[go: up one dir, main page]

CN116598040B - An ion trap ion control experimental system - Google Patents

An ion trap ion control experimental system Download PDF

Info

Publication number
CN116598040B
CN116598040B CN202310602806.7A CN202310602806A CN116598040B CN 116598040 B CN116598040 B CN 116598040B CN 202310602806 A CN202310602806 A CN 202310602806A CN 116598040 B CN116598040 B CN 116598040B
Authority
CN
China
Prior art keywords
ion
voltage
module
electrode
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202310602806.7A
Other languages
Chinese (zh)
Other versions
CN116598040A (en
Inventor
王营政
郑驻军
冯芒
陈亮
魏雅琪
崔太豪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN202310602806.7A priority Critical patent/CN116598040B/en
Publication of CN116598040A publication Critical patent/CN116598040A/en
Application granted granted Critical
Publication of CN116598040B publication Critical patent/CN116598040B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/003Manipulation of charged particles by using radiation pressure, e.g. optical levitation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N10/00Quantum computing, i.e. information processing based on quantum-mechanical phenomena
    • G06N10/40Physical realisations or architectures of quantum processors or components for manipulating qubits, e.g. qubit coupling or qubit control
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/08Deviation, concentration or focusing of the beam by electric or magnetic means
    • G21K1/087Deviation, concentration or focusing of the beam by electric or magnetic means by electrical means

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Artificial Intelligence (AREA)
  • Data Mining & Analysis (AREA)
  • Evolutionary Computation (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Computing Systems (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Computational Mathematics (AREA)
  • Electron Tubes For Measurement (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

本发明提供一种离子阱离子操控实验系统,涉及量子计算技术领域,包括:电势场构建模块、离子捕获模块、电势场调节模块、弱力测量模块、电位置监控模块、电压调节监控模块、荧光计数监控模块,所述电势场构建模块与离子捕获模块连接。本发明,通过离子捕获模块和电势场调节模块的配合,将上位机输入的电压值序列进行转换,并通过I/O端口向电路板输出高电平脉冲,通过修改电极电位值实现抬升或降低电极电压将离子搬运回初始位置,通过电压差值计算出电势场改变情况从而得出外界作用力的精确值。

The invention provides an ion trap ion manipulation experimental system, which relates to the field of quantum computing technology and includes: an electric potential field building module, an ion capture module, an electric potential field adjustment module, a weak force measurement module, an electric position monitoring module, a voltage adjustment monitoring module, and a fluorescence Counting monitoring module, the electric potential field building module is connected with the ion capture module. The present invention, through the cooperation of the ion capture module and the electric potential field adjustment module, converts the voltage value sequence input by the host computer, and outputs high-level pulses to the circuit board through the I/O port, and realizes raising or lowering by modifying the electrode potential value. The electrode voltage transports the ions back to the initial position, and the change in the electric potential field is calculated through the voltage difference to obtain the precise value of the external force.

Description

一种离子阱离子操控实验系统An ion trap ion control experimental system

技术领域Technical field

本发明涉及量子计算技术领域,尤其涉及一种离子阱离子操控实验系统。The invention relates to the field of quantum computing technology, and in particular to an ion trap ion manipulation experimental system.

背景技术Background technique

如今,离子阱已经是实现量子计算的主要物理体系。而离子阱本身的原理其实很简单:就是利用电荷与磁场间所产生的交互作用力约束带电粒子,使其行为得到控制。两种最常见的离子阱类型是Penning阱,由Dehmelt提出,它通过电场和磁场的组合形成电势;Paul阱,由Wolfgang Paul(与Dehmelt共享1989年诺贝尔物理学奖)提出,它通过静态和振荡电场的组合形成电势,与超导、光量子等路线不同,离子阱量子计算机需要整合许多不同领域的技术:真空、激光和光学系统、射频和微波技术,以及相干电子控制,具体来说,离子阱量子计算机有以下几个优势:相干时间较长、单量子比特门、双量子比特门保真度较高、状态制备和读出更直接、量子比特可重复性高。Today, ion traps have become the main physical system for realizing quantum computing. The principle of the ion trap itself is actually very simple: it uses the interaction force generated between charges and magnetic fields to restrain charged particles and control their behavior. The two most common types of ion traps are the Penning trap, proposed by Dehmelt, which creates an electric potential through a combination of electric and magnetic fields; and the Paul trap, proposed by Wolfgang Paul (who shared the 1989 Nobel Prize in Physics with Dehmelt), which creates an electric potential through a static and magnetic field. The combination of oscillating electric fields forms an electric potential. Unlike superconducting, light quantum and other routes, ion trap quantum computers need to integrate technologies from many different fields: vacuum, laser and optical systems, radio frequency and microwave technology, and coherent electronic control. Specifically, ion Well quantum computers have the following advantages: longer coherence time, higher fidelity of single-qubit gates and double-qubit gates, more direct state preparation and readout, and high qubit repeatability.

但是在现有技术中,在使用平面离子阱囚禁离子需要结合多个电极释放的电压形成特定电势场从而将带电离子限定在特定的区域,例如中国专利申请公开了一种离子阱系统及离子操控方法,CN112750681B,包括处理控制模块、分束模块、光束调控模块和离子囚禁模块,离子囚禁模块包括囚禁的P个离子和电极。电极用于根据处理控制模块根据P个离子排布生成的第一控制信号,将P个离子囚禁于M个第一分区;分束模块用于根据处理控制模块根据P个离子排布和每个第二区分中需要同时操控的最大离子数生成的第二控制信号,对激光束分束,得到N个第一光束,将N个第一光束分为M个第二分区,将M个第二分区中的第一光束分别传输至M个光束调控模块;光束调控模块用于对接收到的第一光束进行调制,将调制后的第一光束传输至对应的第一分区的对应离子。However, in the existing technology, when using a planar ion trap to trap ions, it is necessary to combine the voltage released by multiple electrodes to form a specific electric potential field to confine the charged ions to a specific area. For example, a Chinese patent application discloses an ion trap system and ion manipulation The method, CN112750681B, includes a processing control module, a beam splitting module, a beam control module and an ion trapping module. The ion trapping module includes trapped P ions and electrodes. The electrode is used to trap P ions in M first partitions according to the first control signal generated by the processing control module according to the arrangement of P ions; the beam splitting module is used to trap P ions in M first partitions according to the arrangement of P ions and each The second control signal generated by the maximum number of ions that need to be controlled simultaneously in the second division splits the laser beam to obtain N first beams, divides the N first beams into M second divisions, and divides the M second divisions into The first beams in the partitions are respectively transmitted to M beam control modules; the beam control modules are used to modulate the received first beams and transmit the modulated first beams to corresponding ions in the corresponding first partitions.

虽然上述方案具有如上的优势,但是上述方案的劣势在于:由于使用平面离子阱囚禁离子需要结合多个电极释放的电压形成特定电势场,从而将带电离子限定在特定的区域,而平面离子阱系统,虽然能满足囚禁离子的需求,但传统的平面离子阱系统由于在电势场控制层面存在不足,从而导致当被囚禁离子受额外的环境影响而产生一系列的实验误差时,实验人员无法通过调节实验系统来消除额外的环境影响,使得额外产生的实验误差被引入,导致实验结果不够精确。这对量子精密测量领域有很大的影响,因此亟须一种离子阱离子操控实验系统来解决此类问题。Although the above scheme has the above advantages, the disadvantage of the above scheme is that using a planar ion trap to trap ions requires combining the voltage released by multiple electrodes to form a specific electric potential field, thereby confining the charged ions to a specific area, and the planar ion trap system , although it can meet the needs of trapped ions, the traditional planar ion trap system has deficiencies in the electric potential field control level, which leads to a series of experimental errors when the trapped ions are affected by additional environmental influences, and the experimenter cannot adjust The experimental system is used to eliminate additional environmental effects, which causes additional experimental errors to be introduced, resulting in inaccurate experimental results. This has a great impact on the field of quantum precision measurement, so an ion trap ion manipulation experimental system is urgently needed to solve such problems.

发明内容Contents of the invention

本发明的目的是为了解决现有技术中存在的传统的平面离子阱系统由于在电势场控制层面存在不足,从而导致当被囚禁离子受额外的环境影响而产生一系列的实验误差时,实验人员无法通过调节实验系统来消除额外的环境影响,使得额外产生的实验误差被引入,导致实验结果不够精确的问题。The purpose of this invention is to solve the problem that the traditional planar ion trap system existing in the prior art has deficiencies in the electric potential field control level, which leads to a series of experimental errors when the trapped ions are affected by additional environmental influences. The inability to adjust the experimental system to eliminate additional environmental effects causes additional experimental errors to be introduced, resulting in inaccurate experimental results.

为了实现上述目的,本发明采用了如下技术方案:一种离子阱离子操控实验系统,包括:电势场构建模块、离子捕获模块、电势场调节模块、弱力测量模块、电位置监控模块、电压调节监控模块、荧光计数监控模块,所述电势场构建模块与离子捕获模块连接,所述离子捕获模块与电势场调节模块连接,所述电势场调节模块与弱力测量模块连接,其中:In order to achieve the above purpose, the present invention adopts the following technical solution: an ion trap ion manipulation experimental system, including: an electric potential field building module, an ion capture module, an electric potential field adjustment module, a weak force measurement module, an electrical position monitoring module, and a voltage adjustment module. Monitoring module, fluorescence counting monitoring module, the electric potential field construction module is connected to the ion capture module, the ion capture module is connected to the electric potential field adjustment module, the electric potential field adjustment module is connected to the weak force measurement module, wherein:

所述电势场构建模块设置上位机,内置FPGA,打开离子阱装置,同时对各电极电压进行加载,构建离子阱内电势场;所述离子捕获模块承载激光器、CCD以及离子制备装置,在捕获离子后通过CCD对离子阱内的离子位置进行监测;所述电势场调节模块对电势场控制层面进行调节;所述弱力测量模块对囚禁离子信息进行获取、显示并存储;The electric potential field building module is equipped with a host computer and a built-in FPGA, turns on the ion trap device, and simultaneously loads the voltage of each electrode to construct the electric potential field in the ion trap; the ion capture module carries a laser, CCD and ion preparation device, and captures ions Then, the ion position in the ion trap is monitored through CCD; the electric potential field adjustment module adjusts the electric potential field control level; the weak force measurement module acquires, displays and stores the trapped ion information;

所述离子捕获模块包括参数加载单元、稳定性调节单元、离子位置调节单元和离子信息反馈单元,其中:所述参数加载单元使用最后一次保存的参数设置进行离子阱装置开启后的加载,对CCD图像窗口进行加载,对荧光计数器数据体进行加载,参数设置包括:各电极电位值和CCD设备拍摄时长;所述稳定性调节单元根据参数加载单元加载后所获取的离子当前状态进行监测,在达到稳定状态后开启测试;The ion capture module includes a parameter loading unit, a stability adjustment unit, an ion position adjustment unit and an ion information feedback unit, wherein: the parameter loading unit uses the last saved parameter setting to load the ion trap device after it is turned on, and the CCD The image window is loaded, and the fluorescence counter data body is loaded. The parameter settings include: the potential value of each electrode and the shooting time of the CCD device; the stability adjustment unit monitors the current state of the ions obtained after the parameter loading unit is loaded. Start testing after stabilizing;

所述参数加载单元与稳定性调节单元连接,所述稳定性调节单元与离子位置调节单元连接,其中:所述离子位置调节单元通过环境改变使得离子位置产生改变,并对电极电位值进行调节;The parameter loading unit is connected to the stability adjustment unit, and the stability adjustment unit is connected to the ion position adjustment unit, wherein: the ion position adjustment unit changes the ion position through environmental changes and adjusts the electrode potential value;

所述离子位置调节单元调节方式具体为:The specific adjustment method of the ion position adjustment unit is:

改变环境使得离子位置产生改变,再由CCD拍摄其位置并记录离子位置信息,并记录当前各电极电压值,修改电极电位值来抬升、降低电极电压,将离子搬运回初始位置,当抬升各直流电极电压使得离子位置上升,当降低各直流电极电压使离子位置下降,当抬升某个电极电压使离子向该电极的反方向位移,当降低某个电极电压可使得离子向该电极的方向位移,最终记录各电极电压值;Changing the environment causes the ion position to change, and then the CCD captures its position and records the ion position information, and records the current voltage value of each electrode. Modify the electrode potential value to raise and lower the electrode voltage, and transport the ions back to the initial position. When raising each DC current The electrode voltage causes the ion position to rise. When the DC electrode voltage is lowered, the ion position drops. When an electrode voltage is raised, the ions are displaced in the opposite direction of the electrode. When the voltage of an electrode is lowered, the ions are displaced in the direction of the electrode. Finally record the voltage value of each electrode;

所述离子位置调节单元与离子信息反馈单元连接,其中:The ion position adjustment unit is connected to the ion information feedback unit, where:

所述离子信息反馈单元对各电极电压值、荧光计数进行记录,重复稳定性调节单元和离子位置调节单元的步骤使荧光计数趋于稳定。The ion information feedback unit records the voltage value of each electrode and the fluorescence count, and repeats the steps of the stability adjustment unit and the ion position adjustment unit to stabilize the fluorescence count.

作为一种优选的具体实施方式,所述电压调节监控模块包括供电启动单元、指令接收单元、电压值转换单元和电压加载单元,其中:As a preferred specific implementation, the voltage regulation monitoring module includes a power supply starting unit, an instruction receiving unit, a voltage value conversion unit and a voltage loading unit, wherein:

所述电压调节监控模块内置DAC芯片,并承载数字电路控制器,对加载到离子阱电极上的电压进行调节,电路板DAC芯片的输出端口两两匹配,经过差分电路后将电压加载在离子阱电极上。The voltage adjustment monitoring module has a built-in DAC chip and carries a digital circuit controller to adjust the voltage loaded on the ion trap electrode. The output ports of the DAC chip on the circuit board are matched in pairs, and the voltage is loaded on the ion trap after passing through the differential circuit. on the electrode.

作为一种优选的具体实施方式,所述供电启动单元与指令接收单元连接,所述指令接收单元与电压值转换单元连接,其中:As a preferred specific implementation, the power supply starting unit is connected to an instruction receiving unit, and the instruction receiving unit is connected to a voltage value conversion unit, wherein:

所述供电启动单元服务于电压调节监控模块和电势场构建模块,负责电压调节监控模块的系统启动,并加载供电电压;The power supply startup unit serves the voltage adjustment monitoring module and the electric potential field construction module, is responsible for system startup of the voltage adjustment monitoring module, and loads the power supply voltage;

所述指令接收单元用于接收上位机所发送指令,并向离子捕获模块输入开关电压,使其开始工作以及切断供电。The instruction receiving unit is used to receive instructions sent by the host computer, and input the switching voltage to the ion capture module to start working and cut off the power supply.

作为一种优选的具体实施方式,所述电压值转换单元与电压加载单元连接,其中:As a preferred specific implementation, the voltage value conversion unit is connected to the voltage loading unit, wherein:

所述电压值转换单元通过数字电路控制器将上位机输入电压值转换为0、1序列,并通过I/O端口向电路板输出高电平脉冲,此处共14个端口并联输出;The voltage value conversion unit converts the input voltage value of the host computer into a sequence of 0 and 1 through the digital circuit controller, and outputs a high-level pulse to the circuit board through the I/O port. Here, a total of 14 ports are output in parallel;

所述电压加载单元将电路板DAC芯片接收到数字电路控制端的电平脉冲,转换为模拟信号并输出电压,其中14个输入端口中有3个是用于选择输出端口、8个是电压控制、其余3个是用于工作开关和工作保护。The voltage loading unit converts the level pulses received by the circuit board DAC chip from the digital circuit control end into analog signals and outputs voltages. Among the 14 input ports, 3 are used to select output ports and 8 are for voltage control. The remaining 3 are used for work switches and work protection.

作为一种优选的具体实施方式,所述电位置监控模块、电压调节监控模块和荧光计数监控模块分别与电势场调节模块连接,其中:As a preferred specific implementation, the electrical position monitoring module, voltage adjustment monitoring module and fluorescence counting monitoring module are respectively connected to the electric potential field adjustment module, wherein:

所述荧光计数监控模块实时对荧光计数进行监控;The fluorescence counting monitoring module monitors fluorescence counting in real time;

所述电位置监控模块实时对离子位置进行监控。The electrical position monitoring module monitors the ion position in real time.

与现有技术相比,本发明的优点和积极效果在于,Compared with the existing technology, the advantages and positive effects of the present invention are:

1.本发明,通过离子捕获模块和电势场调节模块的配合,将上位机输入的电压值转换为0、1序列并通过I/O端口向电路板输出高电平脉冲,通过修改电极电位值实现抬升或降低电极电压将离子搬运回初始位置,通过电压差值计算出电势场改变情况从而得出外界作用力的精确值,解决了现有技术中存在的传统的平面离子阱系统由于在电势场控制层面存在不足,从而导致当被囚禁离子受额外的环境影响而产生一系列的实验误差时,实验人员无法通过调节实验系统来消除额外的环境影响,使得额外产生的实验误差被引入,导致实验结果不够精确问题。1. The present invention, through the cooperation of the ion capture module and the electric potential field adjustment module, converts the voltage value input by the host computer into a sequence of 0 and 1 and outputs a high-level pulse to the circuit board through the I/O port. By modifying the electrode potential value It is possible to raise or lower the electrode voltage to transport ions back to the initial position, and calculate the change of the electric potential field through the voltage difference to obtain the precise value of the external force. This solves the problem of the traditional planar ion trap system existing in the existing technology due to the potential change in the electric potential field. There are deficiencies in the field control level, which leads to a series of experimental errors when trapped ions are affected by additional environmental influences. The experimenter cannot eliminate the additional environmental effects by adjusting the experimental system, causing additional experimental errors to be introduced, resulting in The experimental results are not accurate enough.

2.本发明,通过电势场调节模块和FPGA的设置,可将直流电压调节的最小电位差调节到0.6mV,目前已知设备的直流电极上可调的最小电位差是20mV左右,而在控制电势场时,更小的电压可调值会产生更精准地控制电势场,从而获得更精密的离子操控和更强的弱力感应能力。2. This invention, through the settings of the electric potential field adjustment module and FPGA, can adjust the minimum potential difference of the DC voltage adjustment to 0.6mV. The minimum adjustable potential difference on the DC electrode of the currently known equipment is about 20mV, and in the control When applying an electric potential field, a smaller adjustable voltage value will produce a more precise control of the electric potential field, thereby obtaining more precise ion control and stronger weak force sensing capabilities.

3.本发明,通过离子捕获模块、电势场调节模块的配合,并设置有并行线路控制,可实现电压的同步输出,从而加快电势场生成和稳定时间。3. The present invention, through the cooperation of the ion capture module and the electric potential field adjustment module, and is equipped with parallel line control, can realize the synchronous output of voltage, thereby speeding up the generation and stabilization time of the electric potential field.

4.本发明,引入数字电路控制模块,减少电势场构建模块内置上位机操控系统处理时间,使得测量数据更精准。4. The present invention introduces a digital circuit control module to reduce the processing time of the host computer control system built into the electric potential field building module, making the measurement data more accurate.

附图说明Description of drawings

图1为本发明的一种离子阱离子操控实验系统的整体系统结构图;Figure 1 is an overall system structure diagram of an ion trap ion control experimental system of the present invention;

图2为本发明的一种离子阱离子操控实验系统的离子捕获模块单元结构图;Figure 2 is a structural diagram of the ion capture module unit of an ion trap ion manipulation experimental system of the present invention;

图3为本发明的一种离子阱离子操控实验系统的电压调节监控模块单元结构图;Figure 3 is a structural diagram of the voltage regulation monitoring module unit of an ion trap ion control experimental system of the present invention;

图4为本发明的一种离子阱离子操控实验系统的离子阱操作系统工作流图1;Figure 4 is a workflow diagram 1 of the ion trap operating system of an ion trap ion manipulation experimental system of the present invention;

图5为本发明的一种离子阱离子操控实验系统的离子阱操作系统工作流图2;Figure 5 is a workflow diagram 2 of the ion trap operating system of an ion trap ion manipulation experimental system of the present invention;

图6为本发明的一种离子阱离子操控实验系统的电压操作模块启动流程图;Figure 6 is a voltage operation module startup flow chart of an ion trap ion control experimental system of the present invention;

图7为本发明的一种离子阱离子操控实验系统的电压操作模块关闭流程图;Figure 7 is a flow chart of closing the voltage operation module of an ion trap ion control experimental system of the present invention;

图8为本发明的一种离子阱离子操控实验系统的FPGA电路图;Figure 8 is an FPGA circuit diagram of an ion trap ion control experimental system of the present invention;

图例说明:illustration:

100、电势场构建模块;200、离子捕获模块;300、电势场调节模块;400、弱力测量模块;500、电位置监控模块;600、电压调节监控模块;700、荧光计数监控模块;201、参数加载单元;202、稳定性调节单元;203、离子位置调节单元;204、离子信息反馈单元;601、供电启动单元;602、指令接收单元;603、电压值转换单元;604、电压加载单元。100. Electric potential field building module; 200. Ion capture module; 300. Electric potential field adjustment module; 400. Weak force measurement module; 500. Electric position monitoring module; 600. Voltage regulation monitoring module; 700. Fluorescence counting monitoring module; 201. Parameter loading unit; 202, stability adjustment unit; 203, ion position adjustment unit; 204, ion information feedback unit; 601, power supply starting unit; 602, instruction receiving unit; 603, voltage value conversion unit; 604, voltage loading unit.

具体实施方式Detailed ways

下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only some of the embodiments of the present invention, rather than all the embodiments. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative efforts fall within the scope of protection of the present invention.

请参阅图1-图8,本发明提供一种技术方案:一种离子阱离子操控实验系统,包括:电势场构建模块100、离子捕获模块200、电势场调节模块300、弱力测量模块400、电位置监控模块500、电压调节监控模块600、荧光计数监控模块700,电势场构建模块100与离子捕获模块200连接,离子捕获模块200与电势场调节模块300连接,电势场调节模块300与弱力测量模块400连接,其中:Referring to Figures 1 to 8, the present invention provides a technical solution: an ion trap ion manipulation experimental system, including: an electric potential field building module 100, an ion capture module 200, an electric potential field adjustment module 300, a weak force measurement module 400, Electrical position monitoring module 500, voltage adjustment monitoring module 600, fluorescence counting monitoring module 700, electric potential field construction module 100 is connected with ion capture module 200, ion capture module 200 is connected with electric potential field adjustment module 300, electric potential field adjustment module 300 is connected with weak force Measurement module 400 connects, where:

电势场构建模块100设置上位机,内置FPGA,打开离子阱装置,同时对各电极电压进行加载,构建离子阱内电势场;The electric potential field construction module 100 is equipped with a host computer and a built-in FPGA, turns on the ion trap device, and simultaneously loads the voltage of each electrode to build the electric potential field in the ion trap;

离子捕获模块200承载激光器、CCD以及离子制备装置,在捕获离子后通过CCD对离子阱内的离子位置进行监测;The ion capture module 200 carries a laser, a CCD and an ion preparation device. After capturing the ions, the CCD is used to monitor the ion position in the ion trap;

电势场调节模块300对电势场控制层面进行调节;The electric potential field adjustment module 300 adjusts the electric potential field control level;

弱力测量模块400对囚禁离子信息进行获取、显示并存储,区别传统的平面离子阱系统,本发明通过引入高精度电压操控模块,结合新的离子阱操控系统和已有的平面离子阱装置,实现了离子精密操控,并在量子弱力感应上有了很大的突破,基于现有的Labview操控系统,在此基础上进行改进,电压操控模块包括电位置监控模块500、电压调节监控模块600和荧光计数监控模块700,首先与电势场构建模块100的内置上位机进行信号传输,电势场构建模块100启动离子阱系统,由供电启动单元601进行供电电压加载,同步进行的,离子捕获模块200开启激光器和CCD,并加载最后一次保存的参数设置,此处参数在设置包括各电极电位值以及CCD设备拍摄时长,同时进行CCD的图像窗口以及荧光计数器数据图的加载,相配合的,荧光计数监控模块700实时对荧光计数进行监控,电位置监控模块500实时对离子位置信息进行监控,在离子通过其他设备达到稳定状态后开始测试,通过参数加载单元201、稳定性调节单元202、离子位置调节单元203的配合,改变环境使得离子位置产生改变,再由CCD拍摄其位置并记录离子位置信息,并记录当前各电极电压值,通过修改电极电位值来实现抬升或降低电极电压将离子搬运回初始位置,当抬升各直流电极电压可使得离子位置上升,当降低各直流电极电压可使得离子位置下降,当抬升某个电极电压可使得离子向该电极的反方向位移,当降低某个电极电压可使得离子向该电极的方向位移,最终记录各电极电压值,而实际操作中由于CCD窗口大小和芯片阱电势场限制,各电极电压的实际调节范围远小于其可调范围,对于各电极电位值修改以及离子信息记录步骤中须观察荧光计数器的数据,确保其荧光计数相对稳定,再将环境恢复到初始状态,并重复各电极电位值修改、离子信息记录和确保荧光计数稳定步骤,重复多次后进行分析,以此得出改变环境后所产生的额外的弱力值,而针对电压操控模块的调节,通过电位置监控模块500、电压调节监控模块600和荧光计数监控模块700的配合,首先由上位机输出信号,供电启动单元601将系统启动,加载供电,位机发送工作指令,离子阱操控系统输入开关电压,模块开始工作,模块的数字电路控制端将上位机输入的电压值转换为0、1序列并通过I/O端口向电路板输出高电平脉冲,共14个端口并联输出,电路板DAC芯片接收到数字电路控制端的电平脉冲后将其转换为模拟信号并输出电压,14个输入端口中有3个是用于选择输出端口、8个是电压控制、其余3个是用于工作开关和工作保护,且此处的电路板DAC芯片的输出端口两两匹配,经过差分电路后将电压加载在离子阱电极上,在关闭时同样由上位机发送停止工作指令,离子阱操控系统切断开关电压,停止工作后切断供电电压。The weak force measurement module 400 acquires, displays and stores trapped ion information. Different from the traditional planar ion trap system, the present invention introduces a high-precision voltage control module and combines the new ion trap control system with the existing planar ion trap device. It has achieved precise control of ions and made great breakthroughs in quantum weak force sensing. Based on the existing Labview control system, improvements have been made on this basis. The voltage control module includes an electrical position monitoring module 500 and a voltage adjustment monitoring module 600. and the fluorescence counting and monitoring module 700, first transmitting signals with the built-in host computer of the electric potential field construction module 100, the electric potential field construction module 100 starts the ion trap system, and the power supply startup unit 601 loads the power supply voltage, and simultaneously, the ion capture module 200 Turn on the laser and CCD, and load the last saved parameter settings. The parameters here include the potential value of each electrode and the shooting time of the CCD device. At the same time, the CCD image window and the fluorescence counter data chart are loaded. In conjunction, the fluorescence counting The monitoring module 700 monitors the fluorescence count in real time, and the electrical position monitoring module 500 monitors the ion position information in real time. After the ions reach a stable state through other equipment, the test starts, through the parameter loading unit 201, the stability adjustment unit 202, and the ion position adjustment. With the cooperation of unit 203, changing the environment causes the ion position to change, and then the CCD captures its position and records the ion position information, and records the current voltage value of each electrode. By modifying the electrode potential value, the electrode voltage is raised or lowered to transport the ions back to the initial state. When the voltage of each DC electrode is raised, the position of the ions will rise. When the voltage of each DC electrode is lowered, the position of the ions will decrease. When the voltage of an electrode is raised, the ions will move in the opposite direction of the electrode. When the voltage of an electrode is lowered, the position of the ions will move in the opposite direction. The ions are displaced in the direction of the electrode, and the voltage value of each electrode is finally recorded. However, in actual operation, due to the limitations of the CCD window size and chip well potential field, the actual adjustment range of each electrode voltage is much smaller than its adjustable range. For the potential value of each electrode During the modification and ion information recording steps, you must observe the data of the fluorescence counter to ensure that the fluorescence count is relatively stable, then restore the environment to the initial state, and repeat the steps of modifying the potential value of each electrode, recording ion information, and ensuring that the fluorescence count is stable, multiple times. Then perform analysis to obtain the additional weak force value generated after changing the environment. For the adjustment of the voltage control module, through the cooperation of the electrical position monitoring module 500, the voltage adjustment monitoring module 600 and the fluorescence counting monitoring module 700, first The host computer outputs a signal, the power supply start unit 601 starts the system, loads the power supply, the host computer sends a work command, the ion trap control system inputs the switching voltage, the module starts to work, and the digital circuit control end of the module converts the voltage value input by the host computer into 0, 1 sequence and outputs high-level pulses to the circuit board through the I/O port. A total of 14 ports are output in parallel. The circuit board DAC chip receives the level pulse from the digital circuit control end and converts it into an analog signal and outputs a voltage. Among the 14 input ports, 3 are used to select the output port, 8 are for voltage control, and the remaining 3 are used for work switch and work protection. The output ports of the DAC chip on the circuit board here are matched in pairs and passed through differential After the circuit, the voltage is loaded on the ion trap electrode. When it is closed, the host computer also sends a stop working command. The ion trap control system cuts off the switching voltage and cuts off the power supply voltage after stopping working.

简言之该离子阱离子操控实验系统实施步骤如下:打开离子阱装置,加载各电极电压直流和交流,构建离子阱内电势场,捕获离子,通过CCD观测离子在离子阱内的位置微调节电势场,将离子迁移至理想位置,进行弱力测量,此处弱力测量包括:改变或引入外界环境、观察离子位置的变化,并记录当前离子位置的坐标信息和各电极电压值、调节直流电极电压,使离子位置回到初始位置,记录各电极电压值、通过电压差值计算出电势场改变情况从而得出外界作用力的精确值。In short, the implementation steps of the ion trap ion control experimental system are as follows: open the ion trap device, load DC and AC voltages on each electrode, build the electric potential field in the ion trap, capture the ions, and observe the position of the ions in the ion trap through CCD to finely adjust the electric potential. field, move the ions to the ideal position, and perform weak force measurement. Here, the weak force measurement includes: changing or introducing the external environment, observing changes in ion position, recording the coordinate information of the current ion position and the voltage value of each electrode, and adjusting the DC electrode. voltage to return the ion position to its initial position, record the voltage value of each electrode, and calculate the change in the electric potential field through the voltage difference to obtain the precise value of the external force.

区别传统平面离子阱系统,可通过离子捕获模块200和电势场调节模块300的设置,将上位机输入的电压值转换为0、1序列并通过I/O端口向电路板输出高电平脉冲,通过修改电极电位值实现抬升或降低电极电压将离子搬运回初始位置,通过电压差值计算出电势场改变情况从而得出外界作用力的精确值。Different from the traditional planar ion trap system, through the settings of the ion capture module 200 and the potential field adjustment module 300, the voltage value input by the host computer can be converted into a sequence of 0 and 1 and a high-level pulse can be output to the circuit board through the I/O port. By modifying the electrode potential value, the electrode voltage is raised or lowered to transport the ions back to the initial position. The changes in the electric potential field are calculated through the voltage difference to obtain the precise value of the external force.

请参阅图1-图8,离子捕获模块200包括参数加载单元201、稳定性调节单元202、离子位置调节单元203和离子信息反馈单元204,其中:Referring to Figures 1 to 8, the ion capture module 200 includes a parameter loading unit 201, a stability adjustment unit 202, an ion position adjustment unit 203 and an ion information feedback unit 204, where:

参数加载单元201使用最后一次保存的参数设置进行离子阱装置开启后的加载,对CCD图像窗口进行加载,对荧光计数器数据体进行加载,参数设置包括:各电极电位值和CCD设备拍摄时长;The parameter loading unit 201 uses the last saved parameter setting to load the ion trap device after it is turned on, load the CCD image window, and load the fluorescence counter data volume. The parameter settings include: the potential value of each electrode and the shooting duration of the CCD device;

稳定性调节单元202根据参数加载单元201加载后所获取的离子当前状态进行监测,在达到稳定状态后开启测试。The stability adjustment unit 202 monitors the current state of the ions obtained after loading by the parameter loading unit 201, and starts the test after reaching a stable state.

请参阅图1-图8,参数加载单元201与稳定性调节单元202连接,稳定性调节单元202与离子位置调节单元203连接,其中:Please refer to Figures 1 to 8. The parameter loading unit 201 is connected to the stability adjustment unit 202, and the stability adjustment unit 202 is connected to the ion position adjustment unit 203, where:

离子位置调节单元203通过环境改变使得离子位置产生改变,并对电极电位值进行调节。The ion position adjustment unit 203 changes the ion position through environmental changes and adjusts the electrode potential value.

请参阅图1-图8,离子位置调节单元203与离子信息反馈单元204连接,其中:Referring to Figures 1 to 8, the ion position adjustment unit 203 is connected to the ion information feedback unit 204, where:

离子信息反馈单元204对各电极电压值、荧光计数进行记录,重复稳定性调节单元202和离子位置调节单元203的步骤使荧光计数趋于稳定。The ion information feedback unit 204 records the voltage value of each electrode and the fluorescence count, and repeats the steps of the stability adjustment unit 202 and the ion position adjustment unit 203 to stabilize the fluorescence count.

请参阅图1-图8,电压调节监控模块600包括供电启动单元601、指令接收单元602、电压值转换单元603和电压加载单元604,其中:Referring to Figures 1 to 8, the voltage regulation monitoring module 600 includes a power supply starting unit 601, an instruction receiving unit 602, a voltage value conversion unit 603 and a voltage loading unit 604, where:

电压调节监控模块600内置DAC芯片,并承载数字电路控制器,对加载到离子阱电极上的电压进行调节,电路板DAC芯片的输出端口两两匹配,经过差分电路后将电压加载在离子阱电极上。The voltage adjustment monitoring module 600 has a built-in DAC chip and carries a digital circuit controller to adjust the voltage loaded on the ion trap electrode. The output ports of the DAC chip on the circuit board are matched in pairs, and the voltage is loaded on the ion trap electrode after passing through the differential circuit. superior.

请参阅图1-图8,供电启动单元601与指令接收单元602连接,指令接收单元602与电压值转换单元603连接,其中:Please refer to Figures 1 to 8. The power supply starting unit 601 is connected to the instruction receiving unit 602, and the instruction receiving unit 602 is connected to the voltage value conversion unit 603, where:

供电启动单元601服务于电压调节监控模块600和电势场构建模块100,负责电压调节监控模块600的系统启动,并加载供电电压;The power supply startup unit 601 serves the voltage adjustment monitoring module 600 and the electric potential field construction module 100, is responsible for system startup of the voltage adjustment monitoring module 600, and loads the power supply voltage;

指令接收单元602用于接收上位机所发送指令,并向离子捕获模块200输入开关电压,使其开始工作以及切断供电。The instruction receiving unit 602 is used to receive instructions sent by the host computer, and input the switching voltage to the ion capture module 200 to start working and cut off the power supply.

请参阅图1-图8,电压值转换单元603与电压加载单元604连接,其中:Referring to Figures 1 to 8, the voltage value conversion unit 603 is connected to the voltage loading unit 604, where:

电压值转换单元603通过数字电路控制器将上位机输入电压值转换为0、1序列,并通过I/O端口向电路板输出高电平脉冲,此处共14个端口并联输出;The voltage value conversion unit 603 converts the input voltage value of the host computer into a sequence of 0 and 1 through the digital circuit controller, and outputs a high-level pulse to the circuit board through the I/O port. Here, a total of 14 ports are output in parallel;

电压加载单元604将电路板DAC芯片接收到数字电路控制端的电平脉冲,转换为模拟信号并输出电压,其中14个输入端口中有3个是用于选择输出端口、8个是电压控制、其余3个是用于工作开关和工作保护。The voltage loading unit 604 converts the level pulses from the digital circuit control terminal received by the circuit board DAC chip into analog signals and outputs voltages. Among the 14 input ports, 3 are used to select output ports, 8 are for voltage control, and the rest 3 are for work switches and work protection.

请参阅图1-图8,电位置监控模块500、电压调节监控模块600和荧光计数监控模块700分别与电势场调节模块300连接,其中:Please refer to Figures 1 to 8. The electrical position monitoring module 500, the voltage adjustment monitoring module 600 and the fluorescence counting monitoring module 700 are respectively connected to the electric potential field adjustment module 300, where:

荧光计数监控模块700实时对荧光计数进行监控;The fluorescence counting monitoring module 700 monitors the fluorescence counting in real time;

电位置监控模块500实时对离子位置进行监控。The electrical position monitoring module 500 monitors the ion position in real time.

工作原理working principle

区别传统的平面离子阱系统,本发明通过引入高精度电压操控模块,结合新的离子阱操控系统和已有的平面离子阱装置,实现了离子精密操控,并在量子弱力感应上有了很大的突破,基于现有的Labview操控系统,在此基础上进行改进,电压操控模块包括电位置监控模块500、电压调节监控模块600和荧光计数监控模块700,首先与电势场构建模块100的内置上位机进行信号传输,电势场构建模块100启动离子阱系统,由供电启动单元601进行供电电压加载,同步进行的,离子捕获模块200开启激光器和CCD,并加载最后一次保存的参数设置,此处参数在设置包括各电极电位值以及CCD设备拍摄时长,同时进行CCD的图像窗口以及荧光计数器数据图的加载,相配合的,荧光计数监控模块700实时对荧光计数进行监控,电位置监控模块500实时对离子位置信息进行监控,在离子通过其他设备达到稳定状态后开始测试,通过参数加载单元201、稳定性调节单元202、离子位置调节单元203的配合,改变环境使得离子位置产生改变,再由CCD拍摄其位置并记录离子位置信息,并记录当前各电极电压值,通过修改电极电位值来实现抬升或降低电极电压将离子搬运回初始位置,当抬升各直流电极电压可使得离子位置上升,当降低各直流电极电压可使得离子位置下降,当抬升某个电极电压可使得离子向该电极的反方向位移,当降低某个电极电压可使得离子向该电极的方向位移,最终记录各电极电压值,而实际操作中由于CCD窗口大小和芯片阱电势场限制,各电极电压的实际调节范围远小于其可调范围,对于各电极电位值修改以及离子信息记录步骤中须观察荧光计数器的数据,确保其荧光计数相对稳定,再将环境恢复到初始状态,并重复各电极电位值修改、离子信息记录和确保荧光计数稳定步骤,重复多次后进行分析,以此得出改变环境后所产生的额外的弱力值,而针对电压操控模块的调节,通过电位置监控模块500、电压调节监控模块600和荧光计数监控模块700的配合,首先由上位机输出信号,供电启动单元601将系统启动,加载供电,位机发送工作指令,离子阱操控系统输入开关电压,模块开始工作,模块的数字电路控制端将上位机输入的电压值转换为0、1序列并通过I/O端口向电路板输出高电平脉冲,共14个端口并联输出,电路板DAC芯片接收到数字电路控制端的电平脉冲后将其转换为模拟信号并输出电压,14个输入端口中有3个是用于选择输出端口、8个是电压控制、其余3个是用于工作开关和工作保护,且此处的电路板DAC芯片的输出端口两两匹配,经过差分电路后将电压加载在离子阱电极上,在关闭时同样由上位机发送停止工作指令,离子阱操控系统切断开关电压,停止工作后切断供电电压。Different from the traditional planar ion trap system, this invention realizes precise control of ions by introducing a high-precision voltage control module and combining the new ion trap control system with the existing planar ion trap device, and has made great progress in quantum weak force induction. A big breakthrough, based on the existing Labview control system, improvements are made on this basis. The voltage control module includes the electrical position monitoring module 500, the voltage adjustment monitoring module 600 and the fluorescence counting monitoring module 700. First, it is combined with the built-in electric potential field building module 100. The host computer performs signal transmission, the electric potential field building module 100 starts the ion trap system, and the power supply startup unit 601 loads the power supply voltage. Simultaneously, the ion capture module 200 turns on the laser and CCD, and loads the last saved parameter settings, here The parameters include the potential value of each electrode and the shooting time of the CCD device. At the same time, the CCD image window and the fluorescence counter data chart are loaded. In conjunction, the fluorescence counting monitoring module 700 monitors the fluorescence counting in real time, and the electrical position monitoring module 500 monitors the fluorescence counting in real time. Monitor the ion position information, and start testing after the ions reach a stable state through other equipment. Through the cooperation of the parameter loading unit 201, the stability adjustment unit 202, and the ion position adjustment unit 203, the environment is changed to cause the ion position to change, and then the CCD Photograph its position and record the ion position information, and record the current voltage value of each electrode. By modifying the electrode potential value, you can raise or lower the electrode voltage to transport the ions back to the initial position. When the DC electrode voltage is raised, the ion position will rise. When it is lowered, the ion position will rise. The voltage of each DC electrode can cause the position of ions to decrease. When the voltage of an electrode is raised, the ions can be displaced in the opposite direction of the electrode. When the voltage of an electrode is lowered, the ions can be displaced in the direction of the electrode. Finally, the voltage value of each electrode is recorded. In actual operation, due to the limitations of the CCD window size and chip well potential field, the actual adjustment range of each electrode voltage is much smaller than its adjustable range. During the modification of each electrode potential value and the ion information recording step, the data of the fluorescence counter must be observed to ensure that it is Fluorescence counting is relatively stable, and then the environment is restored to the initial state, and the steps of modifying the potential value of each electrode, recording ion information, and ensuring stable fluorescence counting are repeated. Repeat the steps multiple times for analysis to obtain the additional changes in the environment. Weak force value, for the adjustment of the voltage control module, through the cooperation of the electric position monitoring module 500, the voltage adjustment monitoring module 600 and the fluorescence counting monitoring module 700, first the host computer outputs a signal, and the power supply startup unit 601 starts the system and loads the power supply , the host computer sends work instructions, the ion trap control system inputs the switching voltage, and the module starts to work. The digital circuit control end of the module converts the voltage value input by the host computer into a sequence of 0 and 1 and outputs high voltage to the circuit board through the I/O port. Flat pulse, a total of 14 ports are output in parallel. The DAC chip on the circuit board receives the level pulse from the digital circuit control end and converts it into an analog signal and outputs a voltage. 3 of the 14 input ports are used to select the output port, 8 One is for voltage control, and the remaining three are for work switch and work protection. The output ports of the circuit board DAC chips here are matched in pairs. After passing through the differential circuit, the voltage is loaded on the ion trap electrode. When it is closed, it is also controlled by The host computer sends a stop working command, the ion trap control system cuts off the switch voltage, and cuts off the power supply voltage after stopping working.

简言之该离子阱离子操控实验系统实施步骤如下:打开离子阱装置,加载各电极电压直流和交流,构建离子阱内电势场,捕获离子,通过CCD观测离子在离子阱内的位置微调节电势场,将离子迁移至理想位置,进行弱力测量,此处弱力测量包括:改变或引入外界环境、观察离子位置的变化,并记录当前离子位置的坐标信息和各电极电压值、调节直流电极电压,使离子位置回到初始位置,记录各电极电压值、通过电压差值计算出电势场改变情况从而得出外界作用力的精确值。In short, the implementation steps of the ion trap ion control experimental system are as follows: open the ion trap device, load DC and AC voltages on each electrode, build the electric potential field in the ion trap, capture the ions, and observe the position of the ions in the ion trap through CCD to finely adjust the electric potential. field, move the ions to the ideal position, and perform weak force measurement. Here, the weak force measurement includes: changing or introducing the external environment, observing changes in ion position, recording the coordinate information of the current ion position and the voltage value of each electrode, and adjusting the DC electrode. voltage to return the ion position to its initial position, record the voltage value of each electrode, and calculate the change in the electric potential field through the voltage difference to obtain the precise value of the external force.

区别传统平面离子阱系统,可通过离子捕获模块200和电势场调节模块300的设置,将上位机输入的电压值转换为0、1序列并通过I/O端口向电路板输出高电平脉冲,通过修改电极电位值实现抬升或降低电极电压将离子搬运回初始位置,通过电压差值计算出电势场改变情况从而得出外界作用力的精确值。Different from the traditional planar ion trap system, through the settings of the ion capture module 200 and the potential field adjustment module 300, the voltage value input by the host computer can be converted into a sequence of 0 and 1 and a high-level pulse can be output to the circuit board through the I/O port. By modifying the electrode potential value, the electrode voltage is raised or lowered to transport the ions back to the initial position. The changes in the electric potential field are calculated through the voltage difference to obtain the precise value of the external force.

以上所述,仅是本发明的较佳实施例而已,并非是对本发明作其它形式的限制,任何熟悉本专业的技术人员可能利用上述揭示的技术内容加以变更或改型为等同变化的等效实施例应用于其它领域,但是凡是未脱离本发明技术方案内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与改型,仍属于本发明技术方案的保护范围。The above are only preferred embodiments of the present invention, and are not intended to limit the present invention in other forms. Any skilled person familiar with the art may make changes or modifications to equivalent changes using the technical contents disclosed above. The embodiments may be applied to other fields, but any simple modifications, equivalent changes, and modifications made to the above embodiments based on the technical essence of the present invention without departing from the content of the technical solution of the present invention still fall within the protection scope of the technical solution of the present invention.

Claims (5)

1.一种离子阱离子操控实验系统,包括:电势场构建模块(100)、离子捕获模块(200)、电势场调节模块(300)、弱力测量模块(400)、电位置监控模块(500)、电压调节监控模块(600)、荧光计数监控模块(700),其特征在于:所述电势场构建模块(100)与离子捕获模块(200)连接,所述离子捕获模块(200)与电势场调节模块(300)连接,所述电势场调节模块(300)与弱力测量模块(400)连接,其中:1. An ion trap ion control experimental system, including: electric potential field building module (100), ion capture module (200), electric potential field adjustment module (300), weak force measurement module (400), and electric position monitoring module (500 ), voltage adjustment monitoring module (600), fluorescence counting monitoring module (700), characterized in that: the potential field building module (100) is connected to the ion capture module (200), and the ion capture module (200) is connected to the potential The field adjustment module (300) is connected, and the electric potential field adjustment module (300) is connected with the weak force measurement module (400), where: 所述电势场构建模块(100)设置上位机,内置FPGA,打开离子阱装置,同时对各电极电压进行加载,构建离子阱内电势场;所述离子捕获模块(200)承载激光器、CCD以及离子制备装置,在捕获离子后通过CCD对离子阱内的离子位置进行监测;所述电势场调节模块(300)对电势场控制层面进行调节;所述弱力测量模块(400)对囚禁离子信息进行获取、显示并存储;The electric potential field building module (100) is equipped with a host computer and a built-in FPGA, turns on the ion trap device, and simultaneously loads the voltage of each electrode to construct the electric potential field in the ion trap; the ion capture module (200) carries the laser, CCD and ion trap Preparation device, after capturing ions, monitors the position of ions in the ion trap through CCD; the electric potential field adjustment module (300) adjusts the electric potential field control level; the weak force measurement module (400) performs information on trapped ions Get, display and store; 所述离子捕获模块(200)包括参数加载单元(201)、稳定性调节单元(202)、离子位置调节单元(203)和离子信息反馈单元(204),其中:所述参数加载单元(201)使用最后一次保存的参数设置进行离子阱装置开启后的加载,对CCD图像窗口进行加载,对荧光计数器数据体进行加载,参数设置包括:各电极电位值和CCD设备拍摄时长;所述稳定性调节单元(202)根据参数加载单元(201)加载后所获取的离子当前状态进行监测,在达到稳定状态后开启测试;The ion capture module (200) includes a parameter loading unit (201), a stability adjustment unit (202), an ion position adjustment unit (203) and an ion information feedback unit (204), wherein: the parameter loading unit (201) Use the last saved parameter setting to load the ion trap device after it is turned on, load the CCD image window, and load the fluorescence counter data volume. The parameter settings include: the potential value of each electrode and the shooting time of the CCD device; the stability adjustment The unit (202) monitors the current state of ions obtained after loading by the parameter loading unit (201), and starts the test after reaching a stable state; 所述参数加载单元(201)与稳定性调节单元(202)连接,所述稳定性调节单元(202)与离子位置调节单元(203)连接,其中:所述离子位置调节单元(203)通过环境改变使得离子位置产生改变,并对电极电位值进行调节;The parameter loading unit (201) is connected to the stability adjustment unit (202), and the stability adjustment unit (202) is connected to the ion position adjustment unit (203), wherein: the ion position adjustment unit (203) passes through the environment. The change changes the position of the ions and adjusts the electrode potential value; 所述离子位置调节单元(203)调节方式具体为:The specific adjustment method of the ion position adjustment unit (203) is: 改变环境使得离子位置产生改变,再由CCD拍摄其位置并记录离子位置信息,并记录当前各电极电压值,修改电极电位值来抬升、降低电极电压,将离子搬运回初始位置,当抬升各直流电极电压使得离子位置上升,当降低各直流电极电压使离子位置下降,当抬升某个电极电压使离子向该电极的反方向位移,当降低某个电极电压可使得离子向该电极的方向位移,最终记录各电极电压值;Changing the environment causes the ion position to change, and then the CCD captures its position and records the ion position information, and records the current voltage value of each electrode. Modify the electrode potential value to raise and lower the electrode voltage, and transport the ions back to the initial position. When raising each DC current The electrode voltage causes the ion position to rise. When the DC electrode voltage is lowered, the ion position drops. When an electrode voltage is raised, the ions are displaced in the opposite direction of the electrode. When the voltage of an electrode is lowered, the ions are displaced in the direction of the electrode. Finally record the voltage value of each electrode; 所述离子位置调节单元(203)与离子信息反馈单元(204)连接,其中:The ion position adjustment unit (203) is connected to the ion information feedback unit (204), where: 所述离子信息反馈单元(204)对各电极电压值、荧光计数进行记录,重复稳定性调节单元(202)和离子位置调节单元(203)的步骤使荧光计数趋于稳定。The ion information feedback unit (204) records each electrode voltage value and fluorescence count, and repeats the steps of the stability adjustment unit (202) and the ion position adjustment unit (203) to stabilize the fluorescence count. 2.根据权利要求1所述的一种离子阱离子操控实验系统,其特征在于:所述电压调节监控模块(600)包括供电启动单元(601)、指令接收单元(602)、电压值转换单元(603)和电压加载单元(604),其中:2. An ion trap ion manipulation experiment system according to claim 1, characterized in that: the voltage adjustment monitoring module (600) includes a power supply starting unit (601), an instruction receiving unit (602), and a voltage value conversion unit. (603) and voltage loading unit (604), where: 所述电压调节监控模块(600)内置DAC芯片,并承载数字电路控制器,对加载到离子阱电极上的电压进行调节,电路板DAC芯片的输出端口两两匹配,经过差分电路后将电压加载在离子阱电极上。The voltage adjustment monitoring module (600) has a built-in DAC chip and carries a digital circuit controller to adjust the voltage loaded on the ion trap electrode. The output ports of the DAC chips on the circuit board are matched in pairs, and the voltage is loaded after passing through the differential circuit. on the ion trap electrode. 3.根据权利要求2所述的一种离子阱离子操控实验系统,其特征在于:所述供电启动单元(601)与指令接收单元(602)连接,所述指令接收单元(602)与电压值转换单元(603)连接,其中:3. An ion trap ion manipulation experimental system according to claim 2, characterized in that: the power supply starting unit (601) is connected to an instruction receiving unit (602), and the instruction receiving unit (602) is connected to a voltage value. The conversion unit (603) is connected, where: 所述供电启动单元(601)服务于电压调节监控模块(600)和电势场构建模块(100),负责电压调节监控模块(600)的系统启动,并加载供电电压;The power supply startup unit (601) serves the voltage adjustment monitoring module (600) and the electric potential field construction module (100), is responsible for system startup of the voltage adjustment monitoring module (600), and loads the power supply voltage; 所述指令接收单元(602)用于接收上位机所发送指令,并向离子捕获模块(200)输入开关电压,使其开始工作以及切断供电。The instruction receiving unit (602) is used to receive instructions sent by the host computer, and input the switching voltage to the ion capture module (200) to start working and cut off the power supply. 4.根据权利要求3所述的一种离子阱离子操控实验系统,其特征在于:所述电压值转换单元(603)与电压加载单元(604)连接,其中:4. An ion trap ion manipulation experimental system according to claim 3, characterized in that: the voltage value conversion unit (603) is connected to a voltage loading unit (604), wherein: 所述电压值转换单元(603)通过数字电路控制器将上位机输入电压值转换为0、1序列,并通过I/O端口向电路板输出高电平脉冲,此处共14个端口并联输出;The voltage value conversion unit (603) converts the input voltage value of the host computer into a sequence of 0 and 1 through the digital circuit controller, and outputs a high-level pulse to the circuit board through the I/O port. Here, a total of 14 ports are output in parallel. ; 所述电压加载单元(604)将电路板DAC芯片接收到数字电路控制端的电平脉冲,转换为模拟信号并输出电压,其中14个输入端口中有3个是用于选择输出端口、8个是电压控制、其余3个是用于工作开关和工作保护。The voltage loading unit (604) converts the level pulses from the digital circuit control terminal received by the circuit board DAC chip into analog signals and outputs voltages. Among the 14 input ports, 3 are used to select output ports and 8 are Voltage control, the remaining 3 are used for work switch and work protection. 5.根据权利要求4所述的一种离子阱离子操控实验系统,其特征在于:所述电位置监控模块(500)、电压调节监控模块(600)和荧光计数监控模块(700)分别与电势场调节模块(300)连接,其中:5. An ion trap ion control experimental system according to claim 4, characterized in that: the electrical position monitoring module (500), the voltage adjustment monitoring module (600) and the fluorescence counting monitoring module (700) are respectively connected to the electrical potential. The field conditioning module (300) is connected where: 所述荧光计数监控模块(700)实时对荧光计数进行监控;The fluorescence counting monitoring module (700) monitors fluorescence counting in real time; 所述电位置监控模块(500)实时对离子位置进行监控。The electrical position monitoring module (500) monitors the ion position in real time.
CN202310602806.7A 2023-05-26 2023-05-26 An ion trap ion control experimental system Active CN116598040B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310602806.7A CN116598040B (en) 2023-05-26 2023-05-26 An ion trap ion control experimental system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310602806.7A CN116598040B (en) 2023-05-26 2023-05-26 An ion trap ion control experimental system

Publications (2)

Publication Number Publication Date
CN116598040A CN116598040A (en) 2023-08-15
CN116598040B true CN116598040B (en) 2024-02-09

Family

ID=87606012

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310602806.7A Active CN116598040B (en) 2023-05-26 2023-05-26 An ion trap ion control experimental system

Country Status (1)

Country Link
CN (1) CN116598040B (en)

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5793091A (en) * 1996-12-13 1998-08-11 International Business Machines Corporation Parallel architecture for quantum computers using ion trap arrays
CA2339548A1 (en) * 1998-08-05 2000-02-17 National Research Council Of Canada Apparatus and method for atmospheric pressure 3-dimensional ion trapping
US6124592A (en) * 1998-03-18 2000-09-26 Technispan Llc Ion mobility storage trap and method
CN103714878A (en) * 2014-01-15 2014-04-09 中国科学院武汉物理与数学研究所 Integrated ion trapping device
CN210199398U (en) * 2019-05-22 2020-03-27 中国科学技术大学 Control device for light trapping particles
WO2020219586A1 (en) * 2019-04-23 2020-10-29 Radiabeam Technologies, Llc Quantum computing structures using ion traps
CN111899909A (en) * 2020-08-10 2020-11-06 中国科学技术大学 Device for cooling and trapping ions
CN112529192A (en) * 2020-12-01 2021-03-19 中国科学技术大学 Electronic device for ion trap quantum experiment and control method thereof
CN113970662A (en) * 2021-10-19 2022-01-25 中山大学 Electric field force detection system based on single imprisoned ion
CN114388334A (en) * 2021-12-21 2022-04-22 上海裕达实业有限公司 Ion isolation method, system and medium for ion trap mass spectrometer
CN114429063A (en) * 2021-12-31 2022-05-03 西安空间无线电技术研究所 Method and system for calibrating charge state and relative spatial distribution of trapped ions
CN115047259A (en) * 2022-04-15 2022-09-13 安徽省太微量子科技有限公司 Particle charge-to-mass ratio measuring method based on frequency-adjustable two-dimensional linear ion trap
CN115482952A (en) * 2021-05-31 2022-12-16 华为技术有限公司 Ion trap integrated chip, preparation method thereof and ion trap quantum computing system
CN115795806A (en) * 2022-11-07 2023-03-14 兰州空间技术物理研究所 Method for quickly optimizing geometric parameters of ion trap
CN115829043A (en) * 2022-12-08 2023-03-21 国仪量子(合肥)技术有限公司 Ion trap quantum computer
CN116136965A (en) * 2021-11-16 2023-05-19 华为技术有限公司 Particle trap system

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5793091A (en) * 1996-12-13 1998-08-11 International Business Machines Corporation Parallel architecture for quantum computers using ion trap arrays
US6124592A (en) * 1998-03-18 2000-09-26 Technispan Llc Ion mobility storage trap and method
CA2339548A1 (en) * 1998-08-05 2000-02-17 National Research Council Of Canada Apparatus and method for atmospheric pressure 3-dimensional ion trapping
CN103714878A (en) * 2014-01-15 2014-04-09 中国科学院武汉物理与数学研究所 Integrated ion trapping device
WO2020219586A1 (en) * 2019-04-23 2020-10-29 Radiabeam Technologies, Llc Quantum computing structures using ion traps
CN210199398U (en) * 2019-05-22 2020-03-27 中国科学技术大学 Control device for light trapping particles
CN111899909A (en) * 2020-08-10 2020-11-06 中国科学技术大学 Device for cooling and trapping ions
CN112529192A (en) * 2020-12-01 2021-03-19 中国科学技术大学 Electronic device for ion trap quantum experiment and control method thereof
CN115482952A (en) * 2021-05-31 2022-12-16 华为技术有限公司 Ion trap integrated chip, preparation method thereof and ion trap quantum computing system
CN113970662A (en) * 2021-10-19 2022-01-25 中山大学 Electric field force detection system based on single imprisoned ion
CN116136965A (en) * 2021-11-16 2023-05-19 华为技术有限公司 Particle trap system
CN114388334A (en) * 2021-12-21 2022-04-22 上海裕达实业有限公司 Ion isolation method, system and medium for ion trap mass spectrometer
CN114429063A (en) * 2021-12-31 2022-05-03 西安空间无线电技术研究所 Method and system for calibrating charge state and relative spatial distribution of trapped ions
CN115047259A (en) * 2022-04-15 2022-09-13 安徽省太微量子科技有限公司 Particle charge-to-mass ratio measuring method based on frequency-adjustable two-dimensional linear ion trap
CN115795806A (en) * 2022-11-07 2023-03-14 兰州空间技术物理研究所 Method for quickly optimizing geometric parameters of ion trap
CN115829043A (en) * 2022-12-08 2023-03-21 国仪量子(合肥)技术有限公司 Ion trap quantum computer

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
"Control System of the Tokyo Electron Beam Ion Trap";H Watanabe et.al;《Physica Scripta》;第T73卷;第365-367页 *
"Controlled Teleportation of an Arbitrary Three-ion State in Ion-trap Systems";Yuan-hua Li et.al;《Int J Theor Phys》(第53期);第3756–3764页 *
"Three-Dimensional Compensation for Minimizing Heating of the Ion in Surface-Electrode Trap";Ji Li( 李冀 ) 等;《CHIN. PHYS. LETT.》;第30卷(第5期);第053701-1--053701-4页 *
"囚禁离子体系中实验探索量子体系的不可逆性和快速容错的量子逻辑操作";章嘉伟;《CNKI博士学位论文全文库 基础科学辑》;第31-46页 *
"线形离子阱中量子比特的制备";周飞 等;《第十六届全国原子与分子物理学术会议论文摘要集》;第30页 *
"芯片离子阱中温度与受力的精密感知";刘志超;《CNKI博士学位论文全文库 基础科学辑》;第1-102页 *

Also Published As

Publication number Publication date
CN116598040A (en) 2023-08-15

Similar Documents

Publication Publication Date Title
Bowler et al. Arbitrary waveform generator for quantum information processing with trapped ions
Stuart et al. Chip-integrated voltage sources for control of trapped ions
Pearson et al. Experimental investigation of planar ion traps
US9495563B2 (en) Analog integrator system and method
CN105548997A (en) Active compensation for phase alignment errors in time-of-flight cameras
CN110988450B (en) Safe and automatic magnetic field current feedback device and method
Negnevitsky Feedback-stabilised quantum states in a mixed-species ion system
CN116598040B (en) An ion trap ion control experimental system
CN105717463A (en) Power supply load test apparatus
CN104104007A (en) Laser extra-cavity power stabilization device and laser extra-cavity power stabilization method
KR101276015B1 (en) Regulated low power control system for electrostatics actuators
Sanchez-Sinencio et al. OTA-based non-linear function approximations
Jeong et al. A 42 nJ/Conversion on-demand state-of-charge indicator for miniature IoT Li-ion batteries
CN117054910A (en) Electrochemical impedance spectrum measuring method, excitation signal generating method and device
Filippetto et al. Feedback and control systems for future linear colliders: White paper for Snowmass 2021 topical group AF07-RF
de Clercq Transport quantum logic gates for trapped ions
Andersen Bose-Einstein condensates in optical lattices
US20240375104A1 (en) Acoustic trapping microchannel resonance detection and control
Nishimura et al. Development of a new high-speed readout system for SOI pixel detectors
Sun et al. A pragmatic data processing system for large resistive sensor arrays
CN119125816A (en) Monitoring circuit and monitoring method for gate characteristics of power gallium nitride devices
CN113156212B (en) DC offset output system and method of AC self-balancing bridge
Chang et al. Design optimization and performance enhancement of electroosmotic pumps for tactile applications using Taguchi-based methodology
US20240119208A1 (en) Decoupling capacitor parameter determination for a power distribution network
JP2010096634A (en) Voltage detecting device

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant