[go: up one dir, main page]

CN116598333A - 具有多个硅化物层的晶体管 - Google Patents

具有多个硅化物层的晶体管 Download PDF

Info

Publication number
CN116598333A
CN116598333A CN202310073341.0A CN202310073341A CN116598333A CN 116598333 A CN116598333 A CN 116598333A CN 202310073341 A CN202310073341 A CN 202310073341A CN 116598333 A CN116598333 A CN 116598333A
Authority
CN
China
Prior art keywords
silicide layer
layer
width
gate
raised source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310073341.0A
Other languages
English (en)
Inventor
谷曼
余鸿
彭建伟
王海艇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GlobalFoundries US Inc
Original Assignee
GlobalFoundries US Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GlobalFoundries US Inc filed Critical GlobalFoundries US Inc
Publication of CN116598333A publication Critical patent/CN116598333A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/01Manufacture or treatment
    • H10D30/021Manufacture or treatment of FETs having insulated gates [IGFET]
    • H10D30/0212Manufacture or treatment of FETs having insulated gates [IGFET] using self-aligned silicidation
    • H10D30/0213Manufacture or treatment of FETs having insulated gates [IGFET] using self-aligned silicidation providing different silicide thicknesses on gate electrodes and on source regions or drain regions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/60Insulated-gate field-effect transistors [IGFET]
    • H10D30/67Thin-film transistors [TFT]
    • H10D30/674Thin-film transistors [TFT] characterised by the active materials
    • H10D30/6741Group IV materials, e.g. germanium or silicon carbide
    • H10D30/6743Silicon
    • H10D30/6744Monocrystalline silicon
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D86/00Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates
    • H10D86/201Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates the substrates comprising an insulating layer on a semiconductor body, e.g. SOI
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/10Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
    • H10D62/124Shapes, relative sizes or dispositions of the regions of semiconductor bodies or of junctions between the regions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/01Manufacture or treatment
    • H10D30/021Manufacture or treatment of FETs having insulated gates [IGFET]
    • H10D30/0212Manufacture or treatment of FETs having insulated gates [IGFET] using self-aligned silicidation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/01Manufacture or treatment
    • H10D30/021Manufacture or treatment of FETs having insulated gates [IGFET]
    • H10D30/031Manufacture or treatment of FETs having insulated gates [IGFET] of thin-film transistors [TFT]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/60Insulated-gate field-effect transistors [IGFET]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/60Insulated-gate field-effect transistors [IGFET]
    • H10D30/67Thin-film transistors [TFT]
    • H10D30/6729Thin-film transistors [TFT] characterised by the electrodes
    • H10D30/673Thin-film transistors [TFT] characterised by the electrodes characterised by the shapes, relative sizes or dispositions of the gate electrodes
    • H10D30/6735Thin-film transistors [TFT] characterised by the electrodes characterised by the shapes, relative sizes or dispositions of the gate electrodes having gates fully surrounding the channels, e.g. gate-all-around
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/60Insulated-gate field-effect transistors [IGFET]
    • H10D30/67Thin-film transistors [TFT]
    • H10D30/6729Thin-film transistors [TFT] characterised by the electrodes
    • H10D30/6737Thin-film transistors [TFT] characterised by the electrodes characterised by the electrode materials
    • H10D30/6739Conductor-insulator-semiconductor electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/60Insulated-gate field-effect transistors [IGFET]
    • H10D30/67Thin-film transistors [TFT]
    • H10D30/6757Thin-film transistors [TFT] characterised by the structure of the channel, e.g. transverse or longitudinal shape or doping profile
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/10Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
    • H10D62/113Isolations within a component, i.e. internal isolations
    • H10D62/115Dielectric isolations, e.g. air gaps
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D64/00Electrodes of devices having potential barriers
    • H10D64/20Electrodes characterised by their shapes, relative sizes or dispositions 
    • H10D64/23Electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. sources, drains, anodes or cathodes
    • H10D64/251Source or drain electrodes for field-effect devices
    • H10D64/254Source or drain electrodes for field-effect devices for lateral devices wherein the source or drain electrodes extend entirely through the semiconductor bodies, e.g. via-holes for back side contacts
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D64/00Electrodes of devices having potential barriers
    • H10D64/20Electrodes characterised by their shapes, relative sizes or dispositions 
    • H10D64/23Electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. sources, drains, anodes or cathodes
    • H10D64/251Source or drain electrodes for field-effect devices
    • H10D64/257Source or drain electrodes for field-effect devices for lateral devices wherein the source or drain electrodes are characterised by top-view geometrical layouts, e.g. interdigitated, semi-circular, annular or L-shaped electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D64/00Electrodes of devices having potential barriers
    • H10D64/20Electrodes characterised by their shapes, relative sizes or dispositions 
    • H10D64/27Electrodes not carrying the current to be rectified, amplified, oscillated or switched, e.g. gates
    • H10D64/311Gate electrodes for field-effect devices
    • H10D64/411Gate electrodes for field-effect devices for FETs
    • H10D64/511Gate electrodes for field-effect devices for FETs for IGFETs
    • H10D64/512Disposition of the gate electrodes, e.g. buried gates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D84/00Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
    • H10D84/80Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of at least one component covered by groups H10D12/00 or H10D30/00, e.g. integration of IGFETs
    • H10D84/82Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of at least one component covered by groups H10D12/00 or H10D30/00, e.g. integration of IGFETs of only field-effect components
    • H10D84/83Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of at least one component covered by groups H10D12/00 or H10D30/00, e.g. integration of IGFETs of only field-effect components of only insulated-gate FETs [IGFET]
    • H10D84/85Complementary IGFETs, e.g. CMOS
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28026Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor
    • H01L21/28035Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being silicon, e.g. polysilicon, with or without impurities
    • H01L21/28044Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being silicon, e.g. polysilicon, with or without impurities the conductor comprising at least another non-silicon conductive layer
    • H01L21/28052Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being silicon, e.g. polysilicon, with or without impurities the conductor comprising at least another non-silicon conductive layer the conductor comprising a silicide layer formed by the silicidation reaction of silicon with a metal layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
    • H01L21/28518Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table the conductive layers comprising silicides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/76843Barrier, adhesion or liner layers formed in openings in a dielectric
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/76853Barrier, adhesion or liner layers characterized by particular after-treatment steps
    • H01L21/76855After-treatment introducing at least one additional element into the layer
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/60Insulated-gate field-effect transistors [IGFET]
    • H10D30/791Arrangements for exerting mechanical stress on the crystal lattice of the channel regions
    • H10D30/792Arrangements for exerting mechanical stress on the crystal lattice of the channel regions comprising applied insulating layers, e.g. stress liners

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thin Film Transistor (AREA)

Abstract

本公开涉及具有多个硅化物层的晶体管。用于晶体管的结构和形成用于晶体管的结构的方法。该结构包括第一电介质间隔物、第二电介质间隔物以及横向位于第一电介质间隔物和第二电介质间隔物之间的栅极。栅极包括从第一电介质间隔物延伸到第二电介质间隔物的第一硅化物层。该结构还包括位于第一硅化物层内的第二硅化物层以及与第二硅化物层对准的接触。

Description

具有多个硅化物层的晶体管
技术领域
本公开一般地涉及半导体器件和集成电路制造,更具体地涉及用于晶体管的结构和形成用于晶体管的结构的方法。
背景技术
可以采用互补金属氧化物半导体(CMOS)工艺来构建p型和n型场效应晶体管的组合,p型和n型场效应晶体管用作构建例如逻辑单元的器件。场效应晶体管通常包括源极、漏极、在源极和漏极之间提供沟道区的半导体本体以及与半导体本体重叠的栅电极。当超过特征阈值电压的控制电压被施加到栅电极时,在源极和漏极之间的沟道区中发生电荷载流子流动,从而产生器件输出电流。
硅化物可用作场效应晶体管的源极、漏极和栅极上的接触材料。硅化物可以通过金属或金属合金薄膜与所接触的半导体材料之间的热刺激反应形成。在场效应晶体管的传统结构中,在源极、漏极和栅极上形成相同的硅化物材料。
需要改进的用于晶体管的结构和形成用于晶体管的结构的方法。
发明内容
在实施例中,提供了一种用于晶体管的结构。所述结构包括第一电介质间隔物(spacer);第二电介质间隔物;栅极,其横向位于所述第一电介质间隔物和所述第二电介质间隔物之间。所述栅极包括从所述第一电介质间隔物延伸到所述第二电介质间隔物的第一硅化物层。所述结构还包括位于所述第一硅化物层内的第二硅化物层以及与所述第二硅化物层对准的第一接触。
在实施例中,提供了一种用于晶体管的结构。所述结构包括栅极以及邻近所述栅极的凸起的(raised)源极/漏极区。所述凸起的源极/漏极区包括半导体材料。所述结构还包括位于所述凸起的源极/漏极区的所述半导体材料内的硅化物层;以及与所述硅化物层对准的接触。
在实施例中,提供了一种形成用于晶体管的结构的方法。所述方法包括形成横向定位在第一电介质间隔物和第二电介质间隔物之间的栅极。所述栅极包括从所述第一电介质间隔物延伸到所述第二电介质间隔物的第一硅化物层。所述方法还包括在所述第一硅化物层内形成第二硅化物层;以及形成与所述第二硅化物层对准的接触。
附图说明
并入本说明书并构成本说明书的一部分的附图示出了本发明的各种实施例,并与上面给出的本发明的一般描述和下面给出的实施例的详细描述一起用于解释本发明的实施例。
图1-8是根据本发明的实施例的制造方法的连续制造阶段的用于晶体管的结构的截面图。
图9是根据本发明的替代实施例的用于晶体管的结构的截面图。
具体实施方式
参考图1,根据本发明的实施例,可在半导体层12上形成场效应晶体管10。通过用光刻和蚀刻工艺图案化延伸穿过半导体层12的沟槽,沉积电介质材料以填充沟槽,以及平面化电介质材料和/或使电介质材料凹陷,形成浅沟槽隔离区14。浅沟槽隔离区14可以完全穿过半导体层12延伸到电介质层16,并且可以完全围绕场效应晶体管10所在的器件区。浅沟槽隔离区14和电介质层16可以均包含作为电绝缘体的电介质材料,例如二氧化硅。
在实施例中,半导体层12可以是绝缘体上半导体衬底的器件层,绝缘体上半导体衬底还包括提供电介质层的掩埋电介质层16和处理衬底18。在代表性实施例中,半导体层12可以由诸如单晶硅之类的半导体材料构成。在实施例中,半导体层12可以具有约10纳米(nm)至约200nm的范围内的厚度。
场效应晶体管10可以通过前段制程处理形成为半导体层12的有源区中的器件。场效应晶体管10可以包括定位在半导体层12上方的栅极22,以及与栅极22相邻的位于半导体层12的各个部分上的凸起的源极/漏极区24和凸起的源极/漏极区26。栅极22横向定位在凸起的源极/漏极区24和凸起的源极/漏极区26之间。电介质间隔物28、29将凸起的源极/漏极区24和凸起的源极/漏极区26与栅极22分隔开并电绝缘。电介质间隔物28、29可以由诸如低k电介质材料之类的电介质材料构成。
栅极22包括由诸如多晶硅之类的重掺杂半导体材料构成的半导体层21,该重掺杂半导体材料沉积在半导体层12上,然后通过光刻和蚀刻工艺被图案化。可以通过从与栅极22的相对侧壁相邻的半导体层12的相应部分外延生长来形成凸起的源极/漏极区24和凸起的源极/漏极区26。可以在形成栅极22之后外延生长凸起的源极/漏极区24、26。栅极22具有厚度T1和宽度W1,凸起的源极/漏极区24具有厚度T2和宽度W2,并且凸起的源极/漏极区26具有厚度T3和宽度W 3。
凸起的源极/漏极区24、26的半导体材料可以掺杂(例如,重掺杂)有一定浓度的掺杂剂,例如提供n型导电性的n型掺杂剂(例如,磷)。或者,凸起的源极/漏极区24、26的半导体材料可以掺杂(例如,重掺杂)有一定浓度的提供p型导电性的p型掺杂剂(例如,硼)。可以通过来自凸起的源极/漏极区24、26的掺杂剂扩散,在凸起的源极/漏极区24、26下方的半导体层12的部分中形成掺杂区。
如本文所用,术语“源极/漏极区”是指可以用作场效应晶体管的源极或漏极的半导体材料的掺杂区。在实施例中,凸起的源极/漏极区24可以是场效应晶体管10的凸起的源极区,凸起的源极/漏极区26可以是场效晶体管10的凸起的漏极区。在替代实施例中,凸起的源极/漏极区24可以是场效应晶体管10的凸起的漏极区,凸起的源极/漏极区26可以是场效应晶体管10的凸起的源极区。
位于栅极22下方并且横向位于凸起的源极/漏极区24和凸起的源极/漏极区26之间的半导体层12的一部分限定了场效应晶体管10的沟道区。场效应晶体管10可以包括其他元素,诸如定位在栅极22的半导体层21上的由诸如氮化硅之类的电介质材料构成的栅极帽30,以及定位在半导体层21和半导体层12之间的栅极电介质32。
参考图2,其中相同的参考标号表示图1中的相同特征,并且在随后的制造阶段,在场效应晶体管10之上形成电介质层33。电介质层33可以由诸如二氧化硅之类的电介质材料构成,其被沉积并通过化学机械抛光进行平面化以消除形貌。可以通过选择性蚀刻工艺去除在平面化期间可以用作抛光止挡(stop)的栅极帽30,以暴露栅极22的顶表面。如本文所用,涉及材料去除工艺(例如蚀刻)的术语“选择性”表示,通过适当的蚀刻剂选择,目标材料的材料去除速率(即蚀刻速率)大于经受材料去除工艺的至少另一材料的去除速率。电介质间隔物28、29和电介质层33围绕通过去除栅极帽30而打开的栅极22上方的空间。
在去除栅极帽30之后,可以通过化学机械抛光来平面化该结构,以打开栅极22的半导体层21。半导体层21的顶表面可以在平面化期间用作抛光止挡。平面化还缩短电介质间隔物28、29并减薄电介质层33。
参考图3,其中相同的参考标号表示图2中的相同特征,并且在随后的制造阶段,由硅化物形成金属构成的层34作为涂层沉积在栅极22的半导体层21、电介质间隔物28、29以及电介质层33上。层34可以与栅极22的半导体层21直接接触,并且可以随后用于硅化栅极22。在实施例中,层34中包含的硅化物形成金属可以是在镍铂沉积涂层中包括的镍。层34可以通过例如物理气相沉积来沉积。
参考图4,其中相同的参考标号表示图3中的相同特征,并且在随后的制造阶段,硅化物层38由栅极22的半导体层21和与半导体层21直接接触的层34的硅化物形成金属形成。硅化物38可以通过硅化工艺形成,该硅化工艺包括一个或多个退火步骤,通过使沉积层34中的硅化物形成金属与半导体层21发生反应来形成硅化物相。硅化工艺的初始退火步骤消耗硅化物形成金属以形成硅化物层38。在初始退火步骤之后,可通过湿法化学蚀刻去除任何剩余的硅化物形成金属。然后可以在更高的温度下对硅化物层38执行另外的退火步骤以形成更低电阻的硅化物相。
在实施例中,栅极22可以被部分硅化,使得栅极22的上部由硅化物层38构成,栅极21的下部由半导体层21构成。构成栅极22的上部的硅化物层38具有小于栅极22的厚度T1的厚度T3。在实施例中,硅化物层38可以由硅化镍构成。宽度等于栅极22的整个宽度W1的硅化物层38从电介质间隔物28到电介质间隔物29完全横跨栅极22。在硅化物层38的形成期间,电介质层33阻止凸起的源极/漏极区24、26与层34之间接触,因此防止凸起的源极/漏极区24、26的硅化。
可以在硅化物层38上形成由诸如硅之类的半导体材料构成的半导体层36。半导体层36可用于随后的硅化工艺,如下文所述。
参考图5,其中相同的参考标号表示图4中的相同特征,并且在随后的制造阶段,可以回蚀刻电介质层33以暴露出凸起的源极/漏极区24、26。施加应力衬里(stress liner)40,该应力衬里40覆盖场效应晶体管10。应力衬里20可以由诸如氮化硅之类的电介质材料构成,该材料在可以导致电介质材料处于应力下的沉积条件下通过等离子体增强化学气相沉积来沉积。沉积条件可以使应力衬里40包含拉伸应变,该拉伸应变作为拉伸应力传递到凸起的源极/漏极区24、26。或者,沉积条件可以导致应力衬里40包含压缩应变,该压缩应变作为压缩应力传递到凸起的源极/漏极区24、26。
在应力衬里40之上形成电介质层42。电介质层40可以由诸如二氧化硅之类的电介质材料构成,该电介质材料被沉积并通过化学机械抛光进行平面化以消除形貌。
参考图6,其中相同的参考标号表示图5中的相同特征,并且在随后的制造阶段,接触开口44、46、48在电介质层42和应力衬里40中图案化。接触开口44穿过电介质层42和应力衬里40到达凸起的源极/漏极区24的一部分。接触开口46穿过电介质层42和应力衬里40到达凸起的源极/漏极区26的一部分。接触开口48穿过电介质层42和应力衬里40到达位于栅极22的硅化物层38上的半导体层36的一部分。
在接触开口44、46、48内部沉积由硅化物形成金属构成的层50。在接触开口44的底部处露出的区域之上,层50可以与凸起的源极/漏极区24的半导体材料直接接触,在接触开口46的底部处露出的区域之上,层50可以与凸起的源极/漏极区26的半导体材料直接接触,并且在接触开口48的底部处露出的区域之上,层50可以与栅极22上的半导体层36直接接触。在实施例中,层50中包含的硅化物形成金属可以是钛。层50可以通过例如物理气相沉积来沉积。
参考图7,其中相同的参考标号表示图6中的相同特征,并且在随后的制造阶段,使用层50的硅化物形成金属形成硅化物层54、56、58。硅化物层54、56、58可以通过硅化工艺形成,该硅化工艺包括一个或多个退火步骤,通过使接触开口44、46、48的相应底部处的沉积层50的硅化物形成金属与凸起的源极/漏极区24、26的半导体材料以及栅极22上的半导体层36发生反应来形成硅化物相。硅化工艺的初始退火步骤消耗硅化物形成金属以形成硅化物层54、56、58。在初始退火步骤之后,可通过湿法化学蚀刻去除任何剩余的硅化物形成金属。半导体层36的未被硅化物层58的形成消耗的部分可以被归入栅极22上的硅化物层38中。然后可以在更高的温度下对硅化物层54、56、58执行额外的退火步骤以形成更低电阻的硅化物相。
硅化物层54被嵌入在凸起的源极/漏极区24内,并位于接触开口46的底部处。硅化物层54可被凸起的漏极/源极区24的半导体材料包围并与之直接接触。接触开口44用于相对于凸起的源极/漏极区24定位硅化物层54,并限制硅化物层54的宽度。具体地,硅化物层54的宽度W4小于凸起的源极/漏极区24的宽度W1,使得凸起的漏极/源极区24横向延伸超过硅化物层54。硅化物层54在凸起的源极/漏极区24内延伸到一深度,该深度小于凸起的源极/漏极区24的厚度T2。硅化物层54被嵌入在凸起的源极/漏极区24内,使得硅化物层54横向定位在凸起的源极/漏极区24的不同部分之间,并且凸起的源极/漏极区24的另一部分在竖直方向上定位在硅化物层54和半导体层12之间。
硅化物层56被嵌入在凸起的源极/漏极区26内,并位于接触开口46的底部处。硅化物层56可被凸起的漏极/源极区26的半导体材料包围并与之直接接触。接触开口46用于相对于凸起的源极/漏极区26定位硅化物层56,并限制硅化物层56的宽度。具体地,硅化物层56的宽度W5小于凸起的源极/漏极区26的宽度W2,使得凸起的漏极/源极区26横向延伸超过硅化物层56。硅化物层56在凸起的源极/漏极区26内延伸到一深度,该深度小于凸起的源极/漏极区26的厚度T3。硅化物层56被嵌入在凸起的源极/漏极区26内,使得硅化物层56横向定位在凸起的源极/漏极区26的不同部分之间,并且凸起的源极/漏极区26的另一部分在竖直方向上定位在硅化物层56和半导体层12之间。
硅化物层58被嵌入在栅极22的硅化物层38内,并位于接触开口48的底部处。硅化物层58可被栅极22的硅化物层38包围并与之直接接触。接触开口48用于相对于硅化物层38定位硅化物层58,并限制硅化物层58的宽度。具体地,硅化物层58的宽度W6小于硅化物层38的宽度W1和栅极22的宽度W1,使得硅化物层38横向延伸超过硅化物层58。硅化物层58在栅极22的硅化物层38内延伸到一深度,该深度小于硅化物层38厚度,硅化物层38的厚度可以是栅极22的厚度T1的一部分。硅化物层58被嵌入在硅化物层38内,使得硅化物层58横向定位在硅化物层38的不同部分之间,并且硅化物层38的另一部分在竖直方向上定位在硅化物层58和半导体层21之间。
参考图8,其中相同的参考标号表示图7中的相同特征,并且在随后的制造阶段,接触64形成在接触开口44中,接触66形成在接触开口46中,并且接触68形成在接触开口48中。在实施例中,接触64、66、68可以由通过化学气相沉积而沉积的钨构成并被平面化。
接触64通过硅化物层54耦合到凸起的源极/漏极区24。接触64沿界面与硅化物层54直接接触,并且接触64与硅化物层54对准,因为两者以由接触开口44施加的界面处的宽度限制形成。在实施例中,接触64在界面处的宽度可以等于硅化物层54的宽度W4。
接触66通过硅化物层56耦合到凸起的源极/漏极区26。接触66沿界面与硅化物层56直接接触,并且接触66与硅化物层56对准,因为两者以由接触开口46施加的界面处的宽度限制形成。在实施例中,接触66在界面处的宽度可以等于硅化物层56的宽度W5。
接触68通过硅化物层58耦合到栅极22。接触68沿界面与硅化物层58直接接触,并且接触68与硅化物层58对准,因为两者以由接触开口48施加的界面处的宽度限制形成。在实施例中,接触68在界面处的宽度可以等于硅化物层58的宽度W6。
与传统晶体管结构不同,接触64、66与硅化物层54、56对准,硅化物层54、56与凸起的漏极/源极区24、26物理和电接,,并且接触68与硅化物层58对准,硅化物层58与栅极22物理和电接触。硅化物层38和硅化物层58的双硅化物材料可以有效地降低栅极电阻,而硅化物层38的形成不会对凸起的源极/漏极区24、26有任何影响。在此方面,硅化物层38的形成独立于硅化物层54、56、58的形成。由于栅极22的硅化物层38和硅化物层54、56、58的分别形成所提供的去耦(decoupling),可以减小凸起的源极/漏极区24、26的厚度。
参考图9,其中相同的参考标号表示图8中的相同特征,并且根据替代实施例,栅极22可以被完全硅化,使得组成半导体材料在硅化期间被完全消耗。结果,硅化物层38可以在栅极22的整个厚度T1之上在竖直方向上完全延伸。
上述方法用于集成电路芯片的制造。由此产生的集成电路芯片可以由制造商以原始晶片形式(例如,作为具有多个未封装芯片的单个晶片)、作为裸管芯或以封装形式进行分发。芯片可以与其他芯片、分立电路元件和/或其他信号处理器件集成,作为中间产品或最终产品的一部分。最终产品可以是任何包括集成电路芯片的产品,例如具有中央处理器的计算机产品或智能手机。
本文中对由诸如“大约”、“约”、“基本上”的近似语言修饰的术语的引用不限于所规定的精确值。近似语言可对应于用于测量该值的仪器的精度,并且,除非依赖于仪器精度,否则可以指示所述值的+/-10%的范围。
本文中对诸如“竖直”、“水平”等的术语的引用是通过示例而非限制来建立参考系的。如本文所用,术语“水平”被定义为与半导体衬底的常规平面平行的平面,而不管其实际的三维空间取向如何。术语“竖直”和“法向”是指与刚刚定义的水平方向垂直的方向。术语“横向”是指水平平面内的方向。
“连接”或“耦合”到另一特征或与另一特征“连接”或“耦合”的特征可以直接连接或耦合到其他特征或与其他特征连接或耦合,或者可以存在一个或多个中间特征。如果不存在中间特征,则一特征可以“直接连接”或“直接耦合”到另一特征或与另一特征“直接连接”或“直接耦合”。如果存在至少一个中间特征,则一特征可以“间接连接”或“间接耦合”到另一特征或与另一特征“间接连接”或“间接耦合”。在另一特征“上”或“接触”另一特征的特征可以直接在其他特征上或与其他特征直接接触,或者可以存在一个或多个中间特征。如果不存在中间特征,则一特征可以“直接在”另一特征上或与另一特征“直接接触”。如果存在至少一个中间特征,则一特征可以“间接在”另一特征上或与另一特征“间接接触”。如果一特征以直接接触或间接接触的方式在另一特征上方延伸并且覆盖另一特征的一部分,则不同的特征可以“重叠”。
本发明的各种实施例的描述是为了说明的目的而给出的,但并非旨在是穷举的或限于所公开的实施例。在不脱离所描述的实施例的范围和精神的情况下,许多修改和变化对于本领域的普通技术人员来说将是显而易见的。本文使用的术语是为了最好地解释实施例的原理、实际应用或相对于市场上发现的技术的技术改进,或者使本领域的其他普通技术人员能够理解本文所公开的实施例。

Claims (20)

1.一种用于晶体管的结构,所述结构包括:
第一电介质间隔物;
第二电介质间隔物;
栅极,其横向位于所述第一电介质间隔物和所述第二电介质间隔物之间,所述栅极包括从所述第一电介质间隔物延伸到所述第二电介质间隔物的第一硅化物层;
位于所述第一硅化物层内的第二硅化物层;以及
与所述第二硅化物层对准的第一接触。
2.根据权利要求1所述的结构,其中,所述第一接触在界面处直接接触所述第二硅化物层,所述第一接触在所述界面处具有第一宽度,所述第二硅化物层在所述界面处具有第二宽度,并且所述第一宽度等于所述第二宽度。
3.根据权利要求2所述的结构,其中,所述第一硅化物层具有大于所述第二宽度的第三宽度。
4.根据权利要求2所述的结构,其中,所述第一硅化物层具有第一厚度,并且所述第二硅化物层具有小于所述第一厚度的第二厚度。
5.根据权利要求1所述的结构,其中,所述栅极还包括从所述第一电介质间隔物延伸到所述第二电介质间隔物的半导体层,并且所述第一硅化物层与所述半导体层堆叠。
6.根据权利要求1所述的结构,其中,所述栅极完全包括所述第一硅化物层。
7.根据权利要求1所述的结构,还包括:
凸起的源极/漏极区,其包括半导体材料,所述凸起的源极/漏极区邻近所述栅极定位;
第三硅化物层,其位于所述凸起的源极/漏极区的所述半导体材料内;以及
第二接触,其与所述第三硅化物层对准。
8.根据权利要求7所述的结构,其中,所述第三硅化物层具有第一宽度,并且所述凸起的源极/漏极区的所述半导体材料具有大于所述第一宽度的第二宽度。
9.根据权利要求8所述的结构,其中,所述凸起的源极/漏极区的所述半导体材料具有第一部分和第二部分,并且所述第三硅化物层横向定位在所述凸起的源极/漏极区的所述第一部分和所述凸起的源极/漏极区的所述第二部分之间。
10.根据权利要求1所述的结构,其中,所述第一硅化物层包括第一硅化物材料,并且所述第二硅化物层包括具有与所述第一硅化物材料不同的组成的第二硅化物材料。
11.根据权利要求10所述的结构,其中,所述第一硅化物材料是硅化镍,并且所述第二硅化物材料是硅化钛。
12.根据权利要求1所述的结构,还包括:
绝缘体上硅衬底,其包括掩埋电介质层和位于所述掩埋电介质层上的器件层,
其中,所述栅极定位在所述器件层上方。
13.一种用于晶体管的结构,所述结构包括:
栅极;
邻近所述栅极的凸起的源极/漏极区,所述凸起的源极/漏极区包括半导体材料;
位于所述凸起的源极/漏极区的所述半导体材料内的硅化物层;以及
与所述硅化物层对准的接触。
14.根据权利要求13所述的结构,其中,所述硅化物层具有第一宽度,并且所述凸起的源极/漏极区的所述半导体材料具有大于所述第一宽度的第二宽度。
15.根据权利要求13所述的结构,其中,所述凸起的源极/漏极区的所述半导体材料具有第一部分和第二部分,并且所述硅化物层横向定位在所述凸起的源极/漏极区的所述第一部分和所述凸起的源极/漏极区的所述第二部分之间。
16.根据权利要求13所述的结构,还包括:
绝缘体上硅衬底,其包括掩埋电介质层和位于所述掩埋电介质层上的器件层,
其中,所述凸起的源极/漏极区直接定位在所述器件层上。
17.一种形成用于晶体管的结构的方法,所述方法包括:
形成栅极,其中,所述栅极横向定位在第一电介质间隔物和第二电介质间隔物之间,并且所述栅极包括从所述第一电介质间隔物延伸到所述第二电介质间隔物的第一硅化物层;
在所述第一硅化物层内形成第二硅化物层;以及
形成与所述第二硅化物层对准的第一接触。
18.根据权利要求17所述的方法,还包括:
形成包括半导体材料的凸起的源极/漏极区,其中,所述凸起的源极/漏极区邻近所述栅极定位;
在所述凸起的源极/漏极区的所述半导体材料内形成第三硅化物层;以及
形成与所述第三硅化物层对准的第二接触。
19.根据权利要求17所述的方法,其中,所述第一接触在界面处直接接触所述第二硅化物层,所述第一接触在所述界面处具有第一宽度,所述第二硅化物层在所述界面处具有第二宽度,并且所述第一宽度等于所述第二宽度。
20.根据权利要求19所述的方法,其中,所述第一硅化物层具有大于所述第二宽度的第三宽度,所述第一硅化物层具有第一厚度,并且所述第二硅化物层具有小于所述第一厚度的第二厚度。
CN202310073341.0A 2022-02-11 2023-02-07 具有多个硅化物层的晶体管 Pending CN116598333A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US17/669584 2022-02-11
US17/669,584 US20230261088A1 (en) 2022-02-11 2022-02-11 Transistors with multiple silicide layers

Publications (1)

Publication Number Publication Date
CN116598333A true CN116598333A (zh) 2023-08-15

Family

ID=87430514

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310073341.0A Pending CN116598333A (zh) 2022-02-11 2023-02-07 具有多个硅化物层的晶体管

Country Status (5)

Country Link
US (1) US20230261088A1 (zh)
KR (1) KR20230121552A (zh)
CN (1) CN116598333A (zh)
DE (1) DE102023100590A1 (zh)
TW (1) TWI843394B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20240363434A1 (en) * 2023-04-28 2024-10-31 Texas Instruments Incorporated Raised source/drain transistor

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5915183A (en) * 1998-06-26 1999-06-22 International Business Machines Corporation Raised source/drain using recess etch of polysilicon
US8247262B2 (en) * 2009-05-04 2012-08-21 Taiwan Semiconductor Manufacturing Company, Ltd. Method for reducing contact resistance of CMOS image sensor
US9219129B2 (en) * 2012-05-10 2015-12-22 International Business Machines Corporation Inverted thin channel mosfet with self-aligned expanded source/drain
US9029208B2 (en) * 2012-11-30 2015-05-12 International Business Machines Corporation Semiconductor device with replacement metal gate and method for selective deposition of material for replacement metal gate
US9236440B2 (en) * 2013-12-05 2016-01-12 Globalfoundries Inc. Sandwich silicidation for fully silicided gate formation

Also Published As

Publication number Publication date
DE102023100590A1 (de) 2023-08-17
US20230261088A1 (en) 2023-08-17
TW202347781A (zh) 2023-12-01
KR20230121552A (ko) 2023-08-18
TWI843394B (zh) 2024-05-21

Similar Documents

Publication Publication Date Title
CN109841506B (zh) 半导体装置及其制造方法
US11682625B2 (en) Interconnection structure, fabricating method thereof, and semiconductor device using the same
CN102148236B (zh) 半导体元件及其制造方法
US8138031B2 (en) Semiconductor device and method of manufacturing semiconductor device
TWI433301B (zh) 半導體元件及其形成方法
US8790991B2 (en) Method and structure for shallow trench isolation to mitigate active shorts
CN115803871A (zh) 叠栅结构
US9935200B2 (en) Annealed metal source drain overlapping the gate of a fin field effect transistor
CN108122825A (zh) 半导体元件制造方法
CN105453264A (zh) 通过改善的SiGe刻面改善硅化物形成
US11728348B2 (en) Vertically stacked field effect transistors
JP2004152790A (ja) 半導体装置、及び、半導体装置の製造方法
US10229984B2 (en) Gap fill of metal stack in replacement gate process
US9953977B1 (en) FinFET semiconductor device
WO2014063381A1 (zh) Mosfet的制造方法
TWI843394B (zh) 具有多個矽化物層的電晶體
US20030107082A1 (en) Semiconductor device and method of forming the same
WO2014063379A1 (zh) Mosfet的制造方法
US8329519B2 (en) Methods for fabricating a semiconductor device having decreased contact resistance
US10680065B2 (en) Field-effect transistors with a grown silicon-germanium channel
US10546775B1 (en) Field-effect transistors with improved dielectric gap fill
JP2006024940A (ja) 層配置および層配置の製造方法
US10714577B2 (en) Etch stop layer for use in forming contacts that extend to multiple depths
JP2005276989A (ja) 半導体装置の製造方法
JP2008198704A (ja) 半導体装置の製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination