CN116583009A - A bending-resistant copper-based self-healing double-layer circuit and its high-precision manufacturing process - Google Patents
A bending-resistant copper-based self-healing double-layer circuit and its high-precision manufacturing process Download PDFInfo
- Publication number
- CN116583009A CN116583009A CN202310786808.6A CN202310786808A CN116583009A CN 116583009 A CN116583009 A CN 116583009A CN 202310786808 A CN202310786808 A CN 202310786808A CN 116583009 A CN116583009 A CN 116583009A
- Authority
- CN
- China
- Prior art keywords
- layer
- conductive
- copper
- bending
- conductive layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 title claims abstract description 77
- 229910052802 copper Inorganic materials 0.000 title claims abstract description 76
- 239000010949 copper Substances 0.000 title claims abstract description 76
- 238000005452 bending Methods 0.000 title claims abstract description 51
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 12
- 230000008439 repair process Effects 0.000 claims abstract description 40
- 229910001338 liquidmetal Inorganic materials 0.000 claims abstract description 24
- 229920001721 polyimide Polymers 0.000 claims abstract description 20
- 239000004642 Polyimide Substances 0.000 claims abstract description 15
- 238000005538 encapsulation Methods 0.000 claims abstract description 11
- 239000002243 precursor Substances 0.000 claims abstract description 11
- 238000000206 photolithography Methods 0.000 claims abstract description 5
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical group [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 claims abstract description 4
- 229910001128 Sn alloy Inorganic materials 0.000 claims abstract description 4
- 229910052733 gallium Inorganic materials 0.000 claims abstract description 4
- RHZWSUVWRRXEJF-UHFFFAOYSA-N indium tin Chemical compound [In].[Sn] RHZWSUVWRRXEJF-UHFFFAOYSA-N 0.000 claims abstract description 4
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 10
- 238000000034 method Methods 0.000 claims description 10
- 230000008569 process Effects 0.000 claims description 9
- 238000005530 etching Methods 0.000 claims description 6
- 238000011161 development Methods 0.000 claims description 3
- 238000013035 low temperature curing Methods 0.000 claims description 2
- 239000004020 conductor Substances 0.000 abstract description 3
- 230000035876 healing Effects 0.000 abstract 1
- 238000011282 treatment Methods 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000001723 curing Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 239000012776 electronic material Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229920002120 photoresistant polymer Polymers 0.000 description 2
- 229920006267 polyester film Polymers 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 238000004026 adhesive bonding Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000011889 copper foil Substances 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000000265 homogenisation Methods 0.000 description 1
- 238000007731 hot pressing Methods 0.000 description 1
- 150000003949 imides Chemical class 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 238000004377 microelectronic Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 238000011056 performance test Methods 0.000 description 1
- 239000002985 plastic film Substances 0.000 description 1
- 229920000307 polymer substrate Polymers 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 235000008113 selfheal Nutrition 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000003631 wet chemical etching Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/14—Structural association of two or more printed circuits
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/11—Printed elements for providing electric connections to or between printed circuits
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/46—Manufacturing multilayer circuits
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Manufacturing & Machinery (AREA)
- Parts Printed On Printed Circuit Boards (AREA)
Abstract
一种抗弯折铜基自愈合双层电路及其高精度制造工艺,包括依次设置的基底层、导电层、导电修复层;基底层上方覆盖的导电层为铜膜,采用不同线宽的铜通路;导电修复层为镓铟锡合金;制造工艺是对基底层上覆盖的导电层进行光刻等处理,使导电层成设定线宽的铜通路;然后将加工过铜通路的基底层及导电层放置于溶液环境中,将液态金属滴入溶液中,自然润湿在导电层的表面;再将润湿完液态金属的基底层及导电层低温固化得到导电修复层,在导电修复层上使用聚酰亚胺前驱液旋涂作为封装层,最后将聚酰亚胺前驱液高温固化;本发明抗弯折铜基自愈合双层电路在多次弯折情况下铜导体裂纹会自愈合,提高了柔性电路的电学性能,并实现了高精度制造。
A bending-resistant copper-based self-healing double-layer circuit and its high-precision manufacturing process, including a base layer, a conductive layer, and a conductive repair layer arranged in sequence; the conductive layer covered above the base layer is a copper film, using different line widths Copper path; the conductive repair layer is gallium indium tin alloy; the manufacturing process is to perform photolithography and other treatments on the conductive layer covered on the base layer, so that the conductive layer becomes a copper path with a set line width; then the base layer processed by the copper path And the conductive layer is placed in the solution environment, the liquid metal is dropped into the solution, and the surface of the conductive layer is naturally wetted; then the base layer and the conductive layer that have been wetted with the liquid metal are cured at low temperature to obtain a conductive repair layer, and the conductive repair layer The polyimide precursor solution is spin-coated as the encapsulation layer, and finally the polyimide precursor solution is cured at high temperature; the anti-bending copper-based self-healing double-layer circuit of the present invention will automatically crack the copper conductor under the condition of multiple bending healing, improving the electrical performance of flexible circuits and enabling high-precision fabrication.
Description
技术领域technical field
本发明涉及微纳制造及柔性电路加工技术领域,具体涉及一种抗弯折铜基自愈合双层电路及其高精度制造工艺。The invention relates to the technical field of micro-nano manufacturing and flexible circuit processing, in particular to a bending-resistant copper-based self-healing double-layer circuit and its high-precision manufacturing process.
背景技术Background technique
柔性电路(FPC)是以聚脂薄膜或聚酰亚胺为基材制成的一种具有高度可靠性、绝佳曲挠性的印刷电路,通过在可弯曲的轻薄塑料片上,嵌入电路设计,在窄小和有限空间中堆嵌大量精密元件,从而形成可弯曲的挠性电路。Flexible circuit (FPC) is a printed circuit with high reliability and excellent flexibility made of polyester film or polyimide as the base material. By embedding the circuit design on a bendable thin plastic sheet, Stack a large number of precision components in a small and limited space to form a bendable flexible circuit.
现有的柔性电路(FPC)结构为基底层聚脂薄膜或聚酰亚胺,导电层铜,通过胶合或者热压工艺制备在基底层上方,再通过封装层将导电层包裹形成柔性电路([1]Y.Tang,H.Li,J.Sheng,B.Sun,J.Wang,C.Zhang,D.Zhang,Y.Huang.Study on wet chemicaletching of flexible printed circuit board with 16-μm line pitch.Journal ofElectronic Materials.52(6),4030-4036(2023).The existing flexible circuit (FPC) structure is a base layer of polyester film or polyimide, a conductive layer of copper, which is prepared above the base layer by gluing or hot pressing, and then wraps the conductive layer through the packaging layer to form a flexible circuit ([ 1]Y.Tang,H.Li,J.Sheng,B.Sun,J.Wang,C.Zhang,D.Zhang,Y.Huang.Study on wet chemicaletching of flexible printed circuit board with 16-μm line pitch. Journal of Electronic Materials. 52(6), 4030-4036(2023).
https://doi.org/10.1007/s11664-023-10368-z;[2]A.Salahouelhadj,M.Martiny,S.Mercier,L.Bodin,D.Manteigas,B.Stephan.Reliability of thermallystressed rigid–flex printed circuit boards for high density interconnectapplications.Microelectronics Reliability.54(1),204-213(2014).https://doi.org/https://doi.org/10.1016/j.microrel.2013.08.005)。然而目前柔性电路(FPC)存在弯折耐久性差的缺点,柔性电路的弯折耐久性会直接影响柔性电路的使用寿命,柔性电子器件在应变下的耐久性很大程度上取决于裂纹的形成/扩展,柔性电路在工作中往往需要进行弯折,在一定弯折次数下,导电层铜导体会在弯折疲劳应力作用下导致铜电路产生裂纹,从而导致柔性电路的电学性能下降,甚至导致柔性电路失效([3]H.D.Merchant,M.G.Minor,S.J.Clouser,D.T.Leonard.18m electrodeposited copper foil for flexfatigue applications.Circuit World.25(1),38-46(1999).https://doi.org/10.1007/s11664-023-10368-z; [2] A. Salahouelhadj, M. Martiny, S. Mercier, L. Bodin, D. Manteigas, B. Stephan. Reliability of thermally stressed rigid– flex printed circuit boards for high density interconnect applications.Microelectronics Reliability.54(1),204-213(2014).https://doi.org/https://doi.org/10.1016/j.microrel.2013.08.005) . However, the current flexible circuit (FPC) has the disadvantage of poor bending durability. The bending durability of the flexible circuit will directly affect the service life of the flexible circuit. The durability of flexible electronic devices under strain largely depends on the formation of cracks/ Expansion, flexible circuits often need to be bent during work. Under a certain number of bending times, the copper conductor of the conductive layer will cause cracks in the copper circuit under the action of bending fatigue stress, which will lead to a decrease in the electrical performance of the flexible circuit and even lead to a flexible circuit. Circuit failure ([3]H.D.Merchant, M.G.Minor, S.J.Clouser, D.T.Leonard.18m electrodeposited copper foil for flexfatigue applications.Circuit World.25(1),38-46(1999).
https://doi.org/10.1108/03056129910244842;[4]B.-J.Kim,H.-A.S.Shin,J.-H.Lee,Y.-C.Joo.Effect of cyclic outer and inner bending on the fatiguebehavior of a multi-layer metal film on a polymer substrate.Japanese Journalof Applied Physics.55(6S3),06JF01(2016).https://doi.org/10.1108/03056129910244842; [4] B.-J.Kim, H.-A.S.Shin, J.-H.Lee, Y.-C.Joo. Effect of cyclic outer and inner bending on the fatigue behavior of a multi-layer metal film on a polymer substrate. Japanese Journal of Applied Physics. 55(6S3), 06JF01(2016).
https://doi.org/10.7567/JJAP.55.06JF01;[5]K.-H.Huang,J.-G.Duh.Fatiguecharacterization for flexible circuit with polyimide on adhesivelesscopper.Journal of Electronic Materials.44(10),3934-3941(2015).https://doi.org/10.1007/s11664-015-3865-7)。https://doi.org/10.7567/JJAP.55.06JF01; [5]K.-H.Huang, J.-G.Duh.Fatiguecharacterization for flexible circuit with polyimide on adhesivelesscopper.Journal of Electronic Materials.44(10) , 3934-3941 (2015). https://doi.org/10.1007/s11664-015-3865-7).
发明内容Contents of the invention
为了克服上述现有技术的缺点,本发明的目的在于提供了一种抗弯折铜基自愈合双层电路及其高精度制造工艺,抗弯折铜基自愈合双层电路在多次弯折情况下铜导体裂纹会自愈合,提高了柔性电路的电学性能,并实现了高精度制造。In order to overcome the shortcomings of the above-mentioned prior art, the object of the present invention is to provide a bending-resistant copper-based self-healing double-layer circuit and its high-precision manufacturing process. Cracks in the copper conductor will self-heal when bent, improving the electrical performance of the flexible circuit and enabling high-precision manufacturing.
为了达到上述目的,本发明采取的技术方案为:In order to achieve the above object, the technical scheme that the present invention takes is:
一种抗弯折铜基自愈合双层电路,包括依次设置的基底层1、导电层2、导电修复层3;A bending-resistant copper-based self-healing double-layer circuit, including a base layer 1, a conductive layer 2, and a conductive repair layer 3 arranged in sequence;
所述的基底层1为聚酰亚胺;基底层1上方覆盖的导电层2为铜膜,采用不同线宽的铜通路;The base layer 1 is polyimide; the conductive layer 2 covered above the base layer 1 is a copper film, and copper paths with different line widths are used;
所述的导电修复层3为镓铟锡合金,是一种液态金属合金,导电修复层3对导电层2具有修复作用。The conductive repair layer 3 is a gallium indium tin alloy, which is a liquid metal alloy, and the conductive repair layer 3 has a repair effect on the conductive layer 2 .
所述的导电修复层3的高度H与导电层2的线宽l有以下关系:The height H of the conductive repair layer 3 has the following relationship with the line width 1 of the conductive layer 2:
其中θ为导电修复层3在导电层2的接触角。Where θ is the contact angle of the conductive repair layer 3 on the conductive layer 2 .
所述的导电修复层3上方设有封装层4,封装层4为聚酰亚胺前驱液。An encapsulation layer 4 is arranged above the conductive repair layer 3, and the encapsulation layer 4 is a polyimide precursor solution.
所述的一种抗弯折铜基自愈合双层电路的高精度制造工艺,包括以下步骤:The high-precision manufacturing process of a bending-resistant copper-based self-healing double-layer circuit includes the following steps:
S1:对基底层1上覆盖的导电层2进行光刻、显影、蚀刻处理,使导电层2成设定线宽的铜通路;S1: Perform photolithography, development, and etching on the conductive layer 2 covered on the base layer 1, so that the conductive layer 2 forms a copper path with a set line width;
S2:将步骤S1加工过铜通路的基底层1以及导电层2放置于溶液环境中,将液态金属滴入溶液中,自然润湿在导电层2的表面;S2: Place the base layer 1 and the conductive layer 2 processed with copper vias in step S1 in a solution environment, drop the liquid metal into the solution, and naturally wet the surface of the conductive layer 2;
S3:将步骤S2中润湿完液态金属的基底层1以及导电层2低温固化得到导电修复层3,在导电修复层3上使用聚酰亚胺前驱液旋涂作为封装层4,最后将聚酰亚胺前驱液高温固化。S3: The base layer 1 and the conductive layer 2 that have been wetted with liquid metal in step S2 are cured at low temperature to obtain a conductive repair layer 3, and a polyimide precursor solution is used to spin coat the conductive repair layer 3 as the encapsulation layer 4, and finally the polyimide The imide precursor solution is cured at high temperature.
所述的步骤S1中基底层1为聚酰亚胺薄膜,厚度为20-30μm;导电层2为压延铜膜,厚度为10-15μm;铜蚀刻液为FeCl3溶液。In the step S1, the base layer 1 is a polyimide film with a thickness of 20-30 μm; the conductive layer 2 is a rolled copper film with a thickness of 10-15 μm; the copper etching solution is FeCl 3 solution.
所述的步骤S2中溶液环境为质量分数为20-40%的NaOH溶液。The solution environment in the step S2 is NaOH solution with a mass fraction of 20-40%.
所述的步骤S3中低温固化工艺,温度为8℃以下。In the low-temperature curing process in step S3, the temperature is below 8°C.
通过步骤S1-S3制备的抗弯折铜基自愈合双层电路,在铜电路一定弯折次数下产生裂纹的时候,导电修复层3的液态金属流入到导电层2的裂缝中,以此来提升电路电学性能的抗弯折性能。In the anti-bending copper-based self-healing double-layer circuit prepared through steps S1-S3, when the copper circuit cracks under a certain number of times of bending, the liquid metal in the conductive repair layer 3 flows into the cracks in the conductive layer 2, thereby To improve the bending resistance of the electrical performance of the circuit.
与现有技术相比,本发明具有如下有益效果:Compared with the prior art, the present invention has the following beneficial effects:
本发明制造工艺,通过光刻以及蚀刻技术可以使柔性电路导电层2的铜通路线宽达到微米尺度以下,实现柔性电路高精度、高密度化,为柔性电子技术的高集成度发展提供了可能。The manufacturing process of the present invention, through photolithography and etching technology, can make the copper path width of the flexible circuit conductive layer 2 below the micron scale, realize the high precision and high density of the flexible circuit, and provide the possibility for the development of high integration of flexible electronic technology .
本发明抗弯折铜基自愈合双层电路通过液态金属填充铜裂纹的原理,当柔性电路在一定次数的弯折下导电层2产生裂纹的时候,导电修复层3的液态金属会填充到裂缝中去,以此来提升电路的电学性能,在柔性电路的抗弯折性能测试中,实现了6万次对折情况下柔性电路仍能保持良好的电学性能;实现23万次0.5mm弯折半径下,柔性电路仍能保持良好的电学性能。The principle of the anti-bending copper-based self-healing double-layer circuit of the present invention is to fill copper cracks with liquid metal. When the flexible circuit is bent for a certain number of times, the conductive layer 2 generates cracks, and the liquid metal in the conductive repair layer 3 will be filled to In order to improve the electrical performance of the circuit, in the bending performance test of the flexible circuit, the flexible circuit can still maintain good electrical performance under the condition of 60,000 folds; 230,000 times of 0.5mm bending Radius, the flexible circuit can still maintain good electrical performance.
附图说明:Description of drawings:
图1为本发明实施例抗弯折铜基自愈合双层电路结构剖面图。FIG. 1 is a cross-sectional view of a bending-resistant copper-based self-healing double-layer circuit structure according to an embodiment of the present invention.
图2为本发明实施例液态金属在铜表面的接触角示意图。Fig. 2 is a schematic diagram of the contact angle of the liquid metal on the copper surface according to the embodiment of the present invention.
图3为不含有导电修复层的柔性电路和本发明实施例抗弯折铜基自愈合双层电路工作原理图。Fig. 3 is a working principle diagram of a flexible circuit without a conductive repair layer and an anti-bending copper-based self-healing double-layer circuit according to an embodiment of the present invention.
图4为发明实施例抗弯折铜基自愈合双层电路电镜俯视图。Fig. 4 is an electron microscope top view of a bending-resistant copper-based self-healing double-layer circuit according to an embodiment of the invention.
图5为本发明实施例抗弯折铜基自愈合双层电路实物图。FIG. 5 is a physical diagram of a bending-resistant copper-based self-healing double-layer circuit according to an embodiment of the present invention.
图6为本发明实施例抗弯折铜基自愈合双层电路与铜电路的弯折性能对比图。FIG. 6 is a comparison diagram of the bending performance of an anti-bending copper-based self-healing double-layer circuit and a copper circuit according to an embodiment of the present invention.
具体实施方式Detailed ways
下面将结合实施例和附图对本发明做详细阐述。以下实施例有助于本领域技术人员更好地理解发明内容,但不以任何形式限制本发明。应当说明的是,在没有做出创造性劳动的前提下,本领域技术人员还可能在本发明基本构思的基础上做出若干材料、结构或阵列类型的变形或改进,这些都属于本发明的保护范围。The present invention will be described in detail below in conjunction with the embodiments and the accompanying drawings. The following examples help those skilled in the art to better understand the contents of the invention, but do not limit the invention in any form. It should be noted that, on the premise of no creative work, those skilled in the art may also make some deformations or improvements in materials, structures or array types on the basis of the basic concept of the present invention, which all belong to the protection of the present invention. scope.
如图1所示,一种抗弯折铜基自愈合双层电路,包括依次设置的基底层1、导电层2、导电修复层3以及封装层4;As shown in FIG. 1 , a self-healing double-layer circuit of anti-bending copper base includes a base layer 1, a conductive layer 2, a conductive repair layer 3 and an encapsulation layer 4 arranged in sequence;
所述的基底层1为聚酰亚胺薄膜,导电层2为压延铜膜,采用不同线宽的铜通路,导电层2将作为导电修复层3的基底;The base layer 1 is a polyimide film, the conductive layer 2 is a rolled copper film, adopts copper paths with different line widths, and the conductive layer 2 will be used as the base of the conductive repair layer 3;
所述的导电修复层3为镓铟锡合金,是一种液态金属合金,导电修复层3位于导电层2的上方,导电修复层3对导电层2具有修复作用,不会存留于基底层1;同时导电修复层3的高度H与导电层2的线宽l有以下关系:The conductive repair layer 3 is gallium indium tin alloy, which is a liquid metal alloy. The conductive repair layer 3 is located above the conductive layer 2. The conductive repair layer 3 has a repair effect on the conductive layer 2 and will not remain in the base layer 1. ; The height H of the conductive repair layer 3 has the following relationship with the line width 1 of the conductive layer 2 simultaneously:
其中θ为导电修复层3在导电层2的接触角,本实施例θ为26°,如图2所示,导电修复层3液态金属可以轻松润湿在在导电层2铜上面。Wherein θ is the contact angle of the conductive repair layer 3 on the conductive layer 2. In this embodiment, θ is 26°. As shown in FIG. 2, the liquid metal of the conductive repair layer 3 can easily wet on the copper of the conductive layer 2.
所述的导电修复层3上方设有封装层4,封装层4为聚酰亚胺前驱液,起保护隔离电路的作用,整个柔性电路是一种四层堆叠柔性电路结构。An encapsulation layer 4 is provided above the conductive repair layer 3, and the encapsulation layer 4 is a polyimide precursor to protect and isolate the circuit. The entire flexible circuit is a four-layer stacked flexible circuit structure.
如图3所示,所述的一种抗弯折铜基自愈合双层电路的工作原理为:导电层2铜电路在弯折过程中由于弯曲疲劳应力而产生裂纹,导电层2上方的导电修复层3液态金属具有高流动性、高导电性以及在铜表面具有很好的润湿性,当导电层2铜产生弯折疲劳裂纹时,导电修复层3液态金属填充到导电层2铜的裂纹中去,以此来提升柔性电路的抗弯折性能;不含有导电修复层3液态金属的现有柔性电路在导电层2铜出现裂纹后,电学性能下降,本发明抗弯折铜基自愈合双层电路具有高精度可设计,且可抗弯折的优点。As shown in Figure 3, the working principle of the anti-bending copper-based self-healing double-layer circuit is: the copper circuit on the conductive layer 2 produces cracks due to bending fatigue stress during the bending process, and the conductive layer 2 above The conductive repair layer 3 liquid metal has high fluidity, high conductivity and good wettability on the copper surface. When the conductive layer 2 copper produces bending fatigue cracks, the conductive repair layer 3 liquid metal fills the conductive layer 2 copper cracks, so as to improve the bending resistance of the flexible circuit; the existing flexible circuit that does not contain the liquid metal of the conductive repair layer 3, after the cracks appear in the copper of the conductive layer 2, the electrical performance declines, and the anti-bending copper base of the present invention The self-healing double-layer circuit has the advantages of high-precision design and resistance to bending.
如图4所示,图4为所述的一种抗弯折铜基自愈合双层电路电镜俯视图,可以看出基底层1聚酰亚胺薄膜上没有液态金属,导电修复层3液态金属只存在于导电层2铜的正上方,以此来保证在柔性电路中各导线之间不会短路。As shown in Figure 4, Figure 4 is a top view of the anti-bending copper-based self-healing double-layer circuit electron microscope, it can be seen that there is no liquid metal on the base layer 1 polyimide film, and the conductive repair layer 3 liquid metal It only exists directly above the copper of the conductive layer 2, so as to ensure that there will be no short circuit between the wires in the flexible circuit.
所述的基底层1聚酰亚胺薄膜厚度为25μm;导电层2厚度为13μm。The thickness of the base layer 1 polyimide film is 25 μm; the thickness of the conductive layer 2 is 13 μm.
所述的一种抗弯折铜基自愈合双层电路的高精度制造工艺,包括以下步骤:The high-precision manufacturing process of a bending-resistant copper-based self-healing double-layer circuit includes the following steps:
S1:首先将导电层2的铜电路的图案做出,铜的图案化工艺选择传统的光刻-刻蚀工艺;在基底层1即PI覆铜膜表面旋涂一层光刻胶,型号为EPG535,匀胶机的参数设置为低速50rpm,持续时间为15s,高速转速为1500rpm,持续时间为40s;匀胶完成后将PI覆铜膜放置在烘台上90℃保持7min,确保PI覆铜膜表面的光刻胶彻底烘干;随后将特定掩膜板放置在PI覆铜膜上方使用光刻机曝光8s,随后放置在5‰的NaOH溶液中显影12s,取出后将其吹干,使导电层2成设定线宽的铜通路;S1: First make the pattern of the copper circuit on the conductive layer 2, and the copper patterning process chooses the traditional photolithography-etching process; spin-coat a layer of photoresist on the surface of the base layer 1, that is, the PI copper-clad film, the model is EPG535, the parameters of the homogenizer are set at a low speed of 50rpm, the duration is 15s, and the high speed is 1500rpm, and the duration is 40s; after the homogenization is completed, place the PI copper clad film on the drying table at 90°C for 7min to ensure the PI copper clad The photoresist on the surface of the film is completely dried; then a specific mask is placed on the PI copper-clad film and exposed for 8s with a photolithography machine, then placed in a 5‰ NaOH solution for 12s, and then blown dry after taking it out, so that The conductive layer 2 forms a copper path with a set line width;
S2:将步骤S1加工过铜通路的基底层1以及导电层2放置于质量分数为30%的NAOH溶液环境中,将液态金属滴入溶液中,自然润湿在导电层2的表面,移动基底层1及导电层2使液态金属均匀润湿在铜电路的表面;S2: Place the base layer 1 and the conductive layer 2 with the copper vias processed in step S1 in a 30% NAOH solution environment, drop the liquid metal into the solution, and naturally wet the surface of the conductive layer 2 to move the base layer. The bottom layer 1 and the conductive layer 2 make the liquid metal evenly wet the surface of the copper circuit;
S3:将步骤S2中润湿完液态金属的基底层1以及导电层2使用液氮进行低温冷却,使液态金属呈现出固体状态得到导电修复层3,在导电修复层3上使用聚酰亚胺前驱液旋涂作为封装层4,匀胶机旋涂参数为:高速转速为500rpm,持续时间为20s,使聚酰亚胺前驱液均匀包覆在润湿完液态金属的表面,最后将整个柔性电路放入恒温烘箱中进行固化,固化参数为:恒温200℃,保持1h,得到抗弯折铜基自愈合双层电路。S3: The base layer 1 and the conductive layer 2 that have been wetted with the liquid metal in step S2 are subjected to low-temperature cooling with liquid nitrogen, so that the liquid metal appears in a solid state to obtain a conductive repair layer 3, and polyimide is used on the conductive repair layer 3 The precursor solution is spin-coated as the encapsulation layer 4. The spin-coating parameters of the homogenizer are: the high-speed rotation speed is 500rpm, and the duration is 20s, so that the polyimide precursor solution is uniformly coated on the surface of the wet liquid metal, and finally the entire flexible The circuit is put into a constant temperature oven for curing. The curing parameters are: constant temperature 200°C, keep for 1h, and obtain a bending-resistant copper-based self-healing double-layer circuit.
如图5所示,图5为所述的一种抗弯折铜基自愈合双层电路的实物图,可以看出抗弯折铜基自愈合双层电路5通过柔性电路转接口6与标准柔性排线7直接联接。As shown in Figure 5, Figure 5 is a physical diagram of the anti-bending copper-based self-healing double-layer circuit, it can be seen that the bending-resistant copper-based self-healing double-layer circuit 5 passes through the flexible circuit interface 6 It is directly connected with the standard flexible cable 7.
如图6所示,图6是所述的一种抗弯折铜基自愈合双层电路与铜电路的弯折性能对比图,图中的测试结果两种电路是在0.5mm弯折半径下的性能对比,可以看出铜基自愈合双层电路在230000次弯折后,电路的电阻变化率达到200%,而纯铜电路在90000次弯折后电路的电阻变化达到200%,可以说明在0.5mm弯折半径下铜基自愈合双层电路相较于纯铜电路的弯折性能提升100%以上。As shown in Figure 6, Figure 6 is a comparison of the bending performance of the anti-bending copper-based self-healing double-layer circuit and the copper circuit. The test results in the figure show that the two circuits are at a bending radius of 0.5mm From the performance comparison below, it can be seen that the resistance change rate of the copper-based self-healing double-layer circuit reaches 200% after 230,000 times of bending, and the resistance change rate of the circuit of the pure copper circuit reaches 200% after 90,000 times of bending. It can be shown that the bending performance of the copper-based self-healing double-layer circuit is improved by more than 100% compared with the pure copper circuit under the bending radius of 0.5mm.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310786808.6A CN116583009A (en) | 2023-06-30 | 2023-06-30 | A bending-resistant copper-based self-healing double-layer circuit and its high-precision manufacturing process |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310786808.6A CN116583009A (en) | 2023-06-30 | 2023-06-30 | A bending-resistant copper-based self-healing double-layer circuit and its high-precision manufacturing process |
Publications (1)
Publication Number | Publication Date |
---|---|
CN116583009A true CN116583009A (en) | 2023-08-11 |
Family
ID=87536039
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202310786808.6A Pending CN116583009A (en) | 2023-06-30 | 2023-06-30 | A bending-resistant copper-based self-healing double-layer circuit and its high-precision manufacturing process |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN116583009A (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050032341A1 (en) * | 2003-08-08 | 2005-02-10 | Semiconductor Energy Laboratory Co., Ltd. | Doping apparatus, doping method, and method for fabricating thin film transistor |
US8841014B1 (en) * | 2011-04-27 | 2014-09-23 | University Of Kentucky Research Foundation | Liquid metal electrodes for rechargeable batteries |
US9872390B1 (en) * | 2016-08-17 | 2018-01-16 | Microsoft Technology Licensing, Llc | Flexible interconnect |
KR20190069080A (en) * | 2017-12-11 | 2019-06-19 | 울산과학기술원 | Room temperature liquid metal capsule and method of manufacturing the same |
US20200296825A1 (en) * | 2019-03-12 | 2020-09-17 | Carnegie Mellon University | Liquid metal circuits and methods of making the same |
CN112770547A (en) * | 2020-12-30 | 2021-05-07 | 西安交通大学 | Preparation method of high-integration-level liquid metal flexible circuit |
-
2023
- 2023-06-30 CN CN202310786808.6A patent/CN116583009A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050032341A1 (en) * | 2003-08-08 | 2005-02-10 | Semiconductor Energy Laboratory Co., Ltd. | Doping apparatus, doping method, and method for fabricating thin film transistor |
US8841014B1 (en) * | 2011-04-27 | 2014-09-23 | University Of Kentucky Research Foundation | Liquid metal electrodes for rechargeable batteries |
US9872390B1 (en) * | 2016-08-17 | 2018-01-16 | Microsoft Technology Licensing, Llc | Flexible interconnect |
KR20190069080A (en) * | 2017-12-11 | 2019-06-19 | 울산과학기술원 | Room temperature liquid metal capsule and method of manufacturing the same |
US20200296825A1 (en) * | 2019-03-12 | 2020-09-17 | Carnegie Mellon University | Liquid metal circuits and methods of making the same |
CN112770547A (en) * | 2020-12-30 | 2021-05-07 | 西安交通大学 | Preparation method of high-integration-level liquid metal flexible circuit |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI591762B (en) | Package apparatus and manufacturing method thereof | |
US9040832B2 (en) | Wiring substrate and method of manufacturing the same | |
US20090083975A1 (en) | Method of interconnecting layers of a printed circuit board | |
CN101436549A (en) | Method for manufacturing copper core layer multilayer packaging substrate | |
CN101160024A (en) | Method for manufacturing embedded element type printed circuit board | |
US20110127073A1 (en) | Printed circuit board and manufacturing method thereof | |
JP2011187913A (en) | Electronic element incorporation type printed circuit board, and method of manufacturing the same | |
Li et al. | Multinozzle 3D printing of multilayer and thin flexible electronics | |
CN102573292B (en) | Printed circuit board and manufacturing method of embedded resistor | |
CN116583009A (en) | A bending-resistant copper-based self-healing double-layer circuit and its high-precision manufacturing process | |
JPH04277696A (en) | Multilayer wiring board and its manufacturing method | |
TW200929476A (en) | Interposer and method for manufacturing interposer | |
CN203277368U (en) | Package Substrate | |
JP2008172151A (en) | Multilayer wiring circuit board | |
CN103906354B (en) | Circuit board and method for manufacturing the same | |
TW202117331A (en) | Metal probe structure and method for fabricating the same | |
CN205864853U (en) | A kind of printed circuit board | |
TWI753468B (en) | Substrate structure with heat dissipation structure and manufacturing method thereof | |
TWI679926B (en) | Substrate structure and manufacturing method thereof | |
CN100553405C (en) | Method for manufacturing circuit board | |
TWI519222B (en) | Printed circuit board and method of manufacturing the same | |
TW200910558A (en) | Method for manufacturing substrate embedded with chip | |
CN113284800A (en) | Method for preparing rewiring layer and structure thereof | |
US20230213555A1 (en) | Testing substrate and manufacturing method thereof and probe card | |
TWI852665B (en) | Electronic package module and method for fabricating the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |