nucleotide sequence comprising an R gene (Sr27) from triticale (×Triticosecale Wittmack) cv. Coorong. The nucleotide sequence comprises, in a 5' to 3' direction: a 5'-untranslated region (5'-UTR) at nucleotides 1-39, a protein coding region 40-872, an intron at nucleotides 873-1779, a protein coding region at nucleotides 1780-3814, a TGA stop codon at nucleotides 3815-3817, and a 3'-untranslated region (3'-UTR) at nucleotides 3818-3956.

SEQ ID NO:2阐述了Sr27(SEQ ID NO:1)的cDNA的编码区的核苷酸序列。如果希望,可以将终止密码子(例如,TAA、TAG或TGA)可操作地连接至包含SEQ ID NO:2或由SEQ IDNO:2组成的核酸分子的3'末端。该cDNA的天然终止密码子为TGA。SEQ ID NO:2 sets forth the nucleotide sequence of the coding region of the cDNA of Sr27 (SEQ ID NO:1). If desired, a stop codon (e.g., TAA, TAG, or TGA) may be operably linked to the 3' end of a nucleic acid molecule comprising or consisting of SEQ ID NO:2. The natural stop codon of the cDNA is TGA.

SEQ ID NO:3阐述了由R基因Sr27(SEQ ID NO:1)所编码的R蛋白Sr27的氨基酸序列。SEQ ID NO:3 sets forth the amino acid sequence of the R protein Sr27 encoded by the R gene Sr27 (SEQ ID NO:1).

SEQ ID NO:4阐述了Sr27(SEQ ID NO:1)的开放读码框的核苷酸序列。该序列是在起始密码子的第一个核苷酸处开始并且在终止密码子的最后一个核苷酸处结束的Sr27的基因组序列的那一部分。该序列包含内含子。SEQ ID NO: 4 sets forth the nucleotide sequence of the open reading frame of Sr27 (SEQ ID NO: 1). This sequence is that portion of the genomic sequence of Sr27 that begins at the first nucleotide of the start codon and ends at the last nucleotide of the stop codon. This sequence contains introns.

SEQ ID NO:5阐述了来自禾柄锈菌小麦小种(Pgt)分离株Pgt21-0的AvrSr27-1的编码序列,其中预测的信号肽被排除并且用单个甲硫氨酸起始密码子替代。SEQ ID NO:5 sets forth the coding sequence of AvrSr27-1 from Puccinia graminearum race (Pgt) isolate Pgt21-0, wherein the predicted signal peptide is excluded and replaced with a single methionine start codon.

SEQ ID NO:6阐述了由来自Pgt分离株Pgt21-0的AvrSr27-1(SEQ ID NO:5)所编码的Avr27-1蛋白的氨基酸序列。SEQ ID NO:6 sets forth the amino acid sequence of the Avr27-1 protein encoded by AvrSr27-1 (SEQ ID NO:5) from the Pgt isolate Pgt21-0.

SEQ ID NO:7阐述了来自Pgt分离株Pgt21-0的AvrSr27-2(PGT21_006593_AvrSr27-2)的编码序列,其中预测的信号肽被排除并且用单个甲硫氨酸起始密码子替代。SEQ ID NO:7 sets forth the coding sequence of AvrSr27-2 from Pgt isolate Pgt21-0 (PGT21_006593_AvrSr27-2), wherein the predicted signal peptide is excluded and replaced with a single methionine start codon.

SEQ ID NO:8阐述了由来自Pgt分离株Pgt21-0的AvrSr27-2(SEQ ID NO:7)所编码的Avr27-2蛋白的氨基酸序列。SEQ ID NO:8 sets forth the amino acid sequence of the Avr27-2 protein encoded by AvrSr27-2 (SEQ ID NO:7) from Pgt isolate Pgt21-0.

SEQ ID NO:9-39为在下面的表2(实施例6)中的引物的核苷酸序列。SEQ ID NOs: 9-39 are the nucleotide sequences of the primers in Table 2 below (Example 6).

发明详述DETAILED DESCRIPTION OF THE INVENTION

现在将会参考附图在下文中更充分地描述本发明,在所述附图中显示了本发明的一些但并非所有的实施方案。的确,这些发明可以以许多不同的形式来体现并且不应当被解释为对于在本文中所阐述的实施方案的限制;而是,提供这些实施方案,从而使得本公开内容将会满足适用的法律要求。同样的数字始终是指同样的要素。The present invention will now be described more fully hereinafter with reference to the accompanying drawings, in which some, but not all, embodiments of the invention are shown. Indeed, these inventions may be embodied in many different forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will satisfy applicable legal requirements. Like numbers refer to like elements throughout.

受益于在前面的描述和相关的附图中所给出的教导,这些发明所属领域的技术人员将会想到在本文中所阐述的本发明的许多修改以及其他实施方案。因此,应当理解的是,本发明不局限于所公开的特定实施方案,并且修改和其他实施方案也易于被包括在所附的权利要求书的范围之内。虽然在本文中使用了特定术语,但是它们仅在一般性和描述性意义上使用而不是为了限制的目的。Many modifications and other embodiments of the inventions set forth herein will occur to those skilled in the art having the benefit of the teachings given in the foregoing description and the associated drawings. Therefore, it should be understood that the invention is not limited to the specific embodiments disclosed, and modifications and other embodiments are also readily included within the scope of the appended claims. Although specific terms are used herein, they are used only in a general and descriptive sense and not for purposes of limitation.

本发明涉及分离植物抗性(R)基因,特别是赋予植物(特别是小麦或黑小麦植物)以对于由禾柄锈菌小麦小种(Pgt)引起的秆锈病的抗性的R基因。大多数锈病抗性基因属于结合核苷酸的富亮氨酸重复受体(NLR)类别,其众所周知是植物中的免疫受体。含TIR的NLR(TNL)和含CC的NLR(CNL)是植物NLR的两个主要类别,其基于在其N-末端处TIR或CC结构域的存在来进行定义。大多数(如果不是全部)在谷物中的NLR属于CNL类别。已经克隆了九个全阶段秆锈病抗性基因,其来源于一粒小麦(T.monococcum)(Sr21、Sr22和Sr35)、六倍体面包小麦的A基因组供者即节节麦(Aegilops tauschii)(Sr33和Sr45)、六倍体面包小麦的D基因组供者即二倍体黑麦(Sr50)和硬粒小麦(Sr13),并且从高麦草(或称长穗偃麦草(T.ponticum))鉴定了Sr26。The present invention relates to the isolation of plant resistance (R) genes, in particular R genes that confer resistance to stem rust caused by Puccinia graminearum (Pgt) in plants, in particular wheat or triticale plants. Most rust resistance genes belong to the class of nucleotide-binding leucine-rich repeat receptors (NLRs), which are well known as immune receptors in plants. TIR-containing NLRs (TNLs) and CC-containing NLRs (CNLs) are the two main classes of plant NLRs, which are defined based on the presence of a TIR or CC domain at their N-termini. Most, if not all, NLRs in cereals belong to the CNL class. Nine all-stage stem rust resistance genes have been cloned from einkorn wheat (T. monococcum) (Sr21, Sr22 and Sr35), the A genome donor of hexaploid bread wheat, Aegilops tauschii (Sr33 and Sr45), the D genome donor of hexaploid bread wheat, diploid rye (Sr50) and durum wheat (Sr13), and Sr26 was identified from tall wheatgrass (T. ponticum).

本发明涉及Sr27,其是一个提供对于世界上许多重要的Pgt分离株(包括Ug99谱系)的抗性并且存在于黑麦/小麦杂交谷物黑小麦(×Triticosecale)中的座位。如在下文中所公开的,发明人使用组合化学诱变和结合核苷酸的富亮氨酸重复受体(NLR)抗性基因富集测序方法来从在其基因组中包含Sr27秆锈病抗性基因的Pgt-抗性黑小麦栽培种(‘Coorong’)中分离出R基因Sr27。The present invention relates to Sr27, a locus that confers resistance to many important Pgt isolates worldwide, including the Ug99 lineage, and is present in the rye/wheat hybrid cereal triticale (×Triticosecale). As disclosed hereinafter, the inventors used a combined chemical mutagenesis and nucleotide-bound leucine-rich repeat receptor (NLR) resistance gene enrichment sequencing approach to isolate the R gene Sr27 from a Pgt-resistant triticale cultivar (‘Coorong’) that contains the Sr27 stem rust resistance gene in its genome.

本发明提供了核酸分子,其包含R基因的核苷酸序列,特别是Sr27以及其天然出现的变体(例如,直向同源物和等位基因变体)和合成的或人工的(即,非天然出现的)变体的核苷酸序列。此类R基因的核苷酸序列(其在本文中也称为R基因核苷酸序列)编码R蛋白。本发明的R基因核苷酸序列包括但不限于野生型R基因(其包含天然启动子和含有编码区的3′相邻区域)、cDNA序列和仅包含编码区的核苷酸序列。此类R基因核苷酸序列的例子包括SEQID NO:1、2和4中所示的核苷酸序列及其变体。在其中不使用所述天然R基因启动子来驱动编码R蛋白的核苷酸序列的表达的实施方案中,可以将异源启动子可操作地连接至编码本发明的R蛋白的核苷酸序列以驱动编码R蛋白的核苷酸序列在植物中表达。The present invention provides nucleic acid molecules comprising nucleotide sequences of R genes, in particular Sr27 and naturally occurring variants thereof (e.g., orthologs and allelic variants) and synthetic or artificial (i.e., non-naturally occurring) variants thereof. The nucleotide sequences of such R genes (which are also referred to herein as R gene nucleotide sequences) encode R proteins. The R gene nucleotide sequences of the present invention include, but are not limited to, wild-type R genes (which include a natural promoter and a 3′ adjacent region containing a coding region), cDNA sequences, and nucleotide sequences containing only coding regions. Examples of such R gene nucleotide sequences include the nucleotide sequences shown in SEQ ID NOs: 1, 2, and 4, and variants thereof. In embodiments in which the natural R gene promoter is not used to drive the expression of the nucleotide sequence encoding the R protein, a heterologous promoter may be operably linked to the nucleotide sequence encoding the R protein of the present invention to drive the nucleotide sequence encoding the R protein to be expressed in plants.

优选地,本发明的R蛋白为功能性R蛋白,其能够赋予包含所述R蛋白的植物以增强的对于由Pgt的至少一个品种引起的秆锈病的抗性。在某些实施方案中,本发明的R蛋白包含对于Pgt的多个品种的广谱抗性,例如由Sr27所编码的R蛋白。Preferably, the R protein of the present invention is a functional R protein that can confer to the plant comprising the R protein enhanced resistance to stem rust caused by at least one variety of Pgt. In certain embodiments, the R protein of the present invention comprises broad-spectrum resistance to multiple varieties of Pgt, such as an R protein encoded by Sr27.

本发明进一步提供了转基因植物,其包含多核苷酸构建体,所述多核苷酸构建体包含本发明的R基因核苷酸序列。在一些实施方案中,所述多核苷酸构建体被稳定地掺入到所述植物的基因组中,和在另一些实施方案中,所述植物通过瞬时转化方法来进行转化并且所述多核苷酸构建体未被稳定地掺入到所述植物的基因组中。用于植物的稳定和瞬时转化的方法在本文中其他地方公开或者是本领域中已知的。在本发明的一个优选的实施方案中,所述转基因植物为包含增强的对于由Pgt的至少一个品种引起的秆锈病的抗性的小麦植物。The present invention further provides transgenic plants comprising a polynucleotide construct comprising an R gene nucleotide sequence of the present invention. In some embodiments, the polynucleotide construct is stably incorporated into the genome of the plant, and in other embodiments, the plant is transformed by a transient transformation method and the polynucleotide construct is not stably incorporated into the genome of the plant. Methods for stable and transient transformation of plants are disclosed elsewhere herein or are known in the art. In a preferred embodiment of the present invention, the transgenic plant is a wheat plant comprising enhanced resistance to stem rust caused by at least one variety of Pgt.

在某些实施方案中,本发明的转基因植物包含多核苷酸构建体,所述多核苷酸构建体包含编码R蛋白的核苷酸序列和可操作地连接以用于表达所述编码R蛋白的核苷酸序列的异源启动子。异源启动子的选择可以取决于许多因素,例如,所希望的时机、局部化和表达模式以及对于特定生物或非生物刺激的反应性。令人感兴趣的启动子包括但不限于病原体诱导型启动子、组成型启动子、组织优先型启动子、创伤诱导型启动子和化学品调节型启动子。In certain embodiments, the transgenic plant of the present invention comprises a polynucleotide construct comprising a nucleotide sequence encoding an R protein and a heterologous promoter operably connected to express the nucleotide sequence encoding the R protein. The selection of a heterologous promoter can depend on many factors, such as the desired timing, localization and expression pattern and the responsiveness to a specific biological or abiotic stimulus. Interesting promoters include, but are not limited to, pathogen-inducible promoters, constitutive promoters, tissue-preferred promoters, wound-inducible promoters, and chemical-regulated promoters.

在本发明的某些实施方案中,所述转基因植物,特别是转基因小麦植物,可以包含一个、两个、三个、四个、五个、六个或更多个编码R蛋白的核苷酸序列。典型地,但不是必需地,所述两个或更多个R蛋白将会彼此不同。对于本发明,一个R蛋白不同于另一个R蛋白,当所述两个R蛋白具有不相同的氨基酸序列时。在本发明的某些实施方案中,不同的对于秆锈病的R蛋白中的每一个具有一个或多个在抗性特征方面的差异,例如针对Pgt的不同品种/品种群的抗性。公认的是,通过组合两个、三个、四个、五个、六个或更多个核苷酸序列(每个核苷酸序列编码不同的对于小麦秆锈病的R蛋白),可以产生包含针对Pgt的多个品种的广谱抗性的小麦植物。在已知其中会出现Pgt的多个品种的地区中,在农业中可使用这样的小麦植物。In certain embodiments of the present invention, the transgenic plant, particularly the transgenic wheat plant, may comprise one, two, three, four, five, six or more nucleotide sequences encoding R proteins. Typically, but not necessarily, the two or more R proteins will be different from each other. For the present invention, an R protein is different from another R protein when the two R proteins have different amino acid sequences. In certain embodiments of the present invention, each of the different R proteins for stem rust has one or more differences in resistance characteristics, such as resistance to different varieties/variety groups for Pgt. It is recognized that by combining two, three, four, five, six or more nucleotide sequences (each nucleotide sequence encodes a different R protein for wheat stem rust), a wheat plant containing a broad spectrum resistance to multiple varieties of Pgt can be produced. In regions where multiple varieties of Pgt are known to occur, such wheat plants can be used in agriculture.

可以在单个小麦植物中与本发明的核苷酸序列相组合的小麦秆锈病R基因的例子包括Sr22(WO 2017/024053)、Sr26、Sr32、Sr33(GenBank登录号KF031299.1)、Sr35(GenBank登录号KC573058.1)、Sr39、Sr40、Sr45(WO 2017/024053)、Sr47、Sr50、SrTA1662(WO2019140351)和成株抗性基因Sr57/Lr34(GenBank登录号FJ436983.1)和Sr55/Lr67。Examples of wheat stem rust R genes that can be combined with the nucleotide sequence of the present invention in a single wheat plant include Sr22 (WO 2017/024053), Sr26, Sr32, Sr33 (GenBank Accession No. KF031299.1), Sr35 (GenBank Accession No. KC573058.1), Sr39, Sr40, Sr45 (WO 2017/024053), Sr47, Sr50, SrTA1662 (WO2019140351) and adult plant resistance genes Sr57/Lr34 (GenBank Accession No. FJ436983.1) and Sr55/Lr67.

包含多个R基因的本发明的转基因植物可以通过用包含本发明的R基因核苷酸序列(包括例如,Sr27核苷酸序列或其变体)的多核苷酸构建体转化已经包含一个或多个其他R基因核苷酸序列的植物来产生。这样的已经包含一个或多个其他R基因核苷酸序列的植物可以包含这样的R基因,其对于所述植物的基因组来说是天然的,经由有性繁殖而被引入到所述植物中,或者通过用R基因核苷酸序列转化所述植物或其祖先而被引入。备选地,可以通过例如转化或有性繁殖,将所述一个或多个其他R基因核苷酸序列引入到已经包含本发明的多核苷酸构建体的本发明的转基因植物中。Transgenic plants of the present invention comprising multiple R genes can be produced by transforming a plant already comprising one or more other R gene nucleotide sequences with a polynucleotide construct comprising an R gene nucleotide sequence of the present invention (including, for example, an Sr27 nucleotide sequence or a variant thereof). Such plants already comprising one or more other R gene nucleotide sequences can comprise such R genes that are native to the genome of the plant, introduced into the plant via sexual reproduction, or introduced by transforming the plant or its ancestor with an R gene nucleotide sequence. Alternatively, the one or more other R gene nucleotide sequences can be introduced into a transgenic plant of the present invention that already comprises a polynucleotide construct of the present invention, for example, by transformation or sexual reproduction.

在其他实施方案中,可以通过用包含两个或更多个R基因核苷酸序列的多核苷酸构建体或载体稳定地转化植物来将两个或更多个不同的R基因序列引入到所述植物中。公认的是,这样的方法对于植物育种来说可以是优选的,因为预期的是,所述两个或更多个R基因核苷酸序列将会紧密地连锁并且因此作为单个座位进行分离。备选地,可以通过使用在本文中其他地方所描述的或者在本领域中已知的基于同源重组的基因组修饰方法来将本发明的多核苷酸构建体在另一个R基因核苷酸序列的紧邻处掺入到植物的基因组中。In other embodiments, two or more different R gene sequences can be introduced into the plant by stably transforming the plant with a polynucleotide construct or vector comprising two or more R gene nucleotide sequences. It is recognized that such a method can be preferred for plant breeding because it is expected that the two or more R gene nucleotide sequences will be closely linked and thus separated as a single locus. Alternatively, the polynucleotide construct of the present invention can be incorporated into the genome of the plant in the immediate vicinity of another R gene nucleotide sequence by using a genome modification method based on homologous recombination described elsewhere herein or known in the art.

本发明进一步提供了用于增强植物(特别是小麦或黑小麦植物)对于由Pgt引起的秆锈病的抗性的方法。所述方法包括将本发明的多核苷酸构建体引入到至少一个植物细胞中。在某些实施方案中,将所述多核苷酸构建体稳定地掺入到植物细胞的基因组中。如果希望,所述方法可以进一步包括将所述植物细胞再生为在其基因组中包含所述多核苷酸构建体的植物。优选地,这样的再生出的植物包含增强的对于由Pgt的至少一个品种引起的秆锈病的抗性,相对于对照植物对于由相同的Pgt的品种引起的秆锈病的抗性而言。如果希望,所述方法可以进一步包括产生上面所描述的植物,其包含一个、两个、三个、四个、五个、六个或更多个编码R蛋白的核苷酸序列,优选地,每个核苷酸序列编码不同的R蛋白。The present invention further provides a method for enhancing the resistance of plants (particularly wheat or triticale plants) to stem rust caused by Pgt. The method comprises introducing the polynucleotide construct of the present invention into at least one plant cell. In certain embodiments, the polynucleotide construct is stably incorporated into the genome of the plant cell. If desired, the method may further comprise regenerating the plant cell into a plant comprising the polynucleotide construct in its genome. Preferably, such regenerated plants comprise enhanced resistance to stem rust caused by at least one variety of Pgt, relative to the resistance of control plants to stem rust caused by the variety of the same Pgt. If desired, the method may further comprise producing the plant described above, comprising one, two, three, four, five, six or more nucleotide sequences encoding R proteins, preferably, each nucleotide sequence encoding a different R protein.

特别地在其中秆锈病流行的地区中,在农作物生产中,在用于限制由Pgt引起的秆锈病的方法中可使用在本文中所公开的植物。本发明的方法包括种植由本发明的植物所产生的种子,其中所述种子包含至少一个本发明的R基因核苷酸序列。所述方法进一步包括在有利于从其而来的植物的生长和发育的条件下栽培所述植物,和任选地从所述植物收获至少一个种子或其他植物部分。The plants disclosed herein can be used in methods for limiting stem rust caused by Pgt in crop production, particularly in regions where stem rust is prevalent. The methods of the invention comprise planting seeds produced by the plants of the invention, wherein the seeds comprise at least one R gene nucleotide sequence of the invention. The methods further comprise cultivating the plants under conditions conducive to the growth and development of plants therefrom, and optionally harvesting at least one seed or other plant part from the plants.

另外,本发明提供了用于鉴定展示出新赋予的或增强的对于由Pgt引起的秆锈病的抗性的植物(特别是小麦或黑小麦植物)的方法。所述方法可在就对于秆锈病的抗性培育植物中使用。此类抗性植物可在小麦种子的农业生产中使用。所述方法包括在植物中检测至少一个本发明的R基因(特别是Sr27)的存在。在本发明的一些实施方案中,检测所述R基因的存在包括在从所述植物中分离出的基因组DNA中检测整个R基因。然而,在优选的实施方案中,检测R基因的存在包括检测在所述R基因之内的至少一个标志物的存在。在本发明的另一些实施方案中,检测R基因的存在包括通过使用例如牵涉对于R蛋白来说特异性的抗体的免疫学检测方法来检测由所述R基因所编码的R蛋白的存在。In addition, the present invention provides a method for identifying plants (particularly wheat or triticale plants) that exhibit newly conferred or enhanced resistance to stem rust caused by Pgt. The method can be used in cultivating plants for resistance to stem rust. Such resistant plants can be used in the agricultural production of wheat seeds. The method includes detecting the presence of at least one R gene of the present invention (particularly Sr27) in a plant. In some embodiments of the present invention, detecting the presence of the R gene includes detecting the entire R gene in genomic DNA isolated from the plant. However, in preferred embodiments, detecting the presence of the R gene includes detecting the presence of at least one marker within the R gene. In other embodiments of the present invention, detecting the presence of the R gene includes detecting the presence of an R protein encoded by the R gene by using, for example, an immunological detection method involving antibodies specific for the R protein.

在所述用于鉴定展示出新赋予的或增强的对于由Pgt引起的秆锈病的抗性的植物的方法中,在所述植物中检测所述R基因的存在可以牵涉下面的在本文中其他地方所公开的或者本领域中已知的分子生物学技术中的一种或多种,其包括但不限于:从所述小麦植物中分离出基因组DNA和/或RNA,通过PCR扩增来扩增包含所述R基因和/或其中的标志物的核酸分子,对包含所述R基因和/或标志物的核酸分子进行测序,通过核酸杂交来鉴定所述R基因、所述标志物或所述R基因的转录物,和进行免疫学测定法以用于检测由所述R基因所编码的R蛋白。公认的是,可以设计寡核苷酸探针和PCR引物来鉴定本发明的R基因,并且可以在本文中其他地方所公开的或者本领域中已知的方法中使用这样的探针和PCR引物以快速地在植物群体中鉴定一个或多个包含本发明的R基因的存在的植物。进一步公认的是,检测所述R基因的存在可以牵涉检测本发明的R基因的片段的存在。本发明的R基因的此类片段可以包含例如至少10、20、50、75、100、125、150、175、200、300、400、500、600、700、800、900、1000、1500、2000、2500、3000、3500或更多个连续核苷酸。In the method for identifying plants that exhibit newly conferred or enhanced resistance to stem rust caused by Pgt, detecting the presence of the R gene in the plant may involve one or more of the following molecular biology techniques disclosed elsewhere herein or known in the art, including but not limited to: isolating genomic DNA and/or RNA from the wheat plant, amplifying nucleic acid molecules comprising the R gene and/or markers therein by PCR amplification, sequencing nucleic acid molecules comprising the R gene and/or markers, identifying the R gene, the marker or transcripts of the R gene by nucleic acid hybridization, and performing immunological assays for detecting the R protein encoded by the R gene. It is recognized that oligonucleotide probes and PCR primers can be designed to identify the R gene of the present invention, and such probes and PCR primers can be used in methods disclosed elsewhere herein or known in the art to quickly identify one or more plants comprising the presence of the R gene of the present invention in a plant population. It is further recognized that detecting the presence of the R gene may involve detecting the presence of a fragment of the R gene of the present invention. Such fragments of the R gene of the invention may contain, for example, at least 10, 20, 50, 75, 100, 125, 150, 175, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1500, 2000, 2500, 3000, 3500 or more consecutive nucleotides.

取决于所希望的结果,可以将本发明的多核苷酸构建体稳定地掺入到所述植物细胞的基因组中或者不稳定地掺入到所述植物细胞的基因组中。如果例如所希望的结果是产生具有增强的对于由Pgt的至少一个品种引起的小麦秆锈病的抗性的经稳定转化的植物,那么可以例如将所述多核苷酸构建体融合到适合于将所述多核苷酸构建体稳定地掺入到所述植物细胞的基因组中的植物转化载体之中。典型地,经稳定转化的植物细胞将会被再生为在其基因组中包含所述多核苷酸构建体的经转化的植物。这样的经稳定转化的植物能够通过有性和/或无性繁殖在随后世代中将所述多核苷酸构建体传送至子代植物。植物转化载体、用于用所引入的多核苷酸构建体稳定地转化植物的方法和用于从经转化的植物细胞和组织进行植物再生的方法是本领域中对于单子叶和双子叶植物两者通常已知的或者在本文中其他地方进行了描述。Depending on the desired result, the polynucleotide construct of the present invention can be stably incorporated into the genome of the plant cell or unstably incorporated into the genome of the plant cell. If, for example, the desired result is to produce a stably transformed plant with enhanced resistance to wheat stem rust caused by at least one variety of Pgt, then the polynucleotide construct can, for example, be fused to a plant transformation vector suitable for stably incorporating the polynucleotide construct into the genome of the plant cell. Typically, the stably transformed plant cell will be regenerated into a transformed plant comprising the polynucleotide construct in its genome. Such stably transformed plants can transmit the polynucleotide construct to progeny plants in subsequent generations by sexual and/or asexual reproduction. Plant transformation vectors, methods for stably transforming plants with introduced polynucleotide constructs, and methods for regenerating plants from transformed plant cells and tissues are generally known in the art for both monocots and dicots or described elsewhere in this article.

本发明提供了包含R基因的核酸分子。优选地,所述R基因能够赋予宿主植物(特别是小麦或黑小麦植物)以增强的对于引起秆锈病的病原体Pgt的至少一个品种的抗性。更优选地,所述R基因能够赋予宿主植物(特别是小麦或黑小麦植物)以增强的对于Pgt的两个、三个、四个或更多个品种的抗性。因此,这样的R基因可在农业生产中在限制由Pgt引起的秆锈病中使用。本发明的R基因包括但不限于其核苷酸序列在本文中公开的R基因,但是也包括能够赋予植物以对于由Pgt的至少一个品种引起的秆锈病的抗性的直向同源物和其他变体。用于测定植物对于由Pgt的至少一个品种引起的秆锈病的抗性的方法是本领域中已知的或者在本文中公开。The present invention provides nucleic acid molecules comprising R genes. Preferably, the R gene is capable of conferring enhanced resistance to at least one variety of the pathogen Pgt that causes stem rust on a host plant (particularly a wheat or triticale plant). More preferably, the R gene is capable of conferring enhanced resistance to two, three, four or more varieties of Pgt on a host plant (particularly a wheat or triticale plant). Therefore, such an R gene can be used in agricultural production to limit the stem rust caused by Pgt. The R gene of the present invention includes but is not limited to the R gene whose nucleotide sequence is disclosed herein, but also includes orthologs and other variants that can confer resistance to stem rust caused by at least one variety of Pgt on a plant. Methods for determining the resistance of a plant to stem rust caused by at least one variety of Pgt are known in the art or disclosed herein.

本发明的方法可用于产生具有增强的对由Pgt的至少一个品种引起的秆锈病的抗性的植物,特别是小麦和黑小麦植物。典型地,本发明的方法将会将受试植物对于Pgt的一个品种的抗性增强或增加至少25%、50%、75%、100%、150%、200%、250%、500%或更多,当与对照植物对于相同的Pgt的品种的抗性相比较时。除非另有说明或者从使用的上下文中明显的,否则关于本发明的对照植物为不包含本发明的多核苷酸构建体的植物。优选地,所述对照植物与包含本发明的多核苷酸构建体的植物是基本上相同的(例如,相同的物种、亚种和变种),除了对照不包含所述多核苷酸构建体之外。在一些实施方案中,所述对照将会包含多核苷酸构建体,但是不包含在本发明的多核苷酸构建体中的一个或多个R基因序列。The methods of the present invention can be used to produce plants, particularly wheat and triticale plants, with enhanced resistance to stem rust caused by at least one variety of Pgt. Typically, the methods of the present invention will enhance or increase the resistance of the test plant to a variety of Pgt by at least 25%, 50%, 75%, 100%, 150%, 200%, 250%, 500% or more when compared to the resistance of the control plant to the same variety of Pgt. Unless otherwise specified or obvious from the context of use, the control plant of the present invention is a plant that does not contain the polynucleotide construct of the present invention. Preferably, the control plant is substantially the same (e.g., the same species, subspecies and variant) as the plant containing the polynucleotide construct of the present invention, except that the control does not contain the polynucleotide construct. In some embodiments, the control will contain a polynucleotide construct, but not one or more R gene sequences in the polynucleotide construct of the present invention.

另外,本发明提供了通过本发明的方法而产生的和/或包含本发明的多核苷酸构建体的经转化的植物、种子和植物细胞。还提供了包含本发明的多核苷酸构建体的子代植物及其种子。本发明还提供了由本发明的经转化的植物和/或子代植物产生的种子、营养部分和其他植物部分,以及从此类植物部分产生的食物产品和其他农产品,其意欲被人和其他动物(包括但不限于,宠物(例如,狗和猫)和家畜(例如,猪、牛、鸡、火鸡和鸭子))消费或使用。In addition, the present invention provides transformed plants, seeds and plant cells produced by the method of the present invention and/or comprising the polynucleotide construct of the present invention. Progeny plants and seeds thereof comprising the polynucleotide construct of the present invention are also provided. The present invention also provides seeds, nutrient parts and other plant parts produced by the transformed plants and/or progeny plants of the present invention, and food products and other agricultural products produced from such plant parts, which are intended to be consumed or used by humans and other animals (including but not limited to, pets (e.g., dogs and cats) and livestock (e.g., pigs, cattle, chickens, turkeys and ducks)).

本发明的方法可以用于增强植物(特别是是小麦或黑小麦植物)对于秆锈病(特别是由Pgt的至少一个品种引起的秆锈病)的抗性。如在本文中所使用的,术语“小麦植物”通常是指这样的植物,其是小麦属(Triticum)的成员,或者小麦族(Triticeae)内的另一个属的成员,特别地,能够与至少一个小麦属物种产生种间杂种的另一个属的成员。小麦族内的这样的另一个属的例子为山羊草属(Aegilops)和黑麦属(Secale)。The method of the present invention can be used to enhance the resistance of plants, particularly wheat or triticale plants, to stem rust, particularly stem rust caused by at least one variety of Pgt. As used herein, the term "wheat plant" generally refers to a plant that is a member of the genus Triticum, or a member of another genus within the Triticeae, particularly a member of another genus that is capable of producing interspecific hybrids with at least one Triticeae species. Examples of such another genus within the Triticeae are Aegilops and Secale.

本发明的小麦植物包括例如经驯化的和未驯化的植物。本发明的小麦植物包括但不限于下面的小麦属、山羊草属和黑麦属物种:普通小麦(T.aestivum)、一粒小麦、圆柱小麦(T.turgidum)、野生一粒小麦(T.boeoticum)、提莫非维小麦(T.timopheevii)和乌拉尔图小麦(T.urartu)、节节麦、黑麦(Secale cereale)以及其杂种。包括在本发明中的普通小麦亚种的例子为普通(aestivum)、密穗(compactum)、玛卡(macha)、瓦氏(vavilovi)、斯佩尔特(spelta)和球粒(sphaecrococcum)。包括在本发明之内的圆柱小麦亚种的例子为圆柱(turgidum)、波斯(carthlicum)、双粒(dicoccom)、硬粒(durum)、paleocoichicum、波兰(polonicum)、杂生(turanicum)和野生二粒(T.dicoccoides)。包括在本发明内的一粒小麦亚种的例子为一粒(monococcum)和aegilopoides。在本发明的一个实施方案中,所述小麦植物为圆柱小麦物种的成员,和特别地,硬粒小麦亚种的成员,例如Ciccio、Colosseo或Utopia栽培种。公认的是,本发明的小麦植物可以为经驯化的小麦植物或未驯化的小麦植物。The wheat plants of the present invention include, for example, domesticated and undomesticated plants. The wheat plants of the present invention include, but are not limited to, the following Triticum, Aegilops and Secale species: common wheat (T.aestivum), einkorn wheat, cylindrical wheat (T.turgidum), wild einkorn wheat (T.boeoticum), Timopheevii wheat (T.timopheevii) and Urartu wheat (T.urartu), Aegilops tauschii, Secale cereale and hybrids thereof. Examples of common wheat subspecies included in the present invention are common (aestivum), compactum (compactum), macha (macha), vavilovi (vavilovi), spelta (spelta) and sphaecrococcum (sphaecrococcum). Examples of cylindrical wheat subspecies included in the present invention are cylindrical (turgidum), Persian (carthlicum), two grains (dicoccom), hard grains (durum), paleocoichicum, Polish (polonicum), mixed (turanicum) and wild two grains (T.dicoccoides). Examples of E. triticum subspecies included in the present invention are monococcum and aegilopoides. In one embodiment of the present invention, the wheat plant is a member of the species Triticum cylindrum, and in particular, a member of the subspecies durum, such as the cultivars Ciccio, Colosseo or Utopia. It is recognized that the wheat plant of the present invention can be a domesticated wheat plant or an undomesticated wheat plant.

本发明还包括包含本发明的R基因的黑小麦植物、黑小麦植物部分和黑小麦植物细胞。如在本文中所使用的,“黑小麦植物”是指通过将黑麦植物与四倍体小麦植物(例如,圆柱小麦)或六倍体小麦植物(例如,普通小麦)进行杂交而创建的植物。本发明还包括由在本文中所描述的黑小麦植物所产生的种子,和用于在本文中所描述的黑小麦植物的附近控制杂草的方法。如在本文中所使用的,术语“小麦植物”包括黑小麦植物,除非另有说明或者从使用的上下文中明显的。The present invention also includes triticale plants, triticale plant parts and triticale plant cells comprising R gene of the present invention. As used in this article, "triticale plants" refer to plants created by hybridizing rye plants with tetraploid wheat plants (e.g., cylindrical wheat) or hexaploid wheat plants (e.g., common wheat). The present invention also includes seeds produced by triticale plants described in this article, and methods for controlling weeds near triticale plants described in this article. As used in this article, the term "wheat plant" includes triticale plants, unless otherwise noted or apparent from the context of use.

术语“植物”意欲包括处于任何成熟或发育阶段的植物,以及从任何这样的植物获取或衍生的任何组织或器官(植物部分),除非上下文另有明确说明。如在本文中所使用的,术语“植物”包括但不限于:种子、植物细胞、植物原生质体、植物细胞组织培养物(从其可以再生出植物)、植物愈伤组织、植物块和植物细胞(其在植物或植物部分例如胚、花粉、胚珠、种子、块茎、繁殖体、叶、花、枝、果实、根、根尖、花药等中是完整的)。本发明还包括由本发明的植物所产生的种子。The term "plant" is intended to include plants at any stage of maturity or development, and any tissue or organ (plant part) obtained or derived from any such plant, unless the context clearly indicates otherwise. As used herein, the term "plant" includes, but is not limited to: seeds, plant cells, plant protoplasts, plant cell tissue cultures (from which plants can be regenerated), plant callus, plant pieces and plant cells (which are intact in plants or plant parts such as embryos, pollen, ovules, seeds, tubers, propagules, leaves, flowers, branches, fruits, roots, root tips, anthers, etc.). The present invention also includes seeds produced by the plants of the present invention.

再生出的植物的子代、变异体和突变体也包括在本发明的范围之内,条件是这些部分包含所引入的多核苷酸。如在本文中所使用的,“子代”和“子代植物”包括植物的任何随后的世代,无论得自有性繁殖和/或无性繁殖,除非另有明确说明或者从使用的上下文中明显的。Progeny, variants and mutants of the regenerated plants are also included within the scope of the present invention, provided that these parts comprise the introduced polynucleotides. As used herein, "progeny" and "progeny plants" include any subsequent generations of plants, whether derived from sexual reproduction and/or asexual reproduction, unless otherwise expressly stated or apparent from the context of use.

植物部分包括但不限于:种子、茎、根、花、胚珠、雄蕊、叶、胚、分生区、愈伤组织、花药培养物、配子体、孢子体、花粉、小孢子、原生质体等。Plant parts include, but are not limited to, seeds, stems, roots, flowers, ovules, stamens, leaves, embryos, meristems, callus tissue, anther cultures, gametophytes, sporophytes, pollen, microspores, protoplasts, and the like.

在本发明的一个实施方案中,编码R蛋白的核苷酸序列与SEQ ID NO:1、2和/或4中所示的整个核苷酸序列或者与其片段具有至少大约80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更大的序列同一性。In one embodiment of the present invention, the nucleotide sequence encoding the R protein has at least about 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or greater sequence identity to the entire nucleotide sequence shown in SEQ ID NO:1, 2 and/or 4, or a fragment thereof.

本发明包括分离的或实质上经纯化的多核苷酸(在本文中也称为“核酸分子”、“核酸”等)或蛋白质(在本文中也称为“多肽”)组合物,其包括例如包含在随附的序列表中所阐述的序列的多核苷酸和蛋白质以及此类多核苷酸和蛋白质的变体和片段。“分离的”或“经纯化的”多核苷酸或蛋白质,或者其在生物学上有活性的部分,是实质上或基本上没有通常伴随所述多核苷酸或蛋白质或者与之相互作用的组分(如在其天然出现的环境中所发现的)。因此,分离的或经纯化的多核苷酸或蛋白质实质上没有其他细胞材料或培养基(当通过重组技术产生时),或者实质上没有化学前体或其他化学品(当以化学方式合成时)。最佳地,“分离的”多核苷酸没有在所述多核苷酸所源自的生物的基因组DNA中天然地位于所述多核苷酸侧翼的序列(最佳地,蛋白质编码序列)(即位于所述多核苷酸的5'和3'末端的序列)。例如,在各种实施方案中,所述分离的多核苷酸可以包含小于大约5kb、4kb、3kb、2kb、1kb、0.5kb或0.1kb的在所述多核苷酸所源自的细胞的基因组DNA中天然地位于所述多核苷酸侧翼的核苷酸序列。实质上没有细胞材料的蛋白质包括具有小于大约30%、20%、10%、5%或1%(以干重计)的污染性蛋白质的蛋白质制备物。当本发明的蛋白质或其在生物学上有活性的部分是重组产生的之时,最佳地,培养基有着小于大约30%、20%、10%、5%或1%(以干重计)的化学前体或非目的蛋白质化学品。The present invention includes isolated or substantially purified polynucleotide (also referred to herein as "nucleic acid molecules," "nucleic acids," etc.) or protein (also referred to herein as "polypeptides") compositions, including, for example, polynucleotides and proteins comprising the sequences set forth in the accompanying sequence listing, as well as variants and fragments of such polynucleotides and proteins. An "isolated" or "purified" polynucleotide or protein, or a biologically active portion thereof, is substantially or essentially free of components that normally accompany or interact with the polynucleotide or protein (as found in the environment in which it naturally occurs). Thus, an isolated or purified polynucleotide or protein is substantially free of other cellular material or culture medium (when produced by recombinant techniques), or substantially free of chemical precursors or other chemicals (when chemically synthesized). Optimally, an "isolated" polynucleotide is free of sequences (optimally, protein coding sequences) that naturally flank the polynucleotide (i.e., sequences located at the 5' and 3' ends of the polynucleotide) in the genomic DNA of the organism from which the polynucleotide is derived. For example, in various embodiments, the isolated polynucleotide may comprise less than about 5 kb, 4 kb, 3 kb, 2 kb, 1 kb, 0.5 kb, or 0.1 kb of nucleotide sequences that naturally flank the polynucleotide in the genomic DNA of the cell from which the polynucleotide is derived. Proteins that are substantially free of cellular material include protein preparations having less than about 30%, 20%, 10%, 5%, or 1% (by dry weight) of contaminating protein. When a protein of the invention, or a biologically active portion thereof, is recombinantly produced, optimally, the culture medium has less than about 30%, 20%, 10%, 5%, or 1% (by dry weight) of chemical precursors or non-target protein chemicals.

本发明还包括所公开的多核苷酸和由其所编码的蛋白质的片段或变体。“片段”意指所述多核苷酸的一部分,或者由其所编码的氨基酸序列和因此蛋白质的一部分。包含编码序列的多核苷酸的片段可以编码蛋白质片段,其保持了全长或天然蛋白质的生物学活性。备选地,作为杂交探针来说有用的多核苷酸的片段通常不编码保持生物学活性的蛋白质或者不保持启动子活性。因此,核苷酸序列的片段可以在从至少大约20个核苷酸、大约50个核苷酸、大约100个核苷酸和直至本发明的全长多核苷酸的范围内变动。The present invention also includes fragments or variants of the disclosed polynucleotides and proteins encoded therefrom. "Fragment" means a part of the polynucleotide, or a part of the amino acid sequence and thus protein encoded therefrom. The fragment of the polynucleotide comprising the coding sequence can encode a protein fragment that retains the biological activity of the full-length or native protein. Alternatively, the fragment of the polynucleotide useful as a hybridization probe does not usually encode a protein that retains biological activity or does not retain promoter activity. Therefore, the fragment of the nucleotide sequence can vary in the range of from at least about 20 nucleotides, about 50 nucleotides, about 100 nucleotides and up to the full-length polynucleotide of the present invention.

作为天然R多核苷酸的片段的多核苷酸包含至少16、20、50、75、100、125、150、175、200、300、400、500、1000、1500、2000、2500、3000或3500个连续核苷酸,或直至在本文中所公开的全长R多核苷酸中存在的核苷酸数目。A polynucleotide that is a fragment of a native R polynucleotide comprises at least 16, 20, 50, 75, 100, 125, 150, 175, 200, 300, 400, 500, 1000, 1500, 2000, 2500, 3000 or 3500 contiguous nucleotides, or up to the number of nucleotides present in a full-length R polynucleotide disclosed herein.

“变体”意欲指实质上相似的序列。对于多核苷酸,变体包括这样的多核苷酸,其在5'末端和/或3'末端处具有缺失(即,截短);在天然多核苷酸的一个或多个内部位点处具有一个或多个核苷酸的缺失和/或添加;和/或在天然多核苷酸中的一个或多个位点处具有一个或多个核苷酸的置换。如在本文中所使用的,“天然(的)”多核苷酸或多肽分别包含天然出现的核苷酸序列或氨基酸序列。对于多核苷酸,保守变体包括由于遗传密码的简并性而编码本发明的R蛋白之一的氨基酸序列的那些序列。天然出现的等位基因变体例如这些可以通过使用众所周知的分子生物学技术,例如用在下面所概述的聚合酶链反应(PCR)和杂交技术来鉴定。变体多核苷酸还包括以合成方式衍生的多核苷酸,诸如例如通过使用位点定向诱变而生成但仍然编码本发明的R蛋白的那些。通常,本发明的特定多核苷酸的变体将会与那个特定多核苷酸具有至少大约80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更大的序列同一性,如通过在本文中其他地方所描述的序列比多程序和参数所测定的。在本发明的某些实施方案中,本发明的特定多核苷酸的变体将会与至少一个从由SEQ ID NO:1、2和4组成的组中选择的核苷酸序列具有至少大约80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更大的序列同一性,和任选地,包含与SEQ ID NO:1、2和/或4中所示的核苷酸序列相差至少一个核苷酸修饰的非天然出现的核苷酸序列,所述至少一个核苷酸修饰选自由下列各项组成的组:至少一个核苷酸的置换、至少一个核苷酸的添加和至少一个核苷酸的缺失。"Variant" is intended to refer to substantially similar sequences. For polynucleotides, variants include polynucleotides having a deletion (i.e., truncation) at the 5' end and/or the 3' end; having a deletion and/or addition of one or more nucleotides at one or more internal sites of a natural polynucleotide; and/or having a substitution of one or more nucleotides at one or more sites in a natural polynucleotide. As used herein, "natural (of)" polynucleotides or polypeptides include naturally occurring nucleotide sequences or amino acid sequences, respectively. For polynucleotides, conservative variants include those sequences that encode the amino acid sequence of one of the R proteins of the present invention due to the degeneracy of the genetic code. Naturally occurring allelic variants such as these can be identified by using well-known molecular biology techniques, such as polymerase chain reaction (PCR) and hybridization techniques outlined below. Variant polynucleotides also include synthetically derived polynucleotides, such as those generated by using site-directed mutagenesis but still encoding the R protein of the present invention. Typically, variants of a particular polynucleotide of the invention will have at least about 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or greater sequence identity to that particular polynucleotide as determined by the sequence comparison programs and parameters described elsewhere herein. In certain embodiments of the invention, variants of a particular polynucleotide of the invention will have at least about 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or greater sequence identity to at least one nucleotide sequence selected from the group consisting of SEQ ID NO: 1, 2 and 4, and optionally, a non-naturally occurring nucleotide sequence comprising a nucleotide sequence shown in SEQ ID NO: 1, 2 and/or 4 that differs by at least one nucleotide modification selected from the group consisting of: a substitution of at least one nucleotide, an addition of at least one nucleotide, and a deletion of at least one nucleotide.

本发明的特定多核苷酸(即,参考多核苷酸)的变体也可以通过在由变体多核苷酸所编码的多肽与由参考多核苷酸所编码的多肽之间的序列同一性百分比的比较来进行评价。因此,例如,公开了编码与SEQ ID NO:3的多肽具有给定的序列同一性百分比的多肽的多核苷酸。任何两个多肽之间的序列同一性百分比可以通过使用在本文中其他地方所描述的序列比对程序和参数来计算。当任何给定的本发明的多核苷酸对通过比较由它们所编码的两个多肽所共享的序列同一性百分比来进行评价时,两个所编码的多肽之间的序列同一性百分比为至少大约80%、85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更大的序列同一性。在本发明的某些实施方案中,本发明的特定多肽的变体将会与SEQ ID NO:3中所示的氨基酸序列具有至少大约80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更大的序列同一性,和任选地,包含与SEQ ID NO:3中所示的氨基酸序列相差至少一个氨基酸修饰的非天然出现的氨基酸序列,所述至少一个氨基酸修饰选自由下列各项组成的组:至少一个氨基酸的置换、至少一个氨基酸的添加和至少一个氨基酸的缺失。Variants of specific polynucleotides of the present invention (i.e., reference polynucleotides) can also be evaluated by comparing the percentage of sequence identity between a polypeptide encoded by a variant polynucleotide and a polypeptide encoded by a reference polynucleotide. Thus, for example, polynucleotides encoding a polypeptide having a given percentage of sequence identity with a polypeptide of SEQ ID NO:3 are disclosed. The percentage of sequence identity between any two polypeptides can be calculated by using the sequence alignment program and parameters described elsewhere in this article. When any given polynucleotide of the present invention is evaluated by comparing the percentage of sequence identity shared by two polypeptides encoded by them, the percentage of sequence identity between the two encoded polypeptides is at least about 80%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or greater sequence identity. In certain embodiments of the invention, variants of a particular polypeptide of the invention will have at least about 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or greater sequence identity to the amino acid sequence shown in SEQ ID NO:3, and optionally, comprise a non-naturally occurring amino acid sequence that differs from the amino acid sequence shown in SEQ ID NO:3 by at least one amino acid modification selected from the group consisting of: a substitution of at least one amino acid, an addition of at least one amino acid, and a deletion of at least one amino acid.

“变体”蛋白质意欲指通过下述方式而衍生自天然蛋白质的蛋白质:在天然蛋白质的N-末端和/或C末端处一个或多个氨基酸的缺失(所谓的截短);在天然蛋白质中的一个或多个内部位点处一个或多个氨基酸的缺失和/或添加;或者在天然蛋白质中的一个或多个位点处一个或多个氨基酸的置换。此类变体可以得自例如遗传多态性或得自人为操作。R蛋白的在生物学上有活性的变体将会与关于天然蛋白质的氨基酸序列(例如,SEQ ID NO:3中所示的氨基酸序列)具有至少大约80%、85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更大的序列同一性,如通过在本文中其他地方所描述的序列比对程序和参数所测定的。本发明的蛋白质的在生物学上有活性的变体可以与那个蛋白质相差少至1-15个氨基酸残基,少至1-10个,例如6-10个,少至5个,少至4、3、2或甚至1个氨基酸残基。"Variant" protein is intended to refer to a protein derived from a native protein by: deletion of one or more amino acids at the N-terminus and/or C-terminus of the native protein (so-called truncation); deletion and/or addition of one or more amino acids at one or more internal sites in the native protein; or substitution of one or more amino acids at one or more sites in the native protein. Such variants may be derived, for example, from genetic polymorphisms or from artificial manipulation. Biologically active variants of the R protein will have at least about 80%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or greater sequence identity with respect to the amino acid sequence of the native protein (e.g., the amino acid sequence shown in SEQ ID NO: 3), as determined by the sequence alignment programs and parameters described elsewhere herein. A biologically active variant of a protein of the invention may differ from that protein by as few as 1-15 amino acid residues, as few as 1-10, such as 6-10, as few as 5, as few as 4, 3, 2 or even 1 amino acid residue.

本发明的蛋白质可以以各种方式被改变,包括氨基酸置换、缺失、截短和插入。用于此类操作的方法通常是本领域中已知的。用于诱变和多核苷酸改变的方法是本领域中众所周知的。参见例如Kunkel(1985)PNAS 82:488-492;Kunkel等人,(1987)Methods inEnzymol.154:367-382;美国专利号4,873,192;Walker和Gaastra,编者(1983)Techniquesin Molecular Biology(MacMillan Publishing Company,New York)和其中所引用的参考文献。关于对不影响目的蛋白质的生物学活性的合适氨基酸置换的指南可以在Dayhoff等人,(1978)Atlas of Protein Sequence and Structure(Natl.Biomed.Res.Found.,Washington,D.C.)(其通过提及而合并入本文)的模型中找到。保守置换,例如一个氨基酸与另一个具有相似特性的氨基酸的交换,可以是最佳的。The proteins of the present invention can be altered in various ways, including amino acid substitutions, deletions, truncations, and insertions. Methods for such manipulations are generally known in the art. Methods for mutagenesis and polynucleotide alterations are well known in the art. See, for example, Kunkel (1985) PNAS 82: 488-492; Kunkel et al., (1987) Methods in Enzymol. 154: 367-382; U.S. Patent No. 4,873,192; Walker and Gaastra, eds. (1983) Techniques in Molecular Biology (MacMillan Publishing Company, New York) and references cited therein. Guidance on suitable amino acid substitutions that do not affect the biological activity of the protein of interest can be found in the model of Dayhoff et al., (1978) Atlas of Protein Sequence and Structure (Natl. Biomed. Res. Found., Washington, D.C.) (which is incorporated herein by reference). Conservative substitutions, such as exchanging one amino acid for another with similar properties, may be optimal.

因此,本发明的基因和多核苷酸包括天然出现的序列以及突变体和其他变体形式。同样地,本发明的蛋白质包括天然出现的蛋白质以及其变异和经修饰的形式。更优选地,此类变体赋予包含所述变体的植物或其部分以增强的对于由Pgt的至少一个品种引起的秆锈病的抗性。在一些实施方案中,将会在编码所述变体的DNA中制造的突变不会将该序列置于读码框之外。最佳地,所述突变不会创建出能够产生二级mRNA结构的互补区域。参见,EP专利申请公开号75,444。Therefore, genes and polynucleotides of the present invention include naturally occurring sequences and mutants and other variant forms. Similarly, proteins of the present invention include naturally occurring proteins and variations and modified forms thereof. More preferably, such variants confer enhanced resistance to stem rust caused by at least one variety of Pgt to the plant or part thereof comprising the variant. In some embodiments, the mutations made in the DNA encoding the variant will not place the sequence outside the reading frame. Optimally, the mutations will not create complementary regions capable of producing secondary mRNA structures. See, EP Patent Application Publication No. 75,444.

预期在本文中所包括的蛋白质序列的缺失、插入和置换不会在该蛋白质的特征方面产生根本性的变化。然而,当难以在这么做之前预测置换、缺失或插入的精确效应时,本领域技术人员将会意识到,所述效应将会通过常规筛选测定法来进行评价。即,所述活性可以通过在本文中下面所公开的测定法来进行评价。It is expected that deletions, insertions and substitutions of the protein sequences included herein will not produce fundamental changes in the characteristics of the protein. However, while it is difficult to predict the precise effect of a substitution, deletion or insertion before doing so, those skilled in the art will appreciate that the effect will be evaluated by conventional screening assays. That is, the activity can be evaluated by the assays disclosed herein below.

例如,可以将对于由Pgt的特定品种引起的小麦秆锈病易感的小麦植物用Sr27多核苷酸进行转化,再生为包含所述多核苷酸的经转化的或转基因的植物,并且通过使用本领域中已知的或者在本文中其他地方所描述的标准抗性测定法来就对于由Pgt的特定品种引起的小麦秆锈病的抗性进行测试。本发明的优选的变体多核苷酸和多肽赋予或能够赋予小麦植物以增强的对于已知在易感小麦植物中引起小麦秆锈病的Pgt的至少一个品种的抗性。For example, wheat plants susceptible to wheat stem rust caused by a particular variety of Pgt can be transformed with an Sr27 polynucleotide, regenerated into transformed or transgenic plants comprising the polynucleotide, and tested for resistance to wheat stem rust caused by a particular variety of Pgt using standard resistance assays known in the art or described elsewhere herein. Preferred variant polynucleotides and polypeptides of the invention confer or are capable of conferring enhanced resistance to at least one variety of Pgt known to cause wheat stem rust in susceptible wheat plants.

变体多核苷酸和蛋白质还包括源自致突变和致重组操作程序(例如DNA混编)的序列和蛋白质。对于这样的DNA混编的策略是本领域中已知的。参见例如,Stemmer(1994)PNAS91:10747-10751;Stemmer(1994)Nature 370:389-391;Crameri等人,(1997)NatureBiotech.15:436-438;Moore等人,(1997)J.Mol.Biol.272:336-347;Zhang等人,(1997)PNAS 94:4504-4509;Crameri等人,(1998)Nature391:288-291;和美国专利号5,605,793和5,837,458。Variant polynucleotides and proteins also include sequences and proteins derived from mutagenic and recombinogenic procedures (e.g., DNA shuffling). Strategies for such DNA shuffling are known in the art. See, for example, Stemmer (1994) PNAS 91: 10747-10751; Stemmer (1994) Nature 370: 389-391; Crameri et al., (1997) Nature Biotech. 15: 436-438; Moore et al., (1997) J. Mol. Biol. 272: 336-347; Zhang et al., (1997) PNAS 94: 4504-4509; Crameri et al., (1998) Nature 391: 288-291; and U.S. Patent Nos. 5,605,793 and 5,837,458.

本发明的多核苷酸可以用于从其他生物(特别是其他植物)中分离相应序列。以这种方式,诸如PCR、杂交等的方法可以用于基于其与在本文中所阐述的序列的序列同源性来鉴定这样的序列。本发明包括基于其与在本文中所阐述的整个序列或者与其变体和片段的序列同一性而分离出的序列。此类序列包括作为所公开的序列的直向同源物的序列。“直向同源物”意欲指源自共同的祖先基因并且由于物种形成而被发现于不同物种中的基因。当下述情况时,在不同物种中发现的基因被认为是直向同源物:其核苷酸序列和/或其所编码的蛋白质序列共享至少80%、85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更大的序列同一性。直向同源物的功能在物种之间经常是高度保守的。因此,本发明包括这样的分离的多核苷酸,其编码R蛋白,并且在严格条件下与在本文中所公开的或者本领域中已知的R蛋白中的至少一个或者与其变体或片段杂交。The polynucleotides of the present invention can be used to separate corresponding sequences from other organisms (particularly other plants). In this way, methods such as PCR, hybridization, etc. can be used to identify such sequences based on their sequence homology with the sequences set forth in this article. The present invention includes sequences separated based on their entire sequences set forth in this article or with their variants and fragments' sequence identity. Such sequences include sequences as orthologs of disclosed sequences." orthologs" are intended to refer to genes derived from common ancestral genes and found in different species due to speciation. When the following circumstances, genes found in different species are considered to be orthologs: their nucleotide sequences and/or their encoded protein sequences share at least 80%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or greater sequence identity. The functions of orthologs are often highly conserved between species. Thus, the present invention includes isolated polynucleotides that encode an R protein and hybridize under stringent conditions to at least one of the R proteins disclosed herein or known in the art, or variants or fragments thereof.

在一个实施方案中,本发明的直向同源物具有这样的编码序列,其包含与从由SEQID NO:1、2和4中所示的核苷酸序列组成的组中选择的核苷酸序列的至少80%、85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更大的核苷酸序列同一性,和/或编码包含与SEQ ID NO:3中所示的氨基酸序列的至少80%、85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更大的氨基酸序列同一性的蛋白质。In one embodiment, an ortholog of the present invention has a coding sequence comprising at least 80%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or greater nucleotide sequence identity to a nucleotide sequence selected from the group consisting of the nucleotide sequences shown in SEQ ID NO: 1, 2 and 4, and/or encodes a protein comprising at least 80%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or greater amino acid sequence identity to the amino acid sequence shown in SEQ ID NO:3.

像其他NLR蛋白一样,所述Sr27蛋白包含某些保守结构域。在Sr27(其包含SEQ IDNO:3中所示的氨基酸序列)中,所述保守结构域包括例如卷曲螺旋结构域(氨基酸9至160)、核苷酸结合结构域(氨基酸173至520)和富亮氨酸重复结构域(氨基酸530至940)。优选地,本发明的变体Sr27蛋白包含相应于在上面所阐述的Sr27的结构域的卷曲螺旋结构域、核苷酸结合结构域和富亮氨酸重复结构域。Like other NLR proteins, the Sr27 protein comprises some conserved domains. In Sr27 (it comprises the amino acid sequence shown in SEQ ID NO:3), the conserved domains include for example coiled-coil domain (amino acid 9 to 160), nucleotide binding domain (amino acid 173 to 520) and leucine-rich repeat domain (amino acid 530 to 940). Preferably, variant Sr27 protein of the present invention comprises coiled-coil domain, nucleotide binding domain and leucine-rich repeat domain corresponding to the domain of Sr27 set forth above.

在一些实施方案中,本发明的变体Sr27蛋白包含更高的与此类保守结构域中的一个、两个或三个的氨基酸序列同一性百分比,相比于与Sr27(SEQ ID NO:3)或在本文中所公开的蛋白质的全长氨基酸序列的氨基酸序列同一性百分比。优选地,此类变体包含与在上面所阐述的Sr27的结构域中的一个、两个或三个具有至少94%、95%、96%、97%、98%、99%或100%序列同一性的相应的结构域,并且进一步包含与SEQ ID NO:3中所示的氨基酸序列具有至少91%、92%、93%、94%、95%、96%、97%、98%或99%同一性的氨基酸序列。In some embodiments, the variant Sr27 protein of the present invention comprises a higher percentage of amino acid sequence identity to one, two or three of such conserved domains than to the percentage of amino acid sequence identity to the full-length amino acid sequence of Sr27 (SEQ ID NO: 3) or a protein disclosed herein. Preferably, such variants comprise a corresponding domain having at least 94%, 95%, 96%, 97%, 98%, 99% or 100% sequence identity to one, two or three of the domains of Sr27 described above, and further comprise an amino acid sequence having at least 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identity to the amino acid sequence shown in SEQ ID NO: 3.

公认的是,相应于在上面所阐述的Sr27的那些保守结构域的在变体Sr27蛋白中的结构域,以及在其中的任何特定的保守氨基酸,可以通过本领域技术人员已知的或者在本文中其他地方所公开的方法(例如,多重序列比对)来鉴定。进一步地公认的是,在特定变体Sr27蛋白内此类保守结构域和保守氨基酸的位置可以与在SEQ ID NO:3中所示的氨基酸序列中的位置不同,并且通过诸如多重序列比对的方法,可以对于本发明的任何变体Sr27蛋白确定此类保守结构域和保守氨基酸的相应位置。It is recognized that domains in variant Sr27 proteins corresponding to those conserved domains of Sr27 set forth above, and any particular conserved amino acids therein, can be identified by methods known to those skilled in the art or disclosed elsewhere herein (e.g., multiple sequence alignment). It is further recognized that the positions of such conserved domains and conserved amino acids within a particular variant Sr27 protein may differ from the positions in the amino acid sequence shown in SEQ ID NO: 3, and that the corresponding positions of such conserved domains and conserved amino acids can be determined for any variant Sr27 protein of the invention by methods such as multiple sequence alignment.

优选地,本发明的变体Sr27蛋白和编码它们的多核苷酸赋予或者能够赋予包含这样的蛋白质和/或多核苷酸的小麦植物以增强的对于已知在易感小麦植物中引起小麦秆锈病的Pgt的至少一个品种的抗性。Preferably, the variant Sr27 proteins of the present invention and polynucleotides encoding them confer or are capable of conferring to wheat plants comprising such proteins and/or polynucleotides enhanced resistance to at least one species of Pgt known to cause wheat stem rust in susceptible wheat plants.

在PCR方法中,可以设计寡核苷酸引物用于在PCR反应中使用以从cDNA或提取自任何目的植物的基因组DNA扩增出相应的DNA序列。用于设计PCR引物的和PCR克隆的方法通常是本领域中已知的,并且公开在Sambrook等人,(1989)Molecular Cloning:ALaboratoryManual(第2版,Cold Spring Harbor Laboratory Press,Plainview,New York)中。也可参见Innis等人,编者(1990)PCR Protocols:A Guide to Methods and Applications(Academic Press,New York);Innis和Gelfand,编者(1995)PCR Strategies(AcademicPress,New York);和Innis和Gelfand,编者(1999)PCR Methods Manual(Academic Press,New York)。已知的PCR方法包括但不限于使用成对引物、嵌套引物、单特异性引物、简并引物、基因特异性引物、载体特异性引物、部分错配引物等的方法。In the PCR method, oligonucleotide primers can be designed for use in a PCR reaction to amplify the corresponding DNA sequence from cDNA or genomic DNA extracted from any plant of interest. Methods for designing PCR primers and PCR cloning are generally known in the art and are disclosed in Sambrook et al., (1989) Molecular Cloning: A Laboratory Manual (2nd Edition, Cold Spring Harbor Laboratory Press, Plainview, New York). See also Innis et al., editors (1990) PCR Protocols: A Guide to Methods and Applications (Academic Press, New York); Innis and Gelfand, editors (1995) PCR Strategies (Academic Press, New York); and Innis and Gelfand, editors (1999) PCR Methods Manual (Academic Press, New York). Known PCR methods include, but are not limited to, methods using paired primers, nested primers, single specific primers, degenerate primers, gene-specific primers, vector-specific primers, partially mismatched primers, etc.

公认的是,本发明的R蛋白编码序列包括这样的多核苷酸分子,其包含与SEQ IDNO:1、2和4中的任何一个或多个的核苷酸序列足够相同的核苷酸序列。术语“足够相同的”在本文中用于指包含足够或最小数目的与第二氨基酸或核苷酸序列相同或等价(例如,具有相似的侧链)的氨基酸残基或核苷酸的第一氨基酸或核苷酸序列,从而所述第一和第二氨基酸或核苷酸序列具有共同的结构结构域和/或共同的功能活性。例如,包含具有至少大约80%或85%同一性,优选地90%或91%同一性,更优选地92%、93%、94%、95%、96%、97%、98%或99%同一性的共同结构结构域的氨基酸或核苷酸序列在本文中被定义为是足够相同的。It is recognized that the R protein coding sequence of the present invention includes such a polynucleotide molecule, which comprises a nucleotide sequence that is sufficiently identical to any one or more of the nucleotide sequences of SEQ ID NO: 1, 2 and 4. The term "sufficiently identical" is used herein to refer to a first amino acid or nucleotide sequence that comprises a sufficient or minimum number of amino acid residues or nucleotides that are identical or equivalent (e.g., have similar side chains) to a second amino acid or nucleotide sequence, such that the first and second amino acid or nucleotide sequences have a common structural domain and/or a common functional activity. For example, an amino acid or nucleotide sequence comprising a common structural domain having at least about 80% or 85% identity, preferably 90% or 91% identity, more preferably 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identity is defined herein as being sufficiently identical.

为了测定两个氨基酸序列或两个核酸的同一性百分比,将所述序列为了最佳比较目的来进行比对。所述两个序列之间的同一性百分比为由所述序列所共享的相同位置的数目的函数(即,同一性百分比=相同位置数目/总位置数目(例如,重叠位置)x 100)。在一个实施方案中,所述两个序列的长度是相同的。两个序列之间的同一性百分比可以通过使用与下面所描述的那些相似的技术来测定,其中允许或不允许缺口。在计算同一性百分比中,典型地计数精确的匹配。In order to measure the identity percentage of two amino acid sequences or two nucleic acids, the sequences are compared for the best comparison purpose. The identity percentage between the two sequences is a function of the number of identical positions shared by the sequences (i.e., identity percentage=identical position number/total position number (e.g., overlapping positions) x 100). In one embodiment, the length of the two sequences is identical. The identity percentage between the two sequences can be measured by using techniques similar to those described below, wherein gaps are allowed or not allowed. In calculating the identity percentage, typically accurate matching is counted.

两个序列之间的同一性百分比的测定通过使用数学算法来实现。用于比较两个序列的数学算法的一个优选的非限制性例子为如在Karlin和Altschul(1993)PNAS 90:5873-5877中进行了修改的Karlin和Altschul(1990)PNAS 87:2264的算法。将这样的算法合并入Altschul等人,(1990)J.Mol.Biol.215:403的NBLAST和XBLAST程序中。可以用NBLAST程序(得分=100,字长=12)来进行BLAST核苷酸搜索,以获得与本发明的多核苷酸分子同源的核苷酸序列。可以用XBLAST程序(得分=50,字长=3)来进行BLAST蛋白质搜索,以获得与本发明的蛋白质分子同源的氨基酸序列。为了获得用于比较目的的缺口比对,可以利用缺口BLAST,如在Altschul等人,(1997)Nucleic Acids Res.25:3389中所描述的。备选地,PSI-Blast可以用于进行迭代搜索,其检测分子之间的远距离关系。参见Altschul等人,(1997)见上。当使用BLAST、缺口BLAST和PSI-Blast程序时,使用各自程序(例如,XBLAST和NBLAST;其是在万维网上在ncbi.nlm.nih.gov处可得的)的默认参数。用于序列比较的数学算法的另一个优选的非限制性例子为Myers和Miller(1988)CABIOS 4:11-17的算法。将这样的算法合并入ALIGN程序(2.0版)(其是GCG序列比对软件包的一部分)中。当使用ALIGN程序来比较氨基酸序列时,可以使用PAM120权重残基表、12的缺口长度罚分和4的缺口罚分。也可以通过检视手动地进行比对。The determination of the percent identity between two sequences is achieved by using a mathematical algorithm. A preferred non-limiting example of a mathematical algorithm for comparing two sequences is the algorithm of Karlin and Altschul (1990) PNAS 87:2264 as modified in Karlin and Altschul (1993) PNAS 90:5873-5877. Such an algorithm is incorporated into the NBLAST and XBLAST programs of Altschul et al., (1990) J. Mol. Biol. 215:403. BLAST nucleotide searches can be performed with the NBLAST program (score = 100, word length = 12) to obtain nucleotide sequences homologous to the polynucleotide molecules of the present invention. BLAST protein searches can be performed with the XBLAST program (score = 50, word length = 3) to obtain amino acid sequences homologous to the protein molecules of the present invention. In order to obtain gap alignments for comparison purposes, gap BLAST can be utilized, as described in Altschul et al., (1997) Nucleic Acids Res. 25:3389. Alternatively, PSI-Blast can be used to perform an iterative search that detects long-range relationships between molecules. See Altschul et al., (1997) supra. When using BLAST, gap BLAST, and PSI-Blast programs, the default parameters of each program (e.g., XBLAST and NBLAST; available on the World Wide Web at ncbi.nlm.nih.gov) are used. Another preferred non-limiting example of a mathematical algorithm for sequence comparison is the algorithm of Myers and Miller (1988) CABIOS 4:11-17. Such an algorithm is incorporated into the ALIGN program (version 2.0), which is part of the GCG sequence alignment software package. When using the ALIGN program to compare amino acid sequences, a PAM120 weight residue table, a gap length penalty of 12, and a gap penalty of 4 can be used. Alignments can also be performed manually by inspection.

除非另有说明,在本文中所提供的序列同一性/相似性值是指通过使用本发明的全长序列和使用借助于算法Clustal W(Nucleic Acid Research,22(22):4673-4680,1994)的多重比对而获得的值,其中使用在软件包Vector NTI Suite Version 7(InforMax,Inc.,Bethesda,MD,USA)中所包括的程序AlignX(使用默认参数),或任何其等价程序。“等价程序”意指任何这样的序列比较程序,其在当与由使用默认参数的CLUSTALW(1.83版)(其在万维网上在欧洲生物信息学研究所(European BioinformaticsInstitute)网站上是可得的:ebi.ac.uk/Tools/clustalw/index.html)所生成的相应比对相比较时,对于任何两个所讨论的序列,生成具有相同的核苷酸或氨基酸残基匹配和相同的序列同一性百分比的比对。Unless otherwise indicated, the sequence identity/similarity values provided herein refer to the values obtained by using the full-length sequences of the invention and using a multiple alignment by means of the algorithm Clustal W (Nucleic Acid Research, 22 (22): 4673-4680, 1994), using the program AlignX (using default parameters) included in the software package Vector NTI Suite Version 7 (InforMax, Inc., Bethesda, MD, USA), or any equivalent program thereof. "Equivalent program" means any sequence comparison program that generates an alignment having identical nucleotide or amino acid residue matches and identical sequence identity percentages for any two sequences in question when compared with the corresponding alignment generated by CLUSTALW (version 1.83) using default parameters (which is available on the World Wide Web at the European Bioinformatics Institute website: ebi.ac.uk/Tools/clustalw/index.html).

术语“多核苷酸”的使用并不意欲将本发明限制于包含DNA的多核苷酸。本领域普通技术人员将会认识到,多核苷酸可以包含核糖核苷酸以及核糖核苷酸和脱氧核糖核苷酸的组合。这样的脱氧核糖核苷酸和核糖核苷酸包括天然出现的分子和合成的类似物。本发明的多核苷酸也包括所有形式的序列,包括但不限于单链形式、双链形式、发夹、茎环结构等。The use of the term "polynucleotide" is not intended to limit the present invention to polynucleotides comprising DNA. One of ordinary skill in the art will recognize that polynucleotides can comprise ribonucleotides and combinations of ribonucleotides and deoxyribonucleotides. Such deoxyribonucleotides and ribonucleotides include naturally occurring molecules and synthetic analogs. The polynucleotides of the present invention also include all forms of sequences, including but not limited to single-stranded forms, double-stranded forms, hairpins, stem-loop structures, etc.

包含R蛋白编码区的多核苷酸构建体可以提供在用于在植物或其他生物或非人的目的宿主细胞中进行表达的表达盒中。所述表达盒将会包含与R蛋白编码区可操作地连接的5'和3'调控序列。“可操作地连接的”意欲指两个或更多个元件之间的功能性连接。例如,目的多核苷酸或基因与调控序列(即,启动子)之间的可操作连接为允许所述目的多核苷酸表达的功能性连接。可操作地连接的元件可以是邻接的或非邻接的。当用于指两个蛋白质编码区的联接时,“可操作地连接的”意指编码区在相同的读码框中。另外,所述盒可以包含至少一个待共转化到所述生物中的另外的基因。备选地,可以在多个表达盒上提供所述另外的基因。这样的表达盒可以配备有多个限制位点和/或重组位点,其用于插入待处于调控区的转录调控之下的R蛋白编码区。另外,所述表达盒可以包含选择标记基因。The polynucleotide construct comprising the R protein coding region can be provided in an expression cassette for expression in a plant or other organism or non-human target host cell. The expression cassette will include 5' and 3' regulatory sequences operably connected to the R protein coding region. "Operably connected" is intended to refer to the functional connection between two or more elements. For example, the operably connected between the target polynucleotide or gene and the regulatory sequence (i.e., promoter) is a functional connection that allows the expression of the target polynucleotide. The operably connected element can be adjacent or non-adjacent. When used to refer to the connection of two protein coding regions, "operably connected" means that the coding region is in the same reading frame. In addition, the box can include at least one other gene to be co-transformed into the organism. Alternatively, the other gene can be provided on multiple expression cassettes. Such an expression cassette can be equipped with multiple restriction sites and/or recombination sites, which are used to insert the R protein coding region to be under the transcriptional regulation of the regulatory region. In addition, the expression cassette can include a selection marker gene.

所述表达盒将会以5'-3'转录方向包含:转录和翻译起始区(即,启动子),本发明的R蛋白编码区,和在植物或其他生物或非人宿主细胞中有功能的转录和翻译终止区(即,终止区)。所述调控区(即,启动子、转录调控区和翻译终止区)和/或本发明的R蛋白编码区可以是对于宿主细胞来说或对于相互来说天然的/类似的。备选地,所述调控区和/或本发明的R蛋白编码区可以是对于宿主细胞来说或对于相互来说异源的。The expression cassette will contain, in a 5'-3' transcriptional direction: a transcription and translation initiation region (i.e., a promoter), an R protein coding region of the present invention, and a transcription and translation termination region (i.e., a termination region) that is functional in a plant or other organism or non-human host cell. The regulatory region (i.e., a promoter, a transcription regulatory region, and a translation termination region) and/or the R protein coding region of the present invention may be native/similar to the host cell or to each other. Alternatively, the regulatory region and/or the R protein coding region of the present invention may be heterologous to the host cell or to each other.

如在本文中所使用的,关于核酸分子或核苷酸序列,“异源(的)”为这样的核酸分子或核苷酸序列,其来源于外来物种,或者如果来源于相同物种,那么通过有意的人为干涉而在组成和/或基因组座位方面从其天然形式进行了修饰。例如,与异源多核苷酸可操作地连接的启动子来自与所述多核苷酸所源自的物种不同的物种,或者如果来自相同/类似物种,它们之一或两者从其原始形式和/或基因组座位进行了重大修饰,或者所述启动子不是关于所述可操作地连接的多核苷酸的天然启动子。如在本文中所使用的,嵌合基因包含编码序列,其可操作地连接至对于所述编码序列来说异源的转录起始区。As used in this article, with respect to nucleic acid molecules or nucleotide sequences, "heterologous" is such a nucleic acid molecule or nucleotide sequence, which is derived from an alien species, or if derived from the same species, is modified from its native form in composition and/or genomic locus by intentional human interference. For example, the promoter operably connected to a heterologous polynucleotide is from a species different from the species from which the polynucleotide is derived, or if from the same/similar species, one or both of them are significantly modified from its original form and/or genomic locus, or the promoter is not a native promoter for the polynucleotide operably connected. As used in this article, a chimeric gene comprises a coding sequence operably connected to a transcription initiation region heterologous to the coding sequence.

本发明提供了宿主细胞,其包含本发明的核酸分子、表达盒和载体中的至少一个。在优选的实施方案中,宿主细胞为植物细胞。在另一些实施方案中,宿主细胞选自由下列各项组成的组:细菌、真菌细胞和动物细胞。在某些实施方案中,宿主细胞为非人动物细胞。然而,在一些其他实施方案中,所述宿主细胞为体外培养的人细胞。在另外一些其他实施方案中,所述宿主细胞为微生物,特别是单细胞微生物。微生物包括但不限于古细菌、真细菌、酵母和藻类。The present invention provides a host cell comprising at least one of the nucleic acid molecules, expression cassettes and vectors of the present invention. In preferred embodiments, the host cell is a plant cell. In other embodiments, the host cell is selected from the group consisting of bacteria, fungal cells and animal cells. In certain embodiments, the host cell is a non-human animal cell. However, in some other embodiments, the host cell is a human cell cultured in vitro. In still other embodiments, the host cell is a microorganism, particularly a unicellular microorganism. Microorganisms include, but are not limited to, archaea, eubacteria, yeast and algae.

虽然使用异源启动子来表达所述R蛋白可能是最佳的,但是可以使用相应的R基因的天然启动子。Although it may be optimal to use a heterologous promoter to express the R protein, the native promoter of the corresponding R gene may be used.

所述终止区可以与所述转录起始区是天然的,可以与可操作地连接的目的R蛋白编码区是天然的,可以与植物宿主是天然的,或者可以源自另一来源(即,对于所述启动子、所述目的R蛋白和/或所述植物宿主来说外来的或异源的),或者其任何组合。方便的终止区从根癌土壤杆菌(A.tumefaciens)的Ti-质粒可得到,例如章鱼碱合酶和胭脂碱合酶终止区。也可参见Guerineau等人,(1991)Mol.Gen.Genet.262:141-144;Proudfoot(1991)Cell64:671-674;Sanfacon等人,(1991)Genes Dev.5:141-149;Mogen等人,(1990)Plant Cell2:1261-1272;Munroe等人,(1990)Gene 91:151-158;Ballas等人,(1989)Nuc.AcidsRes.17:7891-7903;和Joshi等人,(1987)Nucleic Acids Res.15:9627-9639。The termination region may be native with the transcriptional initiation region, may be native with an operably linked target R protein coding region, may be native with a plant host, or may be derived from another source (i.e., foreign or heterologous to the promoter, the target R protein, and/or the plant host), or any combination thereof. Convenient termination regions are available from the Ti-plasmid of A. tumefaciens, such as the octopine synthase and nopaline synthase termination regions. See also Guerineau et al., (1991) Mol. Gen. Genet. 262:141-144; Proudfoot (1991) Cell 64:671-674; Sanfacon et al., (1991) Genes Dev. 5:141-149; Mogen et al., (1990) Plant Cell 2:1261-1272; Munroe et al., (1990) Gene 91:151-158; Ballas et al., (1989) Nuc. Acids Res. 17:7891-7903; and Joshi et al., (1987) Nucleic Acids Res. 15:9627-9639.

当合适时,所述多核苷酸可以进行优化以为了在经转化的植物中的增加的表达。即,可以通过使用植物偏爱的密码子来合成所述多核苷酸,以为了经改善的表达。关于宿主偏爱的密码子使用的讨论,参见例如,Campbell和Gowri(1990)Plant Physiol.92:1-11。用于合成植物偏爱的基因的方法是本领域中可得的。参见例如,美国专利号5,380,831和5,436,391;和Murray等人,(1989)Nucleic Acids Res.17:477-498,其通过提及而合并入本文。When appropriate, the polynucleotides can be optimized for increased expression in transformed plants. That is, the polynucleotides can be synthesized using plant-preferred codons for improved expression. For a discussion of host-preferred codon usage, see, e.g., Campbell and Gowri (1990) Plant Physiol. 92: 1-11. Methods for synthesizing plant-preferred genes are available in the art. See, e.g., U.S. Patent Nos. 5,380,831 and 5,436,391; and Murray et al., (1989) Nucleic Acids Res. 17: 477-498, which are incorporated herein by reference.

已知另外的序列修饰增强在细胞宿主中的基因表达。这些包括消除编码假多腺苷酸化信号、外显子-内含子剪接位点信号、转座子样重复序列和其他此类经良好表征的序列的序列,其可能对于基因表达来说是有害的。可以调整所述序列的G-C含量至对于给定细胞宿主来说平均的水平,如通过参照在所述宿主细胞中表达的已知基因所计算出的。当可能时,修饰所述序列以避免预测的发夹二级mRNA结构。Other sequence modifications are known to enhance gene expression in cellular hosts. These include sequences that eliminate coding false polyadenylation signals, exon-intron splice site signals, transposon-like repetitive sequences and other such well-characterized sequences, which may be harmful for gene expression. The G-C content of the sequence can be adjusted to an average level for a given cellular host, as calculated by reference to known genes expressed in the host cell. When possible, the sequence is modified to avoid predicted hairpin secondary mRNA structures.

另外,所述表达盒可以包含5'前导序列。此类前导序列可以起作用以增强翻译。翻译前导序列是本领域中已知的并且包括:小RNA病毒前导序列,例如EMCV前导序列(脑心肌炎5'非编码区)(Elroy-Stein等人,(1989)PNAS 86:6126-6130);马铃薯Y病毒组前导序列,例如TEV前导序列(烟草蚀斑病毒)(Gallie等人,(1995)Gene165(2):233-238)、MDMV前导序列(玉米矮缩花叶病毒)(Virology154:9-20),和人免疫球蛋白重链结合蛋白(BiP)(Macejak等人,(1991)Nature 353:90-94);来自苜蓿花叶病毒(AMV RNA 4)的外壳蛋白mRNA的非翻译前导序列(Jobling等人,(1987)Nature 325:622-625);烟草花叶病毒前导序列(TMV)(Gallie等人,(1989)Molecular Biology of RNA,编者Cech(Liss,New York),第237-256页);和玉米褪绿斑驳病毒前导序列(MCMV)(Lommel等人,(1991)Virology81:382-385)。也可参见,Della-Cioppa等人,(1987)Plant Physiol.84:965-968。In addition, the expression cassette may include a 5' leader sequence. Such leader sequences may function to enhance translation. Translation leader sequences are known in the art and include: small RNA virus leader sequences, such as the EMCV leader sequence (encephalomyocarditis 5' non-coding region) (Elroy-Stein et al., (1989) PNAS 86: 6126-6130); Potyvirus leader sequences, such as the TEV leader sequence (tobacco etch virus) (Gallie et al., (1995) Gene 165 (2): 233-238), MDMV leader sequence (maize dwarf mosaic virus) (Virology 154: 9-20), and human immunoglobulin heavy chain binding protein (BiP) (Macejak et al., (1991) Nature 353: 90-94); non-translated leader sequence from the coat protein mRNA of alfalfa mosaic virus (AMV RNA 4) (Jobling et al., (1987) Nature 325:622-625); tobacco mosaic virus leader sequence (TMV) (Gallie et al., (1989) Molecular Biology of RNA, ed. Cech (Liss, New York), pp. 237-256); and maize chlorotic mottle virus leader sequence (MCMV) (Lommel et al., (1991) Virology 81:382-385). See also, Della-Cioppa et al., (1987) Plant Physiol. 84:965-968.

在制备表达盒中,可以操作各种DNA片段,以便以适当的方向和(视情况而定)在适当的读码框中提供DNA序列。为此目的,可以使用衔接头或连接体来联接DNA片段,或者可以牵涉其他操作以提供方便的限制位点,去除多余的DNA,去除限制位点等。为此目的,可以牵涉体外诱变、引物修复、限制、退火、再置换,例如转换和颠换。In preparing the expression cassette, the various DNA fragments may be manipulated to provide the DNA sequence in the proper orientation and, as appropriate, in the proper reading frame. For this purpose, adapters or linkers may be used to join the DNA fragments, or other manipulations may be involved to provide convenient restriction sites, remove excess DNA, remove restriction sites, etc. For this purpose, in vitro mutagenesis, primer repair, restriction, annealing, re-displacement, such as transitions and transversions, may be involved.

在本发明的实践中可以使用许多启动子。可以基于所希望的结果来选择启动子。可以将所述核酸与组成型启动子、组织优先型启动子或其他用于在植物中进行表达的启动子相组合。此类组成型启动子包括例如,核心CaMV 35S启动子(Odell等人,(1985)Nature313:810-812);水稻肌动蛋白(McElroy等人,(1990)Plant Cell2:163-171);泛素(Christensen等人,(1989)Plant Mol.Biol.12:619-632,和Christensen等人,(1992)Plant Mol.Biol.18:675-689);pEMU(Last等人,(1991)Theor.Appl.Genet.81:581-588);MAS(Velten等人,(1984)EMBO J.3:2723-2730);ALS启动子(美国专利号5,659,026)等。其他组成型启动子包括例如美国专利号5,608,149、5,608,144、5,604,121、5,569,597、5,466,785、5,399,680、5,268,463、5,608,142和6,177,611。Many promoters can be used in the practice of the present invention. Promoters can be selected based on the desired results. The nucleic acid can be combined with a constitutive promoter, a tissue-preferred promoter, or other promoters for expression in plants. Such constitutive promoters include, for example, the core CaMV 35S promoter (Odell et al., (1985) Nature 313:810-812); rice actin (McElroy et al., (1990) Plant Cell 2:163-171); ubiquitin (Christensen et al., (1989) Plant Mol. Biol. 12:619-632, and Christensen et al., (1992) Plant Mol. Biol. 18:675-689); pEMU (Last et al., (1991) Theor. Appl. Genet. 81:581-588); MAS (Velten et al., (1984) EMBO J. 3:2723-2730); ALS promoter (U.S. Pat. No. 5,659,026), etc. Other constitutive promoters include, for example, U.S. Patent Nos. 5,608,149, 5,608,144, 5,604,121, 5,569,597, 5,466,785, 5,399,680, 5,268,463, 5,608,142, and 6,177,611.

组织优先型启动子可以用于靶向在特定植物组织内的R蛋白编码序列的增强的表达。此类组织优先型启动子包括但不限于,叶优先型启动子、根优先型启动子、种子优先型启动子和茎优先型启动子。组织优先型启动子包括:Yamamoto等人,(1997)Plant J.12(2):255-265;Kawamata等人,(1997)Plant Cell Physiol.38(7):792-803;Hansen等人,(1997)Mol.Gen Genet.254(3):337-343;Russell等人,(1997)Transgenic Res.6(2):157-168;Rinehart等人,(1996)Plant Physiol.112(3):1331-1341;Van Camp等人,(1996)PlantPhysiol.112(2):525-535;Canevascini等人,(1996)Plant Physiol.112(2):513-524;Yamamoto等人,(1994)Plant Cell Physiol.35(5):773-778;Lam(1994)ResultsProbl.Cell Differ.20:181-196;Orozco等人,(1993)Plant Mol Biol.23(6):1129-1138;Matsuoka等人,(1993)PNAS 90(20):9586-9590;和Guevara-Garcia等人,(1993)Plant J.4(3):495-505。如果需要,可以修饰此类启动子,以用于弱表达。Tissue-preferred promoters can be used to target the enhanced expression of R protein coding sequences in specific plant tissues. Such tissue-preferred promoters include, but are not limited to, leaf-preferred promoters, root-preferred promoters, seed-preferred promoters, and stem-preferred promoters. Tissue-preferred promoters include: Yamamoto et al., (1997) Plant J. 12(2):255-265; Kawamata et al., (1997) Plant Cell Physiol. 38(7):792-803; Hansen et al., (1997) Mol. Gen Genet. 254(3):337-343; Russell et al., (1997) Transgenic Res. 6(2):157-168; Rinehart et al., (1996) Plant Physiol. 112(3):1331-1341; Van Camp et al., (1996) Plant Physiol. 112(2):525-535; Canevascini et al., (1996) Plant Physiol. 112(2):513-524; Yamamoto et al., (1994) Plant Cell Physiol. 35(5):773-778; Lam (1994) Results Probl. Cell Differ. 20:181-196; Orozco et al., (1993) Plant Mol Biol. 23(6):1129-1138; Matsuoka et al., (1993) PNAS 90(20):9586-9590; and Guevara-Garcia et al., (1993) Plant J. 4(3):495-505. If desired, such promoters can be modified for weak expression.

通常,从诱导型启动子(特别地从病原体诱导型启动子)表达基因将会是有益的。此类启动子包括来自在被病原体感染后诱导的致病相关蛋白(PR蛋白)的那些;例如,PR蛋白、SAR蛋白、β-1,3-葡聚糖酶、壳多糖酶等。参见例如,Redolfi等人,(1983)Neth.J.PlantPathol.89:245-254;Uknes等人,(1992)Plant Cell 4:645-656;和Van Loon(1985)PlantMol.Virol.4:111-116。也可参见WO 99/43819,其通过提及而合并入本文。Generally, it will be beneficial to express genes from inducible promoters, particularly from pathogen-inducible promoters. Such promoters include those from pathogen-related proteins (PR proteins) induced after infection by pathogens; for example, PR proteins, SAR proteins, β-1,3-glucanase, chitinase, etc. See, for example, Redolfi et al., (1983) Neth. J. Plant Pathol. 89: 245-254; Uknes et al., (1992) Plant Cell 4: 645-656; and Van Loon (1985) Plant Mol. Virol. 4: 111-116. See also WO 99/43819, which is incorporated herein by reference.

令人感兴趣的是在病原体感染部位处或附近局部地表达的启动子。参见例如,Marineau等人,(1987)Plant Mol.Biol.9:335-342;Matton等人,(1989)Molecular Plant-Microbe Interactions 2:325-331;Somsisch等人,(1986)PNAS 83:2427-2430;Somsisch等人,(1988)Mol.Gen.Genet.2:93-98;和Yang(1996)PNAS 93:14972-14977。也可参见,Chen等人,(1996)Plant J.10:955-966;Zhang等人,(1994)PNAS 91:2507-2511;Warner等人,(1993)Plant J.3:191-201;Siebertz等人,(1989)Plant Cell 1:961-968;美国专利号5,750,386(线虫诱导型);和其中所引用的参考文献。特别令人感兴趣的是关于其表达由病原体串珠镰孢(Fusarium moniliforme)诱导的玉米PRms基因的诱导型启动子(参见例如,Cordero等人,(1992)Physiol.Mol.Plant Path.41:189-200)。Of interest are promoters that are expressed locally at or near the site of pathogen infection. See, e.g., Marineau et al., (1987) Plant Mol. Biol. 9:335-342; Matton et al., (1989) Molecular Plant-Microbe Interactions 2:325-331; Somsisch et al., (1986) PNAS 83:2427-2430; Somsisch et al., (1988) Mol. Gen. Genet. 2:93-98; and Yang (1996) PNAS 93:14972-14977. See also, Chen et al., (1996) Plant J. 10:955-966; Zhang et al., (1994) PNAS 91:2507-2511; Warner et al., (1993) Plant J. 3:191-201; Siebertz et al., (1989) Plant Cell 1:961-968; U.S. Pat. No. 5,750,386 (nematode inducible); and references cited therein. Of particular interest is the inducible promoter of the maize PRms gene whose expression is induced by the pathogen Fusarium moniliforme (see, e.g., Cordero et al., (1992) Physiol. Mol. Plant Path. 41:189-200).

也令人感兴趣的是来自源于靶物种的其他抗性基因的天然启动子。这些启动子常常是病原体诱导型的,并且可能以合适的水平和在合适的组织中表达抗性基因。此类启动子的例子为小麦的Sr57/Lr34、Sr33、Sr35和Sr22启动子(Risk等人,(2012)PlantBiotechnol J 10:447-487;Periyannan等人,(2013)Science 341:786-788;Saintenac等人,(2013)Science 341:783-786;Steuernagel等人,(2016)Nature Biotechnol.34(6):652-655,doi:10.1038/nbt.3543)。Also of interest are natural promoters from other resistance genes derived from target species. These promoters are often pathogen-inducible and may express resistance genes at appropriate levels and in appropriate tissues. Examples of such promoters are wheat Sr57/Lr34, Sr33, Sr35, and Sr22 promoters (Risk et al., (2012) Plant Biotechnol J 10:447-487; Periyannan et al., (2013) Science 341:786-788; Saintenac et al., (2013) Science 341:783-786; Steuernagel et al., (2016) Nature Biotechnol. 34 (6): 652-655, doi: 10.1038/nbt.3543).

另外,由于病原体通过伤口或昆虫损伤进入植物,因而可以在本发明的构建物中使用创伤诱导型启动子。此类创伤诱导型启动子包括:马铃薯蛋白酶抑制剂(pin II)基因(Ryan(1990)Ann.Rev.Phytopath.28:425-449;Duan等人,(1996)Nature Biotechnology14:494-498);wun1和wun2,美国专利号5,428,148;win1和win2(Stanford等人,(1989)Mol.Gen.Genet.215:200-208);系统素(McGurl等人,(1992)Science 225:1570-1573);WIP1(Rohmeier等人,(1993)Plant Mol.Biol.22:783-792;Eckelkamp等人,(1993)FEBSLetters 323:73-76);MPI基因(Corderok等人,(1994Plant J.6(2):141-150)等,其通过提及而合并入本文。In addition, since pathogens enter plants through wounds or insect damage, wound-inducible promoters can be used in the constructs of the present invention. Such wound-inducible promoters include: potato proteinase inhibitor (pin II) gene (Ryan (1990) Ann. Rev. Phytopath. 28:425-449; Duan et al., (1996) Nature Biotechnology 14:494-498); wun1 and wun2, U.S. Pat. No. 5,428,148; win1 and win2 (Stanford et al., (1989) Mol. Gen. Genet. 215:200-208); systemin (McGurl et al., (1992) Science 225:1570-1573); WIP1 (Rohmeier et al., (1993) Plant Mol. Biol. 22:783-792; Eckelkamp et al., (1993) FEBS Letters 323:73-76); MPI gene (Corderok et al., (1994 Plant J. 6(2):141-150), etc., which are incorporated herein by reference.

化学品调节型启动子可以用于通过施加外源化学调节物来调变基因在植物中的表达。取决于目标,所述启动子可以是化学品诱导型启动子,其中化学品的施加诱导基因表达;或者化学品阻抑型启动子,其中化学品的施加阻抑基因表达。化学品诱导型启动子是本领域中已知的,并且包括但不限于:玉米In2-2启动子,其通过苯磺酰胺类除草剂安全剂来激活;玉米GST启动子,其通过用作苗前除草剂的疏水性亲电子化合物来激活;和烟草PR-1a启动子,其通过水杨酸来激活。其他令人感兴趣的化学品调控型启动子包括:类固醇响应性启动子(参见例如,在Schena等人,(1991)PNAS 88:10421-10425和McNellis等人,(1998)Plant J.14(2):247-257中的糖皮质激素诱导型启动子);和四环素诱导型和四环素阻抑型启动子(参见例如,Gatz等人,(1991)Mol.Gen.Genet.227:229-237,和美国专利号5,814,618和5,789,156),其通过提及而合并入本文。Chemical-regulated promoters can be used to modulate gene expression in plants by applying exogenous chemical regulators. Depending on the target, the promoter can be a chemical-inducible promoter, in which the application of the chemical induces gene expression; or a chemical-repressible promoter, in which the application of the chemical represses gene expression. Chemical-inducible promoters are known in the art and include, but are not limited to: the maize In2-2 promoter, which is activated by benzenesulfonamide herbicide safeners; the maize GST promoter, which is activated by hydrophobic electrophilic compounds used as pre-emergence herbicides; and the tobacco PR-1a promoter, which is activated by salicylic acid. Other chemically-regulatable promoters of interest include: steroid-responsive promoters (see, e.g., the glucocorticoid-inducible promoters in Schena et al., (1991) PNAS 88:10421-10425 and McNellis et al., (1998) Plant J. 14(2):247-257); and tetracycline-inducible and tetracycline-repressible promoters (see, e.g., Gatz et al., (1991) Mol. Gen. Genet. 227:229-237, and U.S. Pat. Nos. 5,814,618 and 5,789,156), which are incorporated herein by reference.

所述表达盒也可以包含用于选择经转化的细胞的选择标记基因。选择标记基因被用于选择经转化的细胞或组织。标记基因包括编码抗生素抗性的基因,例如编码新霉素磷酸转移酶II(NEO)和潮霉素磷酸转移酶(HPT)的那些,以及赋予对于除草剂化合物(例如草铵膦、溴苯腈、咪唑啉酮类和2,4-二氯苯氧乙酸盐或酯(2,4-D))的抗性的基因。另外的选择标记包括:表型标志物,例如β-半乳糖苷酶,和荧光蛋白,例如绿色荧光蛋白(GFP)(Su等人,(2004)Biotechnol Bioeng85:610-9和Fetter等人,(2004)Plant Cell 16:215-28)、青色荧光蛋白(CYP)(Bolte等人,(2004)J.Cell Science 117:943-54和Kato等人,(2002)PlantPhysiol 129:913-42)和黄色荧光蛋白(来自Evrogen的PhiYFPTM,参见Bolte等人,(2004)J.Cell Science 117:943-54)。关于另外的选择标记,通常参见Yarranton(1992)Curr.Opin.Biotech.3:506-511;Christopherson等人,(1992)PNAS 89:6314-6318;Yao等人,(1992)Cell 71:63-72;Reznikoff(1992)Mol.Microbiol.6:2419-2422;Barkley等人,(1980),The Operon,第177-220页;Hu等人,(1987)Cell 48:555-566;Brown等人,(1987)Cell 49:603-612;Figge等人,(1988)Cell 52:713-722;Deuschle等人,(1989)PNAS 86:5400-5404;Fuerst等人,(1989)PNAS 86:2549-2553;Deuschle等人,(1990)Science 248:480-483;Gossen(1993)博士论文,University of Heidelberg;Reines等人,(1993)PNAS90:1917-1921;Labow等人,(1990)Mol.Cell.Biol.10:3343-3356;Zambretti等人,(1992)PNAS 89:3952-3956;Baim等人,(1991)PNAS 88:5072-5076;Wyborski等人,(1991)NucleicAcids Res.19:4647-4653;Hillenand-Wissman(1989)Topics Mol.Struc.Biol.10:143-162;Degenkolb等人,(1991)Antimicrob.Agents Chemother.35:1591-1595;Kleinschnidt等人,(1988)Biochemistry 27:1094-1104;Bonin(1993)博士论文,University ofHeidelberg;Gossen等人,(1992)PNAS 89:5547-5551;Oliva等人,(1992)Antimicrob.Agents Chemother.36:913-919;Hlavka等人,(1985)Handbook ofExperimental Pharmacology,第78卷(Springer-Verlag,Berlin);Gill等人,(1988)Nature 334:721-724。这些公开内容通过提及而合并入本文。The expression cassette may also include a selectable marker gene for selecting transformed cells. Selectable marker genes are used to select transformed cells or tissues. Marker genes include genes encoding antibiotic resistance, such as those encoding neomycin phosphotransferase II (NEO) and hygromycin phosphotransferase (HPT), and genes conferring resistance to herbicidal compounds such as glufosinate, bromoxynil, imidazolinones, and 2,4-dichlorophenoxyacetic acid salts or esters (2,4-D). Additional selectable markers include: phenotypic markers, such as β-galactosidase, and fluorescent proteins, such as green fluorescent protein (GFP) (Su et al., (2004) Biotechnol Bioeng 85:610-9 and Fetter et al., (2004) Plant Cell 16:215-28), cyan fluorescent protein (CYP) (Bolte et al., (2004) J. Cell Science 117:943-54 and Kato et al., (2002) Plant Physiol 129:913-42), and yellow fluorescent protein (PhiYFP from Evrogen, see Bolte et al., (2004) J. Cell Science 117:943-54). For additional selectable markers, see generally Yarranton (1992) Curr. Opin. Biotech. 3:506-511; Christopherson et al., (1992) PNAS 89:6314-6318; Yao et al., (1992) Cell 71:63-72; Reznikoff (1992) Mol. Microbiol. 6:2419-2422; Barkley et al., (1980) The Operon, pp. 177-220; Hu et al., (1987) Cell 48:555-566; Brown et al., (1987) Cell 49:603-612; Figge et al., (1988) Cell 52:713-722; Deuschle et al., (1989) PNAS 86:5400-5404; Fuerst et al., (1989) PNAS 86:2549-2553; Deuschle et al., (1990) Science 248:480-483; Gossen (1993) PhD thesis, University of Heidelberg; Reines et al., (1993) PNAS 90:1917-1921; Labow et al., (1990) Mol. Cell. Biol. 10:3343-3356; Zambretti et al., (1992) PNAS 89:3952-3956; Baim et al., (1991) PNAS 88:5072-5076; Wyborski et al., (1991) Nucleic Acids Res. 19: 4647-4653; Hillenand-Wissman (1989) Topics Mol. Struc. Biol. 10: 143-162; Degenkolb et al., (1991) Antimicrob. Agents Chemother. 35: 1591-1595; Kleinschnidt et al., (1988) Biochemistry 27: 1094-1104; Bonin (1993) PhD thesis, University of Heidelberg; Gossen et al., (1992) PNAS 89: 5547-5551; Oliva et al., (1992) Antimicrob. Agents Chemother. 36: 913-919; Hlavka et al., (1985) Handbook of Experimental Pharmacology, Vol. 78 (Springer-Verlag, Berlin); Gill et al., (1988) Nature 334:721-724. The disclosures of these are incorporated herein by reference.

上述的选择标记基因列表并不意欲是限制性的。在本发明中可以使用任何选择标记基因。The above list of selectable marker genes is not intended to be limiting. Any selectable marker gene can be used in the present invention.

众多的植物转化载体和用于转化植物的方法是可得的。参见例如,An等人,(1986)Plant Physiol.,81:301-305;Fry等人,(1987)Plant Cell Rep.6:321-325;Block(1988)Theor.Appl.Genet.76:767-774;Hinchee等人,(1990)Stadler Genet.Symp.203212.203-212;Cousins等人,(1991)Aust.J.Plant Physiol.18:481-494;Chee和Slightom(1992)Gene.118:255-260;Christou等人,(1992)Trends Biotechnol.10:239-246;D’Halluin等人,(1992)Bio/Technol.10:309-314;Dhir等人,(1992)Plant Physiol.99:81-88;Casas等人,(1993)PNAS 90:11212-11216;Christou(1993)In Vitro Cell.Dev.Biol.-Plant,29P:119-124;Davies等人,(1993)Plant Cell Rep.12:180-183;Dong和Mchughen(1993)PlantSci.91:139-148;Franklin等人,(1993)Plant Cell Rep.12(2):74-79,doi:10.1007/BF00241938;Golovkin等人,(1993)Plant Sci.90:41-52;Asano等人,(1994)Plant CellRep.13;Ayeres和Park(1994)Crit.Rev.Plant Sci.13:219-239;Barcelo等人,(1994)Plant J.5:583-592;Becker等人,(1994)Plant J.5:299-307;Borkowska等人,(1994)ActaPhysiol.Plant16:225-230;Christou(1994)Agro.Food Ind.Hi Tech.5:17-27;Eapen等人,(1994)Plant Cell Rep.13:582-586;Hartman等人,(1994)Bio-Technology 12:919923;Ritala等人,(1994)Plant Mol.Biol.24:317-325;和Wan和Lemaux(1994)PlantPhysiol.104:3748。Numerous plant transformation vectors and methods for transforming plants are available. See, for example, An et al., (1986) Plant Physiol., 81:301-305; Fry et al., (1987) Plant Cell Rep. 6:321-325; Block (1988) Theor. Appl. Genet. 76:767-774; Hinchee et al., (1990) Stadler Genet. Symp. 203212.203-212; Cousins et al., (1991) Aust. J. Plant Physiol. 18:481-494; Chee and Slightom (1992) Gene. 118:255-260; Christou et al., (1992) Trends Biotechnol. 10:239-246; D'Halluin et al. (1992) Bio/Technol. 10:309-314; Dhir et al. (1992) Plant Physiol. 99:81-88; Casas et al. (1993) PNAS 90:11212-11216; Christou (1993) In Vitro Cell. Dev. Biol.-Plant, 29P:119-124; Davies et al. (1993) Plant Cell Rep. 12:180-183; Dong and Mchughen (1993) Plant Sci. 91:139-148; Franklin et al. (1993) Plant Cell Rep. 12(2):74-79, doi:10.1007/BF00241938; Golovkin et al. (1993) Plant Sci. 90:41-52; Asano et al. (1994) Plant Cell Rep. 13; Ayeres and Park (1994) Crit. Rev. Plant Sci. 13:219-239; Barcelo et al. (1994) Plant J. 5:583-592; Becker et al. (1994) Plant J. 5:299-307; Borkowska et al. (1994) Acta Physiol. Plant 16:225-230; Christou (1994) Agro. Food Ind. Hi Tech. 5:17-27; Eapen et al. (1994) Plant Cell Rep. 13:582-586; Hartman et al., (1994) Bio-Technology 12:919923; Ritala et al., (1994) Plant Mol. Biol. 24:317-325; and Wan and Lemaux (1994) Plant Physiol. 104:3748.

本发明的方法牵涉将多核苷酸构建体引入到植物中。“引入”意指以这样的方式向所述植物呈递所述多核苷酸构建体,从而所述构建体得以进入所述植物的细胞的内部。本发明的方法不依赖于特定的用于将多核苷酸构建体引至植物的方法,只要所述多核苷酸构建体得以进入所述植物的至少一个细胞的内部。用于将多核苷酸构建体引入到植物中的方法是本领域中已知的,其包括但不限于,稳定转化方法、瞬时转化方法和病毒介导的方法。The methods of the present invention involve introducing a polynucleotide construct into a plant. "Introducing" means presenting the polynucleotide construct to the plant in such a way that the construct gains access to the interior of a cell of the plant. The methods of the present invention do not rely on a specific method for introducing a polynucleotide construct into a plant, as long as the polynucleotide construct gains access to the interior of at least one cell of the plant. Methods for introducing a polynucleotide construct into a plant are known in the art, including, but not limited to, stable transformation methods, transient transformation methods, and virus-mediated methods.

“稳定转化”意指,被引入到植物中的多核苷酸构建体整合到所述植物的基因组中并且能够由其子代进行遗传。“瞬时转化”意指,被引入到植物中的多核苷酸构建体不整合到所述植物的基因组中。"Stable transformation" means that the polynucleotide construct introduced into the plant is integrated into the genome of the plant and can be inherited by its progeny. "Transient transformation" means that the polynucleotide construct introduced into the plant is not integrated into the genome of the plant.

对于植物和植物细胞的转化,通过使用标准技术来将本发明的核苷酸序列插入到任何适合于在植物或植物细胞中表达所述核苷酸序列的本领域中已知的载体中。载体的选择取决于优选的转化技术和待被转化的靶植物物种。For transformation of plants and plant cells, the nucleotide sequence of the present invention is inserted into any vector known in the art suitable for expressing the nucleotide sequence in plants or plant cells by using standard techniques. The choice of vector depends on the preferred transformation technique and the target plant species to be transformed.

用于构建植物表达盒和将外来核酸引入到植物中的方法通常是本领域中已知的并且先前已经作了描述。例如,可以通过使用肿瘤诱导性(Ti)质粒载体来将外来DNA引入到植物中。用于外来DNA递送的其他方法牵涉使用PEG介导的原生质体转化,电穿孔,微量注射晶须,和用于直接DNA摄取的生物射弹或微粒轰击。此类方法是本领域中已知的。(Vasil等人的美国专利号5,405,765;Bilang等人,(1991)Gene 100:247-250;Scheid等人,(1991)Mol.Gen.Genet.,228:104-112;Guerche等人,(1987)Plant Science 52:111-116;Neuhause等人,(1987)Theor.Appl Genet.75:30-36;Klein等人,(1987)Nature327:70-73;Howell等人,(1980)Science 208:1265;Horsch等人,(1985)Science 227:1229-1231;DeBlock等人,(1989)Plant Physiology 91:694-701;Methods for Plant MolecularBiology(Weissbach和Weissbach,编者)Academic Press,Inc.(1988);和Methods inPlant Molecular Biology(Schuler和Zielinski,编者)Academic Press,Inc.(1989)。转化方法取决于待转化的植物细胞、所使用的载体的稳定性、基因产物的表达水平和其他参数。Methods for constructing plant expression cassettes and introducing foreign nucleic acids into plants are generally known in the art and have been described previously. For example, foreign DNA can be introduced into plants by using tumor-inducing (Ti) plasmid vectors. Other methods for foreign DNA delivery involve the use of PEG-mediated protoplast transformation, electroporation, microinjection whiskers, and biolistic or microparticle bombardment for direct DNA uptake. Such methods are known in the art. (U.S. Pat. No. 5,405,765 to Vasil et al.; Bilang et al., (1991) Gene 100:247-250; Scheid et al., (1991) Mol. Gen. Genet., 228:104-112; Guerche et al., (1987) Plant Science 52:111-116; Neuhause et al., (1987) Theor. Appl Genet. 75:30-36; Klein et al., (1987) Nature 327:70-73; Howell et al., (1980) Science 208:1265; Horsch et al., (1985) Science 227:1229-1231; DeBlock et al., (1989) Plant Physiology 91:694-701; Methods for Plant Molecular Biology (Weissbach and Weissbach, eds.) Academic Press, Inc. (1988); and Methods in Plant Molecular Biology (Schuler and Zielinski, eds.) Academic Press, Inc. (1989). The transformation method depends on the plant cell to be transformed, the stability of the vector used, the expression level of the gene product and other parameters.

将核苷酸序列引入到植物细胞中和随后插入到植物基因组中的其他合适方法包括:由Crossway等人,(1986)Biotechniques 4:320-334所描述的微量注射;由Riggs等人,(1986)PNAS 83:5602-5606所描述的电穿孔;由Townsend等人,美国专利号5,563,055,Zhao等人,美国专利号5,981,840所描述的土壤杆菌介导的转化;由Paszkowski等人(1984)EMBOJ.3:2717-2722所描述的直接基因转移;和在例如下列文献中所描述的弹道粒子加速:Sanford等人,美国专利号4,945,050;Tomes等人,美国专利号5,879,918;Tomes等人,美国专利号5,886,244;Bidney等人,美国专利号5,932,782;Tomes等人,(1995)“Direct DNATransfer into Intact Plant Cells via Microprojectile Bombardment,”Plant Cell,Tissue,and Organ Culture:Fundamental Methods,编者Gamborg和Phillips(Springer-Verlag,Berlin);McCabe等人,(1988)Biotechnology 6:923-926;和Lec1转化(WO 00/28058)。也可参见,Weissinger等人,(1988)Ann.Rev.Genet.22:421-477;Sanford等人,(1987)Particulate Science and Technology5:27-37(洋葱);Christou等人,(1988)Plant Physiol.87:671-674(大豆);McCabe等人,(1988)Bio/Technology 6:923-926(大豆);Finer和McMullen(1991)In Vitro Cell Dev.Biol.27P:175-182(大豆);Singh等人,(1998)Theor.Appl.Genet.96:319-324(大豆);Datta等人,(1990)Biotechnology 8:736-740(水稻);Klein等人,(1988)PNAS 85:4305-4309(玉米);Klein等人,(1988)Biotechnology 6:559-563(玉米);Tomes,美国专利号5,240,855;Buising等人,美国专利号5,322,783和5,324,646;Tomes等人,(1995)“Direct DNA Transfer into Intact PlantCells via Microprojectile Bombardment,”Plant Cell,Tissue,and Organ Culture:Fundamental Methods,编者Gamborg(Springer-Verlag,Berlin)(玉米);Klein等人,(1988)Plant Physiol.91:440-444(玉米);Fromm等人,(1990)Biotechnology 8:833-839(玉米);Hooykaas-Van Slogteren等人,(1984)Nature(London)311:763-764;Bowen等人,美国专利号5,736,369(谷物);Bytebier等人,(1987)PNAS 84:5345-5349(百合科(Liliaceae));De Wet等人,(1985)The Experimental Manipulation of Ovule Tissues,编者Chapman等人,(Longman,New York),第197-209页(花粉);Kaeppler等人,(1990)PlantCell Reports 9:415-418和Kaeppler等人,(1992)Theor.Appl.Genet.84:560-566(须晶介导的转化);D’Halluin等人,(1992)Plant Cell 4:1495-1505(电穿孔);Li等人,(1993)Plant Cell Reports 12:250-255和Christou和Ford(1995)Annals of Botany75:407-413(水稻);Osjoda等人,(1996)Nature Biotechnology14:745-750(经由根癌土壤杆菌的玉米);这些所有均通过提及而合并入本文。Other suitable methods for introducing nucleotide sequences into plant cells and subsequent insertion into the plant genome include: microinjection as described by Crossway et al., (1986) Biotechniques 4:320-334; by Riggs et al., (1986) PNAS electroporation as described in Townsend et al., U.S. Pat. No. 5,563,055, Zhao et al., U.S. Pat. No. 5,981,840; direct gene transfer as described in Paszkowski et al. (1984) EMBO J. 3:2717-2722; and ballistic particle acceleration as described in, for example, Sanford et al., U.S. Pat. No. 4,945,050; Tomes et al., U.S. Pat. No. 5,879,918; Tomes et al., U.S. Pat. No. 5,886,244; Bidney et al., U.S. Pat. No. 5,932,782; Tomes et al., (1995) "Direct DNA Transfer into Intact Plant Cells via Microprojectile Bombardment," Plant Cell, Tissue, and Organ Culture: Fundamental Methods, eds. Gamborg and Phillips (Springer-Verlag, Berlin); McCabe et al., (1988) Biotechnology 6:923-926; and Lec1 transformation (WO 00/28058). See also, Weissinger et al., (1988) Ann. Rev. Genet. 22:421-477; Sanford et al., (1987) Particulate Science and Technology 5:27-37 (onion); Christou et al., (1988) Plant Physiol. 87:671-674 (soybean); McCabe et al., (1988) Bio/Technology 6:923-926 (soybean); Finer and McMullen (1991) In Vitro Cell Dev. Biol. 27P:175-182 (soybean); Singh et al., (1998) Theor. Appl. Genet. 96:319-324 (soybean); Datta et al., (1990) Biotechnology 8:736-740 (rice); Klein et al., (1988) PNAS 85:4305-4309 (maize); Klein et al., (1988) Biotechnology 6:559-563 (maize); Tomes, U.S. Pat. No. 5,240,855; Buising et al., U.S. Pat. Nos. 5,322,783 and 5,324,646; Tomes et al., (1995) "Direct DNA Transfer into Intact Plant Cells via Microprojectile Bombardment," Plant Cell, Tissue, and Organ Culture: Fundamental Methods, ed. Gamborg (Springer-Verlag, Berlin) (maize); Klein et al., (1988) Plant Physiol. 91:440-444 (maize); Fromm et al., (1990) Biotechnology 8:833-839 (maize); Hooykaas-Van Slogteren et al., (1984) Nature (London) 311:763-764; Bowen et al., U.S. Pat. No. 5,736,369 (cereals); Bytebier et al., (1987) PNAS 84:5345-5349 (Liliaceae); De Wet et al., (1985) The Experimental Manipulation of Ovule Tissues, ed. Chapman et al., (Longman, New York), pp. 197-209 (pollen); Kaeppler et al., (1990) Plant Cell Reports 9:415-418 and Kaeppler et al., (1992) Theor. Appl. Genet. 84:560-566 (whisker-mediated transformation); D'Halluin et al., (1992) Plant Cell 4:1495-1505 (electroporation); Li et al., (1993) Plant Cell Reports 12:250-255 and Christou and Ford (1995) Annals of Botany 75:407-413 (rice); Osjoda et al., (1996) Nature Biotechnology 14:745-750 (maize via Agrobacterium tumefaciens); all of which are incorporated herein by reference.

可以通过使植物与病毒或病毒核酸相接触来将本发明的多核苷酸引入到植物中。通常,此类方法牵涉将本发明的多核苷酸构建体掺入到病毒DNA或RNA分子内。进一步地,公认的是,本发明的启动子还包括用于通过病毒RNA聚合酶进行转录的启动子。用于将多核苷酸构建体引入到植物中并且在其中表达所编码的蛋白质的方法(其牵涉病毒DNA或RNA分子)是本领域中已知的。参见例如,美国专利号5,889,191、5,889,190、5,866,785、5,589,367和5,316,931;其通过提及而合并入本文。The polynucleotides of the present invention can be introduced into plants by contacting the plants with viruses or viral nucleic acids. Typically, such methods involve incorporating the polynucleotide constructs of the present invention into viral DNA or RNA molecules. Further, it is recognized that the promoters of the present invention also include promoters for transcription by viral RNA polymerases. Methods for introducing polynucleotide constructs into plants and expressing encoded proteins therein (which involve viral DNA or RNA molecules) are known in the art. See, for example, U.S. Patent Nos. 5,889,191, 5,889,190, 5,866,785, 5,589,367, and 5,316,931; which are incorporated herein by reference.

如果需要,可以将经修饰的病毒或经修饰的病毒核酸制备成制剂。此类制剂以已知的方式来进行制备(参见例如,关于综述,US 3,060,084;EP-A 707 445(关于液体浓缩物);Browning,“Agglomeration”,Chemical Engineering,1967年12月4日,147-48;Perry’s Chemical Engineer’s Handbook,第4版,McGraw-Hill,New York,1963,第8-57页;以及下列等等:WO 91/13546;US 4,172,714;US 4,144,050;US 3,920,442;US 5,180,587;US5,232,701;US 5,208,030;GB 2,095,558;US 3,299,566;Klingman,Weed Control as aScience,John Wiley and Sons,Inc.,New York,1961;Hance等人,Weed ControlHandbook,第8版,Blackwell Scientific Publications,Oxford,1989;和Mollet,H.,Grubemann,A.,Formulation technology,Wiley VCH Verlag GmbH,Weinheim(Germany),2001,2;D.A.Knowles,Chemistry and Technology of Agrochemical Formulations,Kluwer Academic Publishers,Dordrecht,1998(ISBN 0-7514-0443-8)),例如通过用适合于配制农用化学品的辅助剂来扩展活性化合物,所述辅助剂例如为溶剂和/或承载体,如果需要,乳化剂、表面活性剂和分散剂、防腐剂、消泡剂、防冻剂,对于种子处理制剂,还任选地,着色剂和/或粘合剂和/或胶凝剂。If desired, the modified virus or modified viral nucleic acid can be prepared into a formulation. Such preparations are prepared in a known manner (see, for example, for a review, US 3,060,084; EP-A 707 445 (for liquid concentrates); Browning, "Agglomeration", Chemical Engineering, December 4, 1967, 147-48; Perry's Chemical Engineer's Handbook, 4th edition, McGraw-Hill, New York, 1963, pp. 8-57; and the following, among others: WO 91/13546; US 4,172,714; US 4,144,050; US 3,920,442; US 5,180,587; US 5,232,701; US 5,208,030; GB 2,095,558; US 3,299,566; Klingman, Weed Control as a Science, John Wiley and Sons, 1996). Sons, Inc., New York, 1961; Hance et al., Weed Control Handbook, 8th edition, Blackwell Scientific Publications, Oxford, 1989; and Mollet, H., Grubermann, A., Formulation technology, Wiley VCH Verlag GmbH, Weinheim (Germany), 2001, 2; D. A. Knowles, Chemistry and Technology of Agrochemical Formulations, Kluwer Academic Publishers, Dordrecht, 1998 (ISBN 0-7514-0443-8)), for example by extending the active compound with adjuvants suitable for formulating agrochemicals, such as solvents and/or carriers, if desired, emulsifiers, surfactants and dispersants, preservatives, defoamers, antifreeze agents, and, for seed treatment formulations, optionally, colorants and/or binders and/or gelling agents.

在特别的实施方案中,可以通过使用各种各样的本领域中已知的瞬时转化方法来将本发明的多核苷酸构建体和表达盒提供给植物。此类方法包括,例如微量注射或粒子轰击。参见例如,Crossway等人,(1986)Mol Gen.Genet.202:179-185;Nomura等人,(1986)Plant Sci.44:53-58;Hepler等人,(1994)PNAS Sci.91:2176-2180;和Hush等人,(1994)J.Cell Science 107:775-784,这些所有均通过提及而合并入本文。备选地,可以通过使用本领域中已知的技术来将所述多核苷酸瞬时地转化到所述植物中。此类技术包括在本文中其他地方所描述的病毒载体系统和根癌土壤杆菌介导的瞬时表达。In a particular embodiment, the polynucleotide constructs and expression cassettes of the present invention can be provided to plants using a variety of transient transformation methods known in the art. Such methods include, for example, microinjection or particle bombardment. See, for example, Crossway et al., (1986) Mol Gen. Genet. 202: 179-185; Nomura et al., (1986) Plant Sci. 44: 53-58; Hepler et al., (1994) PNAS Sci. 91: 2176-2180; and Hush et al., (1994) J. Cell Science 107: 775-784, all of which are incorporated herein by reference. Alternatively, the polynucleotides can be transiently transformed into the plant using techniques known in the art. Such techniques include viral vector systems and Agrobacterium tumefaciens-mediated transient expression described elsewhere herein.

可以按照常规方式使已被转化的细胞生长为植物。参见例如,McCormick等人,(1986)Plant Cell Reports 5:81-84。然后,可以让这些植物生长,并且用相同的经转化的品系或不同的品系进行授粉,并且鉴定所得的具有所希望的表型特征的组成性表达的杂种。可以生长两代或更多代,以确保所希望的表型特征的表达被稳定地保持和遗传,然后收获种子以确保取得了所希望的表型特征的表达。以这种方式,本发明提供了经转化的种子(也称为“转基因种子”),其具有稳定地掺入到其基因组中的本发明的多核苷酸构建体,例如本发明的表达盒。Transformed cells can be grown into plants in a conventional manner. See, for example, McCormick et al., (1986) Plant Cell Reports 5:81-84. These plants can then be grown and pollinated with the same transformed strain or different strains, and the resulting hybrids with the constitutive expression of the desired phenotypic characteristics can be identified. Two or more generations can be grown to ensure that the expression of the desired phenotypic characteristics is stably maintained and inherited, and then seeds are harvested to ensure that the expression of the desired phenotypic characteristics is obtained. In this way, the present invention provides transformed seeds (also referred to as "transgenic seeds") having polynucleotide constructs of the present invention stably incorporated into their genome, such as expression cassettes of the present invention.

在本发明的某些实施方案中,可以以植物原位方式(in planta)将在本发明的在R基因座位处的非功能性等位基因的核苷酸序列修饰为功能性等位基因,其提供对于植物病原体的至少一个品种的抗性。因此,本发明提供了用于产生具有增强的对于秆锈病的抗性的植物(特别是黑小麦植物)的方法。所述方法包括在植物或至少一个其细胞中修饰抗性基因Sr27的非功能性等位基因以便制造功能性等位基因,由此增强所述植物对于秆锈病的抗性。在优选的实施方案中,所产生的植物为非转基因植物,特别是非转基因黑小麦植物。所述方法可以进一步包括使包含所述功能性等位基因的植物细胞再生为包含所述功能性等位基因的植物。In certain embodiments of the present invention, the nucleotide sequence of the non-functional allele at the R gene locus of the present invention can be modified to a functional allele in a plant in situ manner (in planta), which provides resistance to at least one variety of plant pathogens. Therefore, the present invention provides a method for producing a plant (particularly a triticale plant) with enhanced resistance to stem rust. The method includes modifying the non-functional allele of the resistance gene Sr27 in a plant or at least one of its cells so as to make a functional allele, thereby enhancing the resistance of the plant to stem rust. In a preferred embodiment, the plant produced is a non-transgenic plant, particularly a non-transgenic triticale plant. The method may further include regenerating a plant cell comprising the functional allele into a plant comprising the functional allele.

在本发明的一个实施方案中,可以将在黑小麦植物中在Sr27座位处存在的非功能性等位基因或易感等位基因修饰为功能性等位基因,其提供对于例如Pgt的至少一个、两个、三个或四个品种的抗性。在本发明的另一个实施方案中,可以将在黑小麦植物中在Sr27座位处存在的非功能性等位基因修饰为功能性等位基因,其提供对于引起秆锈病的Pgt的至少一个、两个、三个或四个品种的抗性。例如,可以修饰在Sr27座位处的非功能性等位基因,以由此形成经修饰的等位基因,其包含SEQ ID NO:1中所示的Sr27的核苷酸序列和/或编码SEQ ID NO:3中所示的氨基酸序列的核苷酸序列。In one embodiment of the invention, a non-functional allele or susceptible allele present at the Sr27 locus in a triticale plant can be modified to a functional allele that provides resistance to, for example, at least one, two, three, or four varieties of Pgt. In another embodiment of the invention, a non-functional allele present at the Sr27 locus in a triticale plant can be modified to a functional allele that provides resistance to at least one, two, three, or four varieties of Pgt that causes stem rust. For example, a non-functional allele at the Sr27 locus can be modified to thereby form a modified allele comprising the nucleotide sequence of Sr27 shown in SEQ ID NO:1 and/or a nucleotide sequence encoding the amino acid sequence shown in SEQ ID NO:3.

任何本领域中已知的用于修饰植物基因组中的DNA的方法可以用于以植物原位方式修饰R基因的核苷酸序列,例如将非功能性等位基因的核苷酸序列修饰为功能性等位基因的核苷酸序列,其提供对于植物病原体的抗性。对于植物基因组中的DNA的此类修饰包括例如插入、缺失、置换及其组合。可以通过使用任何本领域中已知的方法,例如通过在本文中其他地方所描述的或者本领域中已知的基因组编辑技术,来制造所述插入、缺失和置换。Any method known in the art for modifying the DNA in the plant genome can be used to modify the nucleotide sequence of the R gene in a plant in situ manner, such as modifying the nucleotide sequence of a non-functional allele to the nucleotide sequence of a functional allele, which provides resistance to plant pathogens. Such modifications of the DNA in the plant genome include, for example, insertions, deletions, substitutions, and combinations thereof. The insertions, deletions, and substitutions can be made using any method known in the art, such as by genome editing techniques described elsewhere herein or known in the art.

所述插入包括在本发明的R基因的等位基因中插入至少一个核苷酸或碱基对(bp)。所述插入可以包括将任何大小的DNA片段插入到基因组中。所插入的DNA长度可以为1bp、1-5bp、5-10bp、10-15bp、15-20bp、20-30bp、30-50bp、50-100bp、100-200bp、200-300bp、300-400bp、400-500bp、500-600bp、600-700bp、700-800bp、800-900bp、900-1000bp、1000-1500bp。The insertion includes inserting at least one nucleotide or base pair (bp) in an allele of an R gene of the present invention. The insertion may include inserting a DNA fragment of any size into the genome. The inserted DNA length may be 1 bp, 1-5 bp, 5-10 bp, 10-15 bp, 15-20 bp, 20-30 bp, 30-50 bp, 50-100 bp, 100-200 bp, 200-300 bp, 300-400 bp, 400-500 bp, 500-600 bp, 600-700 bp, 700-800 bp, 800-900 bp, 900-1000 bp, 1000-1500 bp.

所述缺失包括从本发明的R基因的等位基因中缺失至少一个bp。如在本文中所使用的,“缺失”意味着从DNA中移除一个或多个核苷酸或碱基对。如在本文中所提供的,在R基因的等位基因中的缺失可以为移除至少1个、至少20个、至少50、至少100个、至少500个、至少1000个、至少5000个或更多个bp。Deletion includes deletion of at least one bp from an allele of an R gene of the present invention. As used herein, "deletion" means removing one or more nucleotides or base pairs from DNA. As provided herein, deletion in an allele of an R gene can be removal of at least 1, at least 20, at least 50, at least 100, at least 500, at least 1000, at least 5000 or more bp.

所述置换包括用另一个bp替代来自本发明的R基因的等位基因的至少一个bp。如在本文中所使用的,“置换”意味着用不相同的核苷酸或碱基对替代来自DNA的一个或多个核苷酸或碱基对。当所述置换包括两个或更多个核苷酸时,所述两个或更多个核苷酸在所述等位基因的DNA序列内可以是邻接的或非邻接的。如在本文中所提供的,在R基因的等位基因中的置换可以为替代至少1个、至少20个、至少50、至少100个、至少500个、至少1000个、至少5000个或更多个碱基对。在一些实施方案中,所述置换可以是整个等位基因或其任何部分(例如,转录区、5’非翻译区、3’非翻译区、外显子或内含子)的核苷酸序列。The displacement comprises replacing at least one bp from the allele of R gene of the present invention with another bp. As used in this article, "displacement" means replacing one or more nucleotides or base pairs from DNA with unequal nucleotides or base pairs. When the displacement comprises two or more nucleotides, the two or more nucleotides can be adjacent or non-adjacent in the DNA sequence dna of the allele. As provided in this article, the displacement in the allele of R gene can be for replacing at least 1, at least 20, at least 50, at least 100, at least 500, at least 1000, at least 5000 or more base pairs. In some embodiments, the displacement can be the nucleotide sequence of whole allele or any part thereof (for example, transcription region, 5 ' untranslated region, 3 ' untranslated region, exon or intron).

在本发明的某些实施方案中,在R基因座位处的非功能性等位基因的修饰为纯合修饰。“纯合修饰”意味着,所述修饰是在植物的特定基因组中的R基因座位的两个等位基因之中。在另一些情况下,所述R基因座位基因的修饰是杂合的,即所述修饰仅在植物的基因组中的R基因座位的一个等位基因之中。公认的是,本发明的植物包括,例如具有是二倍体或多倍体(例如,四倍体或六倍体)(包括同源多倍体和异源多倍体)的基因组的作物植物。同源多倍体为具有全部源自相同物种的多于两套染色体的生物。异源多倍体为具有源自不同物种的两套或更多套整套染色体的生物。取决于特定的作物植物,可以通过使用所公开的方法来修饰在所述植物的R基因座位处的1、2、3、4、5、6或更多个等位基因。In certain embodiments of the present invention, the modification of the non-functional allele at the R locus is a homozygous modification. "Homozygous modification" means that the modification is among the two alleles of the R locus in the specific genome of the plant. In other cases, the modification of the R locus gene is heterozygous, that is, the modification is only among one allele of the R locus in the genome of the plant. It is recognized that the plant of the present invention includes, for example, a crop plant having a genome that is diploid or polyploid (for example, tetraploid or hexaploid) (including homopolyploid and allopolyploid). Homopolyploid is an organism with more than two sets of chromosomes all derived from the same species. Allopolyploid is an organism with two or more sets of complete sets of chromosomes derived from different species. Depending on the specific crop plant, 1, 2, 3, 4, 5, 6 or more alleles at the R locus of the plant can be modified by using the disclosed method.

任何本领域中已知的用于修饰植物基因组中的DNA的方法可以用于以植物原位方式改变R基因的编码序列,例如将同源易感等位基因的核苷酸序列改变为提供对于秆锈病的至少一个品种的抗性的等位基因的核苷酸序列。这样的本领域中已知的用于修饰植物基因组中的DNA的方法包括,例如突变育种和基因组编辑技术,例如牵涉靶向诱变、位点定向整合(SDI)和同源重组的方法。靶向诱变或相似技术公开在美国专利号5,565,350、5,731,181、5,756,325、5,760,012、5,795,972、5,871,984和8,106,259(这些所有均通过提及以其整体合并入本文)中。包括同源重组的用于基因修饰或基因置换的方法可以牵涉使用下述酶在DNA中诱导单链或双链断裂:锌指核酸酶(ZFN)、TAL(转录激活因子样)效应子核酸酶(TALEN)、成簇规律间隔短回文重复序列/CRISPR-相关核酸酶(CRISPR/Cas核酸酶)或归巢核酸内切酶(其已是经改造的核酸内切酶,以在植物、其他生物或宿主细胞的基因组中在特异性识别序列处制造双链断裂)。参见例如,Durai等人,(2005)Nucleic Acids Res 33:5978-90;Mani等人,(2005)Biochem Biophys Res Comm 335:447-57;美国专利号7,163,824、7,001,768和6,453,242;Arnould等人,(2006)J Mol Biol 355:443-58;Ashworth等人,(2006)Nature 441:656-9;Doyon等人,(2006)J Am Chem Soc128:2477-84;Rosen等人,(2006)Nucleic Acids Res 34:4791-800;和Smith等人,(2006)Nucleic Acids Res 34:e149;美国专利申请公开号2009/0133152;和美国专利申请公开号2007/0117128;这些所有均通过提及以其整体合并入本文。Any method known in the art for modifying the DNA in the plant genome can be used to change the coding sequence of the R gene in a plant in situ manner, such as changing the nucleotide sequence of the homologous susceptible allele to the nucleotide sequence of the allele providing resistance to at least one variety of stem rust. Such methods known in the art for modifying the DNA in the plant genome include, for example, mutation breeding and genome editing techniques, such as methods involving targeted mutagenesis, site-directed integration (SDI) and homologous recombination. Targeted mutagenesis or similar techniques are disclosed in U.S. Patent Nos. 5,565,350, 5,731,181, 5,756,325, 5,760,012, 5,795,972, 5,871,984 and 8,106,259 (all of which are incorporated herein by reference in their entirety). Methods for gene modification or gene replacement including homologous recombination can involve inducing single-stranded or double-stranded breaks in DNA using the following enzymes: zinc finger nucleases (ZFNs), TAL (transcription activator-like) effector nucleases (TALENs), clustered regularly interspaced short palindromic repeats/CRISPR-associated nucleases (CRISPR/Cas nucleases), or homing endonucleases (which are endonucleases that have been engineered to make double-stranded breaks at specific recognition sequences in the genome of plants, other organisms, or host cells). See, e.g., Durai et al., (2005) Nucleic Acids Res 33:5978-90; Mani et al., (2005) Biochem Biophys Res Comm 335:447-57; U.S. Pat. Nos. 7,163,824, 7,001,768, and 6,453,242; Arnould et al., (2006) J Mol Biol 355:443-58; Ashworth et al., (2006) Nature 441:656-9; Doyon et al., (2006) J Am Chem Soc 128:2477-84; Rosen et al., (2006) Nucleic Acids Res 34:4791-800; and Smith et al., (2006) Nucleic Acids Res 34:el49; U.S. Patent Application Publication No. 2009/0133152; and U.S. Patent Application Publication No. 2007/0117128; all of which are incorporated herein by reference in their entirety.

TAL效应子核酸酶(TALEN)可以用于在植物基因组中在特异性识别序列处制造双链断裂,以用于通过同源重组来进行基因修饰或基因置换。TAL效应子核酸酶为可以用于在植物或其他生物的基因组中在特定靶序列处制造双链断裂的一类序列特异性核酸酶。TAL效应子核酸酶通过将天然的或经改造的转录激活因子样(TAL)效应子或其功能性部分融合至核酸内切酶(例如FokI)的催化结构域来创建。独特的、模块式的TAL效应子DNA结合结构域允许设计出潜在地具有任何给定的DNA识别特异性的蛋白质。因此,可以改造TAL效应子核酸酶的DNA结合结构域以识别特定的DNA靶位点,和因此用于在所希望的靶序列处制造双链断裂。参见,WO 2010/079430;Morbitzer等人,(2010)PNAS 10.1073/pnas.1013133107;Scholze和Boch(2010)Virulence 1:428-432;Christian等人,Genetics(2010)186:757-761;Li等人,(2010)Nuc.Acids Res.(2010)doi:10.1093/nar/gkq704;和Miller等人,(2011)Nature Biotechnology29:143-148;这些所有均通过提及而合并入本文。TAL effector nucleases (TALENs) can be used to create double-strand breaks at specific recognition sequences in plant genomes for gene modification or gene replacement by homologous recombination. TAL effector nucleases are a class of sequence-specific nucleases that can be used to create double-strand breaks at specific target sequences in the genomes of plants or other organisms. TAL effector nucleases are created by fusing natural or modified transcription activator-like (TAL) effectors or their functional parts to the catalytic domain of an endonuclease (e.g., FokI). Unique, modular TAL effector DNA binding domains allow the design of proteins that potentially have any given DNA recognition specificity. Therefore, the DNA binding domains of TAL effector nucleases can be modified to recognize specific DNA target sites, and therefore used to create double-strand breaks at desired target sequences. See, WO 2010/079430; Morbitzer et al., (2010) PNAS 10.1073/pnas.1013133107; Scholze and Boch (2010) Virulence 1:428-432; Christian et al., Genetics (2010) 186:757-761; Li et al., (2010) Nuc. Acids Res. (2010) doi:10.1093/nar/gkq704; and Miller et al., (2011) Nature Biotechnology 29:143-148; all of which are incorporated herein by reference.

CRISPR/Cas核酸酶系统也可以用于在植物基因组中在特异性识别序列处制造单链或双链断裂,以用于通过同源重组来进行基因修饰或基因置换。CRISPR/Cas核酸酶是一种RNA-指导的(单指导RNA,缩写sgRNA)DNA核酸内切酶系统,其在与所设计的RNA同源的DNA区段中进行序列特异性双链断裂。可能的是,设计所述序列的特异性(Cho等人,(2013)Nat.Biotechnol.31:230-232;Cong等人,(2013)Science 339:819-823;Mali等人,(2013)Science 339:823-826;Feng等人,(2013)Cell Res.23(10):1229-1232)。CRISPR/Cas nuclease systems can also be used to create single-strand or double-strand breaks at specific recognition sequences in plant genomes for gene modification or gene replacement by homologous recombination. CRISPR/Cas nuclease is an RNA-guided (single guide RNA, abbreviated sgRNA) DNA endonuclease system that performs sequence-specific double-strand breaks in a DNA segment homologous to the designed RNA. It is possible to design the specificity of the sequence (Cho et al., (2013) Nat. Biotechnol. 31: 230-232; Cong et al., (2013) Science 339: 819-823; Mali et al., (2013) Science 339: 823-826; Feng et al., (2013) Cell Res. 23 (10): 1229-1232).

另外,ZFN可以用于在植物基因组中在特异性识别序列处制造双链断裂,以用于通过同源重组来进行基因修饰或基因置换。锌指核酸酶(ZFN)为融合蛋白,其包含负责DNA切割的FokI限制性核酸内切酶的部分和识别特定的、经设计的基因组序列的锌指蛋白,并且在那些序列处切割双链DNA,由此产生游离的DNA末端(Urnov F.D.等人,Nat RevGenet.11:636-46,2010;Carroll D.,Genetics.188:773-82,2011)。In addition, ZFNs can be used to create double-strand breaks at specific recognition sequences in plant genomes for gene modification or gene replacement by homologous recombination. Zinc finger nucleases (ZFNs) are fusion proteins that contain a portion of the FokI restriction endonuclease responsible for DNA cleavage and a zinc finger protein that recognizes specific, designed genomic sequences and cuts double-stranded DNA at those sequences, thereby generating free DNA ends (Urnov F.D. et al., Nat Rev Genet. 11:636-46, 2010; Carroll D., Genetics. 188:773-82, 2011).

使用特异性核酸酶(例如,在本文中上面所描述的那些)来使DNA断裂可以增加在断裂区域中的同源重组率。因此,上面所描述的此类效应子与核酸酶的偶联使得能够在基因组中生成靶向变化,其包括添加、缺失、置换和其他修饰。Using specific nucleases (e.g., those described above in this article) to break DNA can increase the homologous recombination rate in the break region. Therefore, the coupling of such effectors and nucleases described above enables the generation of targeted changes in the genome, including additions, deletions, substitutions and other modifications.

突变育种也可以用于在本文中所提供的方法之中。突变育种方法可以牵涉例如将植物或种子暴露于诱变剂,特别是化学诱变剂例如甲磺酸乙酯(EMS),并且对于在Sr27基因中具有所希望的修饰的植物进行选择。然而,在本文中所公开的方法之中可以使用其他诱变剂,包括但不限于:辐射,例如X-射线、γ-射线(例如,钴60或铯137)、中子(例如,在原子反应堆中由铀235产生的核裂变产物)、β-辐射(例如,从放射性同位素例如磷32或碳14所发出的)和紫外辐射(优选地,2500至2900nm);和化学诱变剂,例如碱基类似物(例如,5-溴尿嘧啶)、相关化合物(例如,8-乙氧基咖啡因)、抗生素(例如,链黑菌素)、烷基化试剂(例如,硫芥、氮芥、环氧化物、亚乙基胺、硫酸盐、磺酸盐、砜类、内酯类)、叠氮化物、羟胺、亚硝酸或吖啶类。突变育种的进一步细节可以在“Principals of Cultivar Development”Fehr,1993Macmillan Publishing Company(其公开内容通过提及而合并入本文)中找到。Mutation breeding can also be used in the methods provided herein. Mutation breeding methods can involve, for example, exposing plants or seeds to a mutagen, particularly a chemical mutagen such as ethyl methanesulfonate (EMS), and selecting plants with the desired modification in the Sr27 gene. However, other mutagens can be used in the methods disclosed herein, including, but not limited to: radiation, such as X-rays, gamma-rays (e.g., cobalt 60 or cesium 137), neutrons (e.g., nuclear fission products produced by uranium 235 in an atomic reactor), beta-radiation (e.g., emitted from radioisotopes such as phosphorus 32 or carbon 14), and ultraviolet radiation (preferably, 2500 to 2900 nm); and chemical mutagens, such as base analogs (e.g., 5-bromouracil), related compounds (e.g., 8-ethoxycaffeine), antibiotics (e.g., streptomycin), alkylating agents (e.g., sulfur mustard, nitrogen mustard, epoxides, ethyleneamines, sulfates, sulfonates, sulfones, lactones), azides, hydroxylamines, nitrites, or acridines. Further details of mutation breeding can be found in "Principals of Cultivar Development" Fehr, 1993 Macmillan Publishing Company (the disclosure of which is incorporated herein by reference).

本发明的核酸分子、表达盒、载体和多核苷酸构建体可以用于转化任何植物物种,包括但不限于单子叶植物和双子叶植物。优选的本发明的植物为小麦植物。其他目的植物物种的例子包括但不限于:辣椒类(辣椒属物种(Capsicum spp);例如,辣椒(Capsicumannuum)、灯笼辣椒(C.baccatum)、中华辣椒(C.chinense)、小米辣(C.frutescens)、绒毛辣椒(C.pubescens)等)、番茄(Lycopersicon esculentum)、烟草(Nicotiana tabacum)、茄子(Solanum melongena)、矮牵牛(碧冬茄属物种(Petunia spp.),例如碧冬茄(Petunia xhybrida或Petunia hybrida))、豌豆(Pisum sativum)、菜豆(Phaseolus vulgaris)玉米或玉蜀黍(Zea mays)、芸苔属物种(Brassica sp.)(例如,欧洲油菜(B.napus)、芜青(B.rapa)、芥菜(B.juncea))(特别是可用作种子油来源的那些芸苔属物种)、苜蓿(Medicago sativa)、水稻(Oryza sativa)、黑麦(Secale cereale)、高粱(两色高粱(Sorghum bicolor)、蜀黍(Sorghum vulgare))、粟类(例如,珍珠粟(Pennisetumglaucum)、稷(Panicum miliaceum)、谷子(Setaria italica)、子(Eleusinecoracana))、向日葵(Helianthus annuus)、红花(Carthamus tinctorius)、大豆(Glycinemax)、埃塞俄比亚画眉草(Eragrostis tef)、烟草、马铃薯(Solanum tuberosum)、花生(Arachis hypogaea)、棉花(海岛棉(Gossypium barbadense)、陆地棉(Gossypiumhirsutum))、甘薯(Ipomoea batatus)、木薯(Manihot esculenta)、咖啡(咖啡属物种(Coffea spp.))、椰子(Cocos nucifera)、凤梨(Ananas comosus)、柑橘树(柑橘属物种(Citrus spp.))、可可(Theobroma cacao)、茶(Camellia sinensis)、香蕉(芭蕉属物种(Musa spp.))、鳄梨(Persea americana)、无花果(Ficus carica)、番石榴(Psidiumguajava)、芒果(Mangifera indica)、油橄榄(Olea europaea)、番木瓜(Carica papaya)、腰果(Anacardium occidentale)、昆士兰坚果(Macadamia integrifolia)、扁桃(Prunusamygdalus)、甜菜(Beta vulgaris)、甘蔗(甘蔗属物种(Saccharum spp.))、棕榈、燕麦、大麦、蔬菜、观赏植物和针叶树。The nucleic acid molecules, expression cassettes, vectors and polynucleotide constructs of the present invention can be used to transform any plant species, including but not limited to monocots and dicots. The preferred plant of the present invention is a wheat plant. Examples of other plant species of interest include, but are not limited to, peppers (Capsicum spp.; e.g., Capsicum annuum, C. baccatum, C. chinense, C. frutescens, C. pubescens, etc.), tomatoes (Lycopersicon esculentum), tobacco (Nicotiana tabacum), eggplant (Solanum melongena), petunias (Petunia spp., e.g., Petunia xhybrida or Petunia hybrida), peas (Pisum sativum), beans (Phaseolus vulgaris), corn or maize (Zea mays), Brassica species (Brassica sp.) (e.g., B. napus, B. rapa, B. juncea), particularly those Brassica species that can be used as a source of seed oils), alfalfa (Medicago sativa), rice (Oryza sativa), rye (Secale cereale), sorghum (Sorghum bicolor, Sorghum vulgare), millets (e.g., pearl millet (Pennisetum glaucum), millet (Panicum miliaceum), foxtail millet (Setaria italica), seeds (Eleusinecoracana), sunflower (Helianthus annuus), safflower (Carthamus tinctorius), soybean (Glycinemax), Ethiopian teff (Eragrostis tef), tobacco, potato (Solanum tuberosum), peanut (Arachis hypogaea), cotton (Gossypium barbadense, Gossypium hirsutum), sweet potato (Ipomoea batatus), cassava (Manihot esculenta), coffee (Coffea spp.), coconut (Cocos nucifera), pineapple (Ananas comosus), citrus (Citrus spp.), cocoa (Theobroma cacao), tea (Camellia sinensis), banana (Musa spp.), avocado (Persea americana), fig (Ficus carica), guava (Psidiumguajava), mango (Mangifera indica), olive (Olea europaea), papaya (Carica papaya), cashew (Anacardium occidentale), queensland nut (Macadamia integrifolia), almond (Prunusamygdalus), sugar beet (Beta vulgaris), sugar cane (Saccharum spp.), palm, oats, barley, vegetables, ornamentals and conifers.

在本发明的某些实施方案中,所述优选的植物为谷物植物。本发明的此类谷物植物为因其谷粒或籽粒(即,种子)的可食用组分而栽种的草本植物(即,禾本科(Poaceae)),包括例如小麦、黑小麦、黑麦、大麦、燕麦、玉米、高粱、粟和水稻。在本发明的某些其他实施方案中,所述优选的植物为谷物植物,但不包括黑小麦植物。In certain embodiments of the invention, the preferred plants are cereal plants. Such cereal plants of the invention are herbaceous plants (i.e., Poaceae) grown for the edible components of their grains or kernels (i.e., seeds), including, for example, wheat, triticale, rye, barley, oats, corn, sorghum, millet, and rice. In certain other embodiments of the invention, the preferred plants are cereal plants, but do not include triticale plants.

在本发明的一些实施方案中,用编码本发明的R蛋白的多核苷酸构建体转化植物细胞。如在本文中所使用的,术语“表达”是指基因产物的生物合成,包括所述基因产物的转录和/或翻译。从DNA分子“表达”或“产生”蛋白质或多肽是指编码序列的转录和翻译以产生所述蛋白质或多肽,而从RNA分子“表达”或“产生”蛋白质或多肽是指RNA编码序列的翻译以产生所述蛋白质或多肽。编码R蛋白的多核苷酸构建体和核酸分子的例子在本文中其他地方进行了描述。In some embodiments of the present invention, plant cells are transformed with polynucleotide constructs encoding the R protein of the present invention. As used in this article, the term "expression" refers to the biosynthesis of a gene product, including the transcription and/or translation of the gene product. "Expression" or "production" of a protein or polypeptide from a DNA molecule refers to the transcription and translation of a coding sequence to produce the protein or polypeptide, while "expression" or "production" of a protein or polypeptide from an RNA molecule refers to the translation of an RNA coding sequence to produce the protein or polypeptide. Examples of polynucleotide constructs and nucleic acid molecules encoding an R protein are described elsewhere in this article.

在本文中术语“DNA”或“RNA”的使用并不意欲将本发明限制于包含DNA或RNA的多核苷酸分子。本领域普通技术人员将会认识到,本发明的方法和组合物包括由脱氧核糖核苷酸(即,DNA)、核糖核苷酸(即,RNA)或者核糖核苷酸与脱氧核糖核苷酸的组合组成的多核苷酸分子。此类脱氧核糖核苷酸和核糖核苷酸包括天然出现的分子和合成的类似物,包括但不限于核苷酸类似物或经修饰的主链残基或键合,其是合成的、天然出现的和非天然出现的,其具有与参考核酸相似的结合特性,并且其以与参考核苷酸相似的方式进行代谢。此类类似物的例子包括但不限于:硫代磷酸酯、氨基磷酸酯、甲基膦酸酯、手性甲基膦酸酯、2-O-甲基核糖核苷酸、肽核酸(PNA)。本发明的多核苷酸分子还包括所有形式的多核苷酸分子,包括但不限于单链形式、双链形式、发夹、茎环结构等。进一步地,本领域普通技术人员将会理解,在本文中所公开的核苷酸序列也包括所示例的核苷酸序列的互补物。The use of the term "DNA" or "RNA" herein is not intended to limit the present invention to polynucleotide molecules comprising DNA or RNA. One of ordinary skill in the art will recognize that the methods and compositions of the present invention include polynucleotide molecules composed of deoxyribonucleotides (i.e., DNA), ribonucleotides (i.e., RNA), or a combination of ribonucleotides and deoxyribonucleotides. Such deoxyribonucleotides and ribonucleotides include naturally occurring molecules and synthetic analogs, including but not limited to nucleotide analogs or modified backbone residues or linkages, which are synthetic, naturally occurring, and non-naturally occurring, which have similar binding properties to reference nucleic acids, and which are metabolized in a manner similar to reference nucleotides. Examples of such analogs include but are not limited to: phosphorothioates, phosphoramidates, methylphosphonates, chiral methylphosphonates, 2-O-methyl ribonucleotides, peptide nucleic acids (PNAs). The polynucleotide molecules of the present invention also include all forms of polynucleotide molecules, including but not limited to single-stranded forms, double-stranded forms, hairpins, stem-loop structures, etc. Further, one of ordinary skill in the art will understand that the nucleotide sequences disclosed herein also include complements of the exemplified nucleotide sequences.

本发明涉及用于增强植物对于植物疾病的抗性的组合物和方法,特别地涉及用于增强植物对于由Pgt引起的秆锈病的抗性的组合物和方法。“疾病抗性”意指,所述植物避免了作为植物-病原体相互作用的后果的疾病症状。即,防止病原体引起植物疾病和相关的疾病症状,或者备选地,最小化或减轻由所述病原体引起的疾病症状。The present invention relates to compositions and methods for enhancing plant resistance to plant diseases, and in particular to compositions and methods for enhancing plant resistance to stem rust caused by Pgt. "Disease resistance" means that the plant avoids disease symptoms as a consequence of plant-pathogen interactions. That is, pathogens are prevented from causing plant diseases and associated disease symptoms, or alternatively, disease symptoms caused by the pathogens are minimized or mitigated.

如在本文中所使用的,“品种(race)”是指实验室分离株或存在于野外的真菌个体(其共享相似的对于一系列不同的小麦抗性基因品系的毒力表型,并且可能通过克隆繁殖而得来)的群组中的任一个。As used herein, "race" refers to any one of a group of laboratory isolates or fungal individuals found in the field that share a similar virulence phenotype for a range of different wheat resistance lines and may have been derived through clonal propagation.

如在本文中所使用的,Pgt的“分离株”是指作为在野外或在实验室/温室场景中从被感染的植物收集的孢子最初分离出的Pgt系。随后,通过感染和从易感植物再分离孢子并且储存所述孢子来将这样的“分离株”以纯的形式进行维持。As used herein, an "isolate" of Pgt refers to a Pgt line that was initially isolated as spores collected from infected plants in the field or in a laboratory/greenhouse setting. Subsequently, such an "isolate" is maintained in pure form by infecting and re-isolating spores from susceptible plants and storing the spores.

本发明包括在本文中或者在随附的序列表和/或附图中所公开的核酸分子和多核苷酸构建体,包括但不限于:包含SEQ ID NO:1、2和/或4中所示的核苷酸序列的核酸分子和多核苷酸构建体;和编码包含SEQ ID NO:3中所示的氨基酸序列的蛋白质的核酸分子和多核苷酸构建体。本发明进一步包括包含此类核酸分子和/或多核苷酸构建体中的至少一个的植物、植物细胞、宿主细胞和载体,以及从此类植物和植物部分产生的食物产品。另外,本发明包括包含此类多核苷酸构建体中的至少一个的植物在本文中其他地方所公开的方法(例如,用于增强植物对于由Pgt引起的秆锈病的抗性的方法,和在农作物生产中限制秆锈病的方法)之中的用途。The present invention includes nucleic acid molecules and polynucleotide constructs disclosed herein or in the accompanying sequence listing and/or drawings, including but not limited to: nucleic acid molecules and polynucleotide constructs comprising the nucleotide sequences shown in SEQ ID NO: 1, 2 and/or 4; and nucleic acid molecules and polynucleotide constructs encoding proteins comprising the amino acid sequence shown in SEQ ID NO: 3. The present invention further includes plants, plant cells, host cells and vectors comprising at least one of such nucleic acid molecules and/or polynucleotide constructs, and food products produced from such plants and plant parts. In addition, the present invention includes the use of plants comprising at least one of such polynucleotide constructs in the methods disclosed elsewhere herein (e.g., methods for enhancing plant resistance to stem rust caused by Pgt, and methods for limiting stem rust in crop production).

下面的实施例以举例说明的方式而不是以限制的方式来提供。The following examples are offered by way of illustration and not by way of limitation.

实施例Example

实施例1:Sr27秆锈病抗性基因的克隆Example 1: Cloning of the Sr27 stem rust resistance gene

为了从黑小麦栽培种Coorong中克隆Sr27秆锈病抗性基因,发明人使用MutRenSeq方法(Steuernagel等人,(2016)Nature Biotechnol.34(6):652-655,doi:10.1038/nbt.3543;WO 2015/127185;两者均通过提及而合并入本文)。To clone the Sr27 stem rust resistance gene from triticale cv. Coorong, the inventors used the MutRenSeq method (Steuernagel et al., (2016) Nature Biotechnol. 34(6):652-655, doi: 10.1038/nbt.3543; WO 2015/127185; both incorporated herein by reference).

发明人用甲磺酸乙酯(EMS)诱变黑小麦栽培种Coorong的种子,并且从如下面所描述的那样而制备的Coorong背景中鉴定出27个易感的甲磺酸乙酯(EMS)-衍生的突变体(图1)。Coorong在其基因组中包含Sr27秆锈病抗性基因,并且首次由阿德莱德大学(University of Adelaide)在澳大利亚发布(MacIntosh等人,(1983)Can.J.Plant.Pathol.5:61-69)。The inventors mutagenized seeds of triticale cultivar Coorong with ethyl methanesulfonate (EMS) and identified 27 susceptible ethyl methanesulfonate (EMS)-derived mutants ( FIG. 1 ) from a Coorong background prepared as described below. Coorong contains the Sr27 stem rust resistance gene in its genome and was first published in Australia by the University of Adelaide (MacIntosh et al., (1983) Can. J. Plant. Pathol. 5:61-69).

在野生型Coorong和四个经确认的易感突变体(M2、M3、M4和M6)上进行NLR-基因捕获和测序(RenSeq),如在下面所描述的。装配来自野生型Coorong的经捕获的读段,并且将来自所有品系的读段与该参考物进行比对以鉴定在突变体品系中的序列变化。发现了一个具有1126个碱基对(bp)的重叠群(编号5723),其在所述四个突变体中的三个之中包含突变;一个(M2)具有该序列的完全缺失,和两个(M3、M4)分别具有引起氨基酸置换Q264R和G209S(在保守的p-环中)的单碱基变化。该重叠群包含卷曲螺旋(CC)结构域和p-环基元,但是没有NB-ARC或LRR结构域的其余部分,这暗示它仅为全长NLR基因的一部分。为了鉴定该基因的剩余部分,将所述重叠群与普通小麦栽培种Chinese Spring参考(CSv1)装配物IWGSC RefSeq v1.0(Appels等人,(2018)Science 361(6403):eaar7191)进行比对。最高命中(横跨全DNA序列的93.6%同一性)是在染色体6B上预测的并且在功能上被注释为疾病抗性基因的高置信度基因(TraesCS6B01G464400)的5’末端。然后,将TraesCS6B01G464400的全基因序列返回与Coorong RenSeq从头装配物进行比对,其检测到另外一个的2140bp的重叠群(编号2413),当与该基因的3’区域进行比对时,横跨全序列具有93.8%同一性。重叠群编号2413包含NB-ARC和LRR结构域两者。来自突变体Coorong品系的读段比对的检查确证在突变体M2中也检测到重叠群编号2413,并且在突变体M6中鉴定出另外一个单碱基变化(图2)。PCR扩增确证,这两个重叠群源自野生型Coorong中的相同基因,其编码具有956个氨基酸的全长蛋白质,该蛋白质在N-末端包含卷曲螺旋(CC)结构域,随后为NB-ARC结构域,和然后是在C-末端处的LRR基元(图2)。从所述四个突变体的扩增确证了在每个品系中通过RenSeq检测出的核苷酸变化。还通过PCR扩增检查了四个另外的突变体,并且一个(M3)在p-环基元中包含单氨基酸变化(T211I),而无法从其他三个(M7、M8、M9)中扩增出该基因序列,这表明它们包含该区域的缺失。在该基因中包含缺失或氨基酸变化的这八个独立的突变体提供了强大的证据证明它赋予Sr27抗性。NLR-gene capture and sequencing (RenSeq) was performed on wild-type Coorong and four confirmed susceptible mutants (M2, M3, M4 and M6) as described below. Captured reads from wild-type Coorong were assembled, and reads from all strains were aligned to the reference to identify sequence changes in mutant strains. A contig (number 5723) with 1126 base pairs (bp) was found, which contained mutations in three of the four mutants; one (M2) had a complete deletion of the sequence, and two (M3, M4) had single base changes that caused amino acid substitutions Q264R and G209S (in the conserved p-loop), respectively. The contig contains a coiled-coil (CC) domain and a p-loop motif, but no NB-ARC or the rest of the LRR domain, suggesting that it is only part of the full-length NLR gene. To identify the remainder of the gene, the contigs were aligned to the common wheat cv. Chinese Spring reference (CSv1) assembly IWGSC RefSeq v1.0 (Appels et al., (2018) Science 361(6403):eaar7191). The top hit (93.6% identity across the full DNA sequence) was at the 5' end of a high confidence gene (TraesCS6B01G464400) predicted on chromosome 6B and functionally annotated as a disease resistance gene. The full gene sequence of TraesCS6B01G464400 was then returned to the Coorong RenSeq de novo assembly, which detected an additional 2140 bp contig (number 2413) with 93.8% identity across the full sequence when aligned to the 3' region of the gene. Contig number 2413 contains both the NB-ARC and LRR domains. Inspection of read alignments from mutant Coorong lines confirmed that contig number 2413 was also detected in mutant M2, and an additional single base change was identified in mutant M6 (Figure 2). PCR amplification confirmed that the two contigs were derived from the same gene in wild-type Coorong, encoding a full-length protein of 956 amino acids containing a coiled-coil (CC) domain at the N-terminus, followed by a NB-ARC domain, and then an LRR motif at the C-terminus (Figure 2). Amplification from the four mutants confirmed the nucleotide changes detected by RenSeq in each strain. Four additional mutants were also examined by PCR amplification, and one (M3) contained a single amino acid change (T211I) in the p-loop motif, while the gene sequence could not be amplified from the other three (M7, M8, M9), indicating that they contained deletions in this region. These eight independent mutants containing deletions or amino acid changes in this gene provide strong evidence that it confers Sr27 resistance.

材料和方法Materials and methods

植物材料和突变体DNA制备Plant material and mutant DNA preparation

遵循由Mago等人((2015)Nature Plants 1,15186)所描述的实验方案,用甲磺酸乙酯(EMS)处理黑小麦品系野生型Coorong(Coorong携带Sr27)的种子。最初用不同浓度(0.1、0.2、0.3、0.4、0.5和0.6%(v/v))产生对于20个谷粒的杀伤曲线,以鉴定取得50%死亡率所需要的剂量。用0.3%甲磺酸乙酯处理总共1960颗种子12小时,然后用水彻底洗涤并且播种在大盆(40颗种子/30cm盆)中,在具有日光以及23℃白天和15℃夜晚温度的温室中。分开地对来自每个M1植物的单个穗进行脱粒,并且将来自每个植物的M2家族播种在盘中(30个M2家族/盘)。每个盘还包括抗性(Coorong)和易感(Rongcoo,黑小麦)对照。通过用禾柄锈菌小麦小种(Pgt)分离株Pgt21-0进行接种来就秆锈病应答对作为单穗子代从每个M1植物获得的M2家族进行测试。使来自分离子代的独个植物进行生长并且对子代进行测试。从这些子代回收纯合易感突变体和抗性同胞对。Seeds of the triticale line wild-type Coorong (Coorong carries Sr27) were treated with ethyl methanesulfonate (EMS) following the experimental protocol described by Mago et al. ((2015) Nature Plants 1, 15186). Kill curves for 20 grains were initially generated with different concentrations (0.1, 0.2, 0.3, 0.4, 0.5 and 0.6% (v/v)) to identify the dose required to achieve 50% mortality. A total of 1960 seeds were treated with 0.3% ethyl methanesulfonate for 12 hours, then washed thoroughly with water and sown in large pots (40 seeds/30 cm pot) in a greenhouse with daylight and 23°C day and 15°C night temperatures. Individual ears from each M1 plant were threshed separately, and the M2 families from each plant were sown in trays (30 M2 families/tray). Each tray also included resistant (Coorong) and susceptible (Rongcoo, triticale) controls. M2 families obtained from each M1 plant as single ear progeny were tested for stem rust response by inoculation with Puccinia graminearum wheat race (Pgt) isolate Pgt21-0. Individual plants from the segregating progeny were grown and the progeny were tested. Homozygous susceptible mutants and resistant sibling pairs were recovered from these progenies.

遵循由Yu等人(2017)所描述的实验方案,从野生型Coorong黑小麦和纯合易感突变体中提取基因组DNA。首先用NanoDrop分光光度计(Thermo Scientific,Wilmington,DE)和然后在0.8%琼脂糖凝胶上检查所提取的DNA的品质和数量。Genomic DNA was extracted from wild-type Coorong triticale and homozygous susceptible mutants following the protocol described by Yu et al. (2017). The quality and quantity of the extracted DNA were checked first with a NanoDrop spectrophotometer (Thermo Scientific, Wilmington, DE) and then on a 0.8% agarose gel.

抗性基因富集和测序(RenSeq)Resistance gene enrichment and sequencing (RenSeq)

遵循MYbaits实验方案,使用在github.com/steuernb/MutantHunter处可得的以前发布的小麦族诱饵文库的改进版本,由Arbor Biosciences(Ann Arbor,USA)进行NLR的靶标富集。通过遵循TruSeq RNA实验方案v2来进行文库构建。在HiSeq 2500(Illumina,CA,USA)上对所有经富集的文库进行测序,其中使用250bp配对末端读段和SBS化学。Target enrichment of NLRs was performed by Arbor Biosciences (Ann Arbor, USA) following the MYbaits protocol using an improved version of the previously published Triticeae bait library available at github.com/steuernb/MutantHunter. Library construction was performed by following the TruSeq RNA protocol v2. All enriched libraries were sequenced on a HiSeq 2500 (Illumina, CA, USA) using 250 bp paired-end reads and SBS chemistry.

MutantHunterMutantHunter

为了从突变体中鉴定Sr27重叠群,遵循Steuernagel等人((2015)Bioinformatics31:1665-7)的MutantHunter管线方法。首先通过使用Trimmomatic v0.38(Bolger等人,(2014)Bioinformatics 30:2114-20)就品质对来自野生型Coorong和突变体的初始读段测序数据进行修整,其中采用参数ILLUMINACLIP:novogene_indexed_adapters.fa:2:30:10:8:TRUE,LEADING:28,TRAILING:28,MINLEN:20。然后,通过使用CLCGW v11.0.1作为配对末端来对来自野生型Coorong的数据进行从头装配,其中具有0.95的长度分数和0.98的相似度分数,和其余参数为默认。使用定制的脚本,从最终装配物中忽略比1kb短的重叠群。通过使用程序NLR-Parser(Steuernagel等人,(2015)Bioinformatics 31:1665-7)来创建NBS-LRR基元的注解。通过使用BWA v0.7.15(Li和Durbin(2009)Bioinformatics 25:1754-1760),将每个突变体和野生型的经修整的数据映射至所述从头装配物。将Samtoolsv1.7.0(Li等人,(2009)Bioinformatics 25:2078-9)用于所得的SAM文件的处理以仅保留具有参数-f 2的处于正确配对中的读段映射,然后去除重复项并且使用参数-BQ0和-aa来生成pileup文件。SNV调用和随后的候选物鉴定通过使用下面的来自MuTrigo管线(https://github.com/TC-Hewitt/MuTrigo)的脚本来进行。在下游分析之前,使用Noisefinder.pyc(用默认参数)来检测出在野生型数据中的具有高的SNP水平的重叠群区域(其指明了差的装配或读段比对)并且进行掩蔽。通过使用SNPlogger.pyc(用参数-d20)来从pileup文件中记录潜在地经突变的核苷酸位置。将SNPtracker.pyc用于检索在两个或更多个突变体中包含多态性的重叠群,其中使用默认参数加上参数-s C\>T G\>A indel。这转变为仅考虑具有80%突变体等位基因频率的最小值的多态性,并且仅就插入、缺失或者C至T或G至A SNV(其与另一个突变体或野生型不共享相同位置)进行选择。将候选基因重叠群与黑麦自交系‘Lo7’的染色体规模参考装配物(Rabanus-Wallace等人,(2019)bioRxiv:2019.12.11.869693)和普通小麦栽培种Chinese Spring参考(CSv1)装配物IWGSCRefSeq v1.0(Appels等人,(2018)Science 361(6403):eaar7191)进行比对,其中使用BLAST v2.7.1(Altschul等人,(1990)J.Mol.Biol.215:403-10)。从来自被Pgt感染的Coorong幼苗的Illumina RNAseq数据(Upadhyaya等人,(2015)Front Plant Sci.5:759)(下载自NCBI-SRA SAMN07836894,PRJNA415866)生成从头RNA转录物装配物,其中使用CLCGW v11.0.1(0.98的相似度分数,和其余参数设置为默认)。To identify Sr27 contigs from mutants, the MutantHunter pipeline method of Steuernagel et al. ((2015) Bioinformatics 31: 1665-7) was followed. Initial read sequencing data from wild-type Coorong and mutants were first trimmed for quality using Trimmomatic v0.38 (Bolger et al., (2014) Bioinformatics 30: 2114-20) with parameters ILLUMINACLIP:novogene_indexed_adapters.fa:2:30:10:8:TRUE,LEADING:28,TRAILING:28,MINLEN:20. Then, data from wild-type Coorong were assembled from scratch using CLCGW v11.0.1 as paired ends with a length score of 0.95 and a similarity score of 0.98, and the remaining parameters were default. Overlaps shorter than 1 kb were ignored from the final assembly using a custom script. The annotation of NBS-LRR motifs was created by using the program NLR-Parser (Steuernagel et al., (2015) Bioinformatics 31: 1665-7). By using BWA v0.7.15 (Li and Durbin (2009) Bioinformatics 25: 1754-1760), the trimmed data of each mutant and wild type were mapped to the de novo assembly. Samtoolsv1.7.0 (Li et al., (2009) Bioinformatics 25: 2078-9) was used for the processing of the resulting SAM files to retain only the read mappings in the correct pairing with parameter -f 2, then duplicates were removed and pileup files were generated using parameters -BQ0 and -aa. SNV calls and subsequent candidate identification were performed by using the following script from the MuTrigo pipeline ( https://github.com/TC-Hewitt/MuTrigo ). Before downstream analysis, Noisefinder.pyc (with default parameters) was used to detect overlapping group regions with high SNP levels in wild-type data (which indicated poor assembly or read alignment) and masked. Potentially mutated nucleotide positions were recorded from pileup files using SNPlogger.pyc (with parameter -d20). SNPtracker.pyc was used to retrieve overlapping groups containing polymorphisms in two or more mutants, wherein the default parameters were used plus parameter -s C\>TG\>A indel. This was converted into considering only polymorphisms with a minimum of 80% mutant allele frequency, and only with respect to insertion, deletion, or C to T or G to A SNV (which does not share the same position with another mutant or wild type) selection was performed. Candidate gene contigs were aligned to the chromosome-scale reference assembly of rye inbred line 'Lo7' (Rabanus-Wallace et al., (2019) bioRxiv:2019.12.11.869693) and the common wheat cv. Chinese Spring reference (CSv1) assembly IWGSCRefSeq v1.0 (Appels et al., (2018) Science 361(6403):eaar7191) using BLAST v2.7.1 (Altschul et al., (1990) J. Mol. Biol. 215:403-10). De novo RNA transcript assemblies were generated from Illumina RNAseq data from Pgt-infected Coorong seedlings (Upadhyaya et al., (2015) Front Plant Sci. 5:759) (downloaded from NCBI-SRA SAMN07836894, PRJNA415866) using CLCGW v11.0.1 (similarity score of 0.98, and remaining parameters set to default).

Sr27基因结构确证Confirmation of Sr27 gene structure

基于两个非重叠的重叠群编号2413和5723的基因组序列来设计引物(表2)。将引物对Sr27c5723ExtF1和Sr27c2413ExtR1用于从野生型Coorong的基因组DNA中扩增在重叠群编号5723和编号2413之间的非重叠区域。将引物对Sr27F和Sr27R1用于从野生型和突变体的基因组DNA中扩增全长基因,以用于随后的序列比较。按照制造商的说明书,使用Phusion高保真DNA聚合酶(NEB,USA)来进行所有PCR。全长Sr27基因组序列显示在SEQ IDNO:1中。将在RenSeq管线中所使用的所有突变体通过桑格测序来进行再确证。预测的外显子-内含子结构通过从黑小麦栽培种Coorong的RNA的全cDNA扩增来进行确证。按照制造商的说明书,使用PureLinkTM RNA Mini试剂盒(Invitrogen目录号12183025,Thermo FisherScientific,MA USA)来提取总RNA。cDNA合成通过使用由制造商所描述的实验方案来进行(SMARTTM PCR cDNA合成试剂盒,目录号634902,Takara Bio USA Inc.(以前ClontechLaboratories Inc.))。Primers were designed based on the genomic sequences of two non-overlapping contigs numbered 2413 and 5723 (Table 2). Primers were used to amplify the non-overlapping region between contigs numbered 5723 and numbered 2413 from the genomic DNA of wild-type Coorong with Sr27c5723ExtF1 and Sr27c2413ExtR1. Primers were used to amplify the full-length gene from the genomic DNA of wild-type and mutants for subsequent sequence comparison. According to the manufacturer's instructions, Phusion high-fidelity DNA polymerase (NEB, USA) was used to perform all PCRs. The full-length Sr27 genomic sequence is shown in SEQ ID NO: 1. All mutants used in the RenSeq pipeline were re-confirmed by Sanger sequencing. The predicted exon-intron structure was confirmed by amplifying the full cDNA from the RNA of the black wheat cultivar Coorong. Total RNA was extracted using the PureLink™ RNA Mini Kit (Invitrogen Cat. No. 12183025, Thermo Fisher Scientific, MA USA) according to the manufacturer's instructions. cDNA synthesis was performed using the protocol described by the manufacturer (SMART PCR cDNA Synthesis Kit, Cat. No. 634902, Takara Bio USA Inc. (formerly Clontech Laboratories Inc.)).

Pgt毒力突变体选择Selection of Pgt virulence mutants

使用滑石作为承载体(1:4;锈病菌:滑石),用~100g的秆锈病分离株Pgt21-0接种处于2-3叶阶段的黑小麦栽培种Coorong的幼苗(20盆[15cm],6-8株植物/盆)(Upadhyaya等人,(2015)Front Plant Sci.5:759)。将经接种的植物在保持于23℃的潮湿的室中温育48小时。这段时间后,将植物移至在自然日光下的维持于23℃/18℃(白天/夜晚)的温室。在接种后14和20天就任何显示出对于易感相互作用来说典型的大锈斑(pustule)发展(感染类型3、4)的易感感染位点筛选植物两次。检测到多于10个突变体锈斑,并且收集这些之中的三个并且再接种到易感小麦品系Morocco上以用于单独地扩增。在扩增后,通过再感染野生型Coorong植物来确证每个突变体对于Sr27的毒力。一个突变体进一步地在包括各种各样的具有不同的已知抗性基因的小麦和黑小麦品系的关于Pgt的全澳大利亚差异集上进行测试(Park(2007)Aust.J.Agric.Res.58:558-566),并且显示出与Pgt21-0相同的毒力特性谱,除了对于Sr27的单个额外毒力。Seedlings of black wheat cultivar Coorong (20 pots [15 cm], 6-8 plants/pot) at the 2-3 leaf stage were inoculated with ~100 g of stem rust isolate Pgt21-0 (Upadhyaya et al., (2015) Front Plant Sci. 5:759). The inoculated plants were incubated in a humid chamber maintained at 23°C for 48 hours. After this period, the plants were moved to a greenhouse maintained at 23°C/18°C (day/night) under natural daylight. Plants were screened twice at 14 and 20 days after inoculation for any susceptible infection sites that showed large rust spots (pustule) development (infection types 3, 4) typical for susceptible interactions. More than 10 mutant rust spots were detected, and three of these were collected and re-inoculated on susceptible wheat line Morocco for individual amplification. After amplification, the virulence of each mutant to Sr27 was confirmed by reinfecting wild-type Coorong plants. One mutant was further tested on a full Australian differential set for Pgt, including a variety of wheat and triticale lines with different known resistance genes (Park (2007) Aust. J. Agric. Res. 58:558-566), and showed the same spectrum of virulence properties as Pgt21-0, except for a single additional virulence to Sr27.

通过全基因组序列分析来鉴定AvrSr27基因Identification of the AvrSr27 gene by whole-genome sequence analysis

用具有一些所描述的修改(Upadhyaya等人,(2015)Front Plant Sci.5:759)的CTAB方法(Rogers等人,(1989)Can.J.Bot.67:1235-1243)来从突变体Pgt品系的夏孢子中提取DNA,用Nanodrop分光光度计(Thermo Scientific,Wilmington,DE)来评估品质,并且在Qubit 3.0荧光计(Invitrogen,Carlsbad,CA,USA)中使用宽范围测定法进行定量。DNA文库制备和Illumina测序由澳大利亚基因组研究所(Australian Genome ResearchFacility;AGRF)在HiSeq2500(250bp PE读段,突变体M1和M2)或MiSeq(300bp PE读段,突变体M3)平台上进行,并且对于每个突变体获得大约2千万个读段。将序列读段输入至CLCGenomics Workbench(CLCGW)10.0.1版或更新版本(QIAGEN),进行过滤,和进行修整以去除低品质末端,其中对衔接头和低品质读段进行测序(Trim使用品质得分0.01,所允许的最大多义性数目为2)。将读段映射至用37036个基因模型进行注释的核相染色体水平装配型Pgt21-0参考物(Li等人,(2019)Nature Commun.10,5068),其中使用高严格度设置(相似度分数0.98和长度分数0.95)。针对参考物的每个样品的变体调用通过使用“Basic VariantDetection”程序来进行,其中采用下列参数:忽略非特异性匹配;最小覆盖10;显著性1.0%;最小变体计数2;包括断开的对。使用在CLCGW中的程序“Compare variants withingroup”来鉴定对于每个样品来说特异性的变体以及共享的变体。使用CLCGW工具“AminoAcid Changes”来预测在分泌型蛋白质基因中的非同义变体,并且通过目视检查在CLCGW中的读段映射轨迹来手动管理。使用“Create Statistics for Target Regions”程序来提取关于经注释的基因的读段覆盖统计学(平均读段深度和覆盖百分比)。DNA was extracted from uredia of mutant Pgt lines using the CTAB method (Rogers et al., (1989) Can. J. Bot. 67: 1235-1243) with some described modifications (Upadhyaya et al., (2015) Front Plant Sci. 5: 759), quality was assessed using a Nanodrop spectrophotometer (Thermo Scientific, Wilmington, DE), and quantified using a wide range assay in a Qubit 3.0 fluorometer (Invitrogen, Carlsbad, CA, USA). DNA library preparation and Illumina sequencing were performed by the Australian Genome Research Facility (AGRF) on a HiSeq2500 (250 bp PE reads, mutants M1 and M2) or MiSeq (300 bp PE reads, mutant M3) platform, and approximately 20 million reads were obtained for each mutant. Sequence reads are input to CLCGenomics Workbench (CLCGW) version 10.0.1 or later (QIAGEN), filtered, and trimmed to remove low-quality ends, where adapters and low-quality reads are sequenced (Trim uses a quality score of 0.01, and the maximum number of ambiguities allowed is 2). Reads are mapped to the nuclear phase chromosome level assembly type Pgt21-0 reference (Li et al., (2019) Nature Commun.10, 5068) annotated with 37036 gene models, where high stringency settings (similarity score 0.98 and length score 0.95) are used. Variant calls for each sample of the reference are performed using the "Basic Variant Detection" program, with the following parameters: ignoring nonspecific matches; minimum coverage 10; significance 1.0%; minimum variant count 2; including disconnected pairs. The program "Compare variants withingroup" in CLCGW is used to identify specific variants and shared variants for each sample. The CLCGW tool "AminoAcid Changes" was used to predict non-synonymous variants in secreted protein genes and was manually curated by visual inspection of read mapping tracks in CLCGW. The "Create Statistics for Target Regions" program was used to extract read coverage statistics (average read depth and coverage percentage) for annotated genes.

实施例2:鉴定由Sr27所识别的AvrSr27效应子Example 2: Identification of AvrSr27 effectors recognized by Sr27

为了鉴定具有对于Sr27的毒力增益的Pgt的自发突变体,发明人将无毒力的分离株Pgt21-0接种到携带Sr27的黑小麦栽培种‘Coorong’的幼苗上。选择三个大的单个锈斑,单独地进行纯化,并且再接种到Coorong上以确证其毒力表型(图3)。发明人从每个突变体中提取基因组DNA并且获得Illumina序列数据。将Illumina读段映射至Pgt21-0单倍型解析型基因组装配物(Li等人,(2019)Nature Commun.10,5068)以鉴定潜在的突变。用于鉴定引起在分泌型蛋白质基因中的氨基酸变化的SNP的第一次筛选在多于一个Pgt21-0突变体品系中未发现任何具有此类突变的基因。接着,发明人寻找读段覆盖的丢失,其作为潜在的缺失突变的指示物。所述Pgt21-0突变体品系中的每一个显示出大量具有零读段覆盖的基因,所有均位于染色体2B的一个末端。向染色体2B的读段映射的可视化揭示,所述三个突变体每个包含独立的和重叠的缺失,其覆盖染色体2B的一部分,其中最小的所具有的大小为196千碱基对(kbp)(图4)。该区域包含50个经注释的基因,其中五个被预测编码分泌型蛋白质。以前,对两个澳大利亚Pgt分离株(34-2,12和34-2,12,13)进行了测序,其属于源自Pgt21-0的克隆谱系并且已在野外进化出对于Sr27的毒力(Upadhyaya等人,(2015)Front PlantSci.5:759;Zhang等人,(2017).Phytopath.107:1032-1038)。读段覆盖的分析揭示,这两个分离株各自包含13kbp的小缺失(图5A),其跨越在该区域中的分泌型蛋白质基因中的两个(PGT21_006532和PGT21_006593)连同在远端侧的单个相邻基因。在这两个分离株中,在该区域中没有其他基因包含任何变化。在Pgt21-0和34-2,12中,发明人通过缺失边界的PCR扩增确证了在基因组中该缺失的存在(图5B)。还检查了从七个南非分离株生成的序列数据(Lewis等人,2018),这七个南非分离株是与Pgt21-0相同的克隆谱系的部分(Li等人,(2019)Nature Commun.10,5068;Visser等人,(2019)Phytopath.109:133-144)但是在南非独立地进化。这些分离株中的四个是对于Sr27有毒力的(Visser等人,(2009)Mol.PlantPath.10:213-222)并且一定是独立于澳大利亚分离株进化出了该表型。这些毒力分离株中的三个(SA03、SA05和SA07)包含与在34-2,12中的缺失重叠并且跨越所述两个候选分泌型蛋白质基因加上在近端侧的另一个基因的相同的~14kbp缺失,而第四个分离株(SA06)包含一个仅跨越所述两个分泌型蛋白质基因的10kbp的独立缺失(图5A)。其余三个来自南非的无毒力分离株(SA01、SA02、SA04)在该区域中包含与Pgt21-0相似的序列,如也对于Sr27无毒力的该谱系的三个其他澳大利亚分离株(PGT098、PGT194、PGT326)所做的一样。该克隆衍生的分离株群组的系统发生分析将这些缺失事件中的每一个置于所述谱系的分开的分枝中,这与在该谱系的多样化期间关于对于Sr27的毒力的三个独立突变的出现相一致(数据未显示)。在三个独立的野外衍生的毒力分离株中这两个分泌型蛋白质基因候选物的缺失提供了强大的证据证明这些基因中的至少一个赋予所述无毒力表型。这两个基因相互紧密相关,并且编码预测的具有144个氨基酸的分泌型蛋白质,其被命名为AvrSr27-1(SEQ IDNO:6)和AvrSr27-2(SEQ ID NO:8)(图6)。In order to identify spontaneous mutants of Pgt with virulence gain for Sr27, the inventors inoculated the avirulent isolate Pgt21-0 into the seedlings of the black wheat cultivar 'Coorong' carrying Sr27. Three large single rust spots were selected, purified individually, and then inoculated into Coorong to confirm its virulence phenotype (Fig. 3). The inventors extracted genomic DNA from each mutant and obtained Illumina sequence data. Illumina reads were mapped to Pgt21-0 haplotype-analyzed genome assemblies (Li et al., (2019) Nature Commun.10, 5068) to identify potential mutations. The first screening for identifying SNPs causing amino acid changes in secreted protein genes did not find any genes with such mutations in more than one Pgt21-0 mutant strain. Then, the inventors looked for the loss of read coverage, which served as an indicator of potential deletion mutations. Each of the Pgt21-0 mutant strains shows a large number of genes with zero read coverage, all located at one end of chromosome 2B. Visualization of the read mapping to chromosome 2B reveals that each of the three mutants contains independent and overlapping deletions that cover a portion of chromosome 2B, with the smallest size being 196 kilobase pairs (kbp) (Fig. 4). This region contains 50 annotated genes, five of which are predicted to encode secretory proteins. Previously, two Australian Pgt isolates (34-2,12 and 34-2,12,13) were sequenced, belonging to a clonal lineage derived from Pgt21-0 and having evolved toxicity for Sr27 in the wild (Upadhyaya et al., (2015) Front Plant Sci.5:759; Zhang et al., (2017). Phytopath.107:1032-1038). The analysis of read coverage reveals that the two isolates each include a small deletion of 13kbp (Fig. 5A), which spans two (PGT21_006532 and PGT21_006593) of the secretory protein gene in the region together with a single adjacent gene on the distal side. In the two isolates, no other genes in the region include any changes. In Pgt21-0 and 34-2,12, the inventors confirmed the presence of the deletion in the genome by PCR amplification of the missing border (Fig. 5B). The sequence data generated from seven South African isolates (Lewis et al., 2018) were also checked, and these seven South African isolates were part of the clonal pedigree identical to Pgt21-0 (Li et al., (2019) Nature Commun.10,5068; Visser et al., (2019) Phytopath.109:133-144) but evolved independently in South Africa. Four of these isolates are virulent for Sr27 (Visser et al., (2009) Mol. Plant Path. 10: 213-222) and must have evolved this phenotype independently of Australian isolates. Three of these virulent isolates (SA03, SA05 and SA07) include the same ~ 14kbp deletion overlapping with the deletion in 34-2,12 and spanning the two candidate secretory protein genes plus another gene on the proximal side, while the fourth isolate (SA06) includes an independent deletion of 10kbp spanning only the two secretory protein genes (Fig. 5A). The remaining three avirulent isolates (SA01, SA02, SA04) from South Africa include sequences similar to Pgt21-0 in this region, as also done for three other Australian isolates (PGT098, PGT194, PGT326) of this pedigree that are avirulent for Sr27. The phylogenetic analysis of the clone-derived isolate group places each of these deletion events in the separate branches of the pedigree, which is consistent with the appearance of three independent mutations for the virulence of Sr27 during the diversification of the pedigree (data not shown). The disappearance of these two secreted protein gene candidates in three independent field-derived virulence isolates provides strong evidence to prove that at least one of these genes confer the avirulence phenotype. These two genes are closely related to each other, and the secreted proteins with 144 amino acids predicted by encoding are named AvrSr27-1 (SEQ ID NO:6) and AvrSr27-2 (SEQ ID NO:8) (Fig. 6).

实施例3:Sr27功能的瞬时表达验证Example 3: Transient expression verification of Sr27 function

为了确证Sr27候选基因的功能,我们使用了在下面所描述的小麦原生质体转染测定法以共表达所述基因与上面所鉴定的AvrSr27变体以及报道基因萤光素酶。在该测定法中在抗性和无毒力基因之间的识别导致细胞死亡和因此共转化的萤光素酶报道基因(其通过其生物发光来检测)的表达降低(Saur等人,(2019)Plant Methods 15,118)。与Sr27或AvrSr27基因在原生质体中单独的表达相比较,所述Sr27候选基因与所述AvrSr27基因变体中的每一个的共表达导致萤光素酶活性的强烈降低(图7)。这是一种特异性识别应答,因为当将Sr27与不相关的Pgt无毒力基因AvrSr50(Chen等人,(2017)Science358:1607-1610)一起共表达时,或者当将AvrSr27-1与不相关的小麦抗性基因Sr50(Mago等人,(2015)NaturePlants 1,15186)一起共表达时,均未看到报道基因表达的丢失。这确证,所克隆的Sr27序列赋予对于来自Pgt的AvrSr27效应子的特异性识别并且因此负责对于表达AvrSr27基因的Pgt分离株的抗性。In order to confirm the function of the Sr27 candidate gene, we used the wheat protoplast transfection assay described below to co-express the gene with the AvrSr27 variant identified above and the reporter gene luciferase. In this assay, recognition between resistance and avirulence genes leads to cell death and thus reduced expression of the co-transformed luciferase reporter gene (which is detected by its bioluminescence) (Saur et al., (2019) Plant Methods 15, 118). Compared with the expression of Sr27 or AvrSr27 genes alone in protoplasts, the co-expression of each of the Sr27 candidate gene and the AvrSr27 gene variant leads to a strong reduction in luciferase activity (Fig. 7). This is a specific recognition response, because when Sr27 was co-expressed with the unrelated Pgt avirulence gene AvrSr50 (Chen et al., (2017) Science 358: 1607-1610), or when AvrSr27-1 was co-expressed with the unrelated wheat resistance gene Sr50 (Mago et al., (2015) Nature Plants 1, 15186), no loss of reporter gene expression was seen. This confirms that the cloned Sr27 sequence confers specific recognition of the AvrSr27 effector from Pgt and is therefore responsible for resistance to Pgt isolates expressing the AvrSr27 gene.

因此,发明人证实,当在可操作地连接的泛素启动子的控制之下在小麦原生质体中表达时,Sr27编码区足以赋予对于来自小麦秆锈病真菌(Pgt)的相应的效应子AvrSr27的识别。所述效应子通过突变分析来鉴定,所述突变分析将它定位于在Pgt21-0的染色体2B上的196kbp缺失之内。随后的分析发现了两个在三个获得了对于Sr27的毒力的不同Pgt中独立地缺失的基因。由Sr27所识别的所克隆的效应子的可得性促进就该效应子的存在和因此其预测的对于Sr27的毒力对小麦秆锈病分离株进行的遗传筛选。Therefore, the inventors have demonstrated that the Sr27 coding region is sufficient to confer recognition of the corresponding effector AvrSr27 from wheat stem rust fungus (Pgt) when expressed in wheat protoplasts under the control of an operably linked ubiquitin promoter. The effector was identified by mutation analysis, which located it within a 196 kbp deletion on chromosome 2B of Pgt21-0. Subsequent analysis found two genes that were independently deleted in three different Pgts that conferred virulence for Sr27. The availability of cloned effectors recognized by Sr27 facilitates genetic screening of wheat stem rust isolates for the presence of the effector and therefore its predicted virulence for Sr27.

材料和方法Materials and methods

构建体生成Construct generation

使用Phusion高保真DNA聚合酶(Thermo Scientific,Wilmington,DE)从来自经纯化的Pgt21-0吸器的cDNA扩增其中预测的信号肽被排除并且用单个甲硫氨酸起始密码子替代的AvrSr27基因序列(在SEQ ID NO:5、7和9中所显示的),并且按照制造商(InvitrogenTM,Thermo Fisher Scientific,MA,USA)的说明书克隆到中。将全长Sr27cDNA也克隆到中。对于小麦原生质体转染,使用Technology(Life TechonologiesTM)来将Sr27和AvrSr27序列插入到p35s-pUbi-GTW-GFP(Akamatsu等人,(2013)Cell Host Microbe13:465-476)中。用于PCR的引物显示在表2中。所有质粒均通过测序来进行确证,并且通过使用Vector NTI Advance(LifeTechnologies,Thermo Fisher Scientific,MA,USA)或CodonCode Aligner V.4.0.4(CodonCode Corporation,MA,USA)软件来进行分析。编码GFP(Arndell等人,(2019)BMCBiotechnol.19:71)和萤光素酶(Saur等人,(2019)Plant Methods 15,118)的质粒以前已作过描述。The AvrSr27 gene sequence (shown in SEQ ID NOs: 5, 7, and 9) in which the predicted signal peptide was excluded and replaced with a single methionine start codon was amplified from cDNA from purified Pgt21-0 haustoria using Phusion High -Fidelity DNA Polymerase (Thermo Scientific, Wilmington, DE) and cloned into The full-length Sr27 cDNA was also cloned into For wheat protoplast transfection, use Technology (Life Technologies TM ) was used to insert Sr27 and AvrSr27 sequences into p35s-pUbi-GTW-GFP (Akamatsu et al., (2013) Cell Host Microbe 13:465-476). Primers used for PCR are shown in Table 2. All plasmids were confirmed by sequencing and analyzed using Vector NTI Advance (Life Technologies, Thermo Fisher Scientific, MA, USA) or CodonCode Aligner V.4.0.4 (CodonCode Corporation, MA, USA) software. Plasmids encoding GFP (Arndell et al., (2019) BMC Biotechnol. 19:71) and luciferase (Saur et al., (2019) Plant Methods 15, 118) have been described previously.

原生质体表达测定法Protoplast expression assay

使小麦幼苗在生长室中在阴凉处在25℃下以16小时光照的光周期生长7-9天。小麦原生质体分离和转化如所描述的那样来进行(Arndell等人,(2019)BMC Biotechnol.19:71)。通过使用Qiagen Endo-free Plasmid Maxi试剂盒(目录号12362)来分离高品质质粒DNA。将DNA浓度调整至1μg/μl至4μg/μl,并且在共转化实验中使用10μg的每种质粒。在黑暗中在23℃下温育24小时后,遵循制造商的说明书,使用Luciferase Assay System(Promega,目录号E1501),如由Saur等人((2019)Plant Methods 15,118)所描述的那样来进行萤光素酶活性测定法。Wheat seedlings were grown in a growth chamber in the shade at 25 ° C with a photoperiod of 16 hours of light for 7-9 days. Wheat protoplast isolation and transformation were performed as described (Arndell et al., (2019) BMC Biotechnol. 19: 71). High-quality plasmid DNA was isolated by using the Qiagen Endo-free Plasmid Maxi kit (Cat. No. 12362). DNA concentration was adjusted to 1 μg/μl to 4 μg/μl, and 10 μg of each plasmid was used in the co-transformation experiment. After incubation at 23 ° C in the dark for 24 hours, the manufacturer's instructions were followed, using the Luciferase Assay System (Promega, Catalog No. E1501), as described by Saur et al. ((2019) Plant Methods 15, 118) to perform luciferase activity assays.

实施例4:Sr27与其他抗性基因的比较Example 4: Comparison of Sr27 with other resistance genes

根据针对IWGSC CS ref v1.0的BLAST最佳命中,在Chinese Spring参考物v1.0中Sr27候选物的最接近同源物的位置在染色体6B上(参见实施例1)。本发明人通过针对在NCBI处的非丰余蛋白质数据库施行BLAST而进一步扩大了该同源序列列表(数据未显示)。最高命中为来自圆柱小麦硬粒亚种的未命名的蛋白质产物(GenBank登录号VAI63620.1)并且与Sr27蛋白具有90.5%氨基酸同一性。为了测定在蛋白质序列水平上在Sr27与其他来自小麦的所克隆的CNL型R基因之间的进化距离和多样性程度,本发明人比对了Sr27蛋白与16个从小麦中鉴定出的CNL型R基因并且如下面所描述的那样进行系统发生分析(图8)。来自所选择的群组的与Sr27最接近的R基因为小麦秆锈病抗性基因Sr13,其具有86.7%氨基酸同一性。According to the best BLAST hit against IWGSC CS ref v1.0, the position of the closest homolog of the Sr27 candidate in the Chinese Spring reference v1.0 is on chromosome 6B (see Example 1). The inventors further expanded the list of homologous sequences by performing BLAST against the non-redundant protein database at NCBI (data not shown). The top hit was an unnamed protein product from Triticum cylindraceum durum subsp. (GenBank accession number VAI63620.1) and had 90.5% amino acid identity with the Sr27 protein. In order to determine the evolutionary distance and degree of diversity between Sr27 and other cloned CNL-type R genes from wheat at the protein sequence level, the inventors compared the Sr27 protein with 16 CNL-type R genes identified from wheat and performed a phylogenetic analysis as described below (Figure 8). The closest R gene to Sr27 from the selected group is the wheat stem rust resistance gene Sr13, which has 86.7% amino acid identity.

方法method

系统发生分析Phylogenetic analysis

使用MEGA版本X(Kumar等人,(2018)Mol.Biol.Evol.35:1547-1549)来进行系统发生和分子进化分析。通过CLUSTAL来比对Sr27和其他小麦抗性蛋白的蛋白质序列,并且构建最大似然树。Phylogenetic and molecular evolutionary analyses were performed using MEGA version X (Kumar et al., (2018) Mol. Biol. Evol. 35: 1547-1549). Protein sequences of Sr27 and other wheat resistance proteins were aligned by CLUSTAL, and a maximum likelihood tree was constructed.

实施例5:在转基因植物中Sr27功能的确证Example 5: Confirmation of Sr27 function in transgenic plants

通过土壤杆菌介导的转化将由泛素启动子驱动的Sr27基因构建体(如在实施例3中所描述的)转移到小麦栽培种Fielder中,并且生成转基因品系,如下面所描述的那样。The Sr27 gene construct driven by the ubiquitin promoter (as described in Example 3) was transferred into wheat cv. Fielder by Agrobacterium-mediated transformation and transgenic lines were generated as described below.

如所描述的那样(Ishida等人,(2015)“Wheat(Triticum aestivum L.)transformation using immature embryos”,Wang K(编者),Agrobacterium Protocols,第1卷,第3版,Springer,New York,第189-198页)来进行小麦的土壤杆菌介导的转化。在温室生长条件下使用24℃,16小时光照/18℃,8小时黑暗生长制度来繁殖栽培种Fielder的小麦植物,并且用Aquasol(Yates,Clayton,Australia)两周一次地对植物进行施肥。在花开期给小麦穗加标签,并且在花开期后12-14天收获小麦穗以用于转化实验,如由Ishida等人(同上)所描述的和如在CSIRO,Canberra,Australia所改编的(Richardson等人,(2014)Plant Cell Tiss.Org.119:647-659)。简而言之,将种子在0.8%次氯酸钠溶液中进行表面消毒10分钟。将胚在无菌条件下从种子中取出,并且与包含Sr22和Sr45基因组片段二元构建体的土壤杆菌菌株一起在黑暗中在WLS-AS培养基(Ishida等人,2015)上共培养2天。在共培养后,用解剖刀切除胚轴,然后将外植体转移至WLS-Res培养基并且于24℃放置在黑暗中。在5天后,将外植体转移至包含15mg/ml的潮霉素(Hyg)的WLS-H15愈伤组织诱导培养基以用于愈伤组织形成。两周后,将所得的愈伤组织切成两份并且放置在WLS-H30(30mg/l的Hyg)上在黑暗中3周。然后,使愈伤组织在LSZ-H15(15mg/l Hyg)培养基上在200μmol m-2s-1光中在24℃下进行再生。将苗转移至LSF-H15(15mg/l Hyg)培养基以允许根形成,并且一旦发育出稳固的根系,就将植物转移至土壤并且在温室中进行维持。Agrobacterium-mediated transformation of wheat was performed as described (Ishida et al., (2015) "Wheat (Triticum aestivum L.) transformation using immature embryos", Wang K (ed.), Agrobacterium Protocols, Vol. 1, 3rd edition, Springer, New York, pp. 189-198). Wheat plants of the cultivar Fielder were propagated under greenhouse growth conditions using a 24°C, 16-hour light/18°C, 8-hour dark growth regime, and the plants were fertilized biweekly with Aquasol (Yates, Clayton, Australia). Wheat ears were tagged during the flowering period and harvested 12-14 days after the flowering period for transformation experiments, as described by Ishida et al. (supra) and as adapted at CSIRO, Canberra, Australia (Richardson et al., (2014) Plant Cell Tiss. Org. 119: 647-659). In short, the seeds were surface sterilized in 0.8% sodium hypochlorite solution for 10 minutes. The embryos were removed from the seeds under sterile conditions and co-cultured on WLS-AS medium (Ishida et al., 2015) in the dark with the Agrobacterium strain containing the binary construct of Sr22 and Sr45 genomic fragments for 2 days. After co-cultivation, the embryo axis was excised with a scalpel, and then the explant was transferred to WLS-Res medium and placed in the dark at 24 ° C. After 5 days, the explant was transferred to WLS-H15 callus induction medium containing 15mg/ml hygromycin (Hyg) for callus formation. After two weeks, the resulting callus was cut into two parts and placed on WLS-H30 (30mg/l Hyg) in the dark for 3 weeks. Then, the callus was regenerated on LSZ-H15 (15mg/l Hyg) medium at 200μmol m -2 s -1 light at 24 ° C. Shoots were transferred to LSF-H15 (15 mg/l Hyg) medium to allow root formation, and once a strong root system had developed, the plants were transferred to soil and maintained in the greenhouse.

用关于转基因的引物(Sr27c5723 F x Sr27c5723 R,表2)通过PCR来筛选T0品系,并且鉴定出三个阳性品系(PC311.3、PC311.17和PC311.18)。从所述三个阳性品系以及缺乏Sr27转基因的第四个品系(PC311.16)收获T1种子。使每个品系的十一个或十二个子代在生长箱(23℃,16小时光照)中与对照品系一起进行生长(参见表1)。用Pgt品种98-1,2,(3),(5),6(Sr27赋予了对于其的抗性)接种两周龄幼苗。在10-15天后评估锈病反应(表1)。对于PC311.3和PC311.17,所有T1子代都显示出强大的对于Pgt的抗性,具有以微小的坏死性感染斑点为特征但无锈斑形成的感染类型,这与在携带Sr27的小麦品系WRT258.5中所观察到的表型相似(图9)。第三个Sr27转基因品系PC311.18的T1子代关于抗性发生分离,其中具有10个抗性子代和1个易感子代(表1)。PCR分析确证,该单个PC311.18T1子代易感植物不包含Sr27转基因,而抗性T1子代包含Sr27。与此相反,易感品系Chinese Spring和Fielder显示出高的感染类型,其具有大的夏孢子堆并且没有褪绿或坏死(参见图9),如不包含Sr27转基因的从转化恢复的PC311.16品系所做的(图9)。这些数据确证,当通过泛素启动子进行表达时,Sr27转基因在转基因小麦中赋予秆锈病抗性。通过用叶锈病(小麦柄锈菌(P.triticina))分离株76-1,3,7,9,10,12,13和条锈病(条形柄锈菌(P.striiformis))分离株198E16 A+J+T+17+进行接种来进一步测试所述三个阳性品系中的每一个的T1子代。所有子代都是对于所述叶锈病和条锈病分离株完全易感的,这确证了Sr27转基因赋予特异性的对于秆锈病的抗性,并且该抗性不是由于针对锈病病原体有效的防御应答的非特异性激活。The TO lines were screened by PCR with primers for the transgene (Sr27c5723 F x Sr27c5723 R, Table 2), and three positive lines (PC311.3, PC311.17, and PC311.18) were identified. T1 seeds were harvested from the three positive lines and a fourth line (PC311.16) lacking the Sr27 transgene. Eleven or twelve progeny of each line were grown in a growth chamber (23°C, 16 hours of light) with a control line (see Table 1). Two-week-old seedlings were inoculated with Pgt varieties 98-1, 2, (3), (5), 6 (to which Sr27 confers resistance). Rust responses were evaluated after 10-15 days (Table 1). For PC311.3 and PC311.17, all T1 progenies showed strong resistance to Pgt, with infection types characterized by tiny necrotic infection spots but without rust formation, which is similar to the phenotype observed in the wheat line WRT258.5 carrying Sr27 (Figure 9). The T1 progeny of the third Sr27 transgenic line PC311.18 segregated for resistance, with 10 resistant progenies and 1 susceptible progeny (Table 1). PCR analysis confirmed that the single PC311.18 T1 progeny susceptible plant did not contain the Sr27 transgene, while the resistant T1 progeny contained Sr27. In contrast, the susceptible lines Chinese Spring and Fielder showed high infection types with large summer spores and no chlorosis or necrosis (see Figure 9), as did the PC311.16 lines recovered from transformation that did not contain the Sr27 transgene (Figure 9). These data confirm that the Sr27 transgene confers stem rust resistance in transgenic wheat when expressed via the ubiquitin promoter. T1 progeny of each of the three positive lines were further tested by inoculation with leaf rust (P. triticina) isolates 76-1, 3, 7, 9, 10, 12, 13 and stripe rust (P. striiformis) isolate 198E16 A+J+T+17+. All progeny were fully susceptible to the leaf rust and stripe rust isolates, confirming that the Sr27 transgene confers specific resistance to stem rust and that the resistance is not due to nonspecific activation of an effective defense response against the rust pathogen.

表1.Sr27转基因小麦品系的条锈病抗性测定法的结果Table 1. Results of stripe rust resistance assay for Sr27 transgenic wheat lines

实施例6:在克隆Sr27中所使用的引物的序列Example 6: Sequences of primers used in cloning Sr27

在下面的表2中,提供了在从黑小麦栽培种Coorong中克隆Sr27(在上面的实施例中所描述的)之中所使用的引物的核苷酸序列。这些引物的核苷酸序列作为举例说明性实例(为了清楚理解的目的)而非作为限制来提供。In Table 2 below, the nucleotide sequences of the primers used in cloning Sr27 from triticale cv. Coorong (described in the Examples above) are provided. The nucleotide sequences of these primers are provided as illustrative examples (for the purpose of clarity of understanding) and not as limitations.

表2.引物序列Table 2. Primer sequences

在本文中使用冠词“a”和“an”来指所述冠词的一个或多于一个(即,至少一个)语法对象。举例来说,“要素”意指一个或多个要素。The articles "a" and "an" are used herein to refer to one or to more than one (ie, to at least one) of the grammatical object of the article. For example, "an element" means one or more elements.

贯穿说明书始终,单词“包含”或变化形式例如“含有”或“包括”将会被理解为暗示包括所陈述的要素、整数或步骤,或者要素、整数或步骤的组,但并不排除任何其他要素、整数或步骤,或者要素、整数或步骤的组。Throughout the specification, the word "comprise" or variations such as "comprising" or "including" will be understood to imply the inclusion of stated elements, integers or steps, or groups of elements, integers or steps, but not the exclusion of any other elements, integers or steps, or groups of elements, integers or steps.

在本说明书中提及的所有出版物和专利申请均指明了本发明所属领域中的专业人员的水平。所有出版物和专利申请均通过提及而合并入本文,其程度如同每个独个出版物或专利申请被特别地和独个地指出通过提及而合并。All publications and patent applications mentioned in this specification indicate the level of expertise in the field to which the invention pertains. All publications and patent applications are incorporated herein by reference to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.

虽然为了清楚理解的目的已经通过举例说明和实施例对前述发明进行了一些详细描述,但是将会显而易见的是,在所附的权利要求书的范围之内可以实行某些变化和修改。Although the foregoing invention has been described in some detail by way of illustration and example for purposes of clarity of understanding, it will be apparent that certain changes and modifications may be practiced within the scope of the appended claims.

序列表Sequence Listing

<110> COMMONWEALTH SCIENTIFIC AND INDUSTRIAL RESEARCH ORGANISATION<110> COMMONWEALTH SCIENTIFIC AND INDUSTRIAL RESEARCH ORGANISATION

<120> 秆锈病抗性基因<120> Stem rust resistance gene

<130> 070294.0193<130> 070294.0193

<150> US 63/076,153<150> US 63/076,153

<151> 2020-09-09<151> 2020-09-09

<150> US 63/127,220<150> US 63/127,220

<151> 2020-12-18<151> 2020-12-18

<160> 39<160> 39

<170> PatentIn version 3.5<170> PatentIn version 3.5

<210> 1<210> 1

<211> 3956<211> 3956

<212> DNA<212> DNA

<213> x Triticosecale<213> x Triticosecale

<400> 1<400> 1

cctgttcgat cactggtcgt gcattcgagc ttttaggcca tggaggcggc tctggtgacc 60cctgttcgat cactggtcgt gcattcgagc ttttaggcca tggaggcggc tctggtgacc 60

gtggcgacgg gagtcctcaa acctgtcctg gggaagctgg ccaccctgct cggcgacgag 120gtggcgacgg gagtcctcaa acctgtcctg gggaagctgg ccaccctgct cggcgacgag 120

tacaagcgtt ttaagggtgt gcgcaaggag atcaggtctc tcactcatga actcgccgcc 180tacaagcgtt ttaagggtgt gcgcaaggag atcaggtctc tcactcatga actcgccgcc 180

atggaggctt ttctcctcaa gatgtcggag gaggaggagg atcccgatgt gcaggataaa 240atggaggctt ttctcctcaa gatgtcggag gaggaggagg atcccgatgt gcaggataaa 240

gtctggatga atgaggtgcg ggaattgtcc tatgacatgg aggacgccat cgacgacttc 300gtctggatga atgaggtgcg ggaattgtcc tatgacatgg aggacgccat cgacgacttc 300

atgcaaagca ttggtgacaa agacgaaaag ccggatggct tcactgagaa gatcaaggcc 360atgcaaagca ttggtgacaa agacgaaaag ccggatggct tcactgagaa gatcaaggcc 360

actctaggca agttgggaaa tatgaaggct cgtcatcgaa ttggcaagga gatacatgat 420actctaggca agttgggaaa tatgaaggct cgtcatcgaa ttggcaagga gatacatgat 420

ctgaagaaac agatcattga ggtgggcgac aggaatgcaa ggtacaaggg acgcgagatc 480ctgaagaaac agatcattga ggtgggcgac aggaatgcaa ggtacaaggg acgcgagatc 480

ttctccaagg ccgtcaatgc gaccgttgac cctagagctc ttgctatctt tgagcatgca 540ttctccaagg ccgtcaatgc gaccgttgac cctagagctc ttgctatctt tgagcatgca 540

tcaaagctcg tcggaattga tgaacccaag gctgagttga tcaagttgtt aactgacgag 600tcaaagctcg tcggaattga tgaacccaag gctgagttga tcaagttgtt aactgacgag 600

gatggagttg catcaacaca agaacaagtg aagatggtct gcattgttgg atcgggagga 660gatggagttg catcaacaca agaacaagtg aagatggtct gcattgttgg atcggggagga 660

atgggcaaaa caactcttgc aaaccaagtg tatcaagaga tgaaagagga attcaagttt 720atgggcaaaa caactcttgc aaaccaagtg tatcaagaga tgaaagagga attcaagttt 720

aaggctttca tatcagtgtc acgaaatcca gatatgatga atatcttgag aaccctcctc 780aaggctttca tatcagtgtc acgaaatcca gatatgatga atatcttgag aaccctcctc 780

agtgaaattg ggtgtcaaga ttatgctcac actgaagcag ggagcataca acaactaata 840agtgaaattg ggtgtcaaga ttatgctcac actgaagcag ggagcataca acaactaata 840

agcaagatta ccgattacct agcagaaaaa aggtactatt atatttcttt aaactcactt 900agcaagatta ccgattacct agcagaaaaa aggtactatt atatttcttt aaactcactt 900

ctcgcccata gaaagttaaa ttaagaattc tcacatagaa aaaacactcc taataaagaa 960ctcgcccata gaaagttaaa ttaagaattc tcacatagaa aaaacactcc taataaagaa 960

tcaaaataat tatataatta aattatatac tttttgggtg aaaattaatt gccaaatgta 1020tcaaaataat tatataatta aattatatac tttttgggtg aaaattaatt gccaaatgta 1020

tggaagccct tatttgcatg tactttacta cttcctccgt tcctaaatat aagtctttgg 1080tggaagccct tatttgcatg tacttacta cttcctccgt tcctaaatat aagtctttgg 1080

agagatttca ctatggacca catacgaagc aaaatgagtg aatctacact ctaaaatgca 1140agagatttca ctatggacca catacgaagc aaaatgagtg aatctacact ctaaaatgca 1140

tctatataca tccgtatgtg gttcatggtg aaatctctag aaagacttat atttaggaac 1200tctatataca tccgtatgtg gttcatggtg aaatctctag aaagacttat atttaggaac 1200

ggagggagta gttaactagg ttgttgtatt tggagggaaa ataagtctta tataggtagg 1260ggagggagta gttaactagg ttgttgtatt tggagggaaa ataagtctta tataggtagg 1260

aacatttgat tagtaggtat tcggcatgta tgtgcatctc agaatgcata tagactaaaa 1320aacatttgat tagtaggtat tcggcatgta tgtgcatctc agaatgcata tagactaaaa 1320

gacaatcttt tccgcaataa agaaatatca tcaatcttca atcaagcaag tatgctactc 1380gacaatcttt tccgcaataa agaaatatca tcaatcttca atcaagcaag tatgctactc 1380

cctccgtccc aaaattcttg tcttagattt gtctaaatac agatgtatca agtcacattt 1440cctccgtccc aaaattcttg tcttagattt gtctaaatac agatgtatca agtcacattt 1440

tagtattaga aacatccgta tctgggcaaa tctaagacaa gaattttggg acggagggag 1500tagtattaga aacatccgta tctgggcaaa tctaagacaa gaattttggg acggagggag 1500

tacatgatat gtaccactct aagtgcttag agctcttttg ctcttatatg gcctatctag 1560tacatgatat gtaccactct aagtgcttag agctcttttg ctcttatatg gcctatctag 1560

gaaaacatat tttgtttagt aagtgcttag agtagaaaca ctatataggt attttctagc 1620gaaaacatattttgtttagt aagtgcttag agtagaaaca ctatataggt attttctagc 1620

catgtggccc tgtttaagtt gcatagtacc ctagagccga tccattatct tttgcatgtt 1680catgtggccc tgtttaagtt gcatagtacc ctagagccga tccattatct tttgcatgtt 1680

gccaatgaga acatggaaat ttctctttct tcttattttg cttgtacgct tcgttttaac 1740gccaatgaga acatggaaat ttctctttct tcttattttg cttgtacgct tcgttttaac 1740

acatcatact aactattact actaaaaaat catgtgcagg tattttatag tgattgacga 1800acatcatact aactattact actaaaaaat catgtgcagg tattttatag tgattgacga 1800

catatgggac gtcaaaacat gggacgttat taagtgcgca ttccccatga ccagatgcgg 1860catatgggac gtcaaaacat gggacgttat taagtgcgca ttccccatga ccagatgcgg 1860

tggtgtaata atcaccacca ctcggctgag tgatgttgca tgttcgtgtc attcatcaat 1920tggtgtaata atcaccacca ctcggctgag tgatgttgca tgttcgtgtc attcatcaat 1920

cggtggccat atttataata taaggcctct taatatggag cactcaagac aactattcta 1980cggtggccat atttataata taaggcctct taatatggag cactcaagac aactattcta 1980

cagaagatta ttcagctccg aagaagattg cccttcatcg ctcgtgaaag tttcttatca 2040cagaagatta ttcagctccg aagaagattg cccttcatcg ctcgtgaaag tttctttatca 2040

aatcttggaa aaatgtgatg ggttgccttt ggcaatcatt gctatagctg gtttgttggc 2100aatcttggaa aaatgtgatg ggttgccttt ggcaatcatt gctatagctg gtttgttggc 2100

taacacagga agatcagagc atcaatggaa ccaagtgaaa gattcaattg gtcgtgcact 2160taacacagga agatcagagc atcaatggaa ccaagtgaaa gattcaattg gtcgtgcact 2160

tgaaaggaat cctagtgtcg aagtaatgat aaagatattg tcacttagtt actttgatct 2220tgaaaggaat cctagtgtcg aagtaatgat aaagatattg tcacttagtt actttgatct 2220

tcctccgcat ctaaaaacat gtctcttgta tctcagtata ttcccggaag attctattat 2280tcctccgcat ctaaaaacat gtctcttgta tctcagtata ttcccggaag attctattat 2280

tgagaagaaa acactaatat caagatggat tgctgaagga ttcattcgac aagaaggtag 2340tgagaagaaa acactaatat caagatggat tgctgaagga ttcattcgac aagaaggtag 2340

atatactgca tatgaggtag gagtgaggtg ttttaatgag ctcgtcaaca ggagtttgat 2400atatactgca tatgaggtag gagtgaggtg ttttaatgag ctcgtcaaca ggagtttgat 2400

ccaacctgtg aagaaagacg attataaggg gaagagttgt cgagttcacg atataattct 2460ccaacctgtg aagaaagacg attataaggg gaagagttgt cgagttcacg atataattct 2460

tgatttcata gtatccaagt ccattgaaga gaactttgtt acttttgttg gtgtccccag 2520tgatttcata gtatccaagt ccattgaaga gaactttgtt acttttgttg gtgtccccag 2520

tttaactacc gtgacacaag gcaaagtccg ccgtctctcc atgcaagttg aagagaaggt 2580tttaactacc gtgacacaag gcaaagtccg ccgtctctcc atgcaagttg aagagaaggt 2580

ggattctatt ttgccaatga gcctgatatt atctcatgtc cgatcactta acatgttcgg 2640ggattctatt ttgccaatga gcctgatatt atctcatgtc cgatcactta acatgttcgg 2640

gaatacagtg agtattcctt cgatcatgga gttgaggcat ttgcgtgtcc ttgatttcgg 2700gaatacagtg agtattcctt cgatcatgga gttgaggcat ttgcgtgtcc ttgatttcgg 2700

aggaaacaga ctattggaaa accgtcatct cgcgtatgta gggatgctgt ttcagctaag 2760aggaaacaga ctattggaaa accgtcatct cgcgtatgta gggatgctgt ttcagctaag 2760

gtacctcaac atttacatga cagcagtaag cgagctcccg gaacaaatcg gacacttaca 2820gtacctcaac atttacatga cagcagtaag cgagctcccg gaacaaatcg gacacttaca 2820

gtgcttagag atgttggaca tcaggcatac atgggtgtct gagctgccag ccagtattgc 2880gtgcttagag atgttggaca tcaggcatac atgggtgtct gagctgccag ccagtattgc 2880

caatctcggc aaactggcac acttacttct tagctcaaat actggcacaa atgttaagtt 2940caatctcggc aaactggcac acttacttct tagctcaaat actggcacaa atgttaagtt 2940

tcccgacgga attgctaaga tgcaatcact ggaggctttg catagcgtta acacctgcaa 3000tcccgacgga attgctaaga tgcaatcact ggaggctttg catagcgtta acacctgcaa 3000

tcagtcatat aactttctgc aagggcttgg tcagctaaag aatctgagga agctgggcat 3060tcagtcatat aactttctgc aagggcttgg tcagctaaag aatctgagga agctgggcat 3060

taactatcgg ggtgttgccc acgaagacaa ggaagttatt gcttcttctc ttggtaaact 3120taactatcgg ggtgttgccc acgaagacaa ggaagttatt gcttcttctc ttggtaaact 3120

atgcacacaa aacctttgtt ctctaactat gtggaatgat gacgacgact tcttgctaaa 3180atgcacacaa aacctttgtt ctctaactat gtggaatgat gacgacgact tcttgctaaa 3180

tacatggtgc acttctccgc cgcttaacct ccgaaaactt gtcatatggg gttgtatatt 3240tacatggtgc acttctccgc cgcttaacct ccgaaaactt gtcatatggg gttgtatatt 3240

cccaaaggtt ccgcattggg taggatcact cgtcaaccta cagaagttac acttggaagt 3300cccaaaggtt ccgcattggg taggatcact cgtcaaccta cagaagttac acttggaagt 3300

ggggagagga acccggcatg aagatatctg catccttgga gccttacccg ctctgttcac 3360ggggagagga acccggcatg aagatatctg catccttgga gccttacccg ctctgttcac 3360

tctgggtcta cgaggaagcg aaaaacagcc ttcttgtgaa aatagaaggc tggcagttag 3420tctgggtcta cgaggaagcg aaaaacagcc ttcttgtgaa aatagaaggc tggcagttag 3420

tggtgaagct gggttccgat gcctgaggaa gtttaaatac tggaggtggg gggattggat 3480tggtgaagct gggttccgat gcctgaggaa gtttaaatac tggaggtggg gggattggat 3480

ggatcttatg tttacggcaa aatgtatgcc caggctagaa aaactgaaga ttatatttta 3540ggatcttatg tttacggcaa aatgtatgcc caggctagaa aaactgaaga ttatatttta 3540

cggccatgcc gaagatgagg ctcccatcat tcctgctttc gatttcggga tcgaaaacct 3600cggccatgcc gaagatgagg ctcccatcat tcctgctttc gatttcggga tcgaaaacct 3600

gtccagcctc actactttca aatgtcacct aggttatggg cctatggcaa cgaaaattgt 3660gtccagcctc actactttca aatgtcacct aggttatggg cctatggcaa cgaaaattgt 3660

tgacgctgta aaggcttctc tggacagagt agttagcgca catcccaacc accttactct 3720tgacgctgta aaggcttctc tggacagagt agttagcgca catcccaacc accttactct 3720

aatcttcact tattgttgtg tgttttgtaa gagttatgac tgtggtggtc gatgccttct 3780aatcttcact tattgttgtg tgttttgtaa gagttatgac tgtggtggtc gatgccttct 3780

gtctagagat cttcagtcat cctccgaatc tacttgagta gagtcaagac catgcgtacg 3840gtctagagat cttcagtcat cctccgaatc tacttgagta gagtcaagac catgcgtacg 3840

tgcttaattc ttctcaatat taattattta tacaactagt acgagcgcac tatcaacctc 3900tgcttaattc ttctcaatat taattattta tacaactagt acgagcgcac tatcaacctc 3900

tctaaattcc cttgcccctg tattttcaga tttgtcggac cacggtatat accatc 3956tctaaattcc cttgcccctg tattttcaga tttgtcggac cacggtatat accatc 3956

<210> 2<210> 2

<211> 2868<211> 2868

<212> DNA<212> DNA

<213> x Triticosecale<213> x Triticosecale

<220><220>

<221> CDS<221> CDS

<222> (1)..(2868)<222> (1)..(2868)

<400> 2<400> 2

atg gag gcg gct ctg gtg acc gtg gcg acg gga gtc ctc aaa cct gtc 48atg gag gcg gct ctg gtg acc gtg gcg acg gga gtc ctc aaa cct gtc 48

Met Glu Ala Ala Leu Val Thr Val Ala Thr Gly Val Leu Lys Pro ValMet Glu Ala Ala Leu Val Thr Val Ala Thr Gly Val Leu Lys Pro Val

1 5 10 151 5 10 15

ctg ggg aag ctg gcc acc ctg ctc ggc gac gag tac aag cgt ttt aag 96ctg ggg aag ctg gcc acc ctg ctc ggc gac gag tac aag cgt ttt aag 96

Leu Gly Lys Leu Ala Thr Leu Leu Gly Asp Glu Tyr Lys Arg Phe LysLeu Gly Lys Leu Ala Thr Leu Leu Gly Asp Glu Tyr Lys Arg Phe Lys

20 25 3020 25 30

ggt gtg cgc aag gag atc agg tct ctc act cat gaa ctc gcc gcc atg 144ggt gtg cgc aag gag atc agg tct ctc act cat gaa ctc gcc gcc atg 144

Gly Val Arg Lys Glu Ile Arg Ser Leu Thr His Glu Leu Ala Ala MetGly Val Arg Lys Glu Ile Arg Ser Leu Thr His Glu Leu Ala Ala Met

35 40 4535 40 45

gag gct ttt ctc ctc aag atg tcg gag gag gag gag gat ccc gat gtg 192gag gct ttt ctc ctc aag atg tcg gag gag gag gag gat ccc gat gtg 192

Glu Ala Phe Leu Leu Lys Met Ser Glu Glu Glu Glu Asp Pro Asp ValGlu Ala Phe Leu Leu Lys Met Ser Glu Glu Glu Glu Asp Pro Asp Val

50 55 6050 55 60

cag gat aaa gtc tgg atg aat gag gtg cgg gaa ttg tcc tat gac atg 240cag gat aaa gtc tgg atg aat gag gtg cgg gaa ttg tcc tat gac atg 240

Gln Asp Lys Val Trp Met Asn Glu Val Arg Glu Leu Ser Tyr Asp MetGln Asp Lys Val Trp Met Asn Glu Val Arg Glu Leu Ser Tyr Asp Met

65 70 75 8065 70 75 80

gag gac gcc atc gac gac ttc atg caa agc att ggt gac aaa gac gaa 288gag gac gcc atc gac gac ttc atg caa agc att ggt gac aaa gac gaa 288

Glu Asp Ala Ile Asp Asp Phe Met Gln Ser Ile Gly Asp Lys Asp GluGlu Asp Ala Ile Asp Asp Phe Met Gln Ser Ile Gly Asp Lys Asp Glu

85 90 9585 90 95

aag ccg gat ggc ttc act gag aag atc aag gcc act cta ggc aag ttg 336aag ccg gat ggc ttc act gag aag atc aag gcc act cta ggc aag ttg 336

Lys Pro Asp Gly Phe Thr Glu Lys Ile Lys Ala Thr Leu Gly Lys LeuLys Pro Asp Gly Phe Thr Glu Lys Ile Lys Ala Thr Leu Gly Lys Leu

100 105 110100 105 110

gga aat atg aag gct cgt cat cga att ggc aag gag ata cat gat ctg 384gga aat atg aag gct cgt cat cga att ggc aag gag ata cat gat ctg 384

Gly Asn Met Lys Ala Arg His Arg Ile Gly Lys Glu Ile His Asp LeuGly Asn Met Lys Ala Arg His Arg Ile Gly Lys Glu Ile His Asp Leu

115 120 125115 120 125

aag aaa cag atc att gag gtg ggc gac agg aat gca agg tac aag gga 432aag aaa cag atc att gag gtg ggc gac agg aat gca agg tac aag gga 432

Lys Lys Gln Ile Ile Glu Val Gly Asp Arg Asn Ala Arg Tyr Lys GlyLys Lys Gln Ile Ile Glu Val Gly Asp Arg Asn Ala Arg Tyr Lys Gly

130 135 140130 135 140

cgc gag atc ttc tcc aag gcc gtc aat gcg acc gtt gac cct aga gct 480cgc gag atc ttc tcc aag gcc gtc aat gcg acc gtt gac cct aga gct 480

Arg Glu Ile Phe Ser Lys Ala Val Asn Ala Thr Val Asp Pro Arg AlaArg Glu Ile Phe Ser Lys Ala Val Asn Ala Thr Val Asp Pro Arg Ala

145 150 155 160145 150 155 160

ctt gct atc ttt gag cat gca tca aag ctc gtc gga att gat gaa ccc 528ctt gct atc ttt gag cat gca tca aag ctc gtc gga att gat gaa ccc 528

Leu Ala Ile Phe Glu His Ala Ser Lys Leu Val Gly Ile Asp Glu ProLeu Ala Ile Phe Glu His Ala Ser Lys Leu Val Gly Ile Asp Glu Pro

165 170 175165 170 175

aag gct gag ttg atc aag ttg tta act gac gag gat gga gtt gca tca 576aag gct gag ttg atc aag ttg tta act gac gag gat gga gtt gca tca 576

Lys Ala Glu Leu Ile Lys Leu Leu Thr Asp Glu Asp Gly Val Ala SerLys Ala Glu Leu Ile Lys Leu Leu Thr Asp Glu Asp Gly Val Ala Ser

180 185 190180 185 190

aca caa gaa caa gtg aag atg gtc tgc att gtt gga tcg gga gga atg 624aca caa gaa caa gtg aag atg gtc tgc att gtt gga tcg gga gga atg 624

Thr Gln Glu Gln Val Lys Met Val Cys Ile Val Gly Ser Gly Gly MetThr Gln Glu Gln Val Lys Met Val Cys Ile Val Gly Ser Gly Gly Met

195 200 205195 200 205

ggc aaa aca act ctt gca aac caa gtg tat caa gag atg aaa gag gaa 672ggc aaa aca act ctt gca aac caa gtg tat caa gag atg aaa gag gaa 672

Gly Lys Thr Thr Leu Ala Asn Gln Val Tyr Gln Glu Met Lys Glu GluGly Lys Thr Thr Leu Ala Asn Gln Val Tyr Gln Glu Met Lys Glu Glu

210 215 220210 215 220

ttc aag ttt aag gct ttc ata tca gtg tca cga aat cca gat atg atg 720ttc aag ttt aag gct ttc ata tca gtg tca cga aat cca gat atg atg 720

Phe Lys Phe Lys Ala Phe Ile Ser Val Ser Arg Asn Pro Asp Met MetPhe Lys Phe Lys Ala Phe Ile Ser Val Ser Arg Asn Pro Asp Met Met

225 230 235 240225 230 235 240

aat atc ttg aga acc ctc ctc agt gaa att ggg tgt caa gat tat gct 768aat atc ttg aga acc ctc ctc agt gaa att ggg tgt caa gat tat gct 768

Asn Ile Leu Arg Thr Leu Leu Ser Glu Ile Gly Cys Gln Asp Tyr AlaAsn Ile Leu Arg Thr Leu Leu Ser Glu Ile Gly Cys Gln Asp Tyr Ala

245 250 255245 250 255

cac act gaa gca ggg agc ata caa caa cta ata agc aag att acc gat 816cac act gaa gca ggg agc ata caa caa cta ata agc aag att acc gat 816

His Thr Glu Ala Gly Ser Ile Gln Gln Leu Ile Ser Lys Ile Thr AspHis Thr Glu Ala Gly Ser Ile Gln Gln Leu Ile Ser Lys Ile Thr Asp

260 265 270260 265 270

tac cta gca gaa aaa agg tat ttt ata gtg att gac gac ata tgg gac 864tac cta gca gaa aaa agg tat ttt ata gtg att gac gac ata tgg gac 864

Tyr Leu Ala Glu Lys Arg Tyr Phe Ile Val Ile Asp Asp Ile Trp AspTyr Leu Ala Glu Lys Arg Tyr Phe Ile Val Ile Asp Asp Ile Trp Asp

275 280 285275 280 285

gtc aaa aca tgg gac gtt att aag tgc gca ttc ccc atg acc aga tgc 912gtc aaa aca tgg gac gtt att aag tgc gca ttc ccc atg acc aga tgc 912

Val Lys Thr Trp Asp Val Ile Lys Cys Ala Phe Pro Met Thr Arg CysVal Lys Thr Trp Asp Val Ile Lys Cys Ala Phe Pro Met Thr Arg Cys

290 295 300290 295 300

ggt ggt gta ata atc acc acc act cgg ctg agt gat gtt gca tgt tcg 960ggt ggt gta ata atc acc acc act cgg ctg agt gat gtt gca tgt tcg 960

Gly Gly Val Ile Ile Thr Thr Thr Arg Leu Ser Asp Val Ala Cys SerGly Gly Val Ile Ile Thr Thr Thr Arg Leu Ser Asp Val Ala Cys Ser

305 310 315 320305 310 315 320

tgt cat tca tca atc ggt ggc cat att tat aat ata agg cct ctt aat 1008tgt cat tca tca atc ggt ggc cat att tat aat ata agg cct ctt aat 1008

Cys His Ser Ser Ile Gly Gly His Ile Tyr Asn Ile Arg Pro Leu AsnCys His Ser Ser Ile Gly Gly His Ile Tyr Asn Ile Arg Pro Leu Asn

325 330 335325 330 335

atg gag cac tca aga caa cta ttc tac aga aga tta ttc agc tcc gaa 1056atg gag cac tca aga caa cta ttc tac aga aga tta ttc agc tcc gaa 1056

Met Glu His Ser Arg Gln Leu Phe Tyr Arg Arg Leu Phe Ser Ser GluMet Glu His Ser Arg Gln Leu Phe Tyr Arg Arg Leu Phe Ser Ser Glu

340 345 350340 345 350

gaa gat tgc cct tca tcg ctc gtg aaa gtt tct tat caa atc ttg gaa 1104gaa gat tgc cct tca tcg ctc gtg aaa gtt tct tat caa atc ttg gaa 1104

Glu Asp Cys Pro Ser Ser Leu Val Lys Val Ser Tyr Gln Ile Leu GluGlu Asp Cys Pro Ser Ser Leu Val Lys Val Ser Tyr Gln Ile Leu Glu

355 360 365355 360 365

aaa tgt gat ggg ttg cct ttg gca atc att gct ata gct ggt ttg ttg 1152aaa tgt gat ggg ttg cct ttg gca atc att gct ata gct ggt ttg ttg 1152

Lys Cys Asp Gly Leu Pro Leu Ala Ile Ile Ala Ile Ala Gly Leu LeuLys Cys Asp Gly Leu Pro Leu Ala Ile Ile Ala Ile Ala Gly Leu Leu

370 375 380370 375 380

gct aac aca gga aga tca gag cat caa tgg aac caa gtg aaa gat tca 1200gct aac aca gga aga tca gag cat caa tgg aac caa gtg aaa gat tca 1200

Ala Asn Thr Gly Arg Ser Glu His Gln Trp Asn Gln Val Lys Asp SerAla Asn Thr Gly Arg Ser Glu His Gln Trp Asn Gln Val Lys Asp Ser

385 390 395 400385 390 395 400

att ggt cgt gca ctt gaa agg aat cct agt gtc gaa gta atg ata aag 1248att ggt cgt gca ctt gaa agg aat cct agt gtc gaa gta atg ata aag 1248

Ile Gly Arg Ala Leu Glu Arg Asn Pro Ser Val Glu Val Met Ile LysIle Gly Arg Ala Leu Glu Arg Asn Pro Ser Val Glu Val Met Ile Lys

405 410 415405 410 415

ata ttg tca ctt agt tac ttt gat ctt cct ccg cat cta aaa aca tgt 1296ata ttg tca ctt agt tac ttt gat ctt cct ccg cat cta aaa aca tgt 1296

Ile Leu Ser Leu Ser Tyr Phe Asp Leu Pro Pro His Leu Lys Thr CysIle Leu Ser Leu Ser Tyr Phe Asp Leu Pro Pro His Leu Lys Thr Cys

420 425 430420 425 430

ctc ttg tat ctc agt ata ttc ccg gaa gat tct att att gag aag aaa 1344ctc ttg tat ctc agt ata ttc ccg gaa gat tct att att gag aag aaa 1344

Leu Leu Tyr Leu Ser Ile Phe Pro Glu Asp Ser Ile Ile Glu Lys LysLeu Leu Tyr Leu Ser Ile Phe Pro Glu Asp Ser Ile Ile Glu Lys Lys

435 440 445435 440 445

aca cta ata tca aga tgg att gct gaa gga ttc att cga caa gaa ggt 1392aca cta ata tca aga tgg att gct gaa gga ttc att cga caa gaa ggt 1392

Thr Leu Ile Ser Arg Trp Ile Ala Glu Gly Phe Ile Arg Gln Glu GlyThr Leu Ile Ser Arg Trp Ile Ala Glu Gly Phe Ile Arg Gln Glu Gly

450 455 460450 455 460

aga tat act gca tat gag gta gga gtg agg tgt ttt aat gag ctc gtc 1440aga tat act gca tat gag gta gga gtg agg tgt ttt aat gag ctc gtc 1440

Arg Tyr Thr Ala Tyr Glu Val Gly Val Arg Cys Phe Asn Glu Leu ValArg Tyr Thr Ala Tyr Glu Val Gly Val Arg Cys Phe Asn Glu Leu Val

465 470 475 480465 470 475 480

aac agg agt ttg atc caa cct gtg aag aaa gac gat tat aag ggg aag 1488aac agg agt ttg atc caa cct gtg aag aaa gac gat tat aag ggg aag 1488

Asn Arg Ser Leu Ile Gln Pro Val Lys Lys Asp Asp Tyr Lys Gly LysAsn Arg Ser Leu Ile Gln Pro Val Lys Lys Asp Asp Tyr Lys Gly Lys

485 490 495485 490 495

agt tgt cga gtt cac gat ata att ctt gat ttc ata gta tcc aag tcc 1536agt tgt cga gtt cac gat ata att ctt gat ttc ata gta tcc aag tcc 1536

Ser Cys Arg Val His Asp Ile Ile Leu Asp Phe Ile Val Ser Lys SerSer Cys Arg Val His Asp Ile Ile Leu Asp Phe Ile Val Ser Lys Ser

500 505 510500 505 510

att gaa gag aac ttt gtt act ttt gtt ggt gtc ccc agt tta act acc 1584att gaa gag aac ttt gtt act ttt gtt ggt gtc ccc agt tta act acc 1584

Ile Glu Glu Asn Phe Val Thr Phe Val Gly Val Pro Ser Leu Thr ThrIle Glu Glu Asn Phe Val Thr Phe Val Gly Val Pro Ser Leu Thr Thr

515 520 525515 520 525

gtg aca caa ggc aaa gtc cgc cgt ctc tcc atg caa gtt gaa gag aag 1632gtg aca caa ggc aaa gtc cgc cgt ctc tcc atg caa gtt gaa gag aag 1632

Val Thr Gln Gly Lys Val Arg Arg Leu Ser Met Gln Val Glu Glu LysVal Thr Gln Gly Lys Val Arg Arg Leu Ser Met Gln Val Glu Glu Lys

530 535 540530 535 540

gtg gat tct att ttg cca atg agc ctg ata tta tct cat gtc cga tca 1680gtg gat tct att ttg cca atg agc ctg ata tta tct cat gtc cga tca 1680

Val Asp Ser Ile Leu Pro Met Ser Leu Ile Leu Ser His Val Arg SerVal Asp Ser Ile Leu Pro Met Ser Leu Ile Leu Ser His Val Arg Ser

545 550 555 560545 550 555 560

ctt aac atg ttc ggg aat aca gtg agt att cct tcg atc atg gag ttg 1728ctt aac atg ttc ggg aat aca gtg agt att cct tcg atc atg gag ttg 1728

Leu Asn Met Phe Gly Asn Thr Val Ser Ile Pro Ser Ile Met Glu LeuLeu Asn Met Phe Gly Asn Thr Val Ser Ile Pro Ser Ile Met Glu Leu

565 570 575565 570 575

agg cat ttg cgt gtc ctt gat ttc gga gga aac aga cta ttg gaa aac 1776agg cat ttg cgt gtc ctt gat ttc gga gga aac aga cta ttg gaa aac 1776

Arg His Leu Arg Val Leu Asp Phe Gly Gly Asn Arg Leu Leu Glu AsnArg His Leu Arg Val Leu Asp Phe Gly Gly Asn Arg Leu Leu Glu Asn

580 585 590580 585 590

cgt cat ctc gcg tat gta ggg atg ctg ttt cag cta agg tac ctc aac 1824cgt cat ctc gcg tat gta ggg atg ctg ttt cag cta agg tac ctc aac 1824

Arg His Leu Ala Tyr Val Gly Met Leu Phe Gln Leu Arg Tyr Leu AsnArg His Leu Ala Tyr Val Gly Met Leu Phe Gln Leu Arg Tyr Leu Asn

595 600 605595 600 605

att tac atg aca gca gta agc gag ctc ccg gaa caa atc gga cac tta 1872att tac atg aca gca gta agc gag ctc ccg gaa caa atc gga cac tta 1872

Ile Tyr Met Thr Ala Val Ser Glu Leu Pro Glu Gln Ile Gly His LeuIle Tyr Met Thr Ala Val Ser Glu Leu Pro Glu Gln Ile Gly His Leu

610 615 620610 615 620

cag tgc tta gag atg ttg gac atc agg cat aca tgg gtg tct gag ctg 1920cag tgc tta gag atg ttg gac atc agg cat aca tgg gtg tct gag ctg 1920

Gln Cys Leu Glu Met Leu Asp Ile Arg His Thr Trp Val Ser Glu LeuGln Cys Leu Glu Met Leu Asp Ile Arg His Thr Trp Val Ser Glu Leu

625 630 635 640625 630 635 640

cca gcc agt att gcc aat ctc ggc aaa ctg gca cac tta ctt ctt agc 1968cca gcc agt att gcc aat ctc ggc aaa ctg gca cac tta ctt ctt agc 1968

Pro Ala Ser Ile Ala Asn Leu Gly Lys Leu Ala His Leu Leu Leu SerPro Ala Ser Ile Ala Asn Leu Gly Lys Leu Ala His Leu Leu Leu Ser

645 650 655645 650 655

tca aat act ggc aca aat gtt aag ttt ccc gac gga att gct aag atg 2016tca aat act ggc aca aat gtt aag ttt ccc gac gga att gct aag atg 2016

Ser Asn Thr Gly Thr Asn Val Lys Phe Pro Asp Gly Ile Ala Lys MetSer Asn Thr Gly Thr Asn Val Lys Phe Pro Asp Gly Ile Ala Lys Met

660 665 670660 665 670

caa tca ctg gag gct ttg cat agc gtt aac acc tgc aat cag tca tat 2064caa tca ctg gag gct ttg cat agc gtt aac acc tgc aat cag tca tat 2064

Gln Ser Leu Glu Ala Leu His Ser Val Asn Thr Cys Asn Gln Ser TyrGln Ser Leu Glu Ala Leu His Ser Val Asn Thr Cys Asn Gln Ser Tyr

675 680 685675 680 685

aac ttt ctg caa ggg ctt ggt cag cta aag aat ctg agg aag ctg ggc 2112aac ttt ctg caa ggg ctt ggt cag cta aag aat ctg agg aag ctg ggc 2112

Asn Phe Leu Gln Gly Leu Gly Gln Leu Lys Asn Leu Arg Lys Leu GlyAsn Phe Leu Gln Gly Leu Gly Gln Leu Lys Asn Leu Arg Lys Leu Gly

690 695 700690 695 700

att aac tat cgg ggt gtt gcc cac gaa gac aag gaa gtt att gct tct 2160att aac tat cgg ggt gtt gcc cac gaa gac aag gaa gtt att gct tct 2160

Ile Asn Tyr Arg Gly Val Ala His Glu Asp Lys Glu Val Ile Ala SerIle Asn Tyr Arg Gly Val Ala His Glu Asp Lys Glu Val Ile Ala Ser

705 710 715 720705 710 715 720

tct ctt ggt aaa cta tgc aca caa aac ctt tgt tct cta act atg tgg 2208tct ctt ggt aaa cta tgc aca caa aac ctt tgt tct cta act atg tgg 2208

Ser Leu Gly Lys Leu Cys Thr Gln Asn Leu Cys Ser Leu Thr Met TrpSer Leu Gly Lys Leu Cys Thr Gln Asn Leu Cys Ser Leu Thr Met Trp

725 730 735725 730 735

aat gat gac gac gac ttc ttg cta aat aca tgg tgc act tct ccg ccg 2256aat gat gac gac gac ttc ttg cta aat aca tgg tgc act tct ccg ccg 2256

Asn Asp Asp Asp Asp Phe Leu Leu Asn Thr Trp Cys Thr Ser Pro ProAsn Asp Asp Asp Asp Phe Leu Leu Asn Thr Trp Cys Thr Ser Pro Pro

740 745 750740 745 750

ctt aac ctc cga aaa ctt gtc ata tgg ggt tgt ata ttc cca aag gtt 2304ctt aac ctc cga aaa ctt gtc ata tgg ggt tgt ata ttc cca aag gtt 2304

Leu Asn Leu Arg Lys Leu Val Ile Trp Gly Cys Ile Phe Pro Lys ValLeu Asn Leu Arg Lys Leu Val Ile Trp Gly Cys Ile Phe Pro Lys Val

755 760 765755 760 765

ccg cat tgg gta gga tca ctc gtc aac cta cag aag tta cac ttg gaa 2352ccg cat tgg gta gga tca ctc gtc aac cta cag aag tta cac ttg gaa 2352

Pro His Trp Val Gly Ser Leu Val Asn Leu Gln Lys Leu His Leu GluPro His Trp Val Gly Ser Leu Val Asn Leu Gln Lys Leu His Leu Glu

770 775 780770 775 780

gtg ggg aga gga acc cgg cat gaa gat atc tgc atc ctt gga gcc tta 2400gtg ggg aga gga acc cgg cat gaa gat atc tgc atc ctt gga gcc tta 2400

Val Gly Arg Gly Thr Arg His Glu Asp Ile Cys Ile Leu Gly Ala LeuVal Gly Arg Gly Thr Arg His Glu Asp Ile Cys Ile Leu Gly Ala Leu

785 790 795 800785 790 795 800

ccc gct ctg ttc act ctg ggt cta cga gga agc gaa aaa cag cct tct 2448ccc gct ctg ttc act ctg ggt cta cga gga agc gaa aaa cag cct tct 2448

Pro Ala Leu Phe Thr Leu Gly Leu Arg Gly Ser Glu Lys Gln Pro SerPro Ala Leu Phe Thr Leu Gly Leu Arg Gly Ser Glu Lys Gln Pro Ser

805 810 815805 810 815

tgt gaa aat aga agg ctg gca gtt agt ggt gaa gct ggg ttc cga tgc 2496tgt gaa aat aga agg ctg gca gtt agt ggt gaa gct ggg ttc cga tgc 2496

Cys Glu Asn Arg Arg Leu Ala Val Ser Gly Glu Ala Gly Phe Arg CysCys Glu Asn Arg Arg Leu Ala Val Ser Gly Glu Ala Gly Phe Arg Cys

820 825 830820 825 830

ctg agg aag ttt aaa tac tgg agg tgg ggg gat tgg atg gat ctt atg 2544ctg agg aag ttt aaa tac tgg agg tgg ggg gat tgg atg gat ctt atg 2544

Leu Arg Lys Phe Lys Tyr Trp Arg Trp Gly Asp Trp Met Asp Leu MetLeu Arg Lys Phe Lys Tyr Trp Arg Trp Gly Asp Trp Met Asp Leu Met

835 840 845835 840 845

ttt acg gca aaa tgt atg ccc agg cta gaa aaa ctg aag att ata ttt 2592ttt acg gca aaa tgt atg ccc agg cta gaa aaa ctg aag att ata ttt 2592

Phe Thr Ala Lys Cys Met Pro Arg Leu Glu Lys Leu Lys Ile Ile PhePhe Thr Ala Lys Cys Met Pro Arg Leu Glu Lys Leu Lys Ile Ile Phe

850 855 860850 855 860

tac ggc cat gcc gaa gat gag gct ccc atc att cct gct ttc gat ttc 2640tac ggc cat gcc gaa gat gag gct ccc atc att cct gct ttc gat ttc 2640

Tyr Gly His Ala Glu Asp Glu Ala Pro Ile Ile Pro Ala Phe Asp PheTyr Gly His Ala Glu Asp Glu Ala Pro Ile Ile Pro Ala Phe Asp Phe

865 870 875 880865 870 875 880

ggg atc gaa aac ctg tcc agc ctc act act ttc aaa tgt cac cta ggt 2688ggg atc gaa aac ctg tcc agc ctc act act ttc aaa tgt cac cta ggt 2688

Gly Ile Glu Asn Leu Ser Ser Leu Thr Thr Phe Lys Cys His Leu GlyGly Ile Glu Asn Leu Ser Ser Leu Thr Thr Phe Lys Cys His Leu Gly

885 890 895885 890 895

tat ggg cct atg gca acg aaa att gtt gac gct gta aag gct tct ctg 2736tat ggg cct atg gca acg aaa att gtt gac gct gta aag gct tct ctg 2736

Tyr Gly Pro Met Ala Thr Lys Ile Val Asp Ala Val Lys Ala Ser LeuTyr Gly Pro Met Ala Thr Lys Ile Val Asp Ala Val Lys Ala Ser Leu

900 905 910900 905 910

gac aga gta gtt agc gca cat ccc aac cac ctt act cta atc ttc act 2784gac aga gta gtt agc gca cat ccc aac cac ctt act cta atc ttc act 2784

Asp Arg Val Val Ser Ala His Pro Asn His Leu Thr Leu Ile Phe ThrAsp Arg Val Val Ser Ala His Pro Asn His Leu Thr Leu Ile Phe Thr

915 920 925915 920 925

tat tgt tgt gtg ttt tgt aag agt tat gac tgt ggt ggt cga tgc ctt 2832tat tgt tgt gtg ttt tgt aag agt tat gac tgt ggt ggt cga tgc ctt 2832

Tyr Cys Cys Val Phe Cys Lys Ser Tyr Asp Cys Gly Gly Arg Cys LeuTyr Cys Cys Val Phe Cys Lys Ser Tyr Asp Cys Gly Gly Arg Cys Leu

930 935 940930 935 940

ctg tct aga gat ctt cag tca tcc tcc gaa tct act 2868ctg tct aga gat ctt cag tca tcc tcc gaa tct act 2868

Leu Ser Arg Asp Leu Gln Ser Ser Ser Glu Ser ThrLeu Ser Arg Asp Leu Gln Ser Ser Ser Glu Ser Thr

945 950 955945 950 955

<210> 3<210> 3

<211> 956<211> 956

<212> PRT<212> PRT

<213> x Triticosecale<213> x Triticosecale

<400> 3<400> 3

Met Glu Ala Ala Leu Val Thr Val Ala Thr Gly Val Leu Lys Pro ValMet Glu Ala Ala Leu Val Thr Val Ala Thr Gly Val Leu Lys Pro Val

1 5 10 151 5 10 15

Leu Gly Lys Leu Ala Thr Leu Leu Gly Asp Glu Tyr Lys Arg Phe LysLeu Gly Lys Leu Ala Thr Leu Leu Gly Asp Glu Tyr Lys Arg Phe Lys

20 25 3020 25 30

Gly Val Arg Lys Glu Ile Arg Ser Leu Thr His Glu Leu Ala Ala MetGly Val Arg Lys Glu Ile Arg Ser Leu Thr His Glu Leu Ala Ala Met

35 40 4535 40 45

Glu Ala Phe Leu Leu Lys Met Ser Glu Glu Glu Glu Asp Pro Asp ValGlu Ala Phe Leu Leu Lys Met Ser Glu Glu Glu Glu Asp Pro Asp Val

50 55 6050 55 60

Gln Asp Lys Val Trp Met Asn Glu Val Arg Glu Leu Ser Tyr Asp MetGln Asp Lys Val Trp Met Asn Glu Val Arg Glu Leu Ser Tyr Asp Met

65 70 75 8065 70 75 80

Glu Asp Ala Ile Asp Asp Phe Met Gln Ser Ile Gly Asp Lys Asp GluGlu Asp Ala Ile Asp Asp Phe Met Gln Ser Ile Gly Asp Lys Asp Glu

85 90 9585 90 95

Lys Pro Asp Gly Phe Thr Glu Lys Ile Lys Ala Thr Leu Gly Lys LeuLys Pro Asp Gly Phe Thr Glu Lys Ile Lys Ala Thr Leu Gly Lys Leu

100 105 110100 105 110

Gly Asn Met Lys Ala Arg His Arg Ile Gly Lys Glu Ile His Asp LeuGly Asn Met Lys Ala Arg His Arg Ile Gly Lys Glu Ile His Asp Leu

115 120 125115 120 125

Lys Lys Gln Ile Ile Glu Val Gly Asp Arg Asn Ala Arg Tyr Lys GlyLys Lys Gln Ile Ile Glu Val Gly Asp Arg Asn Ala Arg Tyr Lys Gly

130 135 140130 135 140

Arg Glu Ile Phe Ser Lys Ala Val Asn Ala Thr Val Asp Pro Arg AlaArg Glu Ile Phe Ser Lys Ala Val Asn Ala Thr Val Asp Pro Arg Ala

145 150 155 160145 150 155 160

Leu Ala Ile Phe Glu His Ala Ser Lys Leu Val Gly Ile Asp Glu ProLeu Ala Ile Phe Glu His Ala Ser Lys Leu Val Gly Ile Asp Glu Pro

165 170 175165 170 175

Lys Ala Glu Leu Ile Lys Leu Leu Thr Asp Glu Asp Gly Val Ala SerLys Ala Glu Leu Ile Lys Leu Leu Thr Asp Glu Asp Gly Val Ala Ser

180 185 190180 185 190

Thr Gln Glu Gln Val Lys Met Val Cys Ile Val Gly Ser Gly Gly MetThr Gln Glu Gln Val Lys Met Val Cys Ile Val Gly Ser Gly Gly Met

195 200 205195 200 205

Gly Lys Thr Thr Leu Ala Asn Gln Val Tyr Gln Glu Met Lys Glu GluGly Lys Thr Thr Leu Ala Asn Gln Val Tyr Gln Glu Met Lys Glu Glu

210 215 220210 215 220

Phe Lys Phe Lys Ala Phe Ile Ser Val Ser Arg Asn Pro Asp Met MetPhe Lys Phe Lys Ala Phe Ile Ser Val Ser Arg Asn Pro Asp Met Met

225 230 235 240225 230 235 240

Asn Ile Leu Arg Thr Leu Leu Ser Glu Ile Gly Cys Gln Asp Tyr AlaAsn Ile Leu Arg Thr Leu Leu Ser Glu Ile Gly Cys Gln Asp Tyr Ala

245 250 255245 250 255

His Thr Glu Ala Gly Ser Ile Gln Gln Leu Ile Ser Lys Ile Thr AspHis Thr Glu Ala Gly Ser Ile Gln Gln Leu Ile Ser Lys Ile Thr Asp

260 265 270260 265 270

Tyr Leu Ala Glu Lys Arg Tyr Phe Ile Val Ile Asp Asp Ile Trp AspTyr Leu Ala Glu Lys Arg Tyr Phe Ile Val Ile Asp Asp Ile Trp Asp

275 280 285275 280 285

Val Lys Thr Trp Asp Val Ile Lys Cys Ala Phe Pro Met Thr Arg CysVal Lys Thr Trp Asp Val Ile Lys Cys Ala Phe Pro Met Thr Arg Cys

290 295 300290 295 300

Gly Gly Val Ile Ile Thr Thr Thr Arg Leu Ser Asp Val Ala Cys SerGly Gly Val Ile Ile Thr Thr Thr Arg Leu Ser Asp Val Ala Cys Ser

305 310 315 320305 310 315 320

Cys His Ser Ser Ile Gly Gly His Ile Tyr Asn Ile Arg Pro Leu AsnCys His Ser Ser Ile Gly Gly His Ile Tyr Asn Ile Arg Pro Leu Asn

325 330 335325 330 335

Met Glu His Ser Arg Gln Leu Phe Tyr Arg Arg Leu Phe Ser Ser GluMet Glu His Ser Arg Gln Leu Phe Tyr Arg Arg Leu Phe Ser Ser Glu

340 345 350340 345 350

Glu Asp Cys Pro Ser Ser Leu Val Lys Val Ser Tyr Gln Ile Leu GluGlu Asp Cys Pro Ser Ser Leu Val Lys Val Ser Tyr Gln Ile Leu Glu

355 360 365355 360 365

Lys Cys Asp Gly Leu Pro Leu Ala Ile Ile Ala Ile Ala Gly Leu LeuLys Cys Asp Gly Leu Pro Leu Ala Ile Ile Ala Ile Ala Gly Leu Leu

370 375 380370 375 380

Ala Asn Thr Gly Arg Ser Glu His Gln Trp Asn Gln Val Lys Asp SerAla Asn Thr Gly Arg Ser Glu His Gln Trp Asn Gln Val Lys Asp Ser

385 390 395 400385 390 395 400

Ile Gly Arg Ala Leu Glu Arg Asn Pro Ser Val Glu Val Met Ile LysIle Gly Arg Ala Leu Glu Arg Asn Pro Ser Val Glu Val Met Ile Lys

405 410 415405 410 415

Ile Leu Ser Leu Ser Tyr Phe Asp Leu Pro Pro His Leu Lys Thr CysIle Leu Ser Leu Ser Tyr Phe Asp Leu Pro Pro His Leu Lys Thr Cys

420 425 430420 425 430

Leu Leu Tyr Leu Ser Ile Phe Pro Glu Asp Ser Ile Ile Glu Lys LysLeu Leu Tyr Leu Ser Ile Phe Pro Glu Asp Ser Ile Ile Glu Lys Lys

435 440 445435 440 445

Thr Leu Ile Ser Arg Trp Ile Ala Glu Gly Phe Ile Arg Gln Glu GlyThr Leu Ile Ser Arg Trp Ile Ala Glu Gly Phe Ile Arg Gln Glu Gly

450 455 460450 455 460

Arg Tyr Thr Ala Tyr Glu Val Gly Val Arg Cys Phe Asn Glu Leu ValArg Tyr Thr Ala Tyr Glu Val Gly Val Arg Cys Phe Asn Glu Leu Val

465 470 475 480465 470 475 480

Asn Arg Ser Leu Ile Gln Pro Val Lys Lys Asp Asp Tyr Lys Gly LysAsn Arg Ser Leu Ile Gln Pro Val Lys Lys Asp Asp Tyr Lys Gly Lys

485 490 495485 490 495

Ser Cys Arg Val His Asp Ile Ile Leu Asp Phe Ile Val Ser Lys SerSer Cys Arg Val His Asp Ile Ile Leu Asp Phe Ile Val Ser Lys Ser

500 505 510500 505 510

Ile Glu Glu Asn Phe Val Thr Phe Val Gly Val Pro Ser Leu Thr ThrIle Glu Glu Asn Phe Val Thr Phe Val Gly Val Pro Ser Leu Thr Thr

515 520 525515 520 525

Val Thr Gln Gly Lys Val Arg Arg Leu Ser Met Gln Val Glu Glu LysVal Thr Gln Gly Lys Val Arg Arg Leu Ser Met Gln Val Glu Glu Lys

530 535 540530 535 540

Val Asp Ser Ile Leu Pro Met Ser Leu Ile Leu Ser His Val Arg SerVal Asp Ser Ile Leu Pro Met Ser Leu Ile Leu Ser His Val Arg Ser

545 550 555 560545 550 555 560

Leu Asn Met Phe Gly Asn Thr Val Ser Ile Pro Ser Ile Met Glu LeuLeu Asn Met Phe Gly Asn Thr Val Ser Ile Pro Ser Ile Met Glu Leu

565 570 575565 570 575

Arg His Leu Arg Val Leu Asp Phe Gly Gly Asn Arg Leu Leu Glu AsnArg His Leu Arg Val Leu Asp Phe Gly Gly Asn Arg Leu Leu Glu Asn

580 585 590580 585 590

Arg His Leu Ala Tyr Val Gly Met Leu Phe Gln Leu Arg Tyr Leu AsnArg His Leu Ala Tyr Val Gly Met Leu Phe Gln Leu Arg Tyr Leu Asn

595 600 605595 600 605

Ile Tyr Met Thr Ala Val Ser Glu Leu Pro Glu Gln Ile Gly His LeuIle Tyr Met Thr Ala Val Ser Glu Leu Pro Glu Gln Ile Gly His Leu

610 615 620610 615 620

Gln Cys Leu Glu Met Leu Asp Ile Arg His Thr Trp Val Ser Glu LeuGln Cys Leu Glu Met Leu Asp Ile Arg His Thr Trp Val Ser Glu Leu

625 630 635 640625 630 635 640

Pro Ala Ser Ile Ala Asn Leu Gly Lys Leu Ala His Leu Leu Leu SerPro Ala Ser Ile Ala Asn Leu Gly Lys Leu Ala His Leu Leu Leu Ser

645 650 655645 650 655

Ser Asn Thr Gly Thr Asn Val Lys Phe Pro Asp Gly Ile Ala Lys MetSer Asn Thr Gly Thr Asn Val Lys Phe Pro Asp Gly Ile Ala Lys Met

660 665 670660 665 670

Gln Ser Leu Glu Ala Leu His Ser Val Asn Thr Cys Asn Gln Ser TyrGln Ser Leu Glu Ala Leu His Ser Val Asn Thr Cys Asn Gln Ser Tyr

675 680 685675 680 685

Asn Phe Leu Gln Gly Leu Gly Gln Leu Lys Asn Leu Arg Lys Leu GlyAsn Phe Leu Gln Gly Leu Gly Gln Leu Lys Asn Leu Arg Lys Leu Gly

690 695 700690 695 700

Ile Asn Tyr Arg Gly Val Ala His Glu Asp Lys Glu Val Ile Ala SerIle Asn Tyr Arg Gly Val Ala His Glu Asp Lys Glu Val Ile Ala Ser

705 710 715 720705 710 715 720

Ser Leu Gly Lys Leu Cys Thr Gln Asn Leu Cys Ser Leu Thr Met TrpSer Leu Gly Lys Leu Cys Thr Gln Asn Leu Cys Ser Leu Thr Met Trp

725 730 735725 730 735

Asn Asp Asp Asp Asp Phe Leu Leu Asn Thr Trp Cys Thr Ser Pro ProAsn Asp Asp Asp Asp Phe Leu Leu Asn Thr Trp Cys Thr Ser Pro Pro

740 745 750740 745 750

Leu Asn Leu Arg Lys Leu Val Ile Trp Gly Cys Ile Phe Pro Lys ValLeu Asn Leu Arg Lys Leu Val Ile Trp Gly Cys Ile Phe Pro Lys Val

755 760 765755 760 765

Pro His Trp Val Gly Ser Leu Val Asn Leu Gln Lys Leu His Leu GluPro His Trp Val Gly Ser Leu Val Asn Leu Gln Lys Leu His Leu Glu

770 775 780770 775 780

Val Gly Arg Gly Thr Arg His Glu Asp Ile Cys Ile Leu Gly Ala LeuVal Gly Arg Gly Thr Arg His Glu Asp Ile Cys Ile Leu Gly Ala Leu

785 790 795 800785 790 795 800

Pro Ala Leu Phe Thr Leu Gly Leu Arg Gly Ser Glu Lys Gln Pro SerPro Ala Leu Phe Thr Leu Gly Leu Arg Gly Ser Glu Lys Gln Pro Ser

805 810 815805 810 815

Cys Glu Asn Arg Arg Leu Ala Val Ser Gly Glu Ala Gly Phe Arg CysCys Glu Asn Arg Arg Leu Ala Val Ser Gly Glu Ala Gly Phe Arg Cys

820 825 830820 825 830

Leu Arg Lys Phe Lys Tyr Trp Arg Trp Gly Asp Trp Met Asp Leu MetLeu Arg Lys Phe Lys Tyr Trp Arg Trp Gly Asp Trp Met Asp Leu Met

835 840 845835 840 845

Phe Thr Ala Lys Cys Met Pro Arg Leu Glu Lys Leu Lys Ile Ile PhePhe Thr Ala Lys Cys Met Pro Arg Leu Glu Lys Leu Lys Ile Ile Phe

850 855 860850 855 860

Tyr Gly His Ala Glu Asp Glu Ala Pro Ile Ile Pro Ala Phe Asp PheTyr Gly His Ala Glu Asp Glu Ala Pro Ile Ile Pro Ala Phe Asp Phe

865 870 875 880865 870 875 880

Gly Ile Glu Asn Leu Ser Ser Leu Thr Thr Phe Lys Cys His Leu GlyGly Ile Glu Asn Leu Ser Ser Leu Thr Thr Phe Lys Cys His Leu Gly

885 890 895885 890 895

Tyr Gly Pro Met Ala Thr Lys Ile Val Asp Ala Val Lys Ala Ser LeuTyr Gly Pro Met Ala Thr Lys Ile Val Asp Ala Val Lys Ala Ser Leu

900 905 910900 905 910

Asp Arg Val Val Ser Ala His Pro Asn His Leu Thr Leu Ile Phe ThrAsp Arg Val Val Ser Ala His Pro Asn His Leu Thr Leu Ile Phe Thr

915 920 925915 920 925

Tyr Cys Cys Val Phe Cys Lys Ser Tyr Asp Cys Gly Gly Arg Cys LeuTyr Cys Cys Val Phe Cys Lys Ser Tyr Asp Cys Gly Gly Arg Cys Leu

930 935 940930 935 940

Leu Ser Arg Asp Leu Gln Ser Ser Ser Glu Ser ThrLeu Ser Arg Asp Leu Gln Ser Ser Ser Glu Ser Thr

945 950 955945 950 955

<210> 4<210> 4

<211> 3778<211> 3778

<212> DNA<212> DNA

<213> x Triticosecale<213> x Triticosecale

<400> 4<400> 4

atggaggcgg ctctggtgac cgtggcgacg ggagtcctca aacctgtcct ggggaagctg 60atggaggcgg ctctggtgac cgtggcgacg ggagtcctca aacctgtcct ggggaagctg 60

gccaccctgc tcggcgacga gtacaagcgt tttaagggtg tgcgcaagga gatcaggtct 120gccaccctgc tcggcgacga gtacaagcgt tttaagggtg tgcgcaagga gatcaggtct 120

ctcactcatg aactcgccgc catggaggct tttctcctca agatgtcgga ggaggaggag 180ctcactcatg aactcgccgc catggaggct tttctcctca agatgtcgga ggaggaggag 180

gatcccgatg tgcaggataa agtctggatg aatgaggtgc gggaattgtc ctatgacatg 240gatcccgatg tgcaggataa agtctggatg aatgaggtgc gggaattgtc ctatgacatg 240

gaggacgcca tcgacgactt catgcaaagc attggtgaca aagacgaaaa gccggatggc 300gaggacgcca tcgacgactt catgcaaagc attggtgaca aagacgaaaa gccggatggc 300

ttcactgaga agatcaaggc cactctaggc aagttgggaa atatgaaggc tcgtcatcga 360ttcactgaga agatcaaggc cactctaggc aagttgggaa atatgaaggc tcgtcatcga 360

attggcaagg agatacatga tctgaagaaa cagatcattg aggtgggcga caggaatgca 420attggcaagg agatacatga tctgaagaaa cagatcattg aggtgggcga caggaatgca 420

aggtacaagg gacgcgagat cttctccaag gccgtcaatg cgaccgttga ccctagagct 480aggtacaagg gacgcgagat cttctccaag gccgtcaatg cgaccgttga ccctagagct 480

cttgctatct ttgagcatgc atcaaagctc gtcggaattg atgaacccaa ggctgagttg 540cttgctatct ttgagcatgc atcaaagctc gtcggaattg atgaacccaa ggctgagttg 540

atcaagttgt taactgacga ggatggagtt gcatcaacac aagaacaagt gaagatggtc 600atcaagttgt taactgacga ggatggagtt gcatcaacac aagaacaagt gaagatggtc 600

tgcattgttg gatcgggagg aatgggcaaa acaactcttg caaaccaagt gtatcaagag 660tgcattgttg gatcgggagg aatgggcaaa acaactcttg caaaccaagt gtatcaagag 660

atgaaagagg aattcaagtt taaggctttc atatcagtgt cacgaaatcc agatatgatg 720atgaaagagg aattcaagtt taaggctttc atatcagtgt cacgaaatcc agatatgatg 720

aatatcttga gaaccctcct cagtgaaatt gggtgtcaag attatgctca cactgaagca 780aatatcttga gaaccctcct cagtgaaatt gggtgtcaag attatgctca cactgaagca 780

gggagcatac aacaactaat aagcaagatt accgattacc tagcagaaaa aaggtactat 840gggagcatac aacaactaat aagcaagatt accgattacc tagcagaaaa aaggtactat 840

tatatttctt taaactcact tctcgcccat agaaagttaa attaagaatt ctcacataga 900tatatttctt taaactcact tctcgcccat agaaagttaa attaagaatt ctcacataga 900

aaaaacactc ctaataaaga atcaaaataa ttatataatt aaattatata ctttttgggt 960aaaaacactc ctaataaaga atcaaaataa ttatataatt aaattatata ctttttgggt 960

gaaaattaat tgccaaatgt atggaagccc ttatttgcat gtactttact acttcctccg 1020gaaaattaat tgccaaatgt atggaagccc ttatttgcat gtactttact acttcctccg 1020

ttcctaaata taagtctttg gagagatttc actatggacc acatacgaag caaaatgagt 1080ttcctaaata taagtctttg gagagatttc actatggacc acatacgaag caaaatgagt 1080

gaatctacac tctaaaatgc atctatatac atccgtatgt ggttcatggt gaaatctcta 1140gaatctacac tctaaaatgc atctatatac atccgtatgt ggttcatggt gaaatctcta 1140

gaaagactta tatttaggaa cggagggagt agttaactag gttgttgtat ttggagggaa 1200gaaagactta tatttaggaa cggagggagt agttaactag gttgttgtat ttggagggaa 1200

aataagtctt atataggtag gaacatttga ttagtaggta ttcggcatgt atgtgcatct 1260aataagtctt atataggtag gaacatttga ttagtaggta ttcggcatgt atgtgcatct 1260

cagaatgcat atagactaaa agacaatctt ttccgcaata aagaaatatc atcaatcttc 1320cagaatgcat atagactaaa agacaatctt ttccgcaata aagaaatatc atcaatcttc 1320

aatcaagcaa gtatgctact ccctccgtcc caaaattctt gtcttagatt tgtctaaata 1380aatcaagcaa gtatgctact ccctccgtcc caaaattctt gtcttagatt tgtctaaata 1380

cagatgtatc aagtcacatt ttagtattag aaacatccgt atctgggcaa atctaagaca 1440cagatgtatc aagtcacattttagtattag aaacatccgt atctgggcaa atctaagaca 1440

agaattttgg gacggaggga gtacatgata tgtaccactc taagtgctta gagctctttt 1500agaattttgg gacggaggga gtacatgata tgtaccactc taagtgctta gagctctttt 1500

gctcttatat ggcctatcta ggaaaacata ttttgtttag taagtgctta gagtagaaac 1560gctcttatat ggcctatcta ggaaaacata ttttgtttag taagtgctta gagtagaaac 1560

actatatagg tattttctag ccatgtggcc ctgtttaagt tgcatagtac cctagagccg 1620actatatagg tattttctag ccatgtggcc ctgtttaagt tgcatagtac cctagagccg 1620

atccattatc ttttgcatgt tgccaatgag aacatggaaa tttctctttc ttcttatttt 1680atccattatc ttttgcatgt tgccaatgag aacatggaaa tttctctttc ttcttatttt 1680

gcttgtacgc ttcgttttaa cacatcatac taactattac tactaaaaaa tcatgtgcag 1740gcttgtacgc ttcgttttaa cacatcatac taactattac tactaaaaaa tcatgtgcag 1740

gtattttata gtgattgacg acatatggga cgtcaaaaca tgggacgtta ttaagtgcgc 1800gtattttata gtgattgacg acatatggga cgtcaaaaca tgggacgtta ttaagtgcgc 1800

attccccatg accagatgcg gtggtgtaat aatcaccacc actcggctga gtgatgttgc 1860attccccatg accagatgcg gtggtgtaat aatcaccacc actcggctga gtgatgttgc 1860

atgttcgtgt cattcatcaa tcggtggcca tatttataat ataaggcctc ttaatatgga 1920atgttcgtgt cattcatcaa tcggtggcca tatttataat ataaggcctc ttaatatgga 1920

gcactcaaga caactattct acagaagatt attcagctcc gaagaagatt gcccttcatc 1980gcactcaaga caactattct acagaagatt attcagctcc gaagaagatt gcccttcatc 1980

gctcgtgaaa gtttcttatc aaatcttgga aaaatgtgat gggttgcctt tggcaatcat 2040gctcgtgaaa gtttctttatc aaatcttgga aaaatgtgat gggttgcctt tggcaatcat 2040

tgctatagct ggtttgttgg ctaacacagg aagatcagag catcaatgga accaagtgaa 2100tgctatagct ggtttgttgg ctaacacagg aagatcagag catcaatgga accaagtgaa 2100

agattcaatt ggtcgtgcac ttgaaaggaa tcctagtgtc gaagtaatga taaagatatt 2160agattcaatt ggtcgtgcac ttgaaaggaa tcctagtgtc gaagtaatga taaagatatt 2160

gtcacttagt tactttgatc ttcctccgca tctaaaaaca tgtctcttgt atctcagtat 2220gtcacttagt tactttgatc ttcctccgca tctaaaaaca tgtctcttgt atctcagtat 2220

attcccggaa gattctatta ttgagaagaa aacactaata tcaagatgga ttgctgaagg 2280attcccggaa gattctatta ttgagaagaa aacactaata tcaagatgga ttgctgaagg 2280

attcattcga caagaaggta gatatactgc atatgaggta ggagtgaggt gttttaatga 2340attcattcga caagaaggta gatatactgc atatgaggta ggagtgaggt gttttaatga 2340

gctcgtcaac aggagtttga tccaacctgt gaagaaagac gattataagg ggaagagttg 2400gctcgtcaac aggagtttga tccaacctgt gaagaaagac gattataagg ggaagagttg 2400

tcgagttcac gatataattc ttgatttcat agtatccaag tccattgaag agaactttgt 2460tcgagttcac gatataattc ttgatttcat agtatccaag tccattgaag agaactttgt 2460

tacttttgtt ggtgtcccca gtttaactac cgtgacacaa ggcaaagtcc gccgtctctc 2520tacttttgtt ggtgtcccca gtttaactac cgtgacacaa ggcaaagtcc gccgtctctc 2520

catgcaagtt gaagagaagg tggattctat tttgccaatg agcctgatat tatctcatgt 2580catgcaagtt gaagagaagg tggattctat tttgccaatg agcctgatat tatctcatgt 2580

ccgatcactt aacatgttcg ggaatacagt gagtattcct tcgatcatgg agttgaggca 2640ccgatcactt aacatgttcg ggaatacagt gagtattcct tcgatcatgg agttgaggca 2640

tttgcgtgtc cttgatttcg gaggaaacag actattggaa aaccgtcatc tcgcgtatgt 2700tttgcgtgtc cttgatttcg gaggaaacag actattggaa aaccgtcatc tcgcgtatgt 2700

agggatgctg tttcagctaa ggtacctcaa catttacatg acagcagtaa gcgagctccc 2760agggatgctg tttcagctaa ggtacctcaa catttacatg acagcagtaa gcgagctccc 2760

ggaacaaatc ggacacttac agtgcttaga gatgttggac atcaggcata catgggtgtc 2820ggaacaaatc ggacacttac agtgcttaga gatgttggac atcaggcata catgggtgtc 2820

tgagctgcca gccagtattg ccaatctcgg caaactggca cacttacttc ttagctcaaa 2880tgagctgcca gccagtattg ccaatctcgg caaactggca cacttacttc ttagctcaaa 2880

tactggcaca aatgttaagt ttcccgacgg aattgctaag atgcaatcac tggaggcttt 2940tactggcaca aatgttaagt ttcccgacgg aattgctaag atgcaatcac tggaggcttt 2940

gcatagcgtt aacacctgca atcagtcata taactttctg caagggcttg gtcagctaaa 3000gcatagcgtt aacacctgca atcagtcata taactttctg caagggcttg gtcagctaaa 3000

gaatctgagg aagctgggca ttaactatcg gggtgttgcc cacgaagaca aggaagttat 3060gaatctgagg aagctgggca ttaactatcg gggtgttgcc cacgaagaca aggaagttat 3060

tgcttcttct cttggtaaac tatgcacaca aaacctttgt tctctaacta tgtggaatga 3120tgcttcttct cttggtaaac tatgcacaca aaacctttgt tctctaacta tgtggaatga 3120

tgacgacgac ttcttgctaa atacatggtg cacttctccg ccgcttaacc tccgaaaact 3180tgacgacgac ttcttgctaa atacatggtg cacttctccg ccgcttaacc tccgaaaact 3180

tgtcatatgg ggttgtatat tcccaaaggt tccgcattgg gtaggatcac tcgtcaacct 3240tgtcatatgg ggttgtatat tcccaaaggt tccgcattgg gtaggatcac tcgtcaacct 3240

acagaagtta cacttggaag tggggagagg aacccggcat gaagatatct gcatccttgg 3300acagaagtta cacttggaag tggggagagg aacccggcat gaagatatct gcatccttgg 3300

agccttaccc gctctgttca ctctgggtct acgaggaagc gaaaaacagc cttcttgtga 3360agccttaccc gctctgttca ctctgggtct acgaggaagc gaaaaacagc cttcttgtga 3360

aaatagaagg ctggcagtta gtggtgaagc tgggttccga tgcctgagga agtttaaata 3420aaatagaagg ctggcagtta gtggtgaagc tgggttccga tgcctgagga agtttaaata 3420

ctggaggtgg ggggattgga tggatcttat gtttacggca aaatgtatgc ccaggctaga 3480ctggaggtgg ggggattgga tggatcttat gtttacggca aaatgtatgc ccaggctaga 3480

aaaactgaag attatatttt acggccatgc cgaagatgag gctcccatca ttcctgcttt 3540aaaactgaag attattatttt acggccatgc cgaagatgag gctcccatca ttcctgcttt 3540

cgatttcggg atcgaaaacc tgtccagcct cactactttc aaatgtcacc taggttatgg 3600cgatttcggg atcgaaaacc tgtccagcct cactactttc aaatgtcacc taggttatgg 3600

gcctatggca acgaaaattg ttgacgctgt aaaggcttct ctggacagag tagttagcgc 3660gcctatggca acgaaaattg ttgacgctgt aaaggcttct ctggacagag tagttagcgc 3660

acatcccaac caccttactc taatcttcac ttattgttgt gtgttttgta agagttatga 3720acatcccaac caccttatactc taatcttcac ttattgttgt gtgttttgta agagttatga 3720

ctgtggtggt cgatgccttc tgtctagaga tcttcagtca tcctccgaat ctacttga 3778ctgtggtggt cgatgccttc tgtctagaga tcttcagtca tcctccgaat ctacttga 3778

<210> 5<210> 5

<211> 435<211> 435

<212> DNA<212> DNA

<213> 禾柄锈菌小麦小种(Puccinia graminis fsp. tritici)<213> Puccinia graminis fsp. tritici

<220><220>

<221> CDS<221> CDS

<222> (1)..(435)<222> (1)..(435)

<400> 5<400> 5

atg cat tac atc acc ccc ata atc ctt atg tca att gga caa ttt ctt 48atg cat tac atc acc ccc ata atc ctt atg tca att gga caa ttt ctt 48

Met His Tyr Ile Thr Pro Ile Ile Leu Met Ser Ile Gly Gln Phe LeuMet His Tyr Ile Thr Pro Ile Ile Leu Met Ser Ile Gly Gln Phe Leu

1 5 10 151 5 10 15

ggc ata tta ttg gga gca gga ggt ctt gtg ggt gca atg aca cca cat 96ggc ata tta ttg gga gca gga ggt ctt gtg ggt gca atg aca cca cat 96

Gly Ile Leu Leu Gly Ala Gly Gly Leu Val Gly Ala Met Thr Pro HisGly Ile Leu Leu Gly Ala Gly Gly Leu Val Gly Ala Met Thr Pro His

20 25 3020 25 30

cac caa agc aat tgc aac tcc cca tct ttg aca ttt ccc agg ttc att 144cac caa agc aat tgc aac tcc cca tct ttg aca ttt ccc agg ttc att 144

His Gln Ser Asn Cys Asn Ser Pro Ser Leu Thr Phe Pro Arg Phe IleHis Gln Ser Asn Cys Asn Ser Pro Ser Leu Thr Phe Pro Arg Phe Ile

35 40 4535 40 45

gga aaa tgt gac tcc tgc cag ctc cat acc aaa gct acc aac ctg gtg 192gga aaa tgt gac tcc tgc cag ctc cat acc aaa gct acc aac ctg gtg 192

Gly Lys Cys Asp Ser Cys Gln Leu His Thr Lys Ala Thr Asn Leu ValGly Lys Cys Asp Ser Cys Gln Leu His Thr Lys Ala Thr Asn Leu Val

50 55 6050 55 60

agc tgc acc tct tgt agg aaa tcc tca ttg gta tat gaa gaa tgt tcc 240agc tgc acc tct tgt agg aaa tcc tca ttg gta tat gaa gaa tgt tcc 240

Ser Cys Thr Ser Cys Arg Lys Ser Ser Leu Val Tyr Glu Glu Cys SerSer Cys Thr Ser Cys Arg Lys Ser Ser Leu Val Tyr Glu Glu Cys Ser

65 70 75 8065 70 75 80

acc aaa ggc tgt cct gct aat tgg cac aaa agc acc tgt caa gaa ccc 288acc aaa ggc tgt cct gct aat tgg cac aaa agc acc tgt caa gaa ccc 288

Thr Lys Gly Cys Pro Ala Asn Trp His Lys Ser Thr Cys Gln Glu ProThr Lys Gly Cys Pro Ala Asn Trp His Lys Ser Thr Cys Gln Glu Pro

85 90 9585 90 95

aag ttc aat aga ggt att ctg tcc tgt tac tgt gag aac tgc cag cag 336aag ttc aat aga ggt att ctg tcc tgt tac tgt gag aac tgc cag cag 336

Lys Phe Asn Arg Gly Ile Leu Ser Cys Tyr Cys Glu Asn Cys Gln GlnLys Phe Asn Arg Gly Ile Leu Ser Cys Tyr Cys Glu Asn Cys Gln Gln

100 105 110100 105 110

cac acc aag gaa aaa cag aca att tcc tgc aaa aat tgt aag aat tca 384cac acc aag gaa aaa cag aca att tcc tgc aaa aat tgt aag aat tca 384

His Thr Lys Glu Lys Gln Thr Ile Ser Cys Lys Asn Cys Lys Asn SerHis Thr Lys Glu Lys Gln Thr Ile Ser Cys Lys Asn Cys Lys Asn Ser

115 120 125115 120 125

gcc acc acc ttc tca cat tgt tca agc cca gag tgt cac agc aga tgg 432gcc acc acc ttc tca cat tgt tca agc cca gag tgt cac agc aga tgg 432

Ala Thr Thr Phe Ser His Cys Ser Ser Pro Glu Cys His Ser Arg TrpAla Thr Thr Phe Ser His Cys Ser Ser Pro Glu Cys His Ser Arg Trp

130 135 140130 135 140

taa 435taa 435

<210> 6<210> 6

<211> 144<211> 144

<212> PRT<212> PRT

<213> 禾柄锈菌小麦小种<213> Puccinia graminearum

<400> 6<400> 6

Met His Tyr Ile Thr Pro Ile Ile Leu Met Ser Ile Gly Gln Phe LeuMet His Tyr Ile Thr Pro Ile Ile Leu Met Ser Ile Gly Gln Phe Leu

1 5 10 151 5 10 15

Gly Ile Leu Leu Gly Ala Gly Gly Leu Val Gly Ala Met Thr Pro HisGly Ile Leu Leu Gly Ala Gly Gly Leu Val Gly Ala Met Thr Pro His

20 25 3020 25 30

His Gln Ser Asn Cys Asn Ser Pro Ser Leu Thr Phe Pro Arg Phe IleHis Gln Ser Asn Cys Asn Ser Pro Ser Leu Thr Phe Pro Arg Phe Ile

35 40 4535 40 45

Gly Lys Cys Asp Ser Cys Gln Leu His Thr Lys Ala Thr Asn Leu ValGly Lys Cys Asp Ser Cys Gln Leu His Thr Lys Ala Thr Asn Leu Val

50 55 6050 55 60

Ser Cys Thr Ser Cys Arg Lys Ser Ser Leu Val Tyr Glu Glu Cys SerSer Cys Thr Ser Cys Arg Lys Ser Ser Leu Val Tyr Glu Glu Cys Ser

65 70 75 8065 70 75 80

Thr Lys Gly Cys Pro Ala Asn Trp His Lys Ser Thr Cys Gln Glu ProThr Lys Gly Cys Pro Ala Asn Trp His Lys Ser Thr Cys Gln Glu Pro

85 90 9585 90 95

Lys Phe Asn Arg Gly Ile Leu Ser Cys Tyr Cys Glu Asn Cys Gln GlnLys Phe Asn Arg Gly Ile Leu Ser Cys Tyr Cys Glu Asn Cys Gln Gln

100 105 110100 105 110

His Thr Lys Glu Lys Gln Thr Ile Ser Cys Lys Asn Cys Lys Asn SerHis Thr Lys Glu Lys Gln Thr Ile Ser Cys Lys Asn Cys Lys Asn Ser

115 120 125115 120 125

Ala Thr Thr Phe Ser His Cys Ser Ser Pro Glu Cys His Ser Arg TrpAla Thr Thr Phe Ser His Cys Ser Ser Pro Glu Cys His Ser Arg Trp

130 135 140130 135 140

<210> 7<210> 7

<211> 435<211> 435

<212> DNA<212> DNA

<213> 禾柄锈菌小麦小种<213> Puccinia graminearum

<220><220>

<221> CDS<221> CDS

<222> (1)..(435)<222> (1)..(435)

<400> 7<400> 7

atg cat tac atc acc ccc ata atc ctt atg tca att gga aaa ttt ctt 48atg cat tac atc acc ccc ata atc ctt atg tca att gga aaa ttt ctt 48

Met His Tyr Ile Thr Pro Ile Ile Leu Met Ser Ile Gly Lys Phe LeuMet His Tyr Ile Thr Pro Ile Ile Leu Met Ser Ile Gly Lys Phe Leu

1 5 10 151 5 10 15

gga atg ata ttg gga gca gga agt ctt gtg ggt gca atg aca cca cat 96gga atg ata ttg gga gca gga agt ctt gtg ggt gca atg aca cca cat 96

Gly Met Ile Leu Gly Ala Gly Ser Leu Val Gly Ala Met Thr Pro HisGly Met Ile Leu Gly Ala Gly Ser Leu Val Gly Ala Met Thr Pro His

20 25 3020 25 30

cac caa agc aat tgc aac tcc cca tgt ttg gta ttt gtc aca ttc acc 144cac caa agc aat tgc aac tcc cca tgt ttg gta ttt gtc aca ttc acc 144

His Gln Ser Asn Cys Asn Ser Pro Cys Leu Val Phe Val Thr Phe ThrHis Gln Ser Asn Cys Asn Ser Pro Cys Leu Val Phe Val Thr Phe Thr

35 40 4535 40 45

aaa aaa tgt gac tcc tgc cag ttc aat aca aaa ttc act aac ctg atg 192aaa aaa tgt gac tcc tgc cag ttc aat aca aaa ttc act aac ctg atg 192

Lys Lys Cys Asp Ser Cys Gln Phe Asn Thr Lys Phe Thr Asn Leu MetLys Lys Cys Asp Ser Cys Gln Phe Asn Thr Lys Phe Thr Asn Leu Met

50 55 6050 55 60

agc tgc acc tct tgt agg aaa tcc tca gtg gta tat gaa gaa tgt tcc 240agc tgc acc tct tgt agg aaa tcc tca gtg gta tat gaa gaa tgt tcc 240

Ser Cys Thr Ser Cys Arg Lys Ser Ser Val Val Tyr Glu Glu Cys SerSer Cys Thr Ser Cys Arg Lys Ser Ser Val Val Tyr Glu Glu Cys Ser

65 70 75 8065 70 75 80

acc aaa ggc tgt cct gct aat tgg cac aaa agt acc tgt caa gaa ccc 288acc aaa ggc tgt cct gct aat tgg cac aaa agt acc tgt caa gaa ccc 288

Thr Lys Gly Cys Pro Ala Asn Trp His Lys Ser Thr Cys Gln Glu ProThr Lys Gly Cys Pro Ala Asn Trp His Lys Ser Thr Cys Gln Glu Pro

85 90 9585 90 95

aag ttt gag aga ggt gtt cta cac agc ctc tgt gca aac tgc cag aag 336aag ttt gag aga ggt gtt cta cac agc ctc tgt gca aac tgc cag aag 336

Lys Phe Glu Arg Gly Val Leu His Ser Leu Cys Ala Asn Cys Gln LysLys Phe Glu Arg Gly Val Leu His Ser Leu Cys Ala Asn Cys Gln Lys

100 105 110100 105 110

cac aca aag gca aca ccg aca att tcc tgc aaa aat tgt aag aat tca 384cac aca aag gca aca ccg aca att tcc tgc aaa aat tgt aag aat tca 384

His Thr Lys Ala Thr Pro Thr Ile Ser Cys Lys Asn Cys Lys Asn SerHis Thr Lys Ala Thr Pro Thr Ile Ser Cys Lys Asn Cys Lys Asn Ser

115 120 125115 120 125

gcc agc acc tac cca tat tgt tca agc cca gag tgt cac aga aga tgg 432gcc agc acc tac cca tat tgt tca agc cca gag tgt cac aga aga tgg 432

Ala Ser Thr Tyr Pro Tyr Cys Ser Ser Pro Glu Cys His Arg Arg TrpAla Ser Thr Tyr Pro Tyr Cys Ser Ser Pro Glu Cys His Arg Arg Trp

130 135 140130 135 140

taa 435taa 435

<210> 8<210> 8

<211> 144<211> 144

<212> PRT<212> PRT

<213> 禾柄锈菌小麦小种<213> Puccinia graminearum

<400> 8<400> 8

Met His Tyr Ile Thr Pro Ile Ile Leu Met Ser Ile Gly Lys Phe LeuMet His Tyr Ile Thr Pro Ile Ile Leu Met Ser Ile Gly Lys Phe Leu

1 5 10 151 5 10 15

Gly Met Ile Leu Gly Ala Gly Ser Leu Val Gly Ala Met Thr Pro HisGly Met Ile Leu Gly Ala Gly Ser Leu Val Gly Ala Met Thr Pro His

20 25 3020 25 30

His Gln Ser Asn Cys Asn Ser Pro Cys Leu Val Phe Val Thr Phe ThrHis Gln Ser Asn Cys Asn Ser Pro Cys Leu Val Phe Val Thr Phe Thr

35 40 4535 40 45

Lys Lys Cys Asp Ser Cys Gln Phe Asn Thr Lys Phe Thr Asn Leu MetLys Lys Cys Asp Ser Cys Gln Phe Asn Thr Lys Phe Thr Asn Leu Met

50 55 6050 55 60

Ser Cys Thr Ser Cys Arg Lys Ser Ser Val Val Tyr Glu Glu Cys SerSer Cys Thr Ser Cys Arg Lys Ser Ser Val Val Tyr Glu Glu Cys Ser

65 70 75 8065 70 75 80

Thr Lys Gly Cys Pro Ala Asn Trp His Lys Ser Thr Cys Gln Glu ProThr Lys Gly Cys Pro Ala Asn Trp His Lys Ser Thr Cys Gln Glu Pro

85 90 9585 90 95

Lys Phe Glu Arg Gly Val Leu His Ser Leu Cys Ala Asn Cys Gln LysLys Phe Glu Arg Gly Val Leu His Ser Leu Cys Ala Asn Cys Gln Lys

100 105 110100 105 110

His Thr Lys Ala Thr Pro Thr Ile Ser Cys Lys Asn Cys Lys Asn SerHis Thr Lys Ala Thr Pro Thr Ile Ser Cys Lys Asn Cys Lys Asn Ser

115 120 125115 120 125

Ala Ser Thr Tyr Pro Tyr Cys Ser Ser Pro Glu Cys His Arg Arg TrpAla Ser Thr Tyr Pro Tyr Cys Ser Ser Pro Glu Cys His Arg Arg Trp

130 135 140130 135 140

<210> 9<210> 9

<211> 19<211> 19

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequence

<220><220>

<223> 引物<223> Primer

<400> 9<400> 9

cctgttcgat cactggtcg 19cctgttcgat cactggtcg 19

<210> 10<210> 10

<211> 27<211> 27

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequence

<220><220>

<223> 引物<223> Primer

<400> 10<400> 10

gtgaagatgg tctgcattgt tggatcg 27gtgaagatgg tctgcattgt tggatcg 27

<210> 11<210> 11

<211> 27<211> 27

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequence

<220><220>

<223> 引物<223> Primer

<400> 11<400> 11

gatggtatat accgtggtcc gacaaat 27gatggtatat accgtggtcc gacaaat 27

<210> 12<210> 12

<211> 20<211> 20

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequence

<220><220>

<223> 引物<223> Primer

<400> 12<400> 12

cggaggttaa gcggcggaga 20cggaggttaa gcggcggaga 20

<210> 13<210> 13

<211> 27<211> 27

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequence

<220><220>

<223> 引物<223> Primer

<400> 13<400> 13

ggttttgtgt gcatagttta ccaagag 27ggttttgtgt gcatagttta ccaagag 27

<210> 14<210> 14

<211> 20<211> 20

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequence

<220><220>

<223> 引物<223> Primer

<400> 14<400> 14

atgaacccaa ggctgagttg 20atgaacccaaggctgagttg 20

<210> 15<210> 15

<211> 20<211> 20

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequence

<220><220>

<223> 引物<223> Primer

<400> 15<400> 15

acatgcaaat aagggcttcc 20acatgcaaat aagggcttcc 20

<210> 16<210> 16

<211> 20<211> 20

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequence

<220><220>

<223> 引物<223> Primer

<400> 16<400> 16

gtaaggctcc aaggatgcag 20gtaaggctcc aaggatgcag 20

<210> 17<210> 17

<211> 20<211> 20

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequence

<220><220>

<223> 引物<223> Primer

<400> 17<400> 17

taagtttccc gacggaattg 20taagtttccc gacggaattg 20

<210> 18<210> 18

<211> 23<211> 23

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequence

<220><220>

<223> 引物<223> Primer

<400> 18<400> 18

aagaacaagt gaagatggtc tgc 23aagaacaagt gaagatggtc tgc 23

<210> 19<210> 19

<211> 28<211> 28

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequence

<220><220>

<223> 引物<223> Primer

<400> 19<400> 19

ttctgtagaa tagttgtctt gagtgctc 28ttctgtagaa tagttgtctt gagtgctc 28

<210> 20<210> 20

<211> 21<211> 21

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequence

<220><220>

<223> 引物<223> Primer

<400> 20<400> 20

tacgaggaag cgaaaaacag c 21tacgaggaag cgaaaaacag c 21

<210> 21<210> 21

<211> 20<211> 20

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequence

<220><220>

<223> 引物<223> Primer

<400> 21<400> 21

atcttctcag tgaagccatc 20atcttctcag tgaagccatc 20

<210> 22<210> 22

<211> 21<211> 21

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequence

<220><220>

<223> 引物<223> Primer

<400> 22<400> 22

aaatgtgact tgatacatct g 21aaatgtgact tgatacatct g 21

<210> 23<210> 23

<211> 21<211> 21

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequence

<220><220>

<223> 引物<223> Primer

<400> 23<400> 23

atagtgattg acgacatatg g 21atagtgattg acgacatatg g 21

<210> 24<210> 24

<211> 20<211> 20

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequence

<220><220>

<223> 引物<223> Primer

<400> 24<400> 24

gattcattcg acaagaaggt 20gattcattcg acaagaaggt 20

<210> 25<210> 25

<211> 34<211> 34

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequence

<220><220>

<223> 引物<223> Primer

<400> 25<400> 25

attcagattt aagagtcttg attgagtccc catg 34attcagattt aagagtcttg attgagtccc catg 34

<210> 26<210> 26

<211> 29<211> 29

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequence

<220><220>

<223> 引物<223> Primer

<400> 26<400> 26

caccatgcaa ttagccagtg tcttatgtg 29caccatgcaa ttagccagtg tctttatgtg 29

<210> 27<210> 27

<211> 33<211> 33

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequence

<220><220>

<223> 引物<223> Primer

<400> 27<400> 27

gtcttcctac ctgtgttggc gccttgcaaa atg 33gtcttcctac ctgtgttggc gccttgcaaa atg 33

<210> 28<210> 28

<211> 35<211> 35

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequence

<220><220>

<223> 引物<223> Primer

<400> 28<400> 28

caccatgatg cattcaatta tctttcaaac actcc 35caccatgatg cattcaatta tctttcaaac actcc 35

<210> 29<210> 29

<211> 25<211> 25

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequence

<220><220>

<223> 引物<223> Primer

<400> 29<400> 29

ttaccatctt ctgtgacact ctggg 25ttaccatctt ctgtgacact ctggg 25

<210> 30<210> 30

<211> 24<211> 24

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequence

<220><220>

<223> 引物<223> Primer

<400> 30<400> 30

ttaccatctg ctgtgacact ctgg 24ttaccatctg ctgtgacact ctgg 24

<210> 31<210> 31

<211> 34<211> 34

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequence

<220><220>

<223> 引物<223> Primer

<400> 31<400> 31

caccatggca atgacaccac atcaccaaag caat 34caccatggca atgacaccac atcaccaaag caat 34

<210> 32<210> 32

<211> 26<211> 26

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequence

<220><220>

<223> 引物<223> Primer

<400> 32<400> 32

ccatcttctg tgacactctg ggcttg 26ccatcttctg tgacactctg ggcttg 26

<210> 33<210> 33

<211> 26<211> 26

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequence

<220><220>

<223> 引物<223> Primer

<400> 33<400> 33

ccatctgctg tgacactctg ggcttg 26ccatctgctg tgacactctg ggcttg 26

<210> 34<210> 34

<211> 31<211> 31

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequence

<220><220>

<223> 引物<223> Primer

<400> 34<400> 34

caccatgcat tacatcaccc ccataatcct t 31caccatgcat tacatcaccc ccataatcct t 31

<210> 35<210> 35

<211> 33<211> 33

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequence

<220><220>

<223> 引物<223> Primer

<400> 35<400> 35

caccatggca ggaagtcttg tgggtgcaat gac 33caccatggca ggaagtcttg tgggtgcaat gac 33

<210> 36<210> 36

<211> 33<211> 33

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequence

<220><220>

<223> 引物<223> Primer

<400> 36<400> 36

caccatggca ggaggtcttg tgggtgcaat gac 33caccatggca ggaggtcttg tgggtgcaat gac 33

<210> 37<210> 37

<211> 25<211> 25

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequence

<220><220>

<223> 引物<223> Primer

<400> 37<400> 37

aagtggataa cgtactctgc acaac 25aagtggataa cgtactctgc acaac 25

<210> 38<210> 38

<211> 26<211> 26

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequence

<220><220>

<223> 引物<223> Primer

<400> 38<400> 38

agtgactgca attcaccaat atttcg 26agtgactgca attcaccaat atttcg 26

<210> 39<210> 39

<211> 25<211> 25

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequence

<220><220>

<223> 引物<223> Primer

<400> 39<400> 39

aacattcagt gcgaggaatg gggag 25aacattcagt gcgaggaatg gggag 25

Claims (54)

1.核酸分子,其包含从由下列各项组成的组中选择的核苷酸序列:1. A nucleic acid molecule comprising a nucleotide sequence selected from the group consisting of: (a)SEQ ID NO:1、2或4中所示的核苷酸序列;(a) the nucleotide sequence shown in SEQ ID NO: 1, 2 or 4; (b)编码SEQ ID NO:3中所示的氨基酸序列的核苷酸序列,和任选地,其中所述核苷酸序列不是天然出现的;(b) a nucleotide sequence encoding the amino acid sequence shown in SEQ ID NO:3, and optionally, wherein said nucleotide sequence is not naturally occurring; (c)与在(a)中所阐述的核苷酸序列中的至少一个具有至少87%序列同一性的核苷酸序列,其中所述核酸分子能够将对于秆锈病的抗性赋予包含所述核酸分子的小麦植物,和任选地,其中所述核苷酸序列不是天然出现的;和(c) a nucleotide sequence having at least 87% sequence identity to at least one of the nucleotide sequences set forth in (a), wherein said nucleic acid molecule is capable of conferring resistance to stem rust comprising said A wheat plant of a nucleic acid molecule, and optionally, wherein said nucleotide sequence does not occur naturally; and (d)核酸分子,其包含编码与至少一个在(b)中所阐述的氨基酸序列具有至少91%序列同一性的氨基酸序列的核苷酸序列,其中所述核酸分子能够将对于秆锈病的抗性赋予包含所述核酸分子的小麦植物,和任选地,其中所述核苷酸序列不是天然出现的。(d) a nucleic acid molecule comprising a nucleotide sequence encoding an amino acid sequence having at least 91% sequence identity to at least one of the amino acid sequences set forth in (b), wherein said nucleic acid molecule is capable of imparting resistance to stem rust Sex conferring to a wheat plant comprising said nucleic acid molecule, and optionally, wherein said nucleotide sequence does not occur naturally. 2.权利要求1的核酸分子,其中所述核酸分子为分离的核酸分子。2. The nucleic acid molecule of claim 1, wherein said nucleic acid molecule is an isolated nucleic acid molecule. 3.权利要求1或2的核酸分子,其中(c)或(d)的核酸分子编码包含卷曲螺旋结构域、核苷酸结合结构域和富亮氨酸重复结构域的蛋白质。3. The nucleic acid molecule of claim 1 or 2, wherein the nucleic acid molecule of (c) or (d) encodes a protein comprising a coiled-coil domain, a nucleotide binding domain and a leucine-rich repeat domain. 4.权利要求3的核酸分子,其中所述卷曲螺旋结构域、所述核苷酸结合结构域和所述富亮氨酸重复结构域中的至少一个包含与在SEQ ID NO:3中的相应结构域具有至少95%、96%、97%、98%、99%或100%同一性的氨基酸序列。4. The nucleic acid molecule of claim 3, wherein at least one of said coiled-coil domain, said nucleotide binding domain and said leucine-rich repeat domain comprises the corresponding Domains have amino acid sequences that are at least 95%, 96%, 97%, 98%, 99% or 100% identical. 5.表达盒,其包含权利要求1-4中任一项的核酸分子和可操作地连接的异源启动子。5. An expression cassette comprising a nucleic acid molecule according to any one of claims 1-4 and an operably linked heterologous promoter. 6.载体,其包含权利要求1-4中任一项的核酸分子或权利要求5的表达盒。6. A vector comprising a nucleic acid molecule according to any one of claims 1-4 or an expression cassette according to claim 5. 7.权利要求6的载体,其进一步包含另外的小麦秆锈病抗性基因。7. The vector of claim 6, further comprising an additional wheat stem rust resistance gene. 8.权利要求7的载体,其中所述另外的小麦秆锈病抗性基因选自由下列各项组成的组:Sr22、Sr26、Sr32、Sr33、Sr39、Sr40、Sr45、Sr47和Sr50。8. The vector of claim 7, wherein the additional wheat stem rust resistance gene is selected from the group consisting of Sr22, Sr26, Sr32, Sr33, Sr39, Sr40, Sr45, Sr47 and Sr50. 9.宿主细胞,其包含权利要求1-5中任一项的核酸分子、权利要求5的表达盒或者权利要求6-8中任一项的载体。9. A host cell comprising a nucleic acid molecule according to any one of claims 1-5, an expression cassette according to claim 5 or a vector according to any one of claims 6-8. 10.权利要求9的宿主细胞,其中所述宿主细胞为植物细胞、细菌、真菌细胞或动物细胞。10. The host cell of claim 9, wherein said host cell is a plant cell, a bacterium, a fungal cell or an animal cell. 11.权利要求9或10的宿主细胞,其中所述宿主细胞为小麦植物细胞。11. The host cell of claim 9 or 10, wherein said host cell is a wheat plant cell. 12.植物,其包含权利要求1-5中任一项的核酸分子、权利要求5的表达盒或者权利要求6-8中任一项的载体。12. A plant comprising the nucleic acid molecule of any one of claims 1-5, the expression cassette of claim 5 or the vector of any one of claims 6-8. 13.权利要求12的植物,其中所述植物为谷类植物。13. The plant of claim 12, wherein said plant is a cereal plant. 14.权利要求12或13的植物,其中所述植物为小麦。14. The plant of claim 12 or 13, wherein said plant is wheat. 15.转基因植物或种子,其包含稳定地掺入到其基因组中的多核苷酸构建体,所述多核苷酸构建体包含从由下列各项组成的组中选择的核苷酸序列:15. A transgenic plant or seed comprising a polynucleotide construct stably incorporated into its genome, said polynucleotide construct comprising a nucleotide sequence selected from the group consisting of: (a)SEQ ID NO:1、2或4中所示的核苷酸序列;(a) the nucleotide sequence shown in SEQ ID NO: 1, 2 or 4; (b)编码SEQ ID NO:3中所示的氨基酸序列的核苷酸序列,和任选地,其中所述核苷酸序列不是天然出现的;(b) a nucleotide sequence encoding the amino acid sequence shown in SEQ ID NO:3, and optionally, wherein said nucleotide sequence is not naturally occurring; (c)与在(a)中所阐述的核苷酸序列中的至少一个具有至少87%序列同一性的核苷酸序列,其中所述核酸分子能够将对于秆锈病的抗性赋予包含所述核酸分子的小麦植物,和任选地,其中所述核苷酸序列不是天然出现的;和(c) a nucleotide sequence having at least 87% sequence identity to at least one of the nucleotide sequences set forth in (a), wherein said nucleic acid molecule is capable of conferring resistance to stem rust comprising said A wheat plant of a nucleic acid molecule, and optionally, wherein said nucleotide sequence does not occur naturally; and (d)核酸分子,其包含编码与至少一个在(b)中所阐述的氨基酸序列具有至少91%序列同一性的氨基酸序列的核苷酸序列,其中所述核酸分子能够将对于秆锈病的抗性赋予包含所述核酸分子的小麦植物,和任选地,其中所述核苷酸序列不是天然出现的。(d) a nucleic acid molecule comprising a nucleotide sequence encoding an amino acid sequence having at least 91% sequence identity to at least one of the amino acid sequences set forth in (b), wherein said nucleic acid molecule is capable of imparting resistance to stem rust Sex conferring to a wheat plant comprising said nucleic acid molecule, and optionally, wherein said nucleotide sequence does not occur naturally. 16.权利要求15的转基因植物或种子,其中(c)或(d)的核酸分子编码包含卷曲螺旋结构域、核苷酸结合结构域和富亮氨酸重复结构域的蛋白质。16. The transgenic plant or seed of claim 15, wherein the nucleic acid molecule of (c) or (d) encodes a protein comprising a coiled-coil domain, a nucleotide binding domain, and a leucine-rich repeat domain. 17.权利要求16的转基因植物或种子,其中所述卷曲螺旋结构域、所述核苷酸结合结构域和所述富亮氨酸重复结构域中的至少一个包含与在SEQ ID NO:3中的相应结构域具有至少95%、96%、97%、98%、99%或100%同一性的氨基酸序列。17. The transgenic plant or seed of claim 16, wherein at least one of said coiled-coil domain, said nucleotide binding domain, and said leucine-rich repeat domain is comprised as in SEQ ID NO:3 The corresponding domains have amino acid sequences that are at least 95%, 96%, 97%, 98%, 99% or 100% identical. 18.权利要求15-17中任一项的转基因植物或种子,其中所述多核苷酸构建体进一步包含可操作地连接的启动子以用于在植物中表达所述核苷酸序列。18. The transgenic plant or seed of any one of claims 15-17, wherein said polynucleotide construct further comprises a promoter operably linked for expression of said nucleotide sequence in a plant. 19.权利要求18的转基因植物或种子,其中所述启动子选自由下列各项组成的组:病原体诱导型启动子、组成型启动子、组织优先型启动子、创伤诱导型启动子和化学品调节型启动子。19. The transgenic plant or seed of claim 18, wherein the promoter is selected from the group consisting of pathogen-inducible promoters, constitutive promoters, tissue-preferred promoters, wound-inducible promoters, and chemical Regulated promoter. 20.权利要求15-19中任一项的转基因植物或种子,其中所述转基因植物为小麦植物并且所述转基因种子为小麦种子。20. The transgenic plant or seed of any one of claims 15-19, wherein the transgenic plant is a wheat plant and the transgenic seed is a wheat seed. 21.权利要求20的转基因植物或种子,其中所述转基因植物或种子包含相对于对照小麦植物而言增强的对于由禾柄锈菌小麦小种(Puccinia graminis f.sp.tritici)的至少一个品种引起的小麦秆锈病的抗性。21. The transgenic plant or seed of claim 20, wherein said transgenic plant or seed comprises enhanced resistance to at least one variety of Puccinia graminis f.sp. tritici relative to control wheat plants resistance to wheat stem rust. 22.权利要求20或21的转基因植物或种子,其中所述多核苷酸构建体包含至少两个编码对于小麦秆锈病的R蛋白的核苷酸序列。22. The transgenic plant or seed of claim 20 or 21, wherein said polynucleotide construct comprises at least two nucleotide sequences encoding an R protein for wheat stem rust. 23.权利要求22的转基因植物或种子,其中所述至少两个编码对于小麦秆锈病的R蛋白的核苷酸序列中的每一个编码不同的对于小麦秆锈病的R蛋白。23. The transgenic plant or seed of claim 22, wherein each of the at least two nucleotide sequences encoding an R protein for wheat stem rust encodes a different R protein for wheat stem rust. 24.用于增强小麦植物对于小麦秆锈病的抗性的方法,所述方法包括将多核苷酸构建体引入到至少一个小麦植物细胞中,所述多核苷酸构建体包含从由下列各项组成的组中选择的核苷酸序列:24. A method for increasing the resistance of wheat plants to wheat stem rust, said method comprising introducing into at least one cell of a wheat plant a polynucleotide construct comprising Nucleotide sequences selected from the group: (a)SEQ ID NO:1、2或4中所示的核苷酸序列;(a) the nucleotide sequence shown in SEQ ID NO: 1, 2 or 4; (b)编码SEQ ID NO:3中所示的氨基酸序列的核苷酸序列;(b) a nucleotide sequence encoding the amino acid sequence shown in SEQ ID NO:3; (c)与在(a)中所阐述的核苷酸序列中的至少一个具有至少87%序列同一性的核苷酸序列,其中所述核酸分子能够将对于秆锈病的抗性赋予包含所述核酸分子的小麦植物;和(c) a nucleotide sequence having at least 87% sequence identity to at least one of the nucleotide sequences set forth in (a), wherein said nucleic acid molecule is capable of conferring resistance to stem rust comprising said the wheat plant of the nucleic acid molecule; and (d)核酸分子,其包含编码与至少一个在(b)中所阐述的氨基酸序列具有至少91%序列同一性的氨基酸序列的核苷酸序列,其中所述核酸分子能够将对于秆锈病的抗性赋予包含所述核酸分子的小麦植物。(d) a nucleic acid molecule comprising a nucleotide sequence encoding an amino acid sequence having at least 91% sequence identity to at least one of the amino acid sequences set forth in (b), wherein said nucleic acid molecule is capable of imparting resistance to stem rust Sex confers to a wheat plant comprising said nucleic acid molecule. 25.权利要求24的方法,其中(c)或(d)的核酸分子编码包含卷曲螺旋结构域、核苷酸结合结构域和富亮氨酸重复结构域的蛋白质。25. The method of claim 24, wherein the nucleic acid molecule of (c) or (d) encodes a protein comprising a coiled-coil domain, a nucleotide binding domain, and a leucine-rich repeat domain. 26.权利要求25的方法,其中所述卷曲螺旋结构域、所述核苷酸结合结构域和所述富亮氨酸重复结构域中的至少一个包含与在SEQ ID NO:3中的相应结构域具有至少95%、96%、97%、98%、99%或100%同一性的氨基酸序列。26. The method of claim 25, wherein at least one of said coiled-coil domain, said nucleotide binding domain, and said leucine-rich repeat domain comprises the corresponding structure in SEQ ID NO:3 Domains have amino acid sequences that are at least 95%, 96%, 97%, 98%, 99% or 100% identical. 27.权利要求24-26中任一项的方法,其中将所述多核苷酸构建体稳定地掺入到所述植物细胞的基因组中。27. The method of any one of claims 24-26, wherein the polynucleotide construct is stably incorporated into the genome of the plant cell. 28.权利要求24-27中任一项的方法,其中将所述小麦植物细胞再生为在其基因组中包含所述多核苷酸构建体的小麦植物。28. The method of any one of claims 24-27, wherein the wheat plant cell is regenerated into a wheat plant comprising the polynucleotide construct in its genome. 29.权利要求24-28中任一项的方法,其中所述多核苷酸构建体进一步包含可操作地连接的启动子以用于在植物中表达所述核苷酸序列。29. The method of any one of claims 24-28, wherein said polynucleotide construct further comprises a promoter operably linked for expression of said nucleotide sequence in plants. 30.权利要求29的方法,其中所述启动子选自由下列各项组成的组:病原体诱导型启动子、组成型启动子、组织优先型启动子、创伤诱导型启动子和化学品调节型启动子。30. The method of claim 29, wherein the promoter is selected from the group consisting of pathogen-inducible promoters, constitutive promoters, tissue-preferred promoters, wound-inducible promoters, and chemical-regulated promoters son. 31.权利要求21-30中任一项的方法,其中包含所述多核苷酸构建体的小麦植物包含相对于对照小麦植物而言增强的对于由禾柄锈菌小麦小种的至少一个品种引起的小麦秆锈病的抗性。31. The method of any one of claims 21-30, wherein the wheat plant comprising the polynucleotide construct comprises an enhanced expression for at least one species of Puccinia graminearum racee tritici relative to control wheat plants. resistance to wheat stem rust. 32.权利要求24-31中任一项的方法,其中所述多核苷酸构建体包含至少两个编码对于小麦秆锈病的R蛋白的核苷酸序列。32. The method of any one of claims 24-31, wherein the polynucleotide construct comprises at least two nucleotide sequences encoding an R protein for wheat stem rust. 33.权利要求32的方法,其中所述至少两个编码对于小麦秆锈病的R蛋白的核苷酸序列中的每一个编码不同的对于小麦秆锈病的R蛋白。33. The method of claim 32, wherein each of the at least two nucleotide sequences encoding an R protein for wheat stem rust encodes a different R protein for wheat stem rust. 34.通过权利要求24-33中任一项的方法而产生的小麦植物。34. A wheat plant produced by the method of any one of claims 24-33. 35.权利要求34的小麦植物的种子,其中所述种子包含所述多核苷酸构建体。35. The seed of the wheat plant of claim 34, wherein said seed comprises said polynucleotide construct. 36.在农作物生产中限制小麦秆锈病的方法,所述方法包括种植根据权利要求20-23和35中任一项的小麦种子,并且在有利于小麦植物的生长和发育的条件下栽培所述小麦植物。36. A method for limiting wheat stem rust in crop production, said method comprising planting a wheat seed according to any one of claims 20-23 and 35, and cultivating said wheat seed under conditions favorable to the growth and development of the wheat plant. wheat plant. 37.权利要求36的方法,其进一步包括从所述小麦植物收获至少一颗种子。37. The method of claim 36, further comprising harvesting at least one seed from said wheat plant. 38.权利要求20-23、34和35中任一项的小麦植物或种子在农业中的用途。38. Use of the wheat plant or seed of any one of claims 20-23, 34 and 35 in agriculture. 39.通过使用权利要求20-23、34和35中任一项的小麦植物或种子而产生的人或动物食物产品。39. A human or animal food product produced by using the wheat plant or seed of any one of claims 20-23, 34 and 35. 40.多肽,其包含从由下列各项组成的组中选择的氨基酸序列:40. A polypeptide comprising an amino acid sequence selected from the group consisting of: (a)由SEQ ID NO:1、2或4中所示的核苷酸序列所编码的氨基酸序列;(a) an amino acid sequence encoded by the nucleotide sequence shown in SEQ ID NO: 1, 2 or 4; (b)SEQ ID NO:3中所示的氨基酸序列;和(b) the amino acid sequence shown in SEQ ID NO:3; and (c)与SEQ ID NO:3中所示的氨基酸序列具有至少91%序列同一性的氨基酸序列,其中包含所述氨基酸序列的多肽能够将对于秆锈病的抗性赋予包含所述多肽的小麦植物,和任选地,其中所述多肽不是天然出现的。(c) an amino acid sequence having at least 91% sequence identity to the amino acid sequence shown in SEQ ID NO: 3, wherein a polypeptide comprising said amino acid sequence is capable of conferring resistance to stem rust to a wheat plant comprising said polypeptide , and optionally, wherein said polypeptide is not naturally occurring. 41.权利要求40的多肽,其中(c)的多肽包含卷曲螺旋结构域、核苷酸结合结构域和富亮氨酸重复结构域。41. The polypeptide of claim 40, wherein the polypeptide of (c) comprises a coiled-coil domain, a nucleotide binding domain, and a leucine-rich repeat domain. 42.权利要求41的多肽,其中所述卷曲螺旋结构域、所述核苷酸结合结构域和所述富亮氨酸重复结构域中的至少一个包含与在SEQ ID NO:3中的相应结构域具有至少95%、96%、97%、98%、99%或100%同一性的氨基酸序列。42. The polypeptide of claim 41, wherein at least one of said coiled-coil domain, said nucleotide binding domain and said leucine-rich repeat domain comprises the corresponding structure in SEQ ID NO:3 Domains have amino acid sequences that are at least 95%, 96%, 97%, 98%, 99% or 100% identical. 43.用于鉴定展示出新赋予的或增强的对于小麦秆锈病的抗性的小麦植物的方法,所述方法包括在所述小麦植物中检测R基因Sr27的存在。43. A method for identifying wheat plants displaying newly conferred or enhanced resistance to wheat stem rust, said method comprising detecting in said wheat plants the presence of the R gene Sr27. 44.权利要求43的方法,其中所述R基因的存在通过检测在Sr27之内的至少一个标志物来进行检测。44. The method of claim 43, wherein the presence of the R gene is detected by detecting at least one marker within Sr27. 45.权利要求43或44中任一项的方法,其中Sr27包含下述核苷酸序列或由下述核苷酸序列组成:SEQ ID NO:1、2或4中所示的核苷酸序列,或者编码SEQ ID NO:3的核苷酸序列。45. The method of any one of claims 43 or 44, wherein Sr27 comprises or consists of the following nucleotide sequence: the nucleotide sequence shown in SEQ ID NO:1, 2 or 4 , or the nucleotide sequence encoding SEQ ID NO:3. 46.权利要求43-45中任一项的方法,其中检测所述R基因的存在包括从由下列各项组成的组中选择的成员:PCR扩增、核酸测序、核酸杂交和用于检测由所述R基因所编码的R蛋白的免疫学测定法。46. The method of any one of claims 43-45, wherein detecting the presence of the R gene comprises a member selected from the group consisting of: PCR amplification, nucleic acid sequencing, nucleic acid hybridization and for detection by Immunological assays for the R protein encoded by the R gene. 47.权利要求43-46中任一项的方法,其中检测所述R基因的存在包括检测所述R基因的片段的存在。47. The method of any one of claims 43-46, wherein detecting the presence of the R gene comprises detecting the presence of a fragment of the R gene. 48.通过权利要求43-47中任一项的方法而鉴定的小麦植物。48. A wheat plant identified by the method of any one of claims 43-47. 49.权利要求48的小麦植物的种子。49. The seed of the wheat plant of claim 48. 50.用于产生具有增强的对于秆锈病的抗性的非转基因黑小麦植物的方法,所述方法包括在黑小麦植物或至少一个其细胞中修饰抗性基因Sr27的非功能性等位基因以便制备功能性等位基因,由此增强所述黑小麦植物对于秆锈病的抗性。50. A method for producing non-transgenic triticale plants with enhanced resistance to stem rust, said method comprising modifying a non-functional allele of the resistance gene Sr27 in a triticale plant or at least one cell thereof so that A functional allele is produced, thereby increasing the resistance of the triticale plant to stem rust. 51.权利要求50的方法,其中所述修饰非功能性等位基因包括将至少一个从由下列各项组成的组中选择的遗传修饰引入到所述非功能性等位基因中:至少一个碱基对的插入、缺失和置换。51. The method of claim 50, wherein said modifying a non-functional allele comprises introducing into said non-functional allele at least one genetic modification selected from the group consisting of at least one base Base pair insertions, deletions and substitutions. 52.权利要求50或51的方法,其中所述修饰非功能性等位基因包括基因编辑或突变育种。52. The method of claim 50 or 51, wherein said modifying a non-functional allele comprises gene editing or mutation breeding. 53.权利要求50-52中任一项的方法,其中所述功能性等位基因包含从由下列各项组成的组中选择的核苷酸序列:53. The method of any one of claims 50-52, wherein the functional allele comprises a nucleotide sequence selected from the group consisting of: (a)SEQ ID NO:1中所示的核苷酸序列;和(a) the nucleotide sequence shown in SEQ ID NO: 1; and (b)编码SEQ ID NO:3中所示的氨基酸序列的核苷酸序列。(b) Nucleotide sequence encoding the amino acid sequence shown in SEQ ID NO:3. 54.通过权利要求50的方法而产生的非转基因黑小麦植物。54. A non-transgenic triticale plant produced by the method of claim 50.
CN202180075248.2A 2020-09-09 2021-09-08 Rust resistance gene Pending CN116634861A (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US63/076,153 2020-09-09
US202063127220P 2020-12-18 2020-12-18
US63/127,220 2020-12-18
PCT/IB2021/000608 WO2022053866A1 (en) 2020-09-09 2021-09-08 Stem rust resistance gene

Publications (1)

Publication Number Publication Date
CN116634861A true CN116634861A (en) 2023-08-22

Family

ID=87621629

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202180075248.2A Pending CN116634861A (en) 2020-09-09 2021-09-08 Rust resistance gene

Country Status (1)

Country Link
CN (1) CN116634861A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU9117491A (en) * 1990-12-10 1992-07-08 E.I. Du Pont De Nemours And Company Herbicidal ethers
WO1998033382A1 (en) * 1997-01-30 1998-08-06 E.I. Du Pont De Nemours And Company Fungicidal compositions
WO2000008189A2 (en) * 1998-08-07 2000-02-17 Plant Bioscience Limited Plant resistance gene
CN104837335A (en) * 2012-08-24 2015-08-12 联邦科学和工业研究组织 Wheat with new alleles of Rht-b1
CN105132570A (en) * 2015-09-22 2015-12-09 中国农业科学院作物科学研究所 Primer combination assisting in screening stripe-rust-resistant wheat and application of primer combination
CN108026150A (en) * 2015-08-04 2018-05-11 双刃基金会 Stem rust of wheat resistant gene and application method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU9117491A (en) * 1990-12-10 1992-07-08 E.I. Du Pont De Nemours And Company Herbicidal ethers
WO1998033382A1 (en) * 1997-01-30 1998-08-06 E.I. Du Pont De Nemours And Company Fungicidal compositions
WO2000008189A2 (en) * 1998-08-07 2000-02-17 Plant Bioscience Limited Plant resistance gene
CN104837335A (en) * 2012-08-24 2015-08-12 联邦科学和工业研究组织 Wheat with new alleles of Rht-b1
CN108026150A (en) * 2015-08-04 2018-05-11 双刃基金会 Stem rust of wheat resistant gene and application method
CN105132570A (en) * 2015-09-22 2015-12-09 中国农业科学院作物科学研究所 Primer combination assisting in screening stripe-rust-resistant wheat and application of primer combination

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
BURKHARD STEUERNAGEL: "Rapid cloning of disease-resistance genes in plants using mutagenesis and sequence capture", NATURE BIOTECHNOLOGY, vol. 34, no. 6, 25 April 2016 (2016-04-25), pages 2, XP055309226, DOI: 10.1038/nbt.3543 *
MISHINA, K等: "Triticum aestivum mRNA, clone: tplb0044e19, cultivar Chinese Spring", GENBANK DATABASE, 4 October 2017 (2017-10-04), pages 447990 *
XIAN XIN WU等: ""Characterization of Wheat Monogenic Lines with Known Sr Genes and Wheat Lines with Resistance to the Ug99 Race Group for Resistance to Prevalent Races of Puccinia graminis f. sp. tritici in China", PLANT DISEASE, vol. 104, no. 7, 31 July 2020 (2020-07-31), pages 3, XP055913854, DOI: 10.1094/PDIS-12-19-2736-RE *
XIAN XIN WU等: "Characterization of Wheat Monogenic Lines with Known Sr Genes and Wheat Lines with Resistance to the Ug99 Race Group for Resistance to Prevalent Races of Puccinia graminis f. sp. tritici in China", PLANT DISEASE, vol. 104, no. 7, 31 July 2020 (2020-07-31), pages 3, XP055913854, DOI: 10.1094/PDIS-12-19-2736-RE *
ZHANG, W.等: "Triticum aestivum haplotype S1 Sr13 (Sr13) gene, complete cds", GENBANK DATABASE, 2 October 2017 (2017-10-02), pages 825227 *

Similar Documents

Publication Publication Date Title
US20220112512A1 (en) Wheat stem rust resistance genes and methods of use
US11041166B2 (en) Late blight resistance genes and methods of use
CN104245939A (en) Methods and compositions for generating complex trait loci
US9957578B2 (en) Genetic loci associated with resistance of soybean to cyst nematode and methods of use
US20230272412A1 (en) Stem rust resistance gene
EP3294892B1 (en) Late blight resistance gene from solanum americanum and methods of use
US11732271B2 (en) Stem rust resistance genes and methods of use
US20250002929A1 (en) Plant disease resistance genes against stem rust and methods of use
CN111542608A (en) Potato Y virus resistance genes and methods of use
US20210071193A1 (en) Plants with enhanced resistance to bacterial pathogens
CN116634861A (en) Rust resistance gene
CN118974076A (en) Plant disease resistance genes against stem rust and methods of use
WO2023183765A2 (en) Geminivirus resistant plants
WO2025019221A1 (en) Broad-spectrum polerovirus resistance gene

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination