CN116598429A - Negative electrode metal foil and its preparation method and battery - Google Patents
Negative electrode metal foil and its preparation method and battery Download PDFInfo
- Publication number
- CN116598429A CN116598429A CN202310575247.5A CN202310575247A CN116598429A CN 116598429 A CN116598429 A CN 116598429A CN 202310575247 A CN202310575247 A CN 202310575247A CN 116598429 A CN116598429 A CN 116598429A
- Authority
- CN
- China
- Prior art keywords
- metal foil
- negative electrode
- electrode metal
- positive electrode
- area
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000011888 foil Substances 0.000 title claims abstract description 179
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 177
- 239000002184 metal Substances 0.000 title claims abstract description 177
- 238000002360 preparation method Methods 0.000 title claims abstract description 10
- 239000003792 electrolyte Substances 0.000 claims abstract description 24
- 239000000758 substrate Substances 0.000 claims abstract description 23
- 238000009210 therapy by ultrasound Methods 0.000 claims abstract description 22
- 229910052744 lithium Inorganic materials 0.000 claims abstract description 19
- 239000002131 composite material Substances 0.000 claims abstract description 17
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims abstract description 15
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 12
- 229910002804 graphite Inorganic materials 0.000 claims abstract description 9
- 239000010439 graphite Substances 0.000 claims abstract description 9
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims abstract description 8
- 229910052697 platinum Inorganic materials 0.000 claims abstract description 4
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 claims description 36
- 238000000034 method Methods 0.000 claims description 23
- 239000007774 positive electrode material Substances 0.000 claims description 20
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 claims description 14
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 14
- DDFHBQSCUXNBSA-UHFFFAOYSA-N 5-(5-carboxythiophen-2-yl)thiophene-2-carboxylic acid Chemical compound S1C(C(=O)O)=CC=C1C1=CC=C(C(O)=O)S1 DDFHBQSCUXNBSA-UHFFFAOYSA-N 0.000 claims description 12
- 238000004506 ultrasonic cleaning Methods 0.000 claims description 12
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 10
- 239000002033 PVDF binder Substances 0.000 claims description 7
- 229920002981 polyvinylidene fluoride Polymers 0.000 claims description 7
- 239000003599 detergent Substances 0.000 claims description 6
- 239000000463 material Substances 0.000 claims description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 6
- 229910052782 aluminium Inorganic materials 0.000 claims description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 4
- 239000011889 copper foil Substances 0.000 claims description 4
- 238000003475 lamination Methods 0.000 claims description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 3
- 239000000919 ceramic Substances 0.000 claims description 3
- QHGJSLXSVXVKHZ-UHFFFAOYSA-N dilithium;dioxido(dioxo)manganese Chemical compound [Li+].[Li+].[O-][Mn]([O-])(=O)=O QHGJSLXSVXVKHZ-UHFFFAOYSA-N 0.000 claims description 3
- 229940116007 ferrous phosphate Drugs 0.000 claims description 3
- 229910000155 iron(II) phosphate Inorganic materials 0.000 claims description 3
- SDEKDNPYZOERBP-UHFFFAOYSA-H iron(ii) phosphate Chemical compound [Fe+2].[Fe+2].[Fe+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O SDEKDNPYZOERBP-UHFFFAOYSA-H 0.000 claims description 3
- DVATZODUVBMYHN-UHFFFAOYSA-K lithium;iron(2+);manganese(2+);phosphate Chemical compound [Li+].[Mn+2].[Fe+2].[O-]P([O-])([O-])=O DVATZODUVBMYHN-UHFFFAOYSA-K 0.000 claims description 3
- 239000008151 electrolyte solution Substances 0.000 claims description 2
- 229910001416 lithium ion Inorganic materials 0.000 abstract description 42
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 abstract description 41
- 230000005684 electric field Effects 0.000 abstract description 9
- 230000008021 deposition Effects 0.000 abstract description 8
- 230000003647 oxidation Effects 0.000 abstract description 3
- 238000007254 oxidation reaction Methods 0.000 abstract description 3
- 239000010410 layer Substances 0.000 description 21
- 230000000052 comparative effect Effects 0.000 description 9
- 239000002585 base Substances 0.000 description 7
- 230000014759 maintenance of location Effects 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 230000001939 inductive effect Effects 0.000 description 5
- BQCIDUSAKPWEOX-UHFFFAOYSA-N 1,1-Difluoroethene Chemical compound FC(F)=C BQCIDUSAKPWEOX-UHFFFAOYSA-N 0.000 description 4
- 230000006911 nucleation Effects 0.000 description 4
- 238000010899 nucleation Methods 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 238000004381 surface treatment Methods 0.000 description 4
- 239000002041 carbon nanotube Substances 0.000 description 3
- 229910021393 carbon nanotube Inorganic materials 0.000 description 3
- 239000010406 cathode material Substances 0.000 description 3
- 238000004088 simulation Methods 0.000 description 3
- 238000005406 washing Methods 0.000 description 3
- 239000000654 additive Substances 0.000 description 2
- 210000004027 cell Anatomy 0.000 description 2
- 229910017052 cobalt Inorganic materials 0.000 description 2
- 239000010941 cobalt Substances 0.000 description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 2
- 210000001787 dendrite Anatomy 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 229910003002 lithium salt Inorganic materials 0.000 description 2
- 159000000002 lithium salts Chemical class 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 238000001000 micrograph Methods 0.000 description 2
- 239000007773 negative electrode material Substances 0.000 description 2
- IHCCLXNEEPMSIO-UHFFFAOYSA-N 2-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperidin-1-yl]-1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethanone Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C1CCN(CC1)CC(=O)N1CC2=C(CC1)NN=N2 IHCCLXNEEPMSIO-UHFFFAOYSA-N 0.000 description 1
- DEXFNLNNUZKHNO-UHFFFAOYSA-N 6-[3-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperidin-1-yl]-3-oxopropyl]-3H-1,3-benzoxazol-2-one Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C1CCN(CC1)C(CCC1=CC2=C(NC(O2)=O)C=C1)=O DEXFNLNNUZKHNO-UHFFFAOYSA-N 0.000 description 1
- BHPQYMZQTOCNFJ-UHFFFAOYSA-N Calcium cation Chemical compound [Ca+2] BHPQYMZQTOCNFJ-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 229910010941 LiFSI Inorganic materials 0.000 description 1
- 229910013553 LiNO Inorganic materials 0.000 description 1
- 229910013870 LiPF 6 Inorganic materials 0.000 description 1
- 229910001290 LiPF6 Inorganic materials 0.000 description 1
- JLVVSXFLKOJNIY-UHFFFAOYSA-N Magnesium ion Chemical compound [Mg+2] JLVVSXFLKOJNIY-UHFFFAOYSA-N 0.000 description 1
- NIPNSKYNPDTRPC-UHFFFAOYSA-N N-[2-oxo-2-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 NIPNSKYNPDTRPC-UHFFFAOYSA-N 0.000 description 1
- NPYPAHLBTDXSSS-UHFFFAOYSA-N Potassium ion Chemical compound [K+] NPYPAHLBTDXSSS-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- FKNQFGJONOIPTF-UHFFFAOYSA-N Sodium cation Chemical compound [Na+] FKNQFGJONOIPTF-UHFFFAOYSA-N 0.000 description 1
- PTFCDOFLOPIGGS-UHFFFAOYSA-N Zinc dication Chemical compound [Zn+2] PTFCDOFLOPIGGS-UHFFFAOYSA-N 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 229910001413 alkali metal ion Inorganic materials 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 239000010405 anode material Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 229910001424 calcium ion Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 230000001351 cycling effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229910001338 liquidmetal Inorganic materials 0.000 description 1
- 229910003473 lithium bis(trifluoromethanesulfonyl)imide Inorganic materials 0.000 description 1
- -1 lithium metals Chemical class 0.000 description 1
- VDVLPSWVDYJFRW-UHFFFAOYSA-N lithium;bis(fluorosulfonyl)azanide Chemical compound [Li+].FS(=O)(=O)[N-]S(F)(=O)=O VDVLPSWVDYJFRW-UHFFFAOYSA-N 0.000 description 1
- QSZMZKBZAYQGRS-UHFFFAOYSA-N lithium;bis(trifluoromethylsulfonyl)azanide Chemical compound [Li+].FC(F)(F)S(=O)(=O)[N-]S(=O)(=O)C(F)(F)F QSZMZKBZAYQGRS-UHFFFAOYSA-N 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 229910001425 magnesium ion Inorganic materials 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 238000011056 performance test Methods 0.000 description 1
- 229910001414 potassium ion Inorganic materials 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 229910001415 sodium ion Inorganic materials 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D11/00—Electrolytic coating by surface reaction, i.e. forming conversion layers
- C25D11/02—Anodisation
- C25D11/26—Anodisation of refractory metals or alloys based thereon
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B08—CLEANING
- B08B—CLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
- B08B7/00—Cleaning by methods not provided for in a single other subclass or a single group in this subclass
- B08B7/02—Cleaning by methods not provided for in a single other subclass or a single group in this subclass by distortion, beating, or vibration of the surface to be cleaned
- B08B7/026—Using sound waves
- B08B7/028—Using ultrasounds
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D11/00—Electrolytic coating by surface reaction, i.e. forming conversion layers
- C25D11/02—Anodisation
- C25D11/04—Anodisation of aluminium or alloys based thereon
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D11/00—Electrolytic coating by surface reaction, i.e. forming conversion layers
- C25D11/02—Anodisation
- C25D11/04—Anodisation of aluminium or alloys based thereon
- C25D11/06—Anodisation of aluminium or alloys based thereon characterised by the electrolytes used
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D11/00—Electrolytic coating by surface reaction, i.e. forming conversion layers
- C25D11/02—Anodisation
- C25D11/04—Anodisation of aluminium or alloys based thereon
- C25D11/18—After-treatment, e.g. pore-sealing
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D11/00—Electrolytic coating by surface reaction, i.e. forming conversion layers
- C25D11/02—Anodisation
- C25D11/34—Anodisation of metals or alloys not provided for in groups C25D11/04 - C25D11/32
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/0438—Processes of manufacture in general by electrochemical processing
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/134—Electrodes based on metals, Si or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
- H01M4/1395—Processes of manufacture of electrodes based on metals, Si or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
- H01M4/381—Alkaline or alkaline earth metals elements
- H01M4/382—Lithium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
- H01M4/70—Carriers or collectors characterised by shape or form
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- General Chemical & Material Sciences (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Cell Electrode Carriers And Collectors (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
技术领域technical field
本发明涉及电池技术领域,具体而言,涉及一种负极金属箔及其制备方法和电池。The invention relates to the technical field of batteries, in particular to a negative electrode metal foil, a preparation method thereof, and a battery.
背景技术Background technique
近年来,随着新能源汽车的快速发展,人们对其续航里程和电池寿命的要求越来越高,电动汽车的续航总里程与其搭载的动力电池能量密度和循环稳定性直接相关,所以近年来如何发展兼具高能量密度和长循环稳定性的锂离子电池一直是研究的热点。In recent years, with the rapid development of new energy vehicles, people have higher and higher requirements for their cruising range and battery life. The total cruising range of electric vehicles is directly related to the energy density and cycle stability of the power battery equipped. How to develop lithium-ion batteries with high energy density and long-term cycle stability has always been a research hotspot.
目前,锂离子电池比能量密度主要可以从化学和物理两个层面进行提升:(1)化学层面上提高正负极材料的能量密度:如正极材料朝着高镍含量三元等正极发展,负极朝着发生合金化反应的硅基、锂金属等负极发展,但是高能量正负极材料往往意味着更高的产气、更差的循环稳定性以及枝晶生长带来的安全等问题;(2)物理层面上,主要通过简化电芯的结构件,降低电芯的重量来提升比能量密度,如盖板简易化,壳体薄化、集流体薄化等。其中,J.Neudecker等人率先提出了无负极电池这一概念,该电池使用负极集流体铜箔代替传统的石墨负极材料,从而降低电池质量,提升能量密度。At present, the specific energy density of lithium-ion batteries can be improved mainly from two levels of chemistry and physics: (1) Improve the energy density of positive and negative electrode materials at the chemical level: For example, the positive electrode material is developing towards a positive electrode such as a high-nickel content ternary, and the negative electrode It is developing toward negative electrodes such as silicon-based and lithium metals that undergo alloying reactions, but high-energy positive and negative electrode materials often mean higher gas production, poorer cycle stability, and safety issues caused by dendrite growth; ( 2) On the physical level, the specific energy density is improved mainly by simplifying the structural parts of the battery cell and reducing the weight of the battery cell, such as simplifying the cover plate, thinning the shell, and thinning the current collector. Among them, J. Neudecker et al. took the lead in proposing the concept of anode-free battery, which uses anode current collector copper foil instead of traditional graphite anode material, thereby reducing battery quality and increasing energy density.
无负极锂电池是通过用金属箔代替传统石墨负极,所以在电池充电过程中,锂离子从正极脱出,穿过隔膜,沉积在负极金属箔表面形成金属锂,放电过程中这些金属锂再形成锂离子回嵌入正极中,因此负极金属箔的属性在决定锂离子电池循环稳定性方面起到至关重要的作用。然而,负极金属光箔的表面在生产制造过程中往往存在不均匀的裂痕和缺陷,造成不均匀的锂离子沉积和剥离,导致枝晶的生长,刺穿隔膜,造成短路,带来安全性问题。The anode-free lithium battery replaces the traditional graphite anode with metal foil, so during the charging process of the battery, lithium ions come out of the anode, pass through the separator, and deposit on the surface of the anode metal foil to form lithium metal. During the discharge process, these metal lithium re-form lithium Ions are back-intercalated into the cathode, so the properties of the anode metal foil play a crucial role in determining the cycle stability of Li-ion batteries. However, there are often uneven cracks and defects on the surface of the negative metal foil during the manufacturing process, resulting in uneven deposition and peeling of lithium ions, resulting in the growth of dendrites, piercing the separator, causing short circuits, and bringing safety issues .
有鉴于此,特提出本发明。In view of this, the present invention is proposed.
发明内容Contents of the invention
本发明的一个目的在于提供一种负极金属箔的制备方法,该方法得到的具有纳米凹陷结构阵列的负极金属箔,可诱导锂离子的均匀成核,从而诱导后续锂离子的均匀生长,提高锂离子电池的循环稳定性。An object of the present invention is to provide a method for preparing negative electrode metal foil. The negative electrode metal foil obtained by the method has a nano-depression structure array, which can induce uniform nucleation of lithium ions, thereby inducing the uniform growth of subsequent lithium ions and increasing the lithium ion density. Cycling stability of ion batteries.
本发明的另一个目的在于提供一种所述的负极金属箔的制备方法制备得到的负极金属箔,该负极金属箔的表面具有尺寸均一、排列规律的凹陷结构。Another object of the present invention is to provide a negative electrode metal foil prepared by the method for preparing the negative electrode metal foil, the surface of the negative electrode metal foil has a concave structure with uniform size and regular arrangement.
本发明的另一个目的在于提供一种电池。Another object of the present invention is to provide a battery.
为了实现本发明的上述目的,特采用以下技术方案:In order to realize the above-mentioned purpose of the present invention, special adopt following technical scheme:
一种负极金属箔的制备方法,包括以下步骤:A method for preparing negative electrode metal foil, comprising the following steps:
将金属箔基体作为工作电极,石墨或者铂片作为对电极,置于电解液中,在恒定电压下进行阳极氧化,得到表面具有氧化层的复合金属箔;将所述复合金属箔进行超声处理,去除所述氧化层,得到负极金属箔;The metal foil substrate is used as the working electrode, graphite or platinum sheet is used as the counter electrode, placed in the electrolyte, and anodized at a constant voltage to obtain a composite metal foil with an oxide layer on the surface; the composite metal foil is subjected to ultrasonic treatment, removing the oxide layer to obtain anode metal foil;
所述负极金属箔的至少一侧表面具有多个凹陷结构,多个所述凹陷结构呈阵列分布。At least one side surface of the negative electrode metal foil has a plurality of recessed structures, and the plurality of recessed structures are distributed in an array.
在一种实施方式中,所述金属箔基体包括钛箔、铝箔、铜箔、镍箔和铁箔中的至少一种。In one embodiment, the metal foil base includes at least one of titanium foil, aluminum foil, copper foil, nickel foil and iron foil.
在一种实施方式中,所述金属箔基体预先经过超声洗涤处理;所述超声洗涤处理采用的洗涤剂包括丙酮和乙醇。In one embodiment, the metal foil substrate has been subjected to ultrasonic cleaning treatment in advance; the detergent used in the ultrasonic cleaning treatment includes acetone and ethanol.
在一种实施方式中,所述金属箔基体的厚度为6~200μm。In one embodiment, the metal foil substrate has a thickness of 6-200 μm.
在一种实施方式中,所述电解液包括氟化铵、乙二醇和水;所述电解液中,氟化铵的质量分数为0.05%~0.8%,乙二醇的质量分数为0.5%~5%。In one embodiment, the electrolyte includes ammonium fluoride, ethylene glycol and water; in the electrolyte, the mass fraction of ammonium fluoride is 0.05% to 0.8%, and the mass fraction of ethylene glycol is 0.5% to 5%.
在一种实施方式中,所述恒定电压的范围为30~120V。In one embodiment, the range of the constant voltage is 30-120V.
在一种实施方式中,所述超声处理的功率为500~5000W,所述超声处理的时间为30~600s。In one embodiment, the power of the ultrasonic treatment is 500-5000W, and the time of the ultrasonic treatment is 30-600s.
在一种实施方式中,所述凹陷结构的形状包括碗状。In one embodiment, the shape of the concave structure includes a bowl shape.
在一种实施方式中,所述凹陷结构的开口直径为50~500nm。In one embodiment, the opening diameter of the recessed structure is 50-500 nm.
在一种实施方式中,所述凹陷结构的深度为25~250nm。In one embodiment, the depth of the recessed structure is 25-250 nm.
在一种实施方式中,所述负极金属箔的单侧表面上,所述凹陷结构的开口总面积占所述负极金属箔的单侧表面积的50%~99.9%。In one embodiment, on the one side surface of the negative electrode metal foil, the total opening area of the concave structure accounts for 50%-99.9% of the one side surface area of the negative electrode metal foil.
如上所述的负极金属箔的制备方法制备得到的负极金属箔。The negative electrode metal foil prepared by the above-mentioned method for preparing the negative electrode metal foil.
一种电池,包括至少一个正极片、至少一个隔膜和至少一个负极金属箔,所述负极金属箔为如上所述的负极金属箔的制备方法制备得到的负极金属箔或者如上所述的负极金属箔;所述正极片和所述负极金属箔交替层叠设置,且相邻的所述正极片和所述负极金属箔之间设置所述隔膜;所述正极片包括正极集流体以及设置于所述正极集流体至少一侧表面的正极材料层。A battery, comprising at least one positive electrode sheet, at least one separator, and at least one negative electrode metal foil, the negative electrode metal foil is the negative electrode metal foil prepared by the above-mentioned method for preparing the negative electrode metal foil or the above-mentioned negative electrode metal foil The positive electrode sheet and the negative electrode metal foil are alternately stacked, and the separator is arranged between the adjacent positive electrode sheet and the negative electrode metal foil; the positive electrode sheet includes a positive electrode current collector and is arranged on the positive electrode A cathode material layer on at least one side surface of the current collector.
在一种实施方式中,在所述正极片、隔膜和负极金属箔的层叠方向上,所述隔膜的投影形成第一区域,所述正极片的投影形成第二区域,所述负极金属箔的投影形成第三区域,所述第三区域在所述第一区域内,所述第二区域在所述第三区域内。In one embodiment, in the lamination direction of the positive electrode sheet, separator and negative electrode metal foil, the projection of the separator forms a first area, the projection of the positive electrode sheet forms a second area, and the projection of the negative electrode metal foil The projection forms a third area, the third area is within the first area, and the second area is within the third area.
在一种实施方式中,所述正极材料层包括正极活性材料;所述正极活性材料包括磷酸亚铁锂、磷酸锰铁锂、锰酸锂、镍酸锂、钴酸锂、三元材料和无钴正极材料中的至少一种。In one embodiment, the positive electrode material layer includes a positive electrode active material; the positive electrode active material includes lithium ferrous phosphate, lithium manganese iron phosphate, lithium manganate, lithium nickelate, lithium cobaltate, ternary materials and At least one of the cobalt cathode materials.
在一种实施方式中,所述隔膜包括PP膜、PE膜和复合隔膜中的至少一种;所述复合隔膜包括PP基膜和/或PE基膜,所述基膜的表面含有陶瓷和PVDF。In one embodiment, the diaphragm includes at least one of a PP film, a PE film, and a composite diaphragm; the composite diaphragm includes a PP base film and/or a PE base film, and the surface of the base film contains ceramics and PVDF .
在一种实施方式中,所述隔膜的厚度为3~50μm。In one embodiment, the thickness of the separator is 3-50 μm.
在一种实施方式中,所述正极集流体的厚度为5~50μm。In one embodiment, the thickness of the positive electrode collector is 5-50 μm.
在一种实施方式中,所述正及材料层的厚度为5~500μm。In one embodiment, the thickness of the positive and material layer is 5-500 μm.
在一种实施方式中,所述正极片、隔膜和负极金属箔均为矩形;所述隔膜的长度比所述负极金属箔的长度大2~10mm,所述隔膜的宽度比所述负极金属箔的宽度大2~10mm;所述负极金属箔的长度比所述正极片的长度大2~10mm,所述负极金属箔的宽度比所述正极片的宽度大2~10mm。In one embodiment, the positive electrode sheet, separator, and negative electrode metal foil are all rectangular; the length of the separator is 2-10 mm longer than the length of the negative electrode metal foil, and the width of the separator is larger than that of the negative electrode metal foil. The width of the negative electrode metal foil is 2-10mm larger; the length of the negative electrode metal foil is 2-10mm larger than the length of the positive electrode sheet, and the width of the negative electrode metal foil is 2-10mm larger than the width of the positive electrode sheet.
与现有技术相比,本发明的有益效果为:Compared with prior art, the beneficial effect of the present invention is:
(1)本发明通过阳极氧化和超声处理,在金属箔基体的表面制备出具有均匀化电场功能的纳米凹陷结构阵列,以此均匀化锂沉积的电场来改善本身就具有高能量密度的无负极锂离子电池的循环稳定性,发展兼具高比能和长循环的无负极锂离子电池。(1) The present invention prepares a nano-recessed structure array with a homogenizing electric field function on the surface of the metal foil substrate through anodic oxidation and ultrasonic treatment, so as to homogenize the electric field of lithium deposition to improve the non-negative electrode with high energy density The cycle stability of lithium-ion batteries, the development of anode-free lithium-ion batteries with both high specific energy and long cycle.
(2)本发明的方法得到的负极金属箔,其表面具有尺寸均一、规律性的纳米凹陷结构阵列,形成更加均匀的电场,有利于锂离子的均匀沉积-剥离,每个凹陷结构都相当于一个锂离子的铆钉,诱导锂离子的均匀成核,从而诱导后续锂离子的均匀生长,以提高锂离子电池的循环稳定性。(2) The negative electrode metal foil obtained by the method of the present invention has a uniform and regular nano-depression structure array on its surface, forming a more uniform electric field, which is conducive to the uniform deposition-stripping of lithium ions, and each depression structure is equivalent to A lithium-ion rivet induces the uniform nucleation of lithium ions, thereby inducing the uniform growth of subsequent lithium ions to improve the cycle stability of lithium-ion batteries.
(3)本发明的电池,以负极金属箔作为负极片,带有凹陷结构的金属负极箔具有更多的预留空间用于存储锂金属,进而降低电池整体的重量,提高电池整体的比能量密度;本发明的电池具有更加优异的容量保持率。(3) In the battery of the present invention, the negative electrode metal foil is used as the negative electrode sheet, and the metal negative electrode foil with a concave structure has more reserved space for storing lithium metal, thereby reducing the weight of the battery as a whole and improving the specific energy of the battery as a whole Density; the battery of the present invention has a more excellent capacity retention rate.
附图说明Description of drawings
为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the specific implementation of the present invention or the technical solutions in the prior art, the following will briefly introduce the accompanying drawings that need to be used in the specific implementation or description of the prior art. Obviously, the accompanying drawings in the following description The drawings show some implementations of the present invention, and those skilled in the art can obtain other drawings based on these drawings without any creative effort.
图1为本发明负极金属箔的制备示意图;Fig. 1 is the schematic diagram of the preparation of negative electrode metal foil of the present invention;
图2为本发明实施例1的负极金属箔的带有凹陷结构表面的扫描电镜图;2 is a scanning electron microscope image of a surface with a concave structure of the negative electrode metal foil of Example 1 of the present invention;
图3为本发明负极金属箔的电场模拟图;Fig. 3 is the electric field simulation figure of negative electrode metal foil of the present invention;
图4为本发明锂离子在负极金属箔表面的沉积示意图;4 is a schematic diagram of the deposition of lithium ions of the present invention on the surface of the negative electrode metal foil;
图5为本发明单层结构的锂离子电池的结构示意图;Fig. 5 is the structural representation of the lithium ion battery of monolayer structure of the present invention;
图6为本发明多层结构的锂离子电池的结构示意图。FIG. 6 is a schematic structural view of a lithium-ion battery with a multilayer structure according to the present invention.
附图标记:Reference signs:
1-负极金属箔、101-凹陷结构、2-隔膜、3-正极集流体、4-正极材料层。1-negative electrode metal foil, 101-recessed structure, 2-diaphragm, 3-positive electrode current collector, 4-positive electrode material layer.
具体实施方式Detailed ways
下面将结合实施例对本发明的实施方案进行详细描述,但是本领域技术人员将会理解,下列实施例仅用于说明本发明,而不应视为限制本发明的范围。实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市购获得的常规产品。Embodiments of the present invention will be described in detail below in conjunction with examples, but those skilled in the art will understand that the following examples are only for illustrating the present invention, and should not be regarded as limiting the scope of the present invention. Those who do not indicate the specific conditions in the examples are carried out according to the conventional conditions or the conditions suggested by the manufacturer. The reagents or instruments used were not indicated by the manufacturer, and they were all commercially available conventional products.
根据本发明的一个方面,本发明涉及一种负极金属箔的制备方法,包括以下步骤:According to one aspect of the present invention, the present invention relates to a preparation method of negative electrode metal foil, comprising the following steps:
将金属箔基体作为工作电极,石墨或者铂片作为对电极,置于电解液中,在恒定电压下进行阳极氧化,得到表面具有氧化层的复合金属箔;将所述复合金属箔进行超声处理,去除所述氧化层,得到负极金属箔;The metal foil substrate is used as the working electrode, graphite or platinum sheet is used as the counter electrode, placed in the electrolyte, and anodized at a constant voltage to obtain a composite metal foil with an oxide layer on the surface; the composite metal foil is subjected to ultrasonic treatment, removing the oxide layer to obtain anode metal foil;
所述负极金属箔的至少一侧表面具有多个凹陷结构,多个所述凹陷结构呈阵列分布。At least one side surface of the negative electrode metal foil has a plurality of recessed structures, and the plurality of recessed structures are distributed in an array.
本发明通过上述方法在金属箔基体上制备出具有均匀化电场功能的纳米凹陷结构阵列,以此均匀化锂沉积的电场,进而改善本身就具有高能量密度的无负极锂离子电池的循环稳定性,发展兼具高比能和长循环的无负极锂离子电池。The present invention prepares a nano-recessed structure array with the function of homogenizing the electric field on the metal foil substrate by the above method, so as to homogenize the electric field of lithium deposition, thereby improving the cycle stability of the negative electrode lithium-ion battery which itself has high energy density , to develop anode-free lithium-ion batteries with high specific energy and long cycle.
在一种实施方式中,所述金属箔材包括钛箔、铝箔、铜箔、镍箔和铁箔中的至少一种。In one embodiment, the metal foil includes at least one of titanium foil, aluminum foil, copper foil, nickel foil and iron foil.
在一种实施方式中,所述金属箔基体预先经过超声洗涤处理;所述超声洗涤处理采用的洗涤剂包括丙酮和乙醇。在一种实施方式中,采用丙酮和乙醇各洗涤2~4次,以去除金属箔基体表面的杂质。In one embodiment, the metal foil substrate has been subjected to ultrasonic cleaning treatment in advance; the detergent used in the ultrasonic cleaning treatment includes acetone and ethanol. In one embodiment, acetone and ethanol are used to wash 2 to 4 times respectively, so as to remove impurities on the surface of the metal foil substrate.
在一种实施方式中,所述金属箔基体的厚度为6~200μm,例如10μm、20μm、30μm、50μm、100μm等。In one embodiment, the metal foil substrate has a thickness of 6-200 μm, such as 10 μm, 20 μm, 30 μm, 50 μm, 100 μm and the like.
在一种实施方式中,所述电解液包括氟化铵、乙二醇和水;所述电解液中,氟化铵的质量分数为0.05%~0.8%,例如0.05%、0.1%、0.2%、0.3%、0.4%、0.5%、0.8%等,乙二醇的质量分数为0.5%~5%,例如0.5%、1%、2%、3%、4%、5%等。In one embodiment, the electrolyte includes ammonium fluoride, ethylene glycol and water; in the electrolyte, the mass fraction of ammonium fluoride is 0.05% to 0.8%, such as 0.05%, 0.1%, 0.2%, 0.3%, 0.4%, 0.5%, 0.8%, etc., the mass fraction of ethylene glycol is 0.5%-5%, such as 0.5%, 1%, 2%, 3%, 4%, 5%, etc.
在一种实施方式中,所述恒定电压的范围为30~120V,例如30V、50V、60V、70V、90V、100V、120V等。In one embodiment, the range of the constant voltage is 30-120V, such as 30V, 50V, 60V, 70V, 90V, 100V, 120V and so on.
在一种实施方式中,本发明通过调节电解液的浓度和恒定电压的大小,进而可调节凹陷结构的碗状直径及深度。In one embodiment, the present invention can adjust the diameter and depth of the bowl shape of the concave structure by adjusting the concentration of the electrolyte and the magnitude of the constant voltage.
在一种实施方式中,所述超声处理的功率为500~5000W,例如500W、1000W、1500W、2000W、2500W、3000W、4000W、5000W等。所述超声处理的时间为30~600s,例如30s、50s、60s、100s、200s、300s、500s、600s等。本发明采用超声处理可有效去除氧化层,形成碗状的凹陷结构。In one embodiment, the power of the ultrasonic treatment is 500-5000W, such as 500W, 1000W, 1500W, 2000W, 2500W, 3000W, 4000W, 5000W, etc. The time of the ultrasonic treatment is 30-600s, such as 30s, 50s, 60s, 100s, 200s, 300s, 500s, 600s and so on. The invention adopts ultrasonic treatment to effectively remove the oxide layer and form a bowl-shaped concave structure.
在一种实施方式中,所述凹陷结构包括碗状。In one embodiment, the recessed structure comprises a bowl shape.
在一种实施方式中,所述凹陷结构的开口直径为50~500nm,例如50nm、100nm、150nm、200nm、300nm、350nm、400nm、500nm等。In one embodiment, the opening diameter of the recessed structure is 50-500 nm, such as 50 nm, 100 nm, 150 nm, 200 nm, 300 nm, 350 nm, 400 nm, 500 nm and so on.
在一种实施方式中,所述凹陷结构的深度为25~250nm,例如25nm、30nm、50nm、100nm、150nm、200nm、250nm等;In one embodiment, the depth of the recessed structure is 25-250nm, such as 25nm, 30nm, 50nm, 100nm, 150nm, 200nm, 250nm, etc.;
在一种实施方式中,所述负极金属箔的单侧表面上,所述凹陷结构的开口总面积占所述负极金属箔的单侧表面积的50%~99.9%,例如50%、55%、60%、65%、70%、75%、80%、85%、90%、95%等。In one embodiment, on the surface of one side of the negative electrode metal foil, the total area of the openings of the recessed structure accounts for 50% to 99.9% of the surface area of one side of the negative electrode metal foil, such as 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, etc.
根据本发明的另一个方面,本发明还涉及如上所述的负极金属箔的制备方法制备得到的负极金属箔。According to another aspect of the present invention, the present invention also relates to the negative electrode metal foil prepared by the above-mentioned method for preparing the negative electrode metal foil.
根据本发明的另一个方面,本发明还涉及一种电池,包括至少一个正极片、至少一个隔膜和至少一个负极金属箔,所述负极金属箔为所述的负极金属箔的制备方法制备得到的负极金属箔或者所述的负极金属箔;所述正极片和所述负极金属箔交替层叠设置,且相邻的所述正极片和所述负极金属箔之间设置所述隔膜;According to another aspect of the present invention, the present invention also relates to a battery, comprising at least one positive electrode sheet, at least one separator and at least one negative electrode metal foil, the negative electrode metal foil is prepared by the method for preparing the negative electrode metal foil Negative electrode metal foil or the negative electrode metal foil; the positive electrode sheets and the negative electrode metal foils are alternately stacked, and the separator is arranged between the adjacent positive electrode sheets and the negative electrode metal foils;
所述正极片包括正极集流体以及设置于所述正极集流体至少一侧表面的正极材料层。The positive electrode sheet includes a positive electrode current collector and a positive electrode material layer disposed on at least one side surface of the positive electrode current collector.
本发明的电池中含有上述负极金属箔,每个纳米凹陷结构都相当于一个锂离子的铆钉,诱导锂离子的均匀成核,从而诱导后续锂离子的均匀生长,提高锂离子电池的循环稳定性;相比于无纳米凹陷结构的金属负极,本发明的负极金属箔具有更多的预留空间用于存储锂金属,进而降低电池整体的重量,提高电池的能量密度。The battery of the present invention contains the above-mentioned negative electrode metal foil, and each nano-depressed structure is equivalent to a rivet of a lithium ion, which induces the uniform nucleation of lithium ions, thereby inducing the uniform growth of subsequent lithium ions, and improving the cycle stability of the lithium-ion battery ; Compared with the metal negative electrode without nano-depression structure, the negative electrode metal foil of the present invention has more reserved space for storing lithium metal, thereby reducing the overall weight of the battery and increasing the energy density of the battery.
在一种实施方式中,本发明的电池包括锂离子电池、钠离子电池、钾离子电池、锌离子电池、镁离子电池、钙离子电池、液态金属电池等碱金属离子电池。In one embodiment, the battery of the present invention includes an alkali metal ion battery such as a lithium ion battery, a sodium ion battery, a potassium ion battery, a zinc ion battery, a magnesium ion battery, a calcium ion battery, or a liquid metal battery.
在一种实施方式中,本发明电池的组装方式包括叠片和卷绕等。电池的形状包括软包、方壳和圆柱等。In one embodiment, the assembling method of the battery of the present invention includes lamination, winding and the like. The shapes of batteries include soft packs, square shells, and cylinders.
在一种实施方式中,电池中的正极片、隔膜和负极金属箔分别为一个,如图5所示,依次包括负极金属箔、隔膜、正极材料层和正极集流体,负极金属箔的带有凹陷结构的一面与所述隔膜相连。In one embodiment, the positive electrode sheet, the separator and the negative electrode metal foil in the battery are respectively one, as shown in FIG. One side of the concave structure is connected with the diaphragm.
在一种实施方式中,电池中的正极片、隔膜和负极金属箔的个数分别为多个,如图6所示,此时,所述正极片的双面均设置有正极材料层。In one embodiment, there are multiple positive electrode sheets, separators and negative electrode metal foils in the battery, as shown in FIG. 6 , at this time, positive electrode material layers are provided on both sides of the positive electrode sheet.
在一种实施方式中,在所述正极片、隔膜和负极金属箔的层叠方向上,所述隔膜的投影形成第一区域,所述正极片的投影形成第二区域,所述负极金属箔的投影形成第三区域,所述第三区域在所述第一区域内,所述第二区域在所述第三区域内。即隔膜的面积大于负极金属箔的面积,负极金属箔的面积大于正极片的面积。在一种实施方式中,任意正极片、隔膜和负极金属箔的中心点位于同一条直线上。In one embodiment, in the lamination direction of the positive electrode sheet, separator and negative electrode metal foil, the projection of the separator forms a first area, the projection of the positive electrode sheet forms a second area, and the projection of the negative electrode metal foil The projection forms a third area, the third area is within the first area, and the second area is within the third area. That is, the area of the diaphragm is larger than the area of the metal foil of the negative electrode, and the area of the metal foil of the negative electrode is larger than that of the positive electrode sheet. In one embodiment, the center points of any positive electrode sheet, separator and negative electrode metal foil are located on the same straight line.
在一种实施方式中,所述正极材料层包括正极活性材料;所述正极活性材料包括磷酸亚铁锂、磷酸锰铁锂、锰酸锂、镍酸锂、钴酸锂、三元材料和无钴正极材料中的至少一种。在一种实施方式中,所述正及材料层的厚度为5~500μm,例如5μm、10μm、20μm、25μm、30μm、50μm、70μm、100μm、150μm、200μm、300μm、400μm、450μm或500μm等。In one embodiment, the positive electrode material layer includes a positive electrode active material; the positive electrode active material includes lithium ferrous phosphate, lithium manganese iron phosphate, lithium manganate, lithium nickelate, lithium cobaltate, ternary materials and At least one of the cobalt cathode materials. In one embodiment, the positive and material layer has a thickness of 5-500 μm, such as 5 μm, 10 μm, 20 μm, 25 μm, 30 μm, 50 μm, 70 μm, 100 μm, 150 μm, 200 μm, 300 μm, 400 μm, 450 μm or 500 μm.
在一种实施方式中,所述正极集流体包括铝箔。所述正极集流体的厚度为5~50μm;In one embodiment, the positive electrode current collector includes aluminum foil. The thickness of the positive current collector is 5-50 μm;
在一种实施方式中,所述隔膜包括PP膜、PE膜和复合隔膜中的至少一种;所述复合隔膜包括PP基膜和/或PE基膜,所述基膜的表面含有陶瓷和聚偏氟乙烯(PVDF)。在一种实施方式中,所述隔膜的厚度为3~50μm(例如3μm、5μm、10μm、20μm、30μm、40μm、50μm等)。In one embodiment, the diaphragm includes at least one of PP film, PE film and composite diaphragm; the composite diaphragm includes PP base film and/or PE base film, and the surface of the base film contains ceramic and poly Vinylidene fluoride (PVDF). In one embodiment, the separator has a thickness of 3-50 μm (eg, 3 μm, 5 μm, 10 μm, 20 μm, 30 μm, 40 μm, 50 μm, etc.).
在一种实施方式中,所述正极片、隔膜和负极金属箔均为矩形;所述隔膜的长度比所述负极金属箔的长度大2~10mm(例如2mm、4mm、6mm、8mm、10mm等)所述隔膜的宽度比所述负极金属箔的宽度大2~10mm(例如2mm、4mm、6mm、8mm、10mm等);所述负极金属箔的长度比所述正极片的长度大2~10mm(例如2mm、4mm、6mm、8mm、10mm等),所述负极金属箔的宽度比所述正极片的宽度大2~10mm(例如2mm、4mm、6mm、8mm、10mm等)。本发明上述结构更有利于保证电池具有优异的电化学性能。In one embodiment, the positive electrode sheet, the separator and the negative electrode metal foil are all rectangular; the length of the separator is 2 to 10 mm longer than the length of the negative electrode metal foil (such as 2 mm, 4 mm, 6 mm, 8 mm, 10 mm, etc. ) The width of the separator is 2-10mm larger than the width of the negative electrode metal foil (such as 2mm, 4mm, 6mm, 8mm, 10mm, etc.); the length of the negative electrode metal foil is 2-10mm larger than the length of the positive electrode sheet (such as 2mm, 4mm, 6mm, 8mm, 10mm, etc.), the width of the negative electrode metal foil is 2-10mm larger than the width of the positive electrode sheet (such as 2mm, 4mm, 6mm, 8mm, 10mm, etc.). The above-mentioned structure of the present invention is more conducive to ensuring that the battery has excellent electrochemical performance.
在一种实施方式中,电池中还包括电解液;电解液是含有锂盐和添加剂的有机溶剂电解液,所述锂盐为LiPF6、LiTFSI和LiFSI中的一种或几种,所述有机溶剂为EC、EMC、DMC、DEC、DOL、FEC和DME中的一种或几种混合物,所述添加剂为LiNO3、KNO3和KPF6中的一种或几种。In one embodiment, the battery also includes an electrolyte; the electrolyte is an organic solvent electrolyte containing lithium salts and additives, the lithium salt is one or more of LiPF 6 , LiTFSI and LiFSI, and the organic The solvent is one or more mixtures of EC, EMC, DMC, DEC, DOL, FEC and DME, and the additive is one or more of LiNO 3 , KNO 3 and KPF 6 .
在一种实施方式中,所述电池还包括正极耳和负极耳。In one embodiment, the battery further includes a positive tab and a negative tab.
下面结合具体的实施例、对比例、附图进一步解释说明。Further explanation will be given below in conjunction with specific embodiments, comparative examples and accompanying drawings.
本发明实施例1~3中的负极金属箔的制备示意图如图1所示。The schematic diagram of the preparation of the negative electrode metal foil in Examples 1-3 of the present invention is shown in FIG. 1 .
实施例1Example 1
一种负极金属箔1的制备方法,包括以下步骤:A method for preparing negative electrode metal foil 1, comprising the following steps:
(a)将金属箔基体预先经过超声洗涤处理;所述超声洗涤处理采用的洗涤剂包括丙酮和乙醇,分别处理三次;(a) The metal foil substrate is subjected to ultrasonic cleaning treatment in advance; the detergent used in the ultrasonic cleaning treatment includes acetone and ethanol, which are treated three times respectively;
(b)将洗涤后的金属箔基体作为工作电极,石墨作为对电极,置于电解液中,在恒定电压下进行阳极氧化,得到表面具有氧化层的复合金属箔;将所述复合金属箔进行超声处理,去除所述氧化层,得到负极金属箔1;所述负极金属箔1的表面具有多个呈碗状的凹陷结构101,多个所述凹陷结构101呈阵列分布;(b) the metal foil matrix after washing is used as the working electrode, and the graphite is used as the counter electrode, placed in the electrolyte, and anodized at a constant voltage to obtain a composite metal foil with an oxide layer on the surface; Ultrasonic treatment to remove the oxide layer to obtain a negative electrode metal foil 1; the surface of the negative electrode metal foil 1 has a plurality of bowl-shaped recessed structures 101, and the plurality of recessed structures 101 are distributed in an array;
所述金属箔基体为钛箔;The metal foil substrate is titanium foil;
所述电解液包括氟化铵、乙二醇和水;所述电解液中,氟化铵的质量分数为0.4%,乙二醇的质量分数为2.5%;The electrolyte includes ammonium fluoride, ethylene glycol and water; in the electrolyte, the mass fraction of ammonium fluoride is 0.4%, and the mass fraction of ethylene glycol is 2.5%;
所述恒定电压为75V;The constant voltage is 75V;
所述超声处理的功率为3000W,所述超声处理的时间为300s;The power of the ultrasonic treatment is 3000W, and the time of the ultrasonic treatment is 300s;
所述凹陷结构101的开口直径为250nm;The opening diameter of the recessed structure 101 is 250nm;
所述凹陷结构101的深度为125nm;The depth of the recessed structure 101 is 125nm;
所述负极金属箔1的单侧表面上,所述凹陷结构101的开口总面积占所述负极金属箔1的单侧表面积的80%。On one side surface of the negative electrode metal foil 1 , the total opening area of the recessed structure 101 accounts for 80% of the one side surface area of the negative electrode metal foil 1 .
本实施例的负极金属箔1的带有凹陷结构101表面的扫描电镜图如图2所示。The scanning electron microscope image of the surface of the negative electrode metal foil 1 with the concave structure 101 in this embodiment is shown in FIG. 2 .
实施例2Example 2
一种负极金属箔1的制备方法,包括以下步骤:A method for preparing negative electrode metal foil 1, comprising the following steps:
(a)将金属箔基体预先经过超声洗涤处理;所述超声洗涤处理采用的洗涤剂包括丙酮和乙醇,分别处理三次;(a) The metal foil substrate is subjected to ultrasonic cleaning treatment in advance; the detergent used in the ultrasonic cleaning treatment includes acetone and ethanol, which are treated three times respectively;
(b)将洗涤后的金属箔基体作为工作电极,石墨作为对电极,置于电解液中,在恒定压力下进行阳极氧化,得到表面具有氧化层的复合金属箔;将所述复合金属箔进行超声处理,去除所述氧化层,得到负极金属箔1;所述负极金属箔1的表面具有多个呈碗状的凹陷结构101,多个所述凹陷结构101呈阵列分布;(b) the metal foil substrate after washing is used as the working electrode, and the graphite is used as the counter electrode, placed in the electrolyte, and anodized under constant pressure to obtain a composite metal foil with an oxide layer on the surface; Ultrasonic treatment to remove the oxide layer to obtain a negative electrode metal foil 1; the surface of the negative electrode metal foil 1 has a plurality of bowl-shaped recessed structures 101, and the plurality of recessed structures 101 are distributed in an array;
所述金属箔基体为钛箔;The metal foil substrate is titanium foil;
所述电解液包括氟化铵、乙二醇和水;所述电解液中,氟化铵的质量分数为0.05%,乙二醇的质量分数为0.5%;The electrolyte includes ammonium fluoride, ethylene glycol and water; in the electrolyte, the mass fraction of ammonium fluoride is 0.05%, and the mass fraction of ethylene glycol is 0.5%;
所述恒定压力为30V;The constant pressure is 30V;
所述超声处理的功率为500W,所述超声处理的时间为30s;The power of the ultrasonic treatment is 500W, and the time of the ultrasonic treatment is 30s;
所述凹陷结构101的开口直径为50nm;The opening diameter of the recessed structure 101 is 50nm;
所述凹陷结构101的深度为50nm;The depth of the recessed structure 101 is 50nm;
所述负极金属箔1的单侧表面上,所述凹陷结构101的开口总面积占所述负极金属箔1的单侧表面积的50%。On one side surface of the negative electrode metal foil 1 , the total opening area of the recessed structure 101 accounts for 50% of the one side surface area of the negative electrode metal foil 1 .
实施例3Example 3
一种负极金属箔1的制备方法,包括以下步骤:A method for preparing negative electrode metal foil 1, comprising the following steps:
(a)将金属箔基体预先经过超声洗涤处理;所述超声洗涤处理采用的洗涤剂包括丙酮和乙醇,分别处理三次;(a) The metal foil substrate is subjected to ultrasonic cleaning treatment in advance; the detergent used in the ultrasonic cleaning treatment includes acetone and ethanol, which are treated three times respectively;
(b)将洗涤后的金属箔基体作为工作电极,石墨作为对电极,置于电解液中,在恒定压力下进行阳极氧化,得到表面具有氧化层的复合金属箔;将所述复合金属箔进行超声处理,去除所述氧化层,得到负极金属箔1;所述负极金属箔1的表面具有多个呈碗状的凹陷结构101,多个所述凹陷结构101呈阵列分布;(b) the metal foil substrate after washing is used as the working electrode, and the graphite is used as the counter electrode, placed in the electrolyte, and anodized under constant pressure to obtain a composite metal foil with an oxide layer on the surface; Ultrasonic treatment to remove the oxide layer to obtain a negative electrode metal foil 1; the surface of the negative electrode metal foil 1 has a plurality of bowl-shaped recessed structures 101, and the plurality of recessed structures 101 are distributed in an array;
所述金属箔基体为钛箔;The metal foil substrate is titanium foil;
所述电解液包括氟化铵、乙二醇和水;所述电解液中,氟化铵的质量分数为0.8%,乙二醇的质量分数为5%;The electrolyte includes ammonium fluoride, ethylene glycol and water; in the electrolyte, the mass fraction of ammonium fluoride is 0.8%, and the mass fraction of ethylene glycol is 5%;
所述恒定压力为120V;The constant pressure is 120V;
所述超声处理的功率为5000W,所述超声处理的时间为600s;The power of the ultrasonic treatment is 5000W, and the time of the ultrasonic treatment is 600s;
所述凹陷结构101的开口直径为500nm;The opening diameter of the recessed structure 101 is 500nm;
所述凹陷结构101的深度为250nm;The depth of the recessed structure 101 is 250nm;
所述负极金属箔1的单侧表面上,所述凹陷结构101的开口总面积占所述负极金属箔1的单侧表面积的99%。On one side surface of the negative electrode metal foil 1 , the total opening area of the recessed structure 101 accounts for 99% of the one side surface area of the negative electrode metal foil 1 .
实施例4Example 4
一种锂离子电池,为3Ah,包括正极片、隔膜2、实施例1中的负极金属箔1和电解液;所述正极片和所述负极金属箔1交替层叠设置,且相邻的所述正极片和所述负极金属箔1之间设置所述隔膜2;所述正极片包括正极集流体3以及设置于所述正极集表面的正极材料层4;A kind of lithium ion battery, is 3Ah, comprises positive electrode sheet, diaphragm 2, negative electrode metal foil 1 and electrolyte solution in embodiment 1; Described positive electrode sheet and described negative electrode metal foil 1 are stacked alternately and arranged, and adjacent described The separator 2 is arranged between the positive electrode sheet and the negative electrode metal foil 1; the positive electrode sheet includes a positive electrode current collector 3 and a positive electrode material layer 4 arranged on the surface of the positive electrode collector;
在所述正极片、隔膜2和负极金属箔1的层叠方向上,所述隔膜2的投影形成第一区域,所述正极片的投影形成第二区域,所述负极金属箔1的投影形成第三区域,所述第三区域位于所述第一区域内的正中央,所述第二区域位于所述第三区域的正中央;所述正极片、隔膜2和负极金属箔1均为矩形,所述隔膜2的长度比所述负极金属箔1的长度大6mm,所述隔膜2的宽度比所述负极金属箔1的宽度大6mm;所述负极金属箔1的长度比所述正极片的长度大6mm,所述负极金属箔1的宽度比所述正极片的宽度大6mm。In the stacking direction of the positive electrode sheet, separator 2 and negative electrode metal foil 1, the projection of the separator 2 forms a first area, the projection of the positive electrode sheet forms a second area, and the projection of the negative electrode metal foil 1 forms a second area. Three areas, the third area is located in the center of the first area, the second area is located in the center of the third area; the positive electrode sheet, separator 2 and negative electrode metal foil 1 are all rectangular, The length of the separator 2 is 6 mm larger than the length of the negative metal foil 1, and the width of the separator 2 is 6 mm larger than the width of the negative metal foil 1; the length of the negative metal foil 1 is longer than that of the positive sheet. The length is 6 mm larger, and the width of the negative electrode metal foil 1 is 6 mm larger than the width of the positive electrode sheet.
所述正极材料层4包括正极活性材料NCM811、导电炭黑(SP):碳纳米管(CNT):聚偏氟乙烯(PVDF),NCM811、SP、CNT和PVDF的质量比为96.5:0.5:1:2;The positive electrode material layer 4 includes positive electrode active material NCM811, conductive carbon black (SP): carbon nanotube (CNT): polyvinylidene fluoride (PVDF), and the mass ratio of NCM811, SP, CNT and PVDF is 96.5:0.5:1 :2;
所述正极集流体3为铝箔;The positive current collector 3 is aluminum foil;
所述隔膜2为PP膜;The diaphragm 2 is a PP film;
电解液选用含有LiPF6的碳酸酯基电解液。The electrolyte is a carbonate-based electrolyte containing LiPF6.
实施例5Example 5
一种锂离子电池,除电池为5Ah,其他条件同实施例4。A kind of lithium ion battery, except that battery is 5Ah, other conditions are the same as embodiment 4.
实施例6Example 6
一种锂离子电池,除电池为7Ah,其他条件同实施例4。A lithium ion battery, except that the battery is 7Ah, other conditions are the same as in embodiment 4.
实施例7Example 7
一种锂离子电池,除采用实施例2中的负极金属箔1,其他条件同实施例6。A lithium ion battery, except that the negative electrode metal foil 1 in embodiment 2 is used, other conditions are the same as embodiment 6.
实施例8Example 8
一种锂离子电池,除采用实施例3中的负极金属箔1,其他条件同实施例6。A lithium ion battery, except that the negative electrode metal foil 1 in embodiment 3 is used, other conditions are the same as in embodiment 6.
对比例1Comparative example 1
一种锂离子电池,除负极金属箔为未经表面处理的光钛箔,其他条件同实施例4。A lithium ion battery, except that the negative electrode metal foil is a light titanium foil without surface treatment, and other conditions are the same as in Example 4.
对比例2Comparative example 2
一种锂离子电池,除负极金属箔为未经表面处理的光钛箔,其他条件同实施例5。A lithium ion battery, except that the negative electrode metal foil is a light titanium foil without surface treatment, and other conditions are the same as in Example 5.
对比例3Comparative example 3
一种锂离子电池,除负极金属箔为未经表面处理的光钛箔,其他条件同实施例6。A lithium ion battery, except that the negative electrode metal foil is a light titanium foil without surface treatment, and other conditions are the same as in Example 6.
实验例Experimental example
一、本发明以实施例1的负极金属箔的凹陷尺寸作为参数,利用Ansys软件进行电场模拟。由于纳米碗是中心对称的,采用二维有限元分析对其进行定量模拟,得到金属箔表面的电势分布图,如图3所示,凹陷结构底部的电势小于其顶部开口边缘的电势,更有利于锂的均匀沉积。基于较低的电位对锂离子的沉积具有较强的诱导力,绘制锂离子在负极金属箔带有凹陷结构的表面上的沉积示意图,如图4所示,纳米阵列中,每个纳米结构都相当于一个锂离子的铆钉,诱导锂离子的均匀成核,从而诱导后续锂离子的均匀生长,提高锂离子电池的循环稳定性。1. The present invention takes the concave size of the negative electrode metal foil in Example 1 as a parameter, and uses Ansys software to perform electric field simulation. Since the nanobowl is centrally symmetric, two-dimensional finite element analysis is used to conduct quantitative simulations on it, and the potential distribution diagram on the surface of the metal foil is obtained. As shown in Figure 3, the potential at the bottom of the concave structure is smaller than the potential at the edge of the top opening, and more Conducive to the uniform deposition of lithium. Based on the lower potential has a strong inductive force for the deposition of lithium ions, draw a schematic diagram of the deposition of lithium ions on the surface of the negative electrode metal foil with a concave structure, as shown in Figure 4, in the nano-array, each nano-structure It is equivalent to a lithium ion rivet, which induces the uniform nucleation of lithium ions, thereby inducing the uniform growth of subsequent lithium ions, and improving the cycle stability of lithium ion batteries.
二、将实施例4~8及对比例1~3的电池进行性能测试,在相同的循环条件下循环500次后观察各电池的容量保持率,结果如表1所示。2. Perform performance tests on the batteries of Examples 4-8 and Comparative Examples 1-3, and observe the capacity retention rate of each battery after 500 cycles under the same cycle conditions. The results are shown in Table 1.
表1容量保持率测试结果Table 1 Capacity retention test results
由表1可知,本发明通过特定方法得到的带有特定凹陷结构阵列的负极金属箔制备的电池,具有更高的容量保持率。对比例1~3采用不经过表面处理的光钛箔作为负极,得到的电池的容量保持率均低于本发明采用特定的负极金属箔制备的电池的容量保持率。It can be seen from Table 1 that the battery prepared by the negative electrode metal foil with a specific concave structure array obtained by a specific method in the present invention has a higher capacity retention rate. In Comparative Examples 1 to 3, the bare titanium foil without surface treatment was used as the negative electrode, and the capacity retention rate of the obtained batteries was lower than that of the battery prepared by using the specific negative electrode metal foil of the present invention.
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,但本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。It should be noted that at last: above each embodiment is only in order to illustrate technical scheme of the present invention, and is not intended to limit; Although the present invention has been described in detail with reference to foregoing each embodiment, those of ordinary skill in the art should understand that: It is still possible to modify the technical solutions described in the foregoing embodiments, or perform equivalent replacements for some or all of the technical features; and these modifications or replacements do not make the essence of the corresponding technical solutions deviate from the technical solutions of the various embodiments of the present invention. range.
Claims (10)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310575247.5A CN116598429A (en) | 2023-05-19 | 2023-05-19 | Negative electrode metal foil and its preparation method and battery |
PCT/CN2024/093500 WO2024240035A1 (en) | 2023-05-19 | 2024-05-15 | Negative electrode metal foil and preparation method therefor, and battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310575247.5A CN116598429A (en) | 2023-05-19 | 2023-05-19 | Negative electrode metal foil and its preparation method and battery |
Publications (1)
Publication Number | Publication Date |
---|---|
CN116598429A true CN116598429A (en) | 2023-08-15 |
Family
ID=87595175
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202310575247.5A Pending CN116598429A (en) | 2023-05-19 | 2023-05-19 | Negative electrode metal foil and its preparation method and battery |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN116598429A (en) |
WO (1) | WO2024240035A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024240035A1 (en) * | 2023-05-19 | 2024-11-28 | 蜂巢能源科技股份有限公司 | Negative electrode metal foil and preparation method therefor, and battery |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1780036A (en) * | 2004-11-25 | 2006-05-31 | 韩国电子通信研究院 | Anode for metal lithium polymer secondary battery and preparation method thereof |
JP2011174184A (en) * | 2011-04-08 | 2011-09-08 | Mitsui Mining & Smelting Co Ltd | Porous metal foil and method for producing the same |
US20130185930A1 (en) * | 2005-05-13 | 2013-07-25 | The University Of Tulsa | Nanopatterned substrate serving as both a current collector and template for nanostructured electrode growth |
KR20160091089A (en) * | 2015-01-23 | 2016-08-02 | 한국전기연구원 | a roughened metal surface and the fabrication method |
CN216698431U (en) * | 2022-01-25 | 2022-06-07 | 蜂巢能源科技股份有限公司 | Battery cell pole group and lithium ion battery |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102021630B (en) * | 2011-01-07 | 2011-12-28 | 山东交通学院 | Coaxial heterogeneous ceric dioxide nanotube-titanium dioxide nanotube array thin film |
CN110380044B (en) * | 2019-08-22 | 2021-05-11 | 中南大学 | Preparation method of titanium dioxide/antimony sulfide porous composite negative electrode for lithium ion battery |
WO2023012812A1 (en) * | 2021-08-06 | 2023-02-09 | Tvs Motor Company Limited | Titanium-based anode current collector |
CN114220947B (en) * | 2021-12-09 | 2024-04-02 | 厦门大学 | Lithium metal battery negative electrode, current collector, preparation method of current collector and battery |
CN114284567B (en) * | 2021-12-29 | 2024-05-10 | 中南大学 | Preparation method of high-energy-density cathode-free lithium metal battery |
CN115679418A (en) * | 2022-11-10 | 2023-02-03 | 南京中微电环保科技有限公司 | Preparation method of nano copper film |
CN116598429A (en) * | 2023-05-19 | 2023-08-15 | 蜂巢能源科技股份有限公司 | Negative electrode metal foil and its preparation method and battery |
-
2023
- 2023-05-19 CN CN202310575247.5A patent/CN116598429A/en active Pending
-
2024
- 2024-05-15 WO PCT/CN2024/093500 patent/WO2024240035A1/en unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1780036A (en) * | 2004-11-25 | 2006-05-31 | 韩国电子通信研究院 | Anode for metal lithium polymer secondary battery and preparation method thereof |
US20130185930A1 (en) * | 2005-05-13 | 2013-07-25 | The University Of Tulsa | Nanopatterned substrate serving as both a current collector and template for nanostructured electrode growth |
JP2011174184A (en) * | 2011-04-08 | 2011-09-08 | Mitsui Mining & Smelting Co Ltd | Porous metal foil and method for producing the same |
KR20160091089A (en) * | 2015-01-23 | 2016-08-02 | 한국전기연구원 | a roughened metal surface and the fabrication method |
CN216698431U (en) * | 2022-01-25 | 2022-06-07 | 蜂巢能源科技股份有限公司 | Battery cell pole group and lithium ion battery |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024240035A1 (en) * | 2023-05-19 | 2024-11-28 | 蜂巢能源科技股份有限公司 | Negative electrode metal foil and preparation method therefor, and battery |
Also Published As
Publication number | Publication date |
---|---|
WO2024240035A1 (en) | 2024-11-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108232117A (en) | A kind of lithium metal battery negative material and its preparation method and application | |
CN111668493A (en) | A three-dimensional current collector for suppressing dendrites in lithium metal anode and its application in lithium metal batteries | |
CN113488659B (en) | Negative current collector complex, preparation method thereof and lithium metal battery | |
JP2015149463A (en) | Aluminum etching foil, electrode using aluminum etching foil for current collector, and power storage device using the same | |
CN108950607A (en) | The method that electro-deposition prepares the electrolyte of micrometer level porous copper foil and prepares micrometer level porous copper foil with it | |
CN216054791U (en) | Composite foil, battery pole piece and secondary battery | |
CN106483464B (en) | Sorting method of reusable non-aqueous electrolyte secondary battery | |
CN106848272A (en) | A kind of porous tinfoil paper negative pole and preparation method thereof and sodium ion secondary battery | |
WO2024240035A1 (en) | Negative electrode metal foil and preparation method therefor, and battery | |
CN117012980A (en) | Current collector, electrode plate, battery and electric equipment | |
CN110600285B (en) | A method for pre-insertion of lithium without precipitation of lithium ion electrochemical energy storage device negative electrode | |
CN106450487B (en) | A kind of in-situ preparation method of lithium-sulfur cell structure | |
WO2019210596A1 (en) | Modified current collector effectively suppressing uncontrollable dendrite growth for lithium metal battery, preparation method therefor and use thereof | |
CN110649268B (en) | Negative current collector for lithium battery and lithium battery | |
WO2018119956A1 (en) | Porous aluminum-foil anode and method for preparing same, and lithium secondary battery | |
CN114628635B (en) | Lithium metal battery negative electrode and manufacturing method thereof | |
CN218867198U (en) | Batteries and electrical equipment | |
CN106169616A (en) | A kind of nickel cobalt lithium aluminate large-capacity high-power lithium ion accumulator | |
CN114551803B (en) | Three-dimensional gradient electrode for lithium metal negative electrode and preparation method thereof | |
KR20200107733A (en) | Secondary battery, fuel battery and separator for secondary battery or fuel battery and manufacturing method of separator for secondary battery or fuel battery | |
CN114497435A (en) | A kind of aluminum battery negative electrode and its anodic oxidation preparation method and application | |
JP2016106345A (en) | Nonaqueous electrolyte secondary battery | |
CN108110221A (en) | Preparation method of energy power type lithium ion battery | |
CN111799500A (en) | A high-rate charge-discharge lithium-ion battery | |
CN105355848B (en) | A kind of alminium electrolytic condenser type lithium ion battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |