CN116553742A - Method for treating high-salt low-temperature wastewater by nitrifying bacteria and denitrifying bacteria - Google Patents
Method for treating high-salt low-temperature wastewater by nitrifying bacteria and denitrifying bacteria Download PDFInfo
- Publication number
- CN116553742A CN116553742A CN202310369015.4A CN202310369015A CN116553742A CN 116553742 A CN116553742 A CN 116553742A CN 202310369015 A CN202310369015 A CN 202310369015A CN 116553742 A CN116553742 A CN 116553742A
- Authority
- CN
- China
- Prior art keywords
- wastewater
- bacteria
- temperature
- salt
- fermentation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 241000894006 Bacteria Species 0.000 title claims abstract description 76
- 239000002351 wastewater Substances 0.000 title claims abstract description 75
- 238000000034 method Methods 0.000 title claims abstract description 53
- 230000001546 nitrifying effect Effects 0.000 title claims abstract description 35
- 238000000855 fermentation Methods 0.000 claims abstract description 67
- 230000004151 fermentation Effects 0.000 claims abstract description 67
- 241000588986 Alcaligenes Species 0.000 claims abstract description 59
- 241000589597 Paracoccus denitrificans Species 0.000 claims abstract description 47
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 21
- 229910052757 nitrogen Inorganic materials 0.000 claims description 34
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 28
- NWONKYPBYAMBJT-UHFFFAOYSA-L zinc sulfate Chemical compound [Zn+2].[O-]S([O-])(=O)=O NWONKYPBYAMBJT-UHFFFAOYSA-L 0.000 claims description 24
- 229910000368 zinc sulfate Inorganic materials 0.000 claims description 24
- 229960001763 zinc sulfate Drugs 0.000 claims description 24
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 claims description 21
- 239000001632 sodium acetate Substances 0.000 claims description 21
- 235000017281 sodium acetate Nutrition 0.000 claims description 21
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 19
- 229910052799 carbon Inorganic materials 0.000 claims description 19
- 239000002054 inoculum Substances 0.000 claims description 14
- 239000001509 sodium citrate Substances 0.000 claims description 13
- 239000007788 liquid Substances 0.000 claims description 12
- DAEPDZWVDSPTHF-UHFFFAOYSA-M sodium pyruvate Chemical compound [Na+].CC(=O)C([O-])=O DAEPDZWVDSPTHF-UHFFFAOYSA-M 0.000 claims description 12
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 claims description 10
- 239000008103 glucose Substances 0.000 claims description 10
- HRXKRNGNAMMEHJ-UHFFFAOYSA-K trisodium citrate Chemical compound [Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O HRXKRNGNAMMEHJ-UHFFFAOYSA-K 0.000 claims description 10
- 229940038773 trisodium citrate Drugs 0.000 claims description 10
- PAWQVTBBRAZDMG-UHFFFAOYSA-N 2-(3-bromo-2-fluorophenyl)acetic acid Chemical compound OC(=O)CC1=CC=CC(Br)=C1F PAWQVTBBRAZDMG-UHFFFAOYSA-N 0.000 claims description 9
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 claims description 9
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 claims description 9
- 239000001110 calcium chloride Substances 0.000 claims description 9
- 229910001628 calcium chloride Inorganic materials 0.000 claims description 9
- 239000004202 carbamide Substances 0.000 claims description 9
- GVPFVAHMJGGAJG-UHFFFAOYSA-L cobalt dichloride Chemical compound [Cl-].[Cl-].[Co+2] GVPFVAHMJGGAJG-UHFFFAOYSA-L 0.000 claims description 9
- 239000011790 ferrous sulphate Substances 0.000 claims description 9
- 235000003891 ferrous sulphate Nutrition 0.000 claims description 9
- BAUYGSIQEAFULO-UHFFFAOYSA-L iron(2+) sulfate (anhydrous) Chemical compound [Fe+2].[O-]S([O-])(=O)=O BAUYGSIQEAFULO-UHFFFAOYSA-L 0.000 claims description 9
- 229910000359 iron(II) sulfate Inorganic materials 0.000 claims description 9
- 229940099596 manganese sulfate Drugs 0.000 claims description 9
- 239000011702 manganese sulphate Substances 0.000 claims description 9
- 235000007079 manganese sulphate Nutrition 0.000 claims description 9
- SQQMAOCOWKFBNP-UHFFFAOYSA-L manganese(II) sulfate Chemical compound [Mn+2].[O-]S([O-])(=O)=O SQQMAOCOWKFBNP-UHFFFAOYSA-L 0.000 claims description 9
- 229910000365 copper sulfate Inorganic materials 0.000 claims description 8
- ARUVKPQLZAKDPS-UHFFFAOYSA-L copper(II) sulfate Chemical compound [Cu+2].[O-][S+2]([O-])([O-])[O-] ARUVKPQLZAKDPS-UHFFFAOYSA-L 0.000 claims description 8
- 239000011573 trace mineral Substances 0.000 claims description 6
- 235000013619 trace mineral Nutrition 0.000 claims description 6
- 229910017053 inorganic salt Inorganic materials 0.000 claims description 5
- 229940054269 sodium pyruvate Drugs 0.000 claims description 5
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 claims description 4
- VWDWKYIASSYTQR-UHFFFAOYSA-N sodium nitrate Chemical compound [Na+].[O-][N+]([O-])=O VWDWKYIASSYTQR-UHFFFAOYSA-N 0.000 claims description 4
- 229910021645 metal ion Inorganic materials 0.000 claims description 3
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 claims description 2
- 235000019733 Fish meal Nutrition 0.000 claims description 2
- 229910002651 NO3 Inorganic materials 0.000 claims description 2
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 claims description 2
- 229910019142 PO4 Inorganic materials 0.000 claims description 2
- 240000008042 Zea mays Species 0.000 claims description 2
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 claims description 2
- 235000002017 Zea mays subsp mays Nutrition 0.000 claims description 2
- 235000019270 ammonium chloride Nutrition 0.000 claims description 2
- 235000011114 ammonium hydroxide Nutrition 0.000 claims description 2
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 claims description 2
- 229910052921 ammonium sulfate Inorganic materials 0.000 claims description 2
- 235000011130 ammonium sulphate Nutrition 0.000 claims description 2
- 235000015278 beef Nutrition 0.000 claims description 2
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 claims description 2
- 159000000007 calcium salts Chemical class 0.000 claims description 2
- 235000013877 carbamide Nutrition 0.000 claims description 2
- 235000005822 corn Nutrition 0.000 claims description 2
- 239000004467 fishmeal Substances 0.000 claims description 2
- 229960001031 glucose Drugs 0.000 claims description 2
- 159000000003 magnesium salts Chemical class 0.000 claims description 2
- 238000002156 mixing Methods 0.000 claims description 2
- 235000013379 molasses Nutrition 0.000 claims description 2
- 229960004249 sodium acetate Drugs 0.000 claims description 2
- 239000004317 sodium nitrate Substances 0.000 claims description 2
- 235000010344 sodium nitrate Nutrition 0.000 claims description 2
- 230000003213 activating effect Effects 0.000 claims 2
- 238000012258 culturing Methods 0.000 claims 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 claims 1
- 239000010452 phosphate Substances 0.000 claims 1
- XAEFZNCEHLXOMS-UHFFFAOYSA-M potassium benzoate Chemical compound [K+].[O-]C(=O)C1=CC=CC=C1 XAEFZNCEHLXOMS-UHFFFAOYSA-M 0.000 claims 1
- 230000000694 effects Effects 0.000 abstract description 63
- XKMRRTOUMJRJIA-UHFFFAOYSA-N ammonia nh3 Chemical compound N.N XKMRRTOUMJRJIA-UHFFFAOYSA-N 0.000 abstract description 37
- 238000005516 engineering process Methods 0.000 abstract description 5
- 239000000575 pesticide Substances 0.000 abstract description 5
- 239000000126 substance Substances 0.000 abstract description 4
- 238000004519 manufacturing process Methods 0.000 abstract description 3
- 239000002609 medium Substances 0.000 description 63
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 33
- 241001057811 Paracoccus <mealybug> Species 0.000 description 19
- FGIUAXJPYTZDNR-UHFFFAOYSA-N potassium nitrate Chemical compound [K+].[O-][N+]([O-])=O FGIUAXJPYTZDNR-UHFFFAOYSA-N 0.000 description 16
- 229910021380 Manganese Chloride Inorganic materials 0.000 description 15
- GLFNIEUTAYBVOC-UHFFFAOYSA-L Manganese chloride Chemical compound Cl[Mn]Cl GLFNIEUTAYBVOC-UHFFFAOYSA-L 0.000 description 15
- BNIILDVGGAEEIG-UHFFFAOYSA-L disodium hydrogen phosphate Chemical compound [Na+].[Na+].OP([O-])([O-])=O BNIILDVGGAEEIG-UHFFFAOYSA-L 0.000 description 15
- 239000011565 manganese chloride Substances 0.000 description 15
- 235000002867 manganese chloride Nutrition 0.000 description 15
- 229940099607 manganese chloride Drugs 0.000 description 15
- 229910000403 monosodium phosphate Inorganic materials 0.000 description 15
- 235000019799 monosodium phosphate Nutrition 0.000 description 15
- AJPJDKMHJJGVTQ-UHFFFAOYSA-M sodium dihydrogen phosphate Chemical compound [Na+].OP(O)([O-])=O AJPJDKMHJJGVTQ-UHFFFAOYSA-M 0.000 description 15
- 239000000243 solution Substances 0.000 description 14
- 235000010633 broth Nutrition 0.000 description 11
- 238000004065 wastewater treatment Methods 0.000 description 11
- 230000015556 catabolic process Effects 0.000 description 10
- 238000006731 degradation reaction Methods 0.000 description 10
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 9
- 239000001301 oxygen Substances 0.000 description 9
- 229910052760 oxygen Inorganic materials 0.000 description 9
- 239000010865 sewage Substances 0.000 description 9
- 239000011780 sodium chloride Substances 0.000 description 9
- 241000193830 Bacillus <bacterium> Species 0.000 description 8
- 239000001888 Peptone Substances 0.000 description 8
- 108010080698 Peptones Proteins 0.000 description 8
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 8
- 235000019319 peptone Nutrition 0.000 description 8
- 239000004323 potassium nitrate Substances 0.000 description 8
- 235000010333 potassium nitrate Nutrition 0.000 description 8
- 239000000843 powder Substances 0.000 description 8
- 239000011734 sodium Substances 0.000 description 7
- 238000003756 stirring Methods 0.000 description 7
- 238000005273 aeration Methods 0.000 description 6
- 230000001580 bacterial effect Effects 0.000 description 5
- 230000000813 microbial effect Effects 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- 238000012546 transfer Methods 0.000 description 5
- 241000588813 Alcaligenes faecalis Species 0.000 description 3
- 229940005347 alcaligenes faecalis Drugs 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- 230000004060 metabolic process Effects 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 3
- 238000002798 spectrophotometry method Methods 0.000 description 3
- 108090000790 Enzymes Proteins 0.000 description 2
- 102000004190 Enzymes Human genes 0.000 description 2
- JVMRPSJZNHXORP-UHFFFAOYSA-N ON=O.ON=O.ON=O.N Chemical compound ON=O.ON=O.ON=O.N JVMRPSJZNHXORP-UHFFFAOYSA-N 0.000 description 2
- 241000589516 Pseudomonas Species 0.000 description 2
- MMDJDBSEMBIJBB-UHFFFAOYSA-N [O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[NH6+3] Chemical compound [O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[NH6+3] MMDJDBSEMBIJBB-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 239000003513 alkali Substances 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000000593 degrading effect Effects 0.000 description 2
- 238000003113 dilution method Methods 0.000 description 2
- 238000005265 energy consumption Methods 0.000 description 2
- 239000010842 industrial wastewater Substances 0.000 description 2
- 244000005700 microbiome Species 0.000 description 2
- 238000004321 preservation Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- LPXPTNMVRIOKMN-UHFFFAOYSA-M sodium nitrite Chemical compound [Na+].[O-]N=O LPXPTNMVRIOKMN-UHFFFAOYSA-M 0.000 description 2
- 241000589291 Acinetobacter Species 0.000 description 1
- 239000002028 Biomass Substances 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- NULAJYZBOLVQPQ-UHFFFAOYSA-N N-(1-naphthyl)ethylenediamine Chemical compound C1=CC=C2C(NCCN)=CC=CC2=C1 NULAJYZBOLVQPQ-UHFFFAOYSA-N 0.000 description 1
- IOVCWXUNBOPUCH-UHFFFAOYSA-M Nitrite anion Chemical compound [O-]N=O IOVCWXUNBOPUCH-UHFFFAOYSA-M 0.000 description 1
- 229920001397 Poly-beta-hydroxybutyrate Polymers 0.000 description 1
- 229920000331 Polyhydroxybutyrate Polymers 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000033558 biomineral tissue development Effects 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000002894 chemical waste Substances 0.000 description 1
- UGWKCNDTYUOTQZ-UHFFFAOYSA-N copper;sulfuric acid Chemical compound [Cu].OS(O)(=O)=O UGWKCNDTYUOTQZ-UHFFFAOYSA-N 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 239000001963 growth medium Substances 0.000 description 1
- 150000003840 hydrochlorides Chemical class 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 238000011081 inoculation Methods 0.000 description 1
- 238000010884 ion-beam technique Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000002503 metabolic effect Effects 0.000 description 1
- 238000009629 microbiological culture Methods 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 125000001477 organic nitrogen group Chemical group 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 235000021317 phosphate Nutrition 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 231100000719 pollutant Toxicity 0.000 description 1
- 159000000001 potassium salts Chemical class 0.000 description 1
- 238000011112 process operation Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 230000000241 respiratory effect Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 235000010288 sodium nitrite Nutrition 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 239000008223 sterile water Substances 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 238000003911 water pollution Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F3/00—Biological treatment of water, waste water, or sewage
- C02F3/34—Biological treatment of water, waste water, or sewage characterised by the microorganisms used
- C02F3/341—Consortia of bacteria
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F3/00—Biological treatment of water, waste water, or sewage
- C02F3/34—Biological treatment of water, waste water, or sewage characterised by the microorganisms used
- C02F3/348—Biological treatment of water, waste water, or sewage characterised by the microorganisms used characterised by the way or the form in which the microorganisms are added or dosed
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N1/00—Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
- C12N1/20—Bacteria; Culture media therefor
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/10—Inorganic compounds
- C02F2101/16—Nitrogen compounds, e.g. ammonia
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/10—Inorganic compounds
- C02F2101/16—Nitrogen compounds, e.g. ammonia
- C02F2101/163—Nitrates
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/10—Inorganic compounds
- C02F2101/16—Nitrogen compounds, e.g. ammonia
- C02F2101/166—Nitrites
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12R—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
- C12R2001/00—Microorganisms ; Processes using microorganisms
- C12R2001/01—Bacteria or Actinomycetales ; using bacteria or Actinomycetales
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12R—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
- C12R2001/00—Microorganisms ; Processes using microorganisms
- C12R2001/01—Bacteria or Actinomycetales ; using bacteria or Actinomycetales
- C12R2001/05—Alcaligenes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/10—Biological treatment of water, waste water, or sewage
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Microbiology (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Zoology (AREA)
- Water Supply & Treatment (AREA)
- Environmental & Geological Engineering (AREA)
- Hydrology & Water Resources (AREA)
- Biotechnology (AREA)
- Biodiversity & Conservation Biology (AREA)
- Wood Science & Technology (AREA)
- Genetics & Genomics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biomedical Technology (AREA)
- Virology (AREA)
- Tropical Medicine & Parasitology (AREA)
- Medicinal Chemistry (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
Description
技术领域technical field
本发明涉及生物技术领域,特别涉及一种用硝化菌与反硝化菌处理高盐低温废水的方法。The invention relates to the field of biotechnology, in particular to a method for treating high-salt and low-temperature wastewater with nitrifying bacteria and denitrifying bacteria.
背景技术Background technique
近年来人类生活水平迅速提升,经济迅猛发展,人类生产活动频繁,水体环境受到人类活动的影响,河流污染严重,水体中的氨氮浓度也在急速上升,水体的呈现富营养化的状态,河流中富含超标的氮含量,造成我国的水资源水体污染严重,生态系统安全受到极大地危害。因此,对于改善水资源以及寻找高效的脱氮方法是目前处理水体水质的安全性的关键之处。控制水体中的氮含量是控制水污染的关键所在,污水深度处理及回收的关键所在。传统的脱氮方法工艺冗长、成本高、能耗高、需要添加碱性物质中和等缺点。近年来,对脱氮微生物的研究越来越深入,异养硝化-好氧反硝化同步反应作为新型的生物脱氮技术也逐渐应用于废水污染的治理中去,也是一种给经济、高效、环境友好型的脱氮工艺。In recent years, human living standards have been rapidly improved, the economy has developed rapidly, and human production activities are frequent. The water environment is affected by human activities. It is rich in excessive nitrogen content, causing serious pollution of water resources and water bodies in my country, and greatly endangering the safety of ecosystems. Therefore, improving water resources and finding efficient denitrification methods are the key to the safety of water quality. Controlling the nitrogen content in water is the key to controlling water pollution, and the key to advanced treatment and recycling of sewage. The traditional denitrification method has disadvantages such as lengthy process, high cost, high energy consumption, and the need to add alkaline substances for neutralization. In recent years, the research on denitrification microorganisms has become more and more in-depth. As a new type of biological denitrification technology, the simultaneous reaction of heterotrophic nitrification-aerobic denitrification has also been gradually applied to the treatment of wastewater pollution. It is also an economical, efficient, and Environmentally friendly denitrification process.
异养硝化-好氧反硝化菌突破了传统的生物硝化盒反硝化过程中需氧问题,对氧气的严格控制与限制,能够在同一个反应器完成硝化及反硝化的过程,能够去除COD和降低氨氮的含量,控制氮含量,无需调节酸碱,同时还能通过自身的生长代谢和对污染物的吸附、矿化作用能够修复水体环境。在好氧条件下,硝化菌会将NH4 +-N或有机氮降解转化为亚硝酸盐氮和硝酸盐氮,进而再通过反硝化细菌完成脱氮过程。异养型硝化菌具有适应性强优势,能以多种有机物作为碳源进行生长等特点而被研究者广泛应用。好氧反硝化菌是利用好氧反硝化酶的作用,在有氧条件下进行反硝化作用的一类反硝化菌。将培养的好氧反硝化菌投加污水处理设施可提高污水脱氮处理的效果,通过好氧反硝化菌能够有效快速的去除污染水体内部的硝酸盐。然而微生物反硝化是一系列酶催化下的脱氮反应,受多种因素的影响,包括废水的温度、溶解氧、pH值、外部碳源、微量元素等,其中,溶解氧、pH值、接菌量、碳源等都可以通过工艺调节,使其提高脱氮效果。适宜的脱氮条件能够促进硝化菌及反硝化菌的生长代谢和脱氮效率的提高的关键条件。目前,现有技术公开有相关的硝化菌和反硝化菌存在脱氮效果较差、无法在低温环境、碱性环境下快速生长繁殖等问题,因此降低了对氨氮、NO2 --N、NO3--N的去除效果。现有技术采用的硝化菌有假单胞菌属、不动杆菌属、亚硝酸盐菌属等,反硝化菌有芽孢杆菌属、副球菌属、假单胞菌属。现有菌株对铵态氮、硝酸盐氮和亚硝酸盐氮有一定的去除效果,但在低温高盐环境下生长及脱氮效果较差。Heterotrophic nitrification-aerobic denitrification bacteria break through the problem of oxygen demand in the denitrification process of the traditional biological nitrification box, strictly control and limit oxygen, can complete the process of nitrification and denitrification in the same reactor, and can remove COD and Reduce the content of ammonia nitrogen, control the nitrogen content, no need to adjust the acid and alkali, and at the same time, it can repair the water environment through its own growth metabolism, adsorption and mineralization of pollutants. Under aerobic conditions, nitrifying bacteria will degrade NH 4 + -N or organic nitrogen into nitrite nitrogen and nitrate nitrogen, and then complete the denitrification process through denitrifying bacteria. Heterotrophic nitrifying bacteria have the advantages of strong adaptability and can grow with a variety of organic matter as carbon sources, so they are widely used by researchers. Aerobic denitrifying bacteria are a type of denitrifying bacteria that use the action of aerobic denitrifying enzymes to perform denitrification under aerobic conditions. Adding the cultivated aerobic denitrifying bacteria to the sewage treatment facilities can improve the effect of sewage denitrification treatment, and the aerobic denitrifying bacteria can effectively and quickly remove the nitrate inside the polluted water body. However, microbial denitrification is a series of denitrification reactions catalyzed by enzymes, which are affected by many factors, including wastewater temperature, dissolved oxygen, pH value, external carbon source, trace elements, etc. Among them, dissolved oxygen, pH value, exposure The amount of bacteria, carbon source, etc. can be adjusted through the process to improve the denitrification effect. Appropriate denitrification conditions can promote the growth and metabolism of nitrifying bacteria and denitrifying bacteria and the key conditions for improving the efficiency of nitrogen removal. At present, the prior art discloses that related nitrifying bacteria and denitrifying bacteria have problems such as poor denitrification effect, inability to grow and reproduce rapidly in low temperature environment and alkaline environment, thus reducing the sensitivity to ammonia nitrogen, NO 2 - -N, NO 3- -N removal effect. The nitrifying bacteria used in the prior art include Pseudomonas, Acinetobacter, and Nitrite bacteria, etc., and the denitrifying bacteria include Bacillus, Paracoccus, and Pseudomonas. The existing strains have certain removal effects on ammonium nitrogen, nitrate nitrogen and nitrite nitrogen, but their growth and denitrification effects are poor in low-temperature and high-salt environments.
发明内容Contents of the invention
本发明公开了一种用硝化菌与反硝化菌处理高盐低温废水的方法。将产碱杆菌和脱氮副球菌联合使用,结合产碱杆菌在低温高盐环境下高效降解氨氮的特点,联合脱氮副球菌在低温高盐废水环境下协同高效降解氨氮、NO2 --N、NO3--N,脱氮效果更明显,进一步达到处理污水的目的。较传统的生物脱氮技术而言,本发明的方法脱氮效果明显,能够降低氨氮、NO2 --N、NO3--N三者,同时能够在低温高盐的环境下生长较好。本发明工艺一定程度上价格低、简化工艺、同时能解决低温高盐环境下的污水处理问题。The invention discloses a method for treating high-salt and low-temperature wastewater by using nitrifying bacteria and denitrifying bacteria. Combined use of Alcaligenes and Paracoccus denitrificans, combined with the characteristics of Alcaligenes to efficiently degrade ammonia nitrogen in a low-temperature and high-salt environment, combined with Paracoccus denitrification to synergistically and efficiently degrade ammonia nitrogen and NO 2 - -N in a low-temperature and high-salt wastewater environment , NO 3 - -N, the denitrification effect is more obvious, and the purpose of sewage treatment is further achieved. Compared with the traditional biological denitrification technology, the method of the present invention has obvious denitrification effect, can reduce ammonia nitrogen, NO 2 - -N, and NO 3 - -N, and can grow better in a low-temperature and high-salt environment. The process of the invention is low in price to a certain extent, simplifies the process, and simultaneously can solve the problem of sewage treatment in a low-temperature and high-salt environment.
为实现上述目的,本发明采用的技术方案如下:To achieve the above object, the technical scheme adopted in the present invention is as follows:
一种用硝化菌与反硝化菌处理高盐低温废水的方法,包括如下步骤:A method for treating high-salt low-temperature wastewater with nitrifying bacteria and denitrifying bacteria, comprising the steps of:
S1、将硝化菌进行活化,接入种子液,培养16~36h,按照接种量为1~10%,转接入发酵培养基中,发酵温度为5~42℃、发酵时间为48h~72h;S1. Activate the nitrifying bacteria, insert the seed solution, and cultivate for 16-36 hours. According to the inoculum size of 1-10%, transfer it to the fermentation medium, the fermentation temperature is 5-42° C., and the fermentation time is 48-72 hours;
S2、将反硝化菌进行活化,接入种子液,培养16~36h,按照接种量为1~10%,转接入发酵培养基中,发酵温度为5~42℃、发酵时间为48h~60h;S2. Activate the denitrifying bacteria, insert the seed solution, and cultivate for 16-36 hours. According to the inoculum size of 1-10%, transfer it into the fermentation medium, the fermentation temperature is 5-42 °C, and the fermentation time is 48-60 hours. ;
S3、将两者发酵液投加到待处理废水中,按照硝化菌与反硝化菌体积比为1~10:1~10,先加入硝化菌处理废水10~18h后再加入反硝化菌处理30~48h。S3. Add the two fermented liquids to the wastewater to be treated. According to the volume ratio of nitrifying bacteria and denitrifying bacteria is 1-10:1-10, first add nitrifying bacteria to treat wastewater for 10-18 hours, and then add denitrifying bacteria for 30 hours ~48h.
所述硝化菌为产碱杆菌FC-01052;反硝化菌为脱氮副球菌TD-20229。The nitrifying bacteria are Alcaligenes FC-01052; the denitrifying bacteria are Paracoccus denitrificans TD-20229.
产碱杆菌FC-01052保藏于中国微生物菌种保藏管理委员会普通微生物中心,保藏号为CGMCC No.24294;脱氮副球菌(Paracoccus denitrificans)TD-20229已于2022年9月15日保藏于中国微生物菌种保藏管理委员会普通微生物中心,地址:北京市朝阳区北辰西路1号院3号,保藏号为CGMCC No.25718。Alcaligenes FC-01052 was deposited in the General Microorganism Center of China Microbiological Culture Collection Management Committee, the preservation number is CGMCC No.24294; Paracoccus denitrificans TD-20229 was deposited in China Microorganisms on September 15, 2022 General Microbiology Center of the Culture Collection Management Committee, address: No. 3, Yard 1, Beichen West Road, Chaoyang District, Beijing, and the preservation number is CGMCC No.25718.
所述种子液成分为:葡萄糖5g/L、蛋白胨10g/L、酵母粉5g/L、氯化钠10g/L,pH7。The composition of the seed liquid is: glucose 5g/L, peptone 10g/L, yeast powder 5g/L, sodium chloride 10g/L, pH7.
所述硝化菌培养基成分为:碳源5~30g/L,氮源5~30g/L,无机盐1~10g/L,金属离子0~2g/L,微量元素0.1~1g/L,其余为水,pH4~9.0;The composition of the nitrifying bacteria culture medium is: carbon source 5-30g/L, nitrogen source 5-30g/L, inorganic salt 1-10g/L, metal ion 0-2g/L, trace element 0.1-1g/L, and the rest It is water, pH4~9.0;
反硝化菌培养基成分为:碳源5~30g/L,氮源5~30g/L,无机盐1~10g/L,金属离子0~2g/L,微量元素0.1~1g/L,其余为水,pH4~9.0。The composition of denitrifying bacteria medium is: carbon source 5-30g/L, nitrogen source 5-30g/L, inorganic salt 1-10g/L, metal ion 0-2g/L, trace element 0.1-1g/L, and the rest is Water, pH4~9.0.
所述的碳源为葡萄糖、柠檬酸三钠、丙酮酸钠、乙酸钠、糖蜜等中的至少一种。The carbon source is at least one of glucose, trisodium citrate, sodium pyruvate, sodium acetate, molasses and the like.
所述的氮源为氯化铵、硝酸铵、亚硝酸钠、硝酸钠、硝酸钾、硫酸铵、尿素、牛肉膏、氨水、玉米浆、鱼粉等中的至少一种。The nitrogen source is at least one of ammonium chloride, ammonium nitrate, sodium nitrite, sodium nitrate, potassium nitrate, ammonium sulfate, urea, beef extract, ammonia water, corn steep liquor, fish meal and the like.
所述的无机盐为镁盐、硝酸盐、钾盐、钙盐、磷酸盐或盐酸盐中的任意一种或几种的组合。The inorganic salt is any one or a combination of magnesium salts, nitrates, potassium salts, calcium salts, phosphates or hydrochlorides.
所述微量元素为硫酸亚铁0.01~3g/L,硫酸铜0.001~1g/L,硫酸锌0.01~0.5g/L,氯化钙0.1~2g/L,硫酸锰0.01~1g/L,氯化钴0.001~0.1g/L混合而成。The trace elements are ferrous sulfate 0.01-3g/L, copper sulfate 0.001-1g/L, zinc sulfate 0.01-0.5g/L, calcium chloride 0.1-2g/L, manganese sulfate 0.01-1g/L, chloride Cobalt 0.001 ~ 0.1g/L mixed.
进一步优选地,将硝化菌进行活化,接入种子液,培养24h,按照接种量为3%,转接入发酵培养基中,37℃发酵培养48h;Further preferably, the nitrifying bacteria are activated, inserted into the seed solution, cultivated for 24 hours, and transferred to the fermentation medium according to the inoculum size of 3%, and fermented and cultivated at 37°C for 48 hours;
将反硝化菌进行活化,接入种子液,培养24h,按照接种量为3%,转接入发酵培养基中,37℃发酵培养50h;Activate the denitrifying bacteria, insert the seed solution, and cultivate for 24 hours. According to the inoculum size of 3%, transfer it into the fermentation medium, and ferment and cultivate for 50 hours at 37°C;
将两者发酵液投加到待处理废水中,按照硝化菌与反硝化菌体积比为1:1,先加入硝化菌处理废水10~18h后再加入反硝化菌处理30~48h。Add the two fermentation liquids to the wastewater to be treated. According to the volume ratio of nitrifying bacteria and denitrifying bacteria is 1:1, first add nitrifying bacteria to treat wastewater for 10-18 hours, and then add denitrifying bacteria to treat wastewater for 30-48 hours.
更具体的,将产碱杆菌FC-01052与脱氮副球菌TD-20229分别活化,接入种子液(葡萄糖5g/L、蛋白胨10g/L、酵母粉5g/L、氯化钠10g/L,pH7),培养24h,按照接种量为3%,分别接入相同的发酵培养基中,在15~45℃下发酵48~84h,在发酵阶段通气比1.0~2.5v/vm、搅拌150~200rpm,其中,所述的发酵培养基为:柠檬酸三钠20g/L,硝酸铵4.5g/L,硝酸钾3g/L,NaNO2 0.3g/L,尿素1g/L,Na2HPO4·3H2O 2g/L,NaH2PO4 2g/L,MgSO4·7H2O 0.1g/L,硫酸亚铁0.01g/L,硫酸铜0.002g/L,硫酸锌0.01g/L,氯化钙0.5g/L,硫酸锰0.03g/L,氯化钴0.002g/L,其余为水,pH=7.5。发酵结束时,将发酵液按照(体积比1:1)投加到待处理废水中,进行废水处理,其中处理的方式为先加入产碱杆菌FC-01052处理废水15h后再加入脱氮副球菌TD-20229处理40h。More specifically, Bacillus alcaligenes FC-01052 and Paracoccus denitrificans TD-20229 were respectively activated, and inserted into the seed solution (glucose 5g/L, peptone 10g/L, yeast powder 5g/L, sodium chloride 10g/L, pH 7), cultivated for 24 hours, according to the inoculum size of 3%, respectively inserted into the same fermentation medium, fermented at 15-45°C for 48-84 hours, in the fermentation stage, the aeration ratio was 1.0-2.5v/vm, and the stirring was 150-200rpm , wherein, the fermentation medium is: trisodium citrate 20g/L, ammonium nitrate 4.5g/L, potassium nitrate 3g/L, NaNO 2 0.3g/L, urea 1g/L, Na 2 HPO 4 ·3H 2 O 2g/L, NaH 2 PO 4 2g/L, MgSO 4 7H 2 O 0.1g/L, ferrous sulfate 0.01g/L, copper sulfate 0.002g/L, zinc sulfate 0.01g/L, calcium chloride 0.5g/L, manganese sulfate 0.03g/L, cobalt chloride 0.002g/L, the rest is water, pH=7.5. At the end of the fermentation, the fermentation liquid is added to the wastewater to be treated according to (volume ratio 1:1) for wastewater treatment. The treatment method is to first add Alcaligenes FC-01052 to treat the wastewater for 15 hours, and then add Paracoccus denitrification TD-20229 treatment 40h.
所述发酵液投加到待处理废水中的投加量为2%~10%。The dosage of the fermentation broth added to the waste water to be treated is 2%-10%.
所述产碱杆菌FC-01052、脱氮副球菌(Paracoccus denitrificans)TD-20229在低温高盐环境下能够较好地生长且具有明显的脱氮能力。The Alcaligenes FC-01052 and Paracoccus denitrificans TD-20229 can grow well under low-temperature and high-salt environment and have obvious denitrification ability.
所述的产碱杆菌FC-01052在低温高盐的废水环境下,对废水中的氨氮有明显地降解效果,降解率达到90%以上。本发明首次报道该菌株的氨氮降解功能。The Alcaligenes FC-01052 has an obvious degrading effect on ammonia nitrogen in the wastewater under the environment of low-temperature and high-salt wastewater, and the degradation rate reaches more than 90%. The present invention reports the ammonia nitrogen degradation function of the strain for the first time.
所述脱氮副球菌(Paracoccus denitrificans)TD-20229在低温高盐的废水环境下,对废水中的氨氮、NO2 --N、NO3 --N降解效果明显,降解率分别为90%以上、99%以上、99%以上。The paracoccus denitrificans (Paracoccus denitrificans) TD-20229 has obvious degrading effects on ammonia nitrogen, NO 2 - -N, and NO 3 - -N in the wastewater under the low-temperature and high-salt wastewater environment, and the degradation rates are over 90% respectively , More than 99%, More than 99%.
脱氮副球菌(Paracoccus denitrificans)TD-20229是通过如下方法筛选得到的:从某污水厂中分离得到五株脱氮副球菌,利用液态LB培养基进行基础培养,35℃培养1天之后,同时测定生物量,得到一株活力最为旺盛的菌株,命名为TD-1,作为优势菌株。Paracoccus denitrificans (Paracoccus denitrificans) TD-20229 was screened by the following method: five strains of Paracoccus denitrificans were isolated from a sewage plant, and were cultured in liquid LB medium for 1 day at 35°C. The biomass was measured, and a strain with the most vigorous activity was obtained, which was named TD-1 as the dominant strain.
将TD-1接于液态LB种子培养基中培养,将培养好的脱氮副球菌的菌液按10倍稀释法稀释至细胞数为106CFU/mL,取菌液1mL均匀涂于无菌的空平板中,待风干后进行N+离子束注入,N+离子束注入剂量为(90、135、180、225、270)×2.6×1013N+/cm2,N+离子束注入能量为20keV。辐照结束后用1mL无菌水洗涤细胞,按10倍稀释法稀释后涂入平板培养基,37℃倒置培养1d,待挑取单菌落,接入LB种子液中37℃、150rpm培养12h将其按照5%的接种量分别硝化培养基(NH4 +-N培养基、NO3 --N培养基和NO2 --N培养基),筛选出菌落生长较好且降解效果较佳的菌株,命名为脱氮副球菌(Paracoccus denitrificans)TD-20229。该菌株采用好氧培养的方式,在好氧条件下生长快速,在缺氧条件下生长缓慢,适宜生长温度为25~30℃,生长的pH为6.5~9;球状细胞(直径0.5-0.9μm)或短杆菌(长0.9-1.2μm),单个、成对或堆状,形成聚-β-羟基丁酸盐颗粒,革兰氏阴性,不运动,好氧,呼吸代谢。Inoculate TD-1 in liquid LB seed medium for culture, dilute the cultured Paracoccus denitrificans by 10-fold dilution method until the number of cells is 10 6 CFU/mL, take 1 mL of the bacteria solution and apply it evenly on sterile N + ion beam implantation was carried out in the empty flat plate after being air - dried . is 20keV. After the irradiation, the cells were washed with 1 mL of sterile water, diluted according to the 10-fold dilution method, and then applied to the plate medium, and cultured upside down at 37°C for 1 day. After picking a single colony, they were inserted into the LB seed solution for 12 hours at 37°C and 150 rpm. According to the inoculum amount of 5%, it nitrifies the medium (NH 4 + -N medium, NO 3 - -N medium and NO 2 - -N medium) respectively, and screens out strains with better colony growth and better degradation effect , named Paracoccus denitrificans TD-20229. The strain adopts the method of aerobic culture, grows rapidly under aerobic conditions, and grows slowly under anoxic conditions. The suitable growth temperature is 25-30°C, and the growth pH is 6.5-9; spherical cells (0.5-0.9 μm in diameter) ) or Brevibacteria (length 0.9-1.2 μm), single, paired or stacked, forming poly-β-hydroxybutyrate particles, Gram-negative, immobile, aerobic, respiratory metabolism.
本发明,首次将产碱杆菌FC-01052和脱氮副球菌(Paracoccus denitrificans)TD-20229发酵完成后,将发酵液按照(体积比1:1)投加到待处理废水中,进行废水处理,其中处理的方式为先加入产碱杆菌FC-01052处理废水后再加入脱氮副球菌TD-20229处理。In the present invention, after the fermentation of Alcaligenes FC-01052 and Paracoccus denitrificans TD-20229 is completed for the first time, the fermentation broth is added (volume ratio 1:1) into the wastewater to be treated for wastewater treatment, The treatment method is to first add Alcaligenes FC-01052 to treat the wastewater, and then add the denitrifying Paracoccus TD-20229 for treatment.
本发明所述高盐(1~10%)、低温(5℃~20℃)污水为农药化工废水。The high-salt (1-10%) and low-temperature (5°C-20°C) sewage described in the present invention is pesticide chemical waste water.
本发明中主要涉及产碱杆菌、脱氮副球菌的培养、发酵工艺优化以及在低温高盐的污水处理中的运用,避免了二次污染,起到脱氮效果,进一步达到处理污水的目的。较传统的生物脱氮技术而言,本发明的方法较现有技术相比,将产碱杆菌FC-01052和脱氮副球菌(Paracoccus denitrificans)TD-20229发酵完成后,将发酵液按照(体积比1:1)投加到待处理废水中,进行废水处理,其中处理的方式为先加入产碱杆菌FC-01052处理废水后再加入脱氮副球菌TD-20229处理,脱氮效果明显,能够降低氨氮、NO2 --N、NO3 --N三者,同时能够在低温高盐的环境下生长较好通过特有去除氨氮的生产菌株,解决废水处理问题,进一步为相关问题解决提供理论依据和技术指导。The present invention mainly relates to the cultivation of Alcaligenes and Paracoccus denitrificans, optimization of fermentation process and application in low-temperature and high-salt sewage treatment, so as to avoid secondary pollution, achieve denitrification effect, and further achieve the purpose of sewage treatment. Compared with the traditional biological denitrification technology, the method of the present invention is compared with the prior art. After the fermentation of Alcaligenes FC-01052 and Paracoccus denitrificans (Paracoccus denitrificans) TD-20229 is completed, the fermented liquid is prepared according to (volume Ratio 1:1) is added to the wastewater to be treated for wastewater treatment, wherein the treatment method is to first add Alcaligenes FC-01052 to treat the wastewater and then add the denitrifying Paracoccus TD-20229 for treatment. The denitrification effect is obvious and can Reduce ammonia nitrogen, NO 2 - -N, and NO 3 - -N, and at the same time grow better in a low-temperature and high-salt environment Through a unique production strain that removes ammonia nitrogen, solve the problem of wastewater treatment and further provide a theoretical basis for solving related problems and technical guidance.
有益效果:本发明与现有的技术相比具有如下优势:本发明利用产碱杆菌FC-01052和脱氮副球菌TD-20229,结合产碱杆菌在低温高盐环境下高效降解氨氮的特点,同时联合脱氮副球菌在低温高盐农药废水环境下协同高效降解氨氮、NO2--N、NO3--N特点,脱氮效果更明显。Beneficial effects: Compared with the existing technology, the present invention has the following advantages: the present invention utilizes Alcaligenes FC-01052 and Paracoccus denitrificans TD-20229, and combines the characteristics of Alcaligenes to efficiently degrade ammonia nitrogen in a low-temperature and high-salt environment, At the same time, combined with the denitrification paracoccus in the low-temperature and high-salt pesticide wastewater environment, the synergistic and efficient degradation of ammonia nitrogen, NO 2- -N, and NO 3- -N, the denitrification effect is more obvious.
1、与其他菌种相比,本发明的产碱杆菌和脱氮副球菌具有很高的代谢活力,在低温高盐条件下也能生长较佳、脱氮效果较佳,处理废水效果较好。1. Compared with other strains, the Alcaligenes and Paracoccus denitrificans of the present invention have high metabolic activity, can grow better under low temperature and high salt conditions, have better denitrification effect, and have better wastewater treatment effect .
2、与传统的硝化-反硝化脱氮工艺相比,该工艺将粪产碱杆菌和脱单副球菌混合降低废水中氮含量、无需中和酸碱、简化工艺操作及节省能源损耗等优势。2. Compared with the traditional nitrification-denitrification denitrification process, this process has the advantages of mixing Alcaligenes faecalis and Paracoccus demonococcus to reduce nitrogen content in wastewater, no need to neutralize acid and alkali, simplify process operation and save energy consumption.
具体实施方式Detailed ways
通过下述实施例,可以更好地理解本发明。然后,本领域的技术人员容易理解,实施例所描述的具体的物料比,工艺条件及其结果仅用于说明本发明,而不应当也不会限制权利要求书说所详细描述的本发明。The present invention can be better understood by the following examples. Then, those skilled in the art will easily understand that the specific material ratios described in the examples, process conditions and results thereof are only used to illustrate the present invention, and should not and will not limit the present invention described in detail in the claims.
实施例1温度对菌株生长及脱氮效果的影响The influence of embodiment 1 temperature on bacterial strain growth and denitrification effect
将产碱杆菌FC-01052与脱氮副球菌TD-20229分别活化,接入种子液(蛋白胨10g/L、酵母粉5g/L、氯化钠10g/L、葡萄糖5g/L,pH7),培养20h,按照接种量为3%,分别转接入发酵培养基中,分别在5、10、15、20、25、30、37、42℃下发酵48h,在发酵阶段通气比1.5v/vm、搅拌180rpm,其中,所述的粪产碱杆菌和脱氮副球菌发酵培养基为:柠檬酸三钠20g/L,硝酸铵4.5g/L,硝酸钾3g/L,NaNO2 0.3g/L,尿素1g/L,Na2HPO4·3H2O 2g/L,NaH2PO4 2g/L,MgSO4·7H2O 0.1g/L,硫酸亚铁0.01g/L,硫酸铜0.002g/L,硫酸锌0.01g/L,氯化钙0.5g/L,硫酸锰0.03g/L,氯化钴0.002g/L,其余为水,pH=7.5。考察不同温度对菌株生长及脱氮效果的影响。Activate Bacillus Alcaligenes FC-01052 and Paracoccus denitrificans TD-20229 respectively, insert seed solution (peptone 10g/L, yeast powder 5g/L, sodium chloride 10g/L, glucose 5g/L, pH7), and culture 20h, according to the inoculum size is 3%, respectively into the fermentation medium, fermentation at 5, 10, 15, 20, 25, 30, 37, 42 ℃ respectively for 48h, in the fermentation stage aeration ratio 1.5v/vm, Stirring at 180rpm, wherein, the fermentation medium of Alcaligenes faecalis and Paracoccus denitrificans is: trisodium citrate 20g/L, ammonium nitrate 4.5g/L, potassium nitrate 3g/L, NaNO 2 0.3g/L, Urea 1g/L, Na 2 HPO 4 3H 2 O 2g/L, NaH 2 PO 4 2g/L, MgSO 4 7H 2 O 0.1g/L, ferrous sulfate 0.01g/L, copper sulfate 0.002g/L , zinc sulfate 0.01g/L, calcium chloride 0.5g/L, manganese sulfate 0.03g/L, cobalt chloride 0.002g/L, the rest is water, pH=7.5. The effects of different temperatures on the strain growth and denitrification effect were investigated.
将发酵结束时,将其发酵完的发酵液,分别投入2%硝化培养基(NH4 +-N培养基、NO3 --N培养基和NO2 --N培养基),35℃下好氧发酵48h,分别在三种不同培养基中进行脱氮试验及生长情况。At the end of the fermentation, put the fermented broth into 2% nitrification medium (NH 4 + -N medium, NO 3 - -N medium and NO 2 - -N medium) respectively, preferably at 35°C. After oxygen fermentation for 48 hours, denitrification tests and growth conditions were carried out in three different mediums.
其中,NH4 +-N模拟废水培养基:乙酸钠5g/L、(NH4)2SO4 0.8g/L、NaCL 0.5g/L、磷酸氢二钠1g/L、磷酸二氢钠1g/L、FeSO4·7H2O 0.02g/L、MgSO4·7H2O0.05g/L、硫酸锌0.01g/L、氯化锰0.01g/L,pH7.2。Among them, NH 4 + -N simulated wastewater medium: sodium acetate 5g/L, (NH 4 ) 2 SO 4 0.8g/L, NaCL 0.5g/L, disodium hydrogen phosphate 1g/L, sodium dihydrogen phosphate 1g/L L, FeSO 4 ·7H 2 O 0.02g/L, MgSO 4 ·7H 2 O 0.05g/L, zinc sulfate 0.01g/L, manganese chloride 0.01g/L, pH7.2.
NaNO3模拟废水培养基:乙酸钠5g/L、KNO3 0.8g/L、NaCL 0.5g/L、磷酸氢二钠1g/L、磷酸二氢钠1g/L、FeSO4·7H2O 0.02g/L、MgSO4·7H2O 0.05g/L、硫酸锌0.01g/L、氯化锰0.01g/L,pH7.2。NaNO 3 simulated wastewater medium: sodium acetate 5g/L, KNO 3 0.8g/L, NaCL 0.5g/L, disodium hydrogen phosphate 1g/L, sodium dihydrogen phosphate 1g/L, FeSO 4 7H 2 O 0.02g /L, MgSO 4 ·7H 2 O 0.05g/L, zinc sulfate 0.01g/L, manganese chloride 0.01g/L, pH7.2.
NaNO2模拟废水培养基:NaNO2 0.8g/L、乙酸钠5g/L、NaCL 0.5g/L、磷酸氢二钠1g/L、磷酸二氢钠1g/L、FeSO4·7H2O 0.02g/L、MgSO4·7H2O 0.05g/L、硫酸锌0.01g/L、氯化锰0.01g/L,pH7.2。NaNO 2 simulated wastewater medium: NaNO 2 0.8g/L, sodium acetate 5g/L, NaCL 0.5g/L, disodium hydrogen phosphate 1g/L, sodium dihydrogen phosphate 1g/L, FeSO 4 7H 2 O 0.02g /L, MgSO 4 ·7H 2 O 0.05g/L, zinc sulfate 0.01g/L, manganese chloride 0.01g/L, pH7.2.
温度对于微生物硝化及反硝化脱氮的影响较大,在如表1和2结果表明温度对产碱杆菌FC-01052与脱氮副球菌TD-20229的硝化、反硝化的活性影响较大,当温度为5-15℃时,NO3 --N、NO2 --N的去除率为40%以上,随着温度的升高氨氮的去除率也在逐渐升高,当温度为20-30℃时,氨氮的去除率为80%以上;当温度为35时,氨氮的去除率达到92%以上;当温度为42℃时,总氮的去除率降低,硝化及反硝化的能力明显降低,表明这两株菌株在低温环境下生长及脱氮效果较佳。由表1和表2还表明,在相同温度条件下,产碱杆菌FC-01052降解氨氮能力要远高于脱氮副球菌TD-20229降解氨氮的能力,而脱氮副球菌TD-20229去除NO3 --N、NO2 --N的能力明显高于产碱杆菌FC-01052,尤其温度在5~25℃时,产碱杆菌FC-01052降解氨氮的能力高于77%以上,降解率为78%~88%,当温度为30~35℃时,降解氨氮的能力高于90%以上,降解率为91%~99.3%。Temperature has a great influence on microbial nitrification and denitrification denitrification. The results in Table 1 and 2 show that temperature has a great influence on the nitrification and denitrification activities of Alcaligenes FC-01052 and Paracoccus denitrification TD-20229. When When the temperature is 5-15°C, the removal rate of NO 3 - -N and NO 2 - -N is more than 40%. As the temperature increases, the removal rate of ammonia nitrogen also increases gradually. When the temperature is 35°C, the removal rate of ammonia nitrogen is above 92%; when the temperature is 42°C, the removal rate of total nitrogen decreases, and the ability of nitrification and denitrification decreases significantly, indicating that These two strains had better growth and denitrification effects in low temperature environment. Table 1 and Table 2 also show that under the same temperature conditions, the ability of Alcaligenes FC-01052 to degrade ammonia nitrogen is much higher than that of Paracoccus denitrificans TD-20229, while Paracoccus denitrificans TD-20229 removes NO The ability of 3 - -N and NO 2 - -N is significantly higher than that of Alcaligenes FC-01052, especially when the temperature is 5-25°C, the ability of Alcaligenes FC-01052 to degrade ammonia nitrogen is higher than 77%, and the degradation rate is 78%-88%, when the temperature is 30-35°C, the ability to degrade ammonia nitrogen is higher than 90%, and the degradation rate is 91%-99.3%.
表1温度对产碱杆菌FC-01052生长及脱氮效果的影响Table 1 Effect of temperature on the growth and denitrification effect of Alcaligenes FC-01052
表2温度对脱氮副球菌TD-20229生长及脱氮效果的影响Table 2 Effect of temperature on the growth and denitrification effect of Paracoccus denitrificans TD-20229
实施例2高盐对菌株生长及脱氮效果的影响Effect of embodiment 2 high salt on bacterial strain growth and denitrification effect
将产碱杆菌FC-01052与脱氮副球菌TD-20229分别活化,接入种子液(蛋白胨10g/L、酵母粉5g/L、氯化钠10g/L、葡萄糖5g/L,pH7),培养20h,按照接种量为3%,转接入发酵培养基中,分别在氯化钠浓度分别为1%、2%、4%、6%、8%、10%下发酵48h,在发酵阶段通气比1.5v/vm、搅拌180rpm,其中,所述的产碱杆菌和脱单副球菌发酵培养基为:柠檬酸三钠20g/L,硝酸铵4.5g/L,硝酸钾3g/L,NaNO2 0.3g/L,尿素1g/L,Na2HPO4·3H2O 2g/L,NaH2PO42g/L,MgSO4·7H2O 0.1g/L,硫酸亚铁0.01g/L,硫酸铜0.002g/L,硫酸锌0.01g/L,氯化钙0.5g/L,硫酸锰0.03g/L,氯化钴0.002g/L,其余为水,pH=7.5。考察不同盐度对菌株生长及脱氮效果的影响。Activate Bacillus Alcaligenes FC-01052 and Paracoccus denitrificans TD-20229 respectively, insert seed solution (peptone 10g/L, yeast powder 5g/L, sodium chloride 10g/L, glucose 5g/L, pH7), and culture 20h, according to the inoculum size of 3%, transfer to the fermentation medium, ferment for 48h at the concentration of sodium chloride respectively 1%, 2%, 4%, 6%, 8%, and 10%, and aerate during the fermentation stage Ratio 1.5v/vm, stirring 180rpm, wherein, the described fermentation medium of Alcaligenes and P. paracoccus is: trisodium citrate 20g/L, ammonium nitrate 4.5g/L, potassium nitrate 3g/L, NaNO 2 0.3g/L, urea 1g/L, Na 2 HPO 4 3H 2 O 2g/L, NaH 2 PO 4 2g/L, MgSO 4 7H 2 O 0.1g/L, ferrous sulfate 0.01g/L, sulfuric acid Copper 0.002g/L, zinc sulfate 0.01g/L, calcium chloride 0.5g/L, manganese sulfate 0.03g/L, cobalt chloride 0.002g/L, the rest is water, pH=7.5. The effects of different salinity on strain growth and denitrification effect were investigated.
将发酵结束时,将其发酵完的发酵液,分别投入2%硝化培养基(NH4 +-N培养基、NO3 --N培养基和NO2 --N培养基),35℃下好氧发酵48h,分别在三种不同培养基中进行脱氮试验及生长情况。At the end of the fermentation, put the fermented broth into 2% nitrification medium (NH 4 + -N medium, NO 3 - -N medium and NO 2 - -N medium) respectively, preferably at 35°C. After oxygen fermentation for 48 hours, denitrification tests and growth conditions were carried out in three different mediums.
其中,NH4 +-N模拟废水培养基:乙酸钠5g/L、(NH4)2SO4 0.8g/L、NaCL 0.5g/L、磷酸氢二钠1g/L、磷酸二氢钠1g/L、FeSO4·7H2O 0.02g/L、MgSO4·7H2O0.05g/L、硫酸锌0.01g/L、氯化锰0.01g/L,pH7.2。Among them, NH 4 + -N simulated wastewater medium: sodium acetate 5g/L, (NH 4 ) 2 SO 4 0.8g/L, NaCL 0.5g/L, disodium hydrogen phosphate 1g/L, sodium dihydrogen phosphate 1g/L L, FeSO 4 ·7H 2 O 0.02g/L, MgSO 4 ·7H 2 O 0.05g/L, zinc sulfate 0.01g/L, manganese chloride 0.01g/L, pH7.2.
NaNO3模拟废水培养基:乙酸钠5g/L、KNO3 0.8g/L、NaCL 0.5g/L、磷酸氢二钠1g/L、磷酸二氢钠1g/L、FeSO4·7H2O 0.02g/L、MgSO4·7H2O 0.05g/L、硫酸锌0.01g/L、氯化锰0.01g/L,pH7.2。NaNO 3 simulated wastewater medium: sodium acetate 5g/L, KNO 3 0.8g/L, NaCL 0.5g/L, disodium hydrogen phosphate 1g/L, sodium dihydrogen phosphate 1g/L, FeSO 4 7H 2 O 0.02g /L, MgSO 4 ·7H 2 O 0.05g/L, zinc sulfate 0.01g/L, manganese chloride 0.01g/L, pH7.2.
NaNO2模拟废水培养基:NaNO2 0.8g/L、乙酸钠5g/L、NaCL 0.5g/L、磷酸氢二钠1g/L、磷酸二氢钠1g/L、FeSO4·7H2O 0.02g/L、MgSO4·7H2O 0.05g/L、硫酸锌0.01g/L、氯化锰0.01g/L,pH7.2。NaNO 2 simulated wastewater medium: NaNO 2 0.8g/L, sodium acetate 5g/L, NaCL 0.5g/L, disodium hydrogen phosphate 1g/L, sodium dihydrogen phosphate 1g/L, FeSO 4 7H 2 O 0.02g /L, MgSO 4 ·7H 2 O 0.05g/L, zinc sulfate 0.01g/L, manganese chloride 0.01g/L, pH7.2.
盐度对于微生物硝化及反硝化脱氮的影响较大,在下表表明盐浓度对产碱杆菌FC-01052与脱氮副球菌TD-20229的硝化、反硝化的活性影响较大,由表3和表4还表明,在相同盐度条件下,产碱杆菌FC-01052降解氨氮能力要远高于脱氮副球菌TD-20229降解氨氮的能力。当盐度为1-10%时,NO3 --N、NO2 --N的去除率为40%以上,随着盐度的升高氨氮的去除率也在逐渐升高,当盐度为1-6%时,氨氮的去除率为80%以上;当盐度为1-4%时,氨氮的去除率达到90%以上;当盐度高于4%时,NO3 --N、NO2 --N的去除率降低,硝化及反硝化的能力明显降低,表明这两株菌株在低温环境下生长及脱氮效果较佳。由表3和表4还表明,在相同盐度条件下,产碱杆菌FC-01052降解氨氮能力要远高于脱氮副球菌TD-20229降解氨氮的能力,而脱氮副球菌TD-20229去除NO3 --N、NO2 --N的能力明显高于产碱杆菌FC-01052,尤其盐度在1~4%时,产碱杆菌FC-01052降解氨氮的能力高于90%以上,降解率为90.5%~99.3%,当盐度高于4%时,降解氨氮的能力高于60%以上,降解率为62.3%~89.8%。Salinity has a great influence on microbial nitrification and denitrification denitrification. The following table shows that the salt concentration has a great influence on the nitrification and denitrification activities of Alcaligenes FC-01052 and Paracoccus denitrification TD-20229. Table 3 and Table 4 also shows that under the same salinity conditions, the ability of Alcaligenes FC-01052 to degrade ammonia nitrogen is much higher than that of Paracoccus denitrificans TD-20229. When the salinity is 1-10%, the removal rate of NO 3 - -N and NO 2 - -N is more than 40%, and the removal rate of ammonia nitrogen is gradually increasing with the increase of salinity. When the salinity is 1-6%, the removal rate of ammonia nitrogen is more than 80%; when the salinity is 1-4%, the removal rate of ammonia nitrogen is more than 90%; when the salinity is higher than 4%, NO 3 - -N, NO The removal rate of 2 - -N decreased, and the ability of nitrification and denitrification decreased obviously, which indicated that the growth and denitrification effect of these two strains were better in low temperature environment. Table 3 and Table 4 also show that under the same salinity conditions, the ability of Alcaligenes FC-01052 to degrade ammonia nitrogen is much higher than that of denitrification paracoccus TD-20229, while denitrification paracoccus TD-20229 can remove The ability of NO 3 - -N and NO 2 - -N is significantly higher than that of Alcaligenes FC-01052, especially when the salinity is 1-4%, the ability of Alcaligenes FC-01052 to degrade ammonia nitrogen is higher than 90%. The rate is 90.5%-99.3%. When the salinity is higher than 4%, the ability to degrade ammonia nitrogen is higher than 60%, and the degradation rate is 62.3%-89.8%.
表3盐度对产碱杆菌FC-01052生长及脱氮效果的影响Table 3 Effect of salinity on the growth and denitrification effect of Alcaligenes FC-01052
表4盐度对脱氮副球菌TD-20229生长及脱氮效果的影响Table 4 The effect of salinity on the growth and denitrification effect of Paracoccus denitrificans TD-20229
实施例3初始pH对菌株生长及脱氮效果的影响The influence of embodiment 3 initial pH on strain growth and denitrification effect
将产碱杆菌FC-01052与脱氮副球菌TD-20229分别活化,接入种子液(蛋白胨10g/L、酵母粉5g/L、氯化钠10g/L、葡萄糖5g/L,pH7),培养20h,按照接种量为3%,转接入发酵培养基中,分别在4、4.5、5、5.5、6、6.5、7、7.5、8、9℃下发酵48h,在发酵阶段通气比1.5v/vm、搅拌180rpm,其中,所述的产碱杆菌和脱单副球菌发酵培养基为:柠檬酸三钠20g/L,硝酸铵4.5g/L,硝酸钾3g/L,NaNO2 0.3g/L,尿素1g/L,Na2HPO4·3H2O 2g/L,NaH2PO4 2g/L,MgSO4·7H2O 0.1g/L,硫酸亚铁0.01g/L,硫酸铜0.002g/L,硫酸锌0.01g/L,氯化钙0.5g/L,硫酸锰0.03g/L,氯化钴0.002g/L,其余为水,pH=7.5。考察在不同初始pH对菌株生长及脱氮效果的影响。由表5和表6还表明,在相同pH条件下,产碱杆菌FC-01052降解氨氮能力要远高于脱氮副球菌TD-20229降解氨氮的能力,而脱氮副球菌TD-20229去除NO3--N、NO2--N的能力明显高于产碱杆菌FC-01052。Activate Bacillus Alcaligenes FC-01052 and Paracoccus denitrificans TD-20229 respectively, insert seed solution (peptone 10g/L, yeast powder 5g/L, sodium chloride 10g/L, glucose 5g/L, pH7), and culture 20h, according to the inoculum size of 3%, transfer to the fermentation medium, ferment at 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8, 9°C respectively for 48h, and the aeration ratio in the fermentation stage is 1.5v /vm, stirring 180rpm, wherein, the described fermentation medium of Alcaligenes and P. paracoccus is: trisodium citrate 20g/L, ammonium nitrate 4.5g/L, potassium nitrate 3g/L, NaNO 2 0.3g/ L, urea 1g/L, Na 2 HPO 4 3H 2 O 2g/L, NaH 2 PO 4 2g/L, MgSO 4 7H 2 O 0.1g/L, ferrous sulfate 0.01g/L, copper sulfate 0.002g /L, zinc sulfate 0.01g/L, calcium chloride 0.5g/L, manganese sulfate 0.03g/L, cobalt chloride 0.002g/L, the rest is water, pH=7.5. Investigate the effect of different initial pH on the strain growth and denitrification effect. Table 5 and Table 6 also show that under the same pH conditions, the ability of Alcaligenes FC-01052 to degrade ammonia nitrogen is much higher than that of Paracoccus denitrificans TD-20229, while Paracoccus denitrificans TD-20229 removes NO The ability of 3- -N and NO 2- -N was significantly higher than that of Alcaligenes FC-01052.
将发酵结束时,将其发酵完的发酵液,分别投入2%硝化培养基(NH4 +-N培养基、NO3 --N培养基和NO2 --N培养基),35℃下好氧发酵48h,分别在三种不同培养基中进行脱氮试验及生长情况。At the end of the fermentation, put the fermented broth into 2% nitrification medium (NH 4 + -N medium, NO 3 - -N medium and NO 2 - -N medium) respectively, preferably at 35°C. After oxygen fermentation for 48 hours, denitrification tests and growth conditions were carried out in three different mediums.
其中,NH4 +-N模拟废水培养基:乙酸钠5g/L、(NH4)2SO4 0.8g/L、NaCL0.5g/L、磷酸氢二钠1g/L、磷酸二氢钠1g/L、FeSO4·7H2O 0.02g/L、MgSO4·7H2O0.05g/L、硫酸锌0.01g/L、氯化锰0.01g/L,pH7.2。Among them, NH 4 + -N simulated wastewater medium: sodium acetate 5g/L, (NH 4 ) 2 SO 4 0.8g/L, NaCL 0.5g/L, disodium hydrogen phosphate 1g/L, sodium dihydrogen phosphate 1g/L L, FeSO 4 ·7H 2 O 0.02g/L, MgSO 4 ·7H 2 O 0.05g/L, zinc sulfate 0.01g/L, manganese chloride 0.01g/L, pH7.2.
NaNO3模拟废水培养基:乙酸钠5g/L、KNO3 0.8g/L、NaCL 0.5g/L、磷酸氢二钠1g/L、磷酸二氢钠1g/L、FeSO4·7H2O 0.02g/L、MgSO4·7H2O 0.05g/L、硫酸锌0.01g/L、氯化锰0.01g/L,pH7.2。NaNO 3 simulated wastewater medium: sodium acetate 5g/L, KNO 3 0.8g/L, NaCL 0.5g/L, disodium hydrogen phosphate 1g/L, sodium dihydrogen phosphate 1g/L, FeSO 4 7H 2 O 0.02g /L, MgSO 4 ·7H 2 O 0.05g/L, zinc sulfate 0.01g/L, manganese chloride 0.01g/L, pH7.2.
NaNO2模拟废水培养基:NaNO2 0.8g/L、乙酸钠5g/L、NaCL 0.5g/L、磷酸氢二钠1g/L、磷酸二氢钠1g/L、FeSO4·7H2O 0.02g/L、MgSO4·7H2O 0.05g/L、硫酸锌0.01g/L、氯化锰0.01g/L,pH7.2。NaNO 2 simulated wastewater medium: NaNO 2 0.8g/L, sodium acetate 5g/L, NaCL 0.5g/L, disodium hydrogen phosphate 1g/L, sodium dihydrogen phosphate 1g/L, FeSO 4 7H 2 O 0.02g /L, MgSO 4 ·7H 2 O 0.05g/L, zinc sulfate 0.01g/L, manganese chloride 0.01g/L, pH7.2.
初始pH对于微生物硝化及反硝化脱氮的影响较大,在如表5和6结果表明温度对产碱杆菌FC-01052与脱氮副球菌TD-20229的硝化、反硝化的活性影响较大,当初始pH为4-9时,NO3 --N、NO2 --N的去除率为40%以上,随着pH的升高氨氮的去除率也在逐渐升高,当初始pH为6-8时,氨氮的去除率为80%以上;当初始pH为4-5时,氨氮的去除率达到60%以上;当pH高于8时,总氮的去除率降低,硝化及反硝化的能力明显降低,表明这两株菌株在低温环境下生长及脱氮效果较佳。由表5和表6还表明,在相同pH条件下,产碱杆菌FC-01052降解氨氮能力要远高于脱氮副球菌TD-20229降解氨氮的能力,而脱氮副球菌TD-20229去除NO3 --N、NO2 --N的能力明显高于产碱杆菌FC-01052,尤其初始pH在6.5~8时,产碱杆菌FC-01052降解氨氮的能力高于90%以上,降解率为90%~99.8%,当初始pH为4-6.5时,降解氨氮的能力高于60%以上,降解率为60.4%~89.9%。The initial pH has a great influence on microbial nitrification and denitrification denitrification. The results in Table 5 and 6 show that the temperature has a great influence on the nitrification and denitrification activities of Alcaligenes FC-01052 and Paracoccus denitrification TD-20229. When the initial pH is 4-9, the removal rate of NO 3 - -N and NO 2 - -N is more than 40%. As the pH increases, the removal rate of ammonia nitrogen also increases gradually. 8, the removal rate of ammonia nitrogen is more than 80%; when the initial pH is 4-5, the removal rate of ammonia nitrogen is more than 60%; when the pH is higher than 8, the removal rate of total nitrogen is reduced, and the ability of nitrification and denitrification significantly decreased, indicating that the two strains had better growth and denitrification effects in a low temperature environment. Table 5 and Table 6 also show that under the same pH conditions, the ability of Alcaligenes FC-01052 to degrade ammonia nitrogen is much higher than that of Paracoccus denitrificans TD-20229, while Paracoccus denitrificans TD-20229 removes NO The ability of 3 - -N and NO 2 - -N is significantly higher than that of Alcaligenes FC-01052, especially when the initial pH is 6.5-8, the ability of Alcaligenes FC-01052 to degrade ammonia nitrogen is higher than 90%, and the degradation rate is 90%-99.8%, when the initial pH is 4-6.5, the ability to degrade ammonia nitrogen is higher than 60%, and the degradation rate is 60.4%-89.9%.
表5初始pH对产碱杆菌FC-01052生长及脱氮效果的影响Table 5 Effect of initial pH on the growth and denitrification effect of Alcaligenes FC-01052
表6初始pH对脱氮副球菌TD-20229生长及脱氮效果的影响Table 6 Effect of initial pH on the growth and denitrification effect of Paracoccus denitrificans TD-20229
实施例4碳源对菌株生长及脱氮效果的影响The influence of embodiment 4 carbon source on bacterial strain growth and denitrification effect
将产碱杆菌FC-01052与脱氮副球菌TD-20229分别活化,接入种子液(蛋白胨10g/L、酵母粉5g/L、氯化钠10g/L、葡萄糖5g/L,pH7),培养20h,按照接种量为3%,转接入发酵培养基中,分别在碳源条件(柠檬酸钠、乙酸钠、丙酮酸钠)下发酵48h,在发酵阶段通气比1.5v/vm、搅拌180rpm,其中,所述的产碱杆菌和脱氮副球菌发酵培养基为:柠檬酸三钠20g/L,硝酸铵4.5g/L,硝酸钾3g/L,NaNO2 0.3g/L,尿素1g/L,Na2HPO4·3H2O 2g/L,NaH2PO4 2g/L,MgSO4·7H2O 0.1g/L,硫酸亚铁0.01g/L,硫酸铜0.002g/L,硫酸锌0.01g/L,氯化钙0.5g/L,硫酸锰0.03g/L,氯化钴0.002g/L,其余为水,pH=7.5。考察在不同碳源对菌株生长及脱氮效果的影响。Activate Bacillus Alcaligenes FC-01052 and Paracoccus denitrificans TD-20229 respectively, insert seed solution (peptone 10g/L, yeast powder 5g/L, sodium chloride 10g/L, glucose 5g/L, pH7), and culture 20h, according to the inoculum size is 3%, transferred to the fermentation medium, fermented under carbon source conditions (sodium citrate, sodium acetate, sodium pyruvate) respectively for 48h, aeration ratio 1.5v/vm, stirring 180rpm in the fermentation stage , wherein, the described fermentation medium of Alcaligenes and Paracoccus denitrificans is: trisodium citrate 20g/L, ammonium nitrate 4.5g/L, potassium nitrate 3g/L, NaNO 2 0.3g/L, urea 1g/L L, Na 2 HPO 4 3H 2 O 2g/L, NaH 2 PO 4 2g/L, MgSO 4 7H 2 O 0.1g/L, ferrous sulfate 0.01g/L, copper sulfate 0.002g/L, zinc sulfate 0.01g/L, calcium chloride 0.5g/L, manganese sulfate 0.03g/L, cobalt chloride 0.002g/L, the rest is water, pH=7.5. Investigate the effect of different carbon sources on the growth of the strain and the denitrification effect.
由表7和表8还表明,在碳源条件下,产碱杆菌FC-01052降解氨氮能力要远高于脱氮副球菌TD-20229降解氨氮的能力,而脱氮副球菌TD-20229去除NO3--N、NO2--N的能力明显高于产碱杆菌FC-01052。Table 7 and Table 8 also show that under carbon source conditions, the ability of Alcaligenes FC-01052 to degrade ammonia nitrogen is much higher than that of Denitrification Paracoccus TD-20229, while denitrification Paracoccus TD-20229 removes NO The ability of 3- -N and NO 2- -N was significantly higher than that of Alcaligenes FC-01052.
将发酵结束时,将其发酵完的发酵液,分别投入2%硝化培养基(NH4 +-N培养基、NO3 --N培养基和NO2 --N培养基),35℃下好氧发酵48h,分别在三种不同培养基中进行脱氮试验及生长情况。At the end of the fermentation, put the fermented broth into 2% nitrification medium (NH 4 + -N medium, NO 3 - -N medium and NO 2 - -N medium) respectively, preferably at 35°C. After oxygen fermentation for 48 hours, denitrification tests and growth conditions were carried out in three different mediums.
其中,NH4 +-N模拟废水培养基:乙酸钠5g/L、(NH4)2SO4 0.8g/L、NaCL 0.5g/L、磷酸氢二钠1g/L、磷酸二氢钠1g/L、FeSO4·7H2O 0.02g/L、MgSO4·7H2O0.05g/L、硫酸锌0.01g/L、氯化锰0.01g/L,pH7.2。Among them, NH 4 + -N simulated wastewater medium: sodium acetate 5g/L, (NH 4 ) 2 SO 4 0.8g/L, NaCL 0.5g/L, disodium hydrogen phosphate 1g/L, sodium dihydrogen phosphate 1g/L L, FeSO 4 ·7H 2 O 0.02g/L, MgSO 4 ·7H 2 O 0.05g/L, zinc sulfate 0.01g/L, manganese chloride 0.01g/L, pH7.2.
NaNO3模拟废水培养基:乙酸钠5g/L、KNO3 0.8g/L、NaCL 0.5g/L、磷酸氢二钠1g/L、磷酸二氢钠1g/L、FeSO4·7H2O 0.02g/L、MgSO4·7H2O 0.05g/L、硫酸锌0.01g/L、氯化锰0.01g/L,pH7.2。NaNO 3 simulated wastewater medium: sodium acetate 5g/L, KNO 3 0.8g/L, NaCL 0.5g/L, disodium hydrogen phosphate 1g/L, sodium dihydrogen phosphate 1g/L, FeSO 4 7H 2 O 0.02g /L, MgSO 4 ·7H 2 O 0.05g/L, zinc sulfate 0.01g/L, manganese chloride 0.01g/L, pH7.2.
NaNO2模拟废水培养基:NaNO2 0.8g/L、乙酸钠5g/L、NaCL 0.5g/L、磷酸氢二钠1g/L、磷酸二氢钠1g/L、FeSO4·7H2O 0.02g/L、MgSO4·7H2O 0.05g/L、硫酸锌0.01g/L、氯化锰0.01g/L,pH7.2。NaNO 2 simulated wastewater medium: NaNO 2 0.8g/L, sodium acetate 5g/L, NaCL 0.5g/L, disodium hydrogen phosphate 1g/L, sodium dihydrogen phosphate 1g/L, FeSO 4 7H 2 O 0.02g /L, MgSO 4 ·7H 2 O 0.05g/L, zinc sulfate 0.01g/L, manganese chloride 0.01g/L, pH7.2.
碳源对于微生物硝化及反硝化脱氮的影响较大,在如表7和8结果表明温度对产碱杆菌FC-01052与脱氮副球菌TD-20229的硝化、反硝化的活性影响较大,在不同的碳源下,NO3 --N、NO2 --N的去除率为60%以上。当氮源为柠檬酸三钠时,产碱杆菌FC-01052去除NO3 --N、NO2 --N的能力明显高于以碳源为乙酸钠、丙酮酸钠时去除NO3 --N、NO2 --N的能力,氨氮的去除率仍在99.2%~99.8%。表明这两株菌株在低温环境下生长及脱氮效果较佳。由表7和表8还表明,产碱杆菌FC-01052降解氨氮能力要远高于脱氮副球菌TD-20229降解氨氮的能力,而脱氮副球菌TD-20229去除NO3 --N、NO2 --N的能力高于产碱杆菌FC-01052。Carbon sources have a great influence on microbial nitrification and denitrification denitrification. The results in Table 7 and 8 show that temperature has a great influence on the nitrification and denitrification activities of Alcaligenes FC-01052 and Paracoccus denitrification TD-20229. Under different carbon sources, the removal rates of NO 3 - -N and NO 2 - -N are above 60%. When the nitrogen source is trisodium citrate, the ability of Alcaligenes FC-01052 to remove NO 3 - -N and NO 2 - -N is significantly higher than that when the carbon source is sodium acetate and sodium pyruvate , NO 2 - -N capacity, the removal rate of ammonia nitrogen is still 99.2% to 99.8%. It indicated that the two strains had better growth and denitrification effects in low temperature environment. Table 7 and Table 8 also show that the ability of Alcaligenes FC-01052 to degrade ammonia nitrogen is much higher than that of Paracoccus denitrificans TD-20229, while Paracoccus denitrificans TD-20229 removes NO 3 - -N, NO The ability of 2 - -N is higher than Alcaligenes FC-01052.
表7碳源对产碱杆菌FC-01052生长及脱氮效果的影响Table 7 Effect of carbon source on the growth and denitrification effect of Alcaligenes FC-01052
表8碳源对脱氮副球菌TD-20229生长及脱氮效果的影响Table 8 Effect of carbon source on the growth and denitrification effect of Paracoccus denitrificans TD-20229
实施例5不同处理方式对脱氮效果的影响Example 5 Effect of different treatment methods on denitrification effect
将产碱杆菌FC-01052与脱氮副球菌TD-20229分别活化,接入种子液(蛋白胨10g/L、酵母粉5g/L、氯化钠10g/L、葡萄糖5g/L,pH7),培养20h,按照接种量为3%,转接入发酵培养基中,分别在碳源条件(柠檬酸钠、乙酸钠、丙酮酸钠)下发酵48h,在发酵阶段通气比1.5v/vm、搅拌180rpm,其中,所述的粪产碱杆菌和脱单副球菌发酵培养基为:柠檬酸三钠20g/L,硝酸铵4.5g/L,硝酸钾3g/L,NaNO2 0.3g/L,尿素1g/L,Na2HPO4·3H2O 2g/L,NaH2PO42g/L,MgSO4·7H2O 0.1g/L,硫酸亚铁0.01~3g/L,硫酸铜0.002g/L,硫酸锌0.01g/L,氯化钙0.5g/L,硫酸锰0.03g/L,氯化钴0.002g/L,其余为水,pH=7.5。发酵结束时,按照不同的处理方式加入下述模拟废水培养基中进行脱氮。Activate Bacillus Alcaligenes FC-01052 and Paracoccus denitrificans TD-20229 respectively, insert seed solution (peptone 10g/L, yeast powder 5g/L, sodium chloride 10g/L, glucose 5g/L, pH7), and culture 20h, according to the inoculum size is 3%, transferred to the fermentation medium, fermented under carbon source conditions (sodium citrate, sodium acetate, sodium pyruvate) respectively for 48h, aeration ratio 1.5v/vm, stirring 180rpm in the fermentation stage , wherein, the described Alcaligenes faecalis and P. paracoccus fermentation medium are: trisodium citrate 20g/L, ammonium nitrate 4.5g/L, potassium nitrate 3g/L, NaNO 2 0.3g/L, urea 1g /L, Na 2 HPO 4 3H 2 O 2g/L, NaH 2 PO 4 2g/L, MgSO 4 7H 2 O 0.1g/L, ferrous sulfate 0.01~3g/L, copper sulfate 0.002g/L, Zinc sulfate 0.01g/L, calcium chloride 0.5g/L, manganese sulfate 0.03g/L, cobalt chloride 0.002g/L, the rest is water, pH=7.5. At the end of the fermentation, it was added to the following simulated wastewater medium for denitrification according to different treatment methods.
将发酵结束时,将其发酵完的发酵液,分别投入2%硝化培养基(NH4 +-N培养基、NO3 --N培养基和NO2 --N培养基),35℃下好氧发酵48h,分别在三种不同培养基中进行脱氮试验及生长情况。At the end of the fermentation, put the fermented broth into 2% nitrification medium (NH 4 + -N medium, NO 3 - -N medium and NO 2 - -N medium) respectively, preferably at 35°C. After oxygen fermentation for 48 hours, denitrification tests and growth conditions were carried out in three different mediums.
其中,NH4 +-N模拟废水培养基:乙酸钠5g/L、(NH4)2SO4 0.8g/L、NaCL 0.5g/L、磷酸氢二钠1g/L、磷酸二氢钠1g/L、FeSO4·7H2O 0.02g/L、MgSO4·7H2O0.05g/L、硫酸锌0.01g/L、氯化锰0.01g/L,pH7.2。Among them, NH 4 + -N simulated wastewater medium: sodium acetate 5g/L, (NH 4 ) 2 SO 4 0.8g/L, NaCL 0.5g/L, disodium hydrogen phosphate 1g/L, sodium dihydrogen phosphate 1g/L L, FeSO 4 ·7H 2 O 0.02g/L, MgSO 4 ·7H 2 O 0.05g/L, zinc sulfate 0.01g/L, manganese chloride 0.01g/L, pH7.2.
NaNO3模拟废水培养基:乙酸钠5g/L、KNO3 0.8g/L、NaCL 0.5g/L、磷酸氢二钠1g/L、磷酸二氢钠1g/L、FeSO4·7H2O 0.02g/L、MgSO4·7H2O 0.05g/L、硫酸锌0.01g/L、氯化锰0.01g/L,pH7.2。NaNO 3 simulated wastewater medium: sodium acetate 5g/L, KNO 3 0.8g/L, NaCL 0.5g/L, disodium hydrogen phosphate 1g/L, sodium dihydrogen phosphate 1g/L, FeSO 4 7H 2 O 0.02g /L, MgSO 4 ·7H 2 O 0.05g/L, zinc sulfate 0.01g/L, manganese chloride 0.01g/L, pH7.2.
NaNO2模拟废水培养基:NaNO2 0.8g/L、乙酸钠5g/L、NaCL 0.5g/L、磷酸氢二钠1g/L、磷酸二氢钠1g/L、FeSO4·7H2O 0.02g/L、MgSO4·7H2O 0.05g/L、硫酸锌0.01g/L、氯化锰0.01g/L,pH7.2。NaNO 2 simulated wastewater medium: NaNO 2 0.8g/L, sodium acetate 5g/L, NaCL 0.5g/L, disodium hydrogen phosphate 1g/L, sodium dihydrogen phosphate 1g/L, FeSO 4 7H 2 O 0.02g /L, MgSO 4 ·7H 2 O 0.05g/L, zinc sulfate 0.01g/L, manganese chloride 0.01g/L, pH7.2.
处理方式①:将发酵液按照(体积比1:1)投加到待模拟废水中,进行废水处理,其中处理的方式为先加入产碱杆菌FC-01052处理废水15h后再加入脱氮副球菌TD-20229处理40h。Treatment method ①: Add the fermentation liquid to the simulated wastewater according to (volume ratio 1:1) for wastewater treatment. The treatment method is to first add Alcaligenes FC-01052 to treat the wastewater for 15 hours, and then add Paracoccus denitrification TD-20229 treatment 40h.
处理方式②:将发酵液按照(体积比1:1)同时投加到待模拟废水中,进行废水处理。Treatment method ②: Add the fermentation broth to the wastewater to be simulated at the same time (volume ratio 1:1) for wastewater treatment.
处理方式③:将两种发酵液分别投加到待处理废水中,进行模拟废水处理。Treatment method ③: Add the two fermentation broths to the wastewater to be treated respectively to simulate wastewater treatment.
处理方式④:将发酵液按照(体积比1:1)投加到待模拟废水中,进行废水处理,其中处理的方式为先加入脱氮副球菌TD-20229处理15h后再加入产碱杆菌FC-01052处理40h。Treatment method ④: Add the fermentation broth to the simulated wastewater according to (volume ratio 1:1) for wastewater treatment. The treatment method is to add Paracoccus denitrificans TD-20229 for 15 hours before adding Alcaligenes FC -01052 processing 40h.
不同的处理方式对两种菌株在低温高盐的废水环境下脱氮效果明显不同,当处理方式为将发酵液按照(体积比1:1)投加到待处理废水中,进行废水处理,先加入产碱杆菌FC-01052处理废水15h后再加入脱氮副球菌TD-20229处理40h。处理方式①对NO3 --N、NO2 --N和NH4 +-N的去除率分别为99.7%、99.2%和99.3%,处理方式①的去除效果最佳。Different treatment methods have significantly different denitrification effects on the two strains in the low-temperature and high-salt wastewater environment. When the treatment method is to add the fermentation broth (volume ratio 1:1) to the wastewater to be treated for wastewater treatment, first Add Alcaligenes FC-01052 to treat the wastewater for 15 hours, and then add Paracoccus denitrificans TD-20229 to treat it for 40 hours. The removal rates of NO 3 - -N, NO 2 - -N and NH 4 + -N in treatment method ① were 99.7%, 99.2% and 99.3%, respectively, and the removal effect of treatment method ① was the best.
表9不同处理方式对脱氮效果的影响Table 9 Effect of different treatment methods on denitrification effect
实施例6菌株在低温高盐工业废水中的研究The research of embodiment 6 bacterial strains in low-temperature high-salt industrial wastewater
将产碱杆菌FC-01052与脱氮副球菌TD-20229分别活化,接入种子液(蛋白胨10g/L、酵母粉5g/L、氯化钠10g/L、葡萄糖10g/L,pH7),培养20h,按照接种量为3%,转接入发酵培养基中,分别在碳源条件(柠檬酸钠、乙酸钠、丙酮酸钠)下发酵48h,在发酵阶段通气比1.5v/vm、搅拌180rpm,其中,所述的产碱杆菌和脱氮副球菌发酵培养基为:柠檬酸三钠20g/L,硝酸铵4.5g/L,硝酸钾3g/L,NaNO2 0.3g/L,尿素1g/L,Na2HPO4·3H2O 2g/L,NaH2PO4 2g/L,MgSO4·7H2O 0.1g/L,硫酸亚铁0.01g/L,硫酸铜0.002g/L,硫酸锌0.01g/L,氯化钙0.5g/L,硫酸锰0.03g/L,氯化钴0.002g/L,其余为水,pH=7.5。Activate Bacillus Alcaligenes FC-01052 and Paracoccus denitrificans TD-20229 respectively, insert seed solution (peptone 10g/L, yeast powder 5g/L, sodium chloride 10g/L, glucose 10g/L, pH7), and culture 20h, according to the inoculum size is 3%, transferred to the fermentation medium, fermented under carbon source conditions (sodium citrate, sodium acetate, sodium pyruvate) respectively for 48h, aeration ratio 1.5v/vm, stirring 180rpm in the fermentation stage , wherein, the described fermentation medium of Alcaligenes and Paracoccus denitrificans is: trisodium citrate 20g/L, ammonium nitrate 4.5g/L, potassium nitrate 3g/L, NaNO 2 0.3g/L, urea 1g/L L, Na 2 HPO 4 3H 2 O 2g/L, NaH 2 PO 4 2g/L, MgSO 4 7H 2 O 0.1g/L, ferrous sulfate 0.01g/L, copper sulfate 0.002g/L, zinc sulfate 0.01g/L, calcium chloride 0.5g/L, manganese sulfate 0.03g/L, cobalt chloride 0.002g/L, the rest is water, pH=7.5.
将发酵结束时,将其发酵完的发酵液,分按照2%的接种量转入发酵培养基,35℃下好氧发酵48h,将发酵液按照(体积比1:1)投加到农药化工废水中,进行废水处理,其中处理的方式为先加入产碱杆菌FC-01052处理废水15h后再加入脱氮副球菌TD-20229处理40h。At the end of the fermentation, the fermented fermentation liquid was transferred to the fermentation medium according to the inoculation amount of 2%, aerobically fermented at 35°C for 48 hours, and the fermented liquid was added to the pesticide chemical industry according to (volume ratio 1:1) In the waste water, waste water treatment is carried out, and the treatment method is to add Alcaligenes FC-01052 to treat the waste water for 15 hours, and then add Paracoccus denitrificans TD-20229 to treat the waste water for 40 hours.
考察在温度为15℃、盐度为4%、氨氮浓度为400mg/L、NO3 --N浓度为300mg/L、NO2 --N浓度为300mg/L的农药化工废水环境。由表10可知,产碱杆菌FC-01052和脱氮副球菌TD-20229在低温高盐废水中的脱氮效果极佳,NO3 --N去除率、NO2 --N去除率和NH4 +-N去除率分别为89.7%、88.4%和90.6%。Investigate the pesticide and chemical wastewater environment at a temperature of 15°C, a salinity of 4%, an ammonia nitrogen concentration of 400mg/L, a NO 3 - -N concentration of 300mg/L, and a NO 2 - -N concentration of 300mg/L. It can be seen from Table 10 that Alcaligenes FC-01052 and Paracoccus denitrificans TD-20229 have excellent denitrification effects in low-temperature high-salt wastewater, NO 3 - -N removal rate, NO 2 - -N removal rate and NH 4 + -N removal rates were 89.7%, 88.4% and 90.6%, respectively.
表10菌株在低温高盐工业废水中的生长及脱氮效果的影响Table 10 The growth of bacterial strains in low-temperature high-salt industrial wastewater and the effect of nitrogen removal
本发明中的工艺的检测方法:NO3 --N浓度采用紫外分光光度法测定,NO2 --N采用N-(1-萘基)-乙二胺分光光度法测定,NH4 +-N浓度采用纳氏试剂分光光度法测定。The detection method of the process in the present invention: NO 3 - -N concentration is measured by ultraviolet spectrophotometry, NO 2 - -N is measured by N-(1-naphthyl)-ethylenediamine spectrophotometry, NH 4 + -N The concentration was determined by Nessler's reagent spectrophotometry.
以上对本发明实施例所提供的技术方案进行了详细介绍,本文中应用了具体个例对本发明实施例的原理以及实施方式进行了阐述,以上实施例的说明只适用于帮助理解本发明实施例的原理同时,对于本领域的一般技术人员,依据本发明实施例,在具体实施方式以及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。The technical solutions provided by the embodiments of the present invention have been introduced in detail above, and the principles and implementation modes of the embodiments of the present invention have been explained by using specific examples in this paper. The descriptions of the above embodiments are only applicable to help understand the embodiments of the present invention Principle At the same time, for those skilled in the art, according to the embodiment of the present invention, there will be changes in the specific implementation and application scope. In summary, the contents of this specification should not be construed as limiting the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310369015.4A CN116553742A (en) | 2023-04-06 | 2023-04-06 | Method for treating high-salt low-temperature wastewater by nitrifying bacteria and denitrifying bacteria |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310369015.4A CN116553742A (en) | 2023-04-06 | 2023-04-06 | Method for treating high-salt low-temperature wastewater by nitrifying bacteria and denitrifying bacteria |
Publications (1)
Publication Number | Publication Date |
---|---|
CN116553742A true CN116553742A (en) | 2023-08-08 |
Family
ID=87490653
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202310369015.4A Pending CN116553742A (en) | 2023-04-06 | 2023-04-06 | Method for treating high-salt low-temperature wastewater by nitrifying bacteria and denitrifying bacteria |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN116553742A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114921359A (en) * | 2022-03-21 | 2022-08-19 | 绵津环保科技(上海)有限公司 | An environmental bacterial agent for high-salt sewage treatment of refractory organic matter and its application |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001246397A (en) * | 2000-03-03 | 2001-09-11 | Kansai Paint Co Ltd | Method for removing nitrogen in waste water |
JP2005034783A (en) * | 2003-07-17 | 2005-02-10 | New Industry Research Organization | Nitrification/denitrification method for removing nh4+ and no3- simultaneously |
US20100044304A1 (en) * | 2005-04-21 | 2010-02-25 | Ibiden Co., Ltd. | Method of treating wastewater containing organic compound |
CN102465104A (en) * | 2010-11-04 | 2012-05-23 | 中国石油化工股份有限公司 | Aerobic denitrification paracoccus denitrificans and application thereof |
CN204400694U (en) * | 2014-12-17 | 2015-06-17 | 深圳市深港产学研环保工程技术股份有限公司 | A kind of membrane bioreactor realizing synchronous nitration denitrification denitrogenation effect |
CN107090418A (en) * | 2017-05-17 | 2017-08-25 | 武汉科缘生物发展有限责任公司 | One strain denitrogen paracoccus and its application in livestock and poultry farm wastewater treatment |
CN112811752A (en) * | 2020-12-21 | 2021-05-18 | 青岛尚德生物技术有限公司 | Composite micro-ecological slow-release particles for restoring aquaculture geology and application thereof |
CN113512515A (en) * | 2021-03-23 | 2021-10-19 | 常州大学 | Ammonia oxidation complex microbial inoculant and preparation method and application thereof |
CN114921359A (en) * | 2022-03-21 | 2022-08-19 | 绵津环保科技(上海)有限公司 | An environmental bacterial agent for high-salt sewage treatment of refractory organic matter and its application |
CN114933990A (en) * | 2022-05-31 | 2022-08-23 | 南京理工大学 | Simultaneous denitrifying bacteria degrading N-methylpyrrolidone and its application |
-
2023
- 2023-04-06 CN CN202310369015.4A patent/CN116553742A/en active Pending
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001246397A (en) * | 2000-03-03 | 2001-09-11 | Kansai Paint Co Ltd | Method for removing nitrogen in waste water |
JP2005034783A (en) * | 2003-07-17 | 2005-02-10 | New Industry Research Organization | Nitrification/denitrification method for removing nh4+ and no3- simultaneously |
US20100044304A1 (en) * | 2005-04-21 | 2010-02-25 | Ibiden Co., Ltd. | Method of treating wastewater containing organic compound |
CN102465104A (en) * | 2010-11-04 | 2012-05-23 | 中国石油化工股份有限公司 | Aerobic denitrification paracoccus denitrificans and application thereof |
CN204400694U (en) * | 2014-12-17 | 2015-06-17 | 深圳市深港产学研环保工程技术股份有限公司 | A kind of membrane bioreactor realizing synchronous nitration denitrification denitrogenation effect |
CN107090418A (en) * | 2017-05-17 | 2017-08-25 | 武汉科缘生物发展有限责任公司 | One strain denitrogen paracoccus and its application in livestock and poultry farm wastewater treatment |
CN112811752A (en) * | 2020-12-21 | 2021-05-18 | 青岛尚德生物技术有限公司 | Composite micro-ecological slow-release particles for restoring aquaculture geology and application thereof |
CN113512515A (en) * | 2021-03-23 | 2021-10-19 | 常州大学 | Ammonia oxidation complex microbial inoculant and preparation method and application thereof |
CN114921359A (en) * | 2022-03-21 | 2022-08-19 | 绵津环保科技(上海)有限公司 | An environmental bacterial agent for high-salt sewage treatment of refractory organic matter and its application |
CN114933990A (en) * | 2022-05-31 | 2022-08-23 | 南京理工大学 | Simultaneous denitrifying bacteria degrading N-methylpyrrolidone and its application |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114921359A (en) * | 2022-03-21 | 2022-08-19 | 绵津环保科技(上海)有限公司 | An environmental bacterial agent for high-salt sewage treatment of refractory organic matter and its application |
CN114921359B (en) * | 2022-03-21 | 2024-07-26 | 绵津环保科技(上海)有限公司 | Environment microbial inoculum for treating refractory organic matters in high-salt sewage and application thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101560486B (en) | Achromobacter xylosoxidans strain for biological denitrificaion and application thereof | |
CN103374524B (en) | Salt-tolerant microbial agent and preparation method thereof | |
CN110656059B (en) | Pseudomonas strain YG8, seed liquid and preparation method and application thereof | |
CN102464405B (en) | Denitrification method by sewage short-cut simultaneous nitrification and denitrification | |
CN101831392B (en) | Autotrophic and allotrophic symbiosis ammonia oxidation bacterial agent as well as culture method and application thereof | |
CN106635861B (en) | A kind of de- COD denitrification microorganism microbial inoculum of salt tolerant and preparation method thereof | |
CN110655198A (en) | Method for treating nitrogen-containing wastewater by using heterotrophic nitrification-aerobic denitrification paracoccus strain | |
CN103373762A (en) | Biological denitrification method for salt-containing sewage | |
CN110656057B (en) | Heterotrophic nitrification-aerobic denitrification paracoccus strain, seed liquid, preparation method and application thereof | |
CN103374525B (en) | Wastewater treating microbial agent and preparation method thereof | |
WO2024113537A1 (en) | Heterotrophic nitrification-aerobic denitrification composite microbial agent, preparation method therefor, and use thereof | |
CN115385456A (en) | Efficient denitrification sewage treatment agent and preparation method thereof | |
CN112250268A (en) | Biological preparation for efficiently degrading water ecological black and odorous bottom mud and preparation method thereof | |
CN102583770A (en) | Bamboo charcoal-photosynthetic bacteria integrated municipal sanitary wastewater treating agent | |
CN110655200A (en) | Method for treating nitrogen-containing wastewater by using Pseudomonas strain YG8 | |
CN116553742A (en) | Method for treating high-salt low-temperature wastewater by nitrifying bacteria and denitrifying bacteria | |
CN111040970A (en) | Compound microbial agent, preparation method thereof and application thereof in black and odorous water body remediation | |
CN113005062B (en) | A facultative trophic ammonia oxidizing bacterium and its application | |
CN114908002A (en) | A kind of biological nanometer selenium-enhanced composite strain and its application | |
CN112266885B (en) | Heterotrophic nitrification aerobic denitrifying bacteria Y16 and application thereof | |
CN114057291B (en) | Total nitrogen removal promoting drug and preparation and application thereof | |
CN115960783B (en) | Anaerobic microorganism combination with sulfonamide antibiotic degradation function and application thereof | |
CN117701444A (en) | Preparation method of magnetic biochar immobilized with ammonia nitrogen-resistant anaerobic microorganisms and method for relieving ammonia nitrogen inhibition | |
CN114292782B (en) | Bacterium for strengthening facultative FMBR (anaerobic fermentation and fermentation) pesticide wastewater treatment process | |
CN116445341A (en) | Denitrifying bacteria and application thereof in wastewater treatment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |