CN116532082A - Porous carbon foam/metal organic framework composite adsorbent for separating C6 alkane isomer and preparation method and application thereof - Google Patents
Porous carbon foam/metal organic framework composite adsorbent for separating C6 alkane isomer and preparation method and application thereof Download PDFInfo
- Publication number
- CN116532082A CN116532082A CN202310418757.1A CN202310418757A CN116532082A CN 116532082 A CN116532082 A CN 116532082A CN 202310418757 A CN202310418757 A CN 202310418757A CN 116532082 A CN116532082 A CN 116532082A
- Authority
- CN
- China
- Prior art keywords
- metal
- porous carbon
- carbon foam
- organic framework
- composite adsorbent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
Description
技术领域technical field
本发明属于吸附分离材料技术领域,具体涉及一种用于分离C6烷烃异构体的多孔碳泡沫与金属有机骨架复合吸附剂及其制备方法和应用。The invention belongs to the technical field of adsorption and separation materials, and in particular relates to a porous carbon foam and metal organic framework composite adsorbent for separating C6 alkane isomers, a preparation method and application thereof.
背景技术Background technique
气体混合物精细化分离是能源及化工系统中不可或缺的核心技术,是进一步提高油品品质、转化效率、降低污染物排放的关键所在。例如,C6作为汽油的主要成分,其同分异构体的辛烷值存在较大差异,其含量对于汽油的品质也至关重要,因此需要将低辛烷值的直链正己烷从混合物中分离出来。目前,传统的热驱动分离过程(如精馏分离)存在能耗高、经济效益低的缺陷,而采用非热驱动分离(如吸附分离)可大幅度降低能耗。其中,吸附分离材料作为吸附分离技术的核心,其结构性能对吸附分离效果的好坏起决定性作用。Refined separation of gas mixtures is an indispensable core technology in energy and chemical systems, and the key to further improving oil quality, conversion efficiency, and reducing pollutant emissions. For example, as the main component of gasoline, C6 has a large difference in the octane number of its isomers, and its content is also crucial to the quality of gasoline. Therefore, it is necessary to extract straight-chain n-hexane with a low octane number from the mixture separate from. At present, the traditional heat-driven separation process (such as rectification separation) has the defects of high energy consumption and low economic benefit, but the use of non-heat-driven separation (such as adsorption separation) can greatly reduce energy consumption. Among them, the adsorption separation material is the core of the adsorption separation technology, and its structural properties play a decisive role in the quality of the adsorption separation effect.
在众多吸附分离材料中,金属有机骨架(Metal-Organic Framework,MOF)材料具有高的孔隙率(50%~90%的自由体积)、大的比表面积(100~10000m2/g)、高度可调控的孔尺寸(0.3~10nm)和暴露的活性位点等,在气体吸附分离领域显示出巨大的应用潜力。然而,本征MOF材料在分离混合物时存在吸附容量和分离选择性难以兼具的问题。Among many adsorption and separation materials, metal-organic framework (Metal-Organic Framework, MOF) materials have high porosity (50%-90% free volume), large specific surface area (100-10000m 2 /g), highly scalable The regulated pore size (0.3-10nm) and exposed active sites have shown great application potential in the field of gas adsorption and separation. However, intrinsic MOF materials have the problem of having both adsorption capacity and separation selectivity when separating mixtures.
为了提高本征MOF材料的分离性能,具有优异疏水性和结构稳定性的碳基多孔材料被广泛用作功能性复合基底,从而赋予MOF材料丰富的孔结构。然而,本征碳基多孔材料(如活性炭AC、碳纳米管CNTs、石墨烯GR等)因疏水性和缺乏结合位点,难以与MOF材料形成有效的复合材料。近年来,碳基多孔材料的预酸化或羟基功能化策略被普遍采用。例如,Shang等人[Yaxin Shang,Qing Xu,Zhixiao Gao,et al.Enhancedphosphate removalfrompractical wastewatervia in situ assembled dimension-engineered MOF@carbonheterostructures[J].Chemical Engineering Journal,2022,428:132536.]将本征CNTs预羟基化后分散于有机溶剂中,从而得到了性能优异的ZIF-8@CNT-OH复合材料,以有效地从受污染的水体中去除磷酸盐。孙肇兴[孙肇兴.MOF-多孔碳复合材料制备与性能的研究[D].北京,中国石油大学,2018.]也对碳基多孔材料(活性炭、石墨烯泡沫)进行了酸化处理,合成了兼具热稳定性与吸附性的MOF-多孔碳复合材料,用于污水处理和甲烷吸附,然而,酸化预处理不符合绿色化学的制备理念,且制备工艺复杂。Sun等人[Yunfei Sun,MinMa,Xiaohong Sun,et al.High n-hexane adsorption capacity of compositeadsorbents based on MOFs and graphene with various morphologies[J].Industrial&Engineering Chemistry Research,2020,59:13744-13754.]在表面活性剂(十二烷基苯磺酸钠)的驱动下合成了ZIF-8/3DGR复合材料,但3DGR制备工艺复杂,且复合后比表面积降低、晶体分布不均匀、负载率低。如何高效合成MOF与多孔碳材料的复合材料,并赋予其优异的选择性吸附分离性能是一个亟待解决的问题。To improve the separation performance of intrinsic MOF materials, carbon-based porous materials with excellent hydrophobicity and structural stability are widely used as functional composite substrates, thus endowing MOF materials with rich pore structures. However, intrinsic carbon-based porous materials (such as activated carbon AC, carbon nanotubes CNTs, graphene GR, etc.) are difficult to form effective composites with MOF materials due to their hydrophobicity and lack of binding sites. In recent years, pre-acidification or hydroxyl functionalization strategies of carbon-based porous materials have been widely adopted. For example, Shang et al [Yaxin Shang, Qing Xu, Zhixiao Gao, et al. Enhanced phosphate removal from practical waste water via in situ assembled dimension-engineered MOF@carbonheterostructures [J]. Chemical Engineering Journal, 2022, 428: 132536.] put the intrinsic C NTs pre After hydroxylation and dispersion in organic solvents, ZIF-8@CNT-OH composites with excellent properties were obtained to effectively remove phosphate from polluted water bodies. Sun Zhaoxing [Sun Zhaoxing. Research on the preparation and performance of MOF-porous carbon composite materials [D]. Beijing, China University of Petroleum, 2018.] also acidified carbon-based porous materials (activated carbon, graphene foam) and synthesized Thermally stable and adsorbable MOF-porous carbon composites are used for sewage treatment and methane adsorption. However, the acidification pretreatment does not conform to the preparation concept of green chemistry, and the preparation process is complicated. SUN et al. IES [J] .industric & Engineering Chemistry Research, 2020,59: 13744-13754.] On the surface Driven by the active agent (sodium dodecylbenzenesulfonate), the ZIF-8/3DGR composite material was synthesized, but the preparation process of 3DGR was complicated, and the specific surface area was reduced after the composite, the crystal distribution was uneven, and the loading rate was low. How to efficiently synthesize composites of MOF and porous carbon materials and endow them with excellent selective adsorption and separation performance is an urgent problem to be solved.
发明内容Contents of the invention
针对以上问题,本发明的目的之一是提供一种用于分离C6烷烃异构体的多孔碳泡沫(Porous Carbon Foam,PCF)/金属有机骨架(Metal-Organic Framework,MOF)复合吸附剂,用于吸附正己烷,以实现正己烷和高辛烷值的支链烷烃的分离。本发明所述的高辛烷值的支链烷烃为3-甲基戊烷、2-甲基戊烷、2,3-二甲基丁烷、2,2-二甲基丁烷。For the above problems, one of the objects of the present invention is to provide a kind of porous carbon foam (Porous Carbon Foam, PCF)/metal-organic framework (Metal-Organic Framework, MOF) composite adsorbent for separating C6 alkane isomers, with It is used to adsorb n-hexane to realize the separation of n-hexane and high-octane branched alkanes. The high-octane branched alkanes in the present invention are 3-methylpentane, 2-methylpentane, 2,3-dimethylbutane and 2,2-dimethylbutane.
本发明所述的用于分离C6烷烃异构体的多孔碳泡沫/金属有机骨架复合吸附剂为通过先在多孔碳泡沫上锚固金属氧化物,再与金属盐结合形成羟基双金属盐(HDS),最后加入有机配体,使金属有机骨架材料在多孔碳泡沫上原位合成制得;所述多孔碳泡沫/金属有机骨架复合吸附剂的平均孔径为1.25~1.75nm。The porous carbon foam/metal-organic framework composite adsorbent used for separating C6 alkane isomers according to the present invention is to form a hydroxyl double metal salt (HDS) by first anchoring a metal oxide on the porous carbon foam, and then combining with a metal salt , and finally adding organic ligands to synthesize the metal-organic framework material on the porous carbon foam in situ; the average pore diameter of the porous carbon foam/metal-organic framework composite adsorbent is 1.25-1.75nm.
进一步地,上述金属氧化物中的金属元素为锌或铜;金属盐中的金属离子为锌离子、钴离子、铜离子中的一种。Further, the metal element in the metal oxide is zinc or copper; the metal ion in the metal salt is one of zinc ion, cobalt ion and copper ion.
本发明的目的之二是提供上述用于分离C6烷烃异构体的多孔碳泡沫/金属有机骨架复合吸附剂的制备方法,具体步骤为:The second object of the present invention is to provide the above-mentioned preparation method for the porous carbon foam/metal-organic framework composite adsorbent used for separating C6 alkane isomers, the specific steps are:
(1)制备含金属氧化物的多孔碳泡沫:将碳源与金属盐水溶液混合,搅拌均匀后,在惰性气氛下热解发泡,得到多孔碳泡沫/金属氧化物基底;(1) Preparation of porous carbon foam containing metal oxide: mix carbon source and metal salt solution, stir evenly, and pyrolyze and foam under inert atmosphere to obtain porous carbon foam/metal oxide substrate;
(2)制备含羟基双金属盐的多孔碳泡沫:配制金属盐水溶液,加入到步骤(1)的多孔碳泡沫/金属氧化物基底中,并搅拌使充分反应,得到多孔碳泡沫/羟基双金属盐;(2) Preparation of porous carbon foam containing hydroxy bimetallic salt: prepare an aqueous metal salt solution, add it to the porous carbon foam/metal oxide substrate in step (1), and stir to fully react to obtain porous carbon foam/hydroxy bimetallic Salt;
(3)制备含金属有机骨架的多孔碳泡沫:配制有机配体水溶液,加入到步骤(2)的多孔碳泡沫/羟基双金属盐中,并搅拌均匀,随后进行溶剂热合成,将得到的沉淀物离心、洗涤、干燥,得到多孔碳泡沫/金属有机骨架复合吸附剂。(3) Preparation of porous carbon foam containing metal-organic framework: prepare an aqueous solution of organic ligand, add it to the porous carbon foam/hydroxyl double metal salt in step (2), and stir evenly, then carry out solvothermal synthesis, and the obtained precipitate The material was centrifuged, washed, and dried to obtain a porous carbon foam/metal-organic framework composite adsorbent.
进一步地,本发明步骤(1)的金属盐:步骤(2)的金属盐:步骤(3)的有机配体的摩尔比为1:1:2~20;更进一步地,步骤(1)的金属盐:步骤(2)的金属盐:步骤(3)的有机配体的摩尔比为1:1:10~16。Further, the molar ratio of the metal salt of the step (1) of the present invention: the metal salt of the step (2): the organic ligand of the step (3) is 1:1:2~20; further, the metal salt of the step (1) Metal salt: the metal salt in step (2): the molar ratio of the organic ligand in step (3) is 1:1:10-16.
进一步地,步骤(1)所述的碳源为聚合物、沥青、生物质中的一种。Further, the carbon source in step (1) is one of polymers, asphalt, and biomass.
进一步地,步骤(1)所述的金属盐选自金属醋酸盐、金属硝酸盐、金属硫酸盐、碱式碳酸盐中的任意一种;更进一步地;步骤(1)的金属盐中的金属离子为锌离子或铜离子。Further, the metal salt described in step (1) is selected from any one of metal acetate, metal nitrate, metal sulfate, and basic carbonate; further; in the metal salt of step (1) The metal ion is zinc ion or copper ion.
进一步地,步骤(1)所述的热解温度为300-900℃,时间为1-3h;更进一步地,热解温度为600-700℃,时间为2h。热解温度如大于900度会发生氧化还原反应,金属氧化物会被碳还原为金属。Further, the pyrolysis temperature in step (1) is 300-900°C, and the time is 1-3h; further, the pyrolysis temperature is 600-700°C, and the time is 2h. If the pyrolysis temperature is greater than 900 degrees, a redox reaction will occur, and the metal oxide will be reduced to metal by carbon.
进一步地,步骤(2)所述的金属盐选自金属醋酸盐、金属硝酸盐、金属硫酸盐、碱式碳酸盐中的任意一种;更进一步地,步骤(2)的金属盐中金属离子为锌离子、钴离子、铜离子中的一种。Further, the metal salt described in step (2) is selected from any one of metal acetate, metal nitrate, metal sulfate, basic carbonate; further, in the metal salt of step (2) The metal ion is one of zinc ion, cobalt ion and copper ion.
进一步地,步骤(3)所述的有机配体为咪唑、2-甲基咪唑、2-醛基咪唑、2-氨基苯并咪唑、对苯二甲酸、氨基对苯二甲酸、羟基对苯二甲酸、氟基对苯二甲酸、均苯三甲酸、吡嗪、氨基吡嗪、联吡啶、偶氮吡啶中的一种或几种。Further, the organic ligand described in step (3) is imidazole, 2-methylimidazole, 2-formyl imidazole, 2-aminobenzimidazole, terephthalic acid, aminoterephthalic acid, hydroxyterephthalic acid One or more of formic acid, fluoroterephthalic acid, trimesic acid, pyrazine, aminopyrazine, bipyridine, and azopyridine.
进一步地,步骤(3)所述的溶剂热合成条件为100-150℃反应1-3h。Further, the solvothermal synthesis condition in step (3) is 100-150° C. for 1-3 hours.
本发明的目的之三是提供了上述用于分离C6烷烃异构体的多孔碳泡沫/金属有机骨架复合吸附剂在分离正己烷/2-甲基戊烷、正己烷/2,3-二甲基丁烷、正己烷/2,2-二甲基丁烷、正己烷/3-甲基戊烷、正己烷/环己烷、甲烷/氮气、二氧化碳/氮气、乙炔/乙烯、乙烯/乙烷、丙烯/丙烷中的应用。The third object of the present invention is to provide the above-mentioned porous carbon foam/metal organic framework composite adsorbent for separating C6 alkane isomers in the separation of normal hexane/2-methylpentane, normal hexane/2,3-dimethyl Butane, n-hexane/2,2-dimethylbutane, n-hexane/3-methylpentane, n-hexane/cyclohexane, methane/nitrogen, carbon dioxide/nitrogen, acetylene/ethylene, ethylene/ethane , Application in propylene/propane.
本发明具有如下的优点及效果:The present invention has following advantage and effect:
(1)本发明采用金属盐作为发泡剂,不仅获得了含金属氧化物的功能化PCF,其表面锚固的金属氧化物提高了PCF和MOF材料的结合牢度;还赋予其多孔的结构属性,具有优异的吸附性能。(1) The present invention adopts metal salt as foaming agent, not only obtains the functionalized PCF containing metal oxide, but the metal oxide anchored on its surface improves the bonding fastness of PCF and MOF materials; also endows it with porous structural properties , with excellent adsorption properties.
(2)本发明采用金属氧化物后修饰(Post Metal-Oxide Modification,PMOM)法,利用金属离子与PCF表面的金属氧化物结合,形成羟基双金属盐,更换金属盐或有机配体,便可实现功能化PCF/MOF复合吸附剂原位合成,同时兼具高吸附容量和高分离选择性。(2) The present invention adopts metal oxide post-modification (Post Metal-Oxide Modification, PMOM) method, utilizes metal ions to combine with metal oxides on the surface of PCF to form hydroxyl double metal salts, and replace metal salts or organic ligands to Realize in-situ synthesis of functionalized PCF/MOF composite adsorbent with high adsorption capacity and high separation selectivity.
(3)本发明将功能化MOF材料均匀分布到价格低、来源广的PCF上,不仅减少了MOF材料的团聚,还赋予了PCF更高的气体吸附分离性能。(3) In the present invention, the functionalized MOF material is uniformly distributed on PCF with low price and wide source, which not only reduces the agglomeration of MOF material, but also endows PCF with higher gas adsorption and separation performance.
(4)本发明具有操作简便、负载率高等特点,便于规模化制备。(4) The present invention has the characteristics of simple operation and high loading rate, and is convenient for large-scale preparation.
附图说明:Description of drawings:
图1是对比例1(PCF/ZnO)和实施例1(PCF/ZIF-8)和实施例2(PCF/ZIF-8-Co)复合吸附剂的SEM图;Fig. 1 is the SEM figure of comparative example 1 (PCF/ZnO) and embodiment 1 (PCF/ZIF-8) and embodiment 2 (PCF/ZIF-8-Co) composite adsorbent;
图2是对比例1(PCF/ZnO)、对比例2(ZIF-8)、对比例3(PCF/mIm)和实施例1(PCF/ZIF-8)复合吸附剂的N2吸附-脱附等温线;Fig. 2 is the N adsorption-desorption of comparative example 1 (PCF/ZnO), comparative example 2 (ZIF-8), comparative example 3 (PCF/mIm) and embodiment 1 (PCF/ZIF-8) composite adsorbent Isotherm;
图3是对比例1(PCF/ZnO)、对比例2(ZIF-8)、对比例3(PCF/mIm)和实施例1(PCF/ZIF-8)复合吸附剂的孔径分布图;Fig. 3 is the pore size distribution figure of comparative example 1 (PCF/ZnO), comparative example 2 (ZIF-8), comparative example 3 (PCF/mIm) and embodiment 1 (PCF/ZIF-8) composite adsorbent;
图4是对比例1(PCF/ZnO)、对比例2(ZIF-8)和实施例1(PCF/ZIF-8)复合吸附剂的XRD图;Fig. 4 is the XRD pattern of comparative example 1 (PCF/ZnO), comparative example 2 (ZIF-8) and embodiment 1 (PCF/ZIF-8) composite adsorbent;
图5是对比例1(PCF/ZnO)、对比例2(ZIF-8)、对比例3(PCF/mIm)和实施例1(PCF/ZIF-8)复合吸附剂的正己烷/3-甲基戊烷蒸气吸附等温线;Fig. 5 is the normal hexane/3-methanol of comparative example 1 (PCF/ZnO), comparative example 2 (ZIF-8), comparative example 3 (PCF/mIm) and embodiment 1 (PCF/ZIF-8) composite adsorbent Vapor adsorption isotherm of pentane;
图6是实施例2(PCF/ZIF-8-Co)和实施例3(PCF/ZIF-8-NH2)复合吸附剂的正己烷/3-甲基戊烷蒸气吸附等温线;Fig. 6 is the n-hexane/3-methylpentane vapor adsorption isotherm of embodiment 2 (PCF/ZIF-8-Co) and embodiment 3 (PCF/ZIF-8-NH 2 ) composite adsorbent;
图7是本发明所合成PCF/MOF复合吸附剂和已报道MOF材料的正己烷吸附量和正己烷/3-甲基戊烷吸附量之比。Fig. 7 is the ratio of the n-hexane adsorption amount and the n-hexane/3-methylpentane adsorption amount of the PCF/MOF composite adsorbent synthesized by the present invention and the reported MOF material.
具体实施方式Detailed ways
为使本发明的目的,技术方案更加清楚,下面结合附图和实施例对本发明做进一步描述,显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例,但本发明要求保护的范围并不局限于此。In order to make the purpose of the present invention, the technical scheme is clearer, the present invention will be further described below in conjunction with accompanying drawing and embodiment, obviously, described embodiment is only a part embodiment of the present invention, rather than all embodiment, but the present invention The scope of the claimed protection is not limited thereto.
实施例1Example 1
将0.5mmol蔗糖与1mmol硝酸锌搅拌均匀,然后转入600℃高温环境下热解2h,得到PCF/ZnO基底;将1mmol醋酸锌水溶液加到PCF/ZnO基底中,常温搅拌24h,得到PCF/HDS(Zn,Zn)中间体;加入16mmol的2-甲基咪唑,在120℃下反应2h,将所得沉淀物洗涤、干燥,得到PCF/ZIF-8复合吸附剂。Stir 0.5mmol sucrose and 1mmol zinc nitrate evenly, then transfer to 600°C for 2h to obtain PCF/ZnO substrate; add 1mmol zinc acetate aqueous solution to PCF/ZnO substrate, stir at room temperature for 24h to obtain PCF/HDS (Zn, Zn) intermediate; add 16 mmol of 2-methylimidazole, react at 120° C. for 2 h, wash and dry the resulting precipitate to obtain PCF/ZIF-8 composite adsorbent.
实施例2Example 2
将0.5mmol蔗糖与1mmol醋酸锌搅拌均匀,然后转入600℃高温环境下热解2h,得到PCF/ZnO基底;将1mmol醋酸钴水溶液加到PCF/ZnO基底中,常温搅拌24h,得到PCF/HDS(Zn,Co)中间体;加入16mmol的2-甲基咪唑,在120℃下反应2h,最后将沉淀物洗涤、干燥,得到PCF/ZIF-8-Co复合吸附剂。Stir 0.5mmol sucrose and 1mmol zinc acetate evenly, then transfer to 600°C for 2h to obtain PCF/ZnO substrate; add 1mmol cobalt acetate aqueous solution to PCF/ZnO substrate, stir at room temperature for 24h to obtain PCF/HDS (Zn, Co) intermediate; add 16mmol of 2-methylimidazole, react at 120°C for 2h, and finally wash and dry the precipitate to obtain PCF/ZIF-8-Co composite adsorbent.
实施例3Example 3
将0.5mmol蔗糖与1mmol硝酸锌搅拌均匀,然后转入600℃高温环境下热解2h,得到PCF/ZnO基底;将1mmol醋酸锌水溶液加到PCF/ZnO基底中,常温搅拌24h,得到PCF/HDS(Zn,Zn)中间体;加入12mmol的2-甲基咪唑和4mmol的2-氨基苯并咪唑,在120℃下反应2h,最后将所得沉淀物洗涤、干燥,得到PCF/ZIF-8-NH2复合吸附剂。Stir 0.5mmol sucrose and 1mmol zinc nitrate evenly, then transfer to 600°C for 2h to obtain PCF/ZnO substrate; add 1mmol zinc acetate aqueous solution to PCF/ZnO substrate, stir at room temperature for 24h to obtain PCF/HDS (Zn, Zn) intermediate; add 12mmol of 2-methylimidazole and 4mmol of 2-aminobenzimidazole, react at 120°C for 2h, and finally wash and dry the resulting precipitate to obtain PCF/ZIF-8-NH 2 composite adsorbent.
实施例4Example 4
将0.5mmol葡萄糖与1mmol硫酸锌搅拌均匀,然后转入900℃高温环境下热解2h,得到PCF/ZnO基底;将1mmol醋酸锌水溶液加到PCF/ZnO基底中,常温搅拌24h,得到PCF/HDS(Zn,Zn)中间体;加入6mmol的2-甲基咪唑,在100℃下反应2h,最后将所得沉淀物洗涤、干燥,得到PCF/ZIF-8复合吸附剂。Stir 0.5mmol of glucose and 1mmol of zinc sulfate evenly, then transfer to 900 ℃ high temperature environment for 2h to obtain PCF/ZnO substrate; add 1mmol of zinc acetate aqueous solution to PCF/ZnO substrate, stir at room temperature for 24h to obtain PCF/HDS (Zn, Zn) intermediate; add 6 mmol of 2-methylimidazole, react at 100° C. for 2 h, and finally wash and dry the obtained precipitate to obtain PCF/ZIF-8 composite adsorbent.
实施例5Example 5
将0.5mmol聚多巴胺与1mmol硝酸锌搅拌均匀,然后转入600℃高温环境下热解2h,得到PCF/ZnO基底;将1mmol硝酸铜水溶液加到PCF/ZnO基底中,常温搅拌24h,得到PCF/HDS(Zn,Cu)中间体;加入10mmol的对苯二甲酸(BDC),在150℃下反应2h,最后将所得沉淀物洗涤、干燥,得到PCF/Cu-BDC复合吸附剂。Stir 0.5mmol of polydopamine and 1mmol of zinc nitrate evenly, and then transfer to 600°C for 2 hours of pyrolysis to obtain PCF/ZnO substrate; HDS (Zn, Cu) intermediate; add 10 mmol of terephthalic acid (BDC), react at 150°C for 2 hours, and finally wash and dry the resulting precipitate to obtain PCF/Cu-BDC composite adsorbent.
实施例6Example 6
将0.5mmol蔗糖与1mmol硝酸铜搅拌均匀,然后转入700℃高温环境下热解1.5h,得到PCF/CuO基底;将1mmol硝酸锌水溶液加到PCF/CuO基底中,常温搅拌24h,得到PCF/HDS(Cu,Zn)中间体;加入12mmol的均苯三甲酸(BTC),在130℃下反应2h,最后将所得沉淀物洗涤、干燥,得到PCF/Cu-BTC复合吸附剂。Stir 0.5mmol of sucrose and 1mmol of copper nitrate evenly, then transfer to 700°C for 1.5h of pyrolysis to obtain PCF/CuO substrate; HDS (Cu, Zn) intermediate; add 12 mmol of trimesic acid (BTC), react at 130°C for 2 hours, and finally wash and dry the resulting precipitate to obtain PCF/Cu-BTC composite adsorbent.
对比例1Comparative example 1
将0.5mmol蔗糖与1mmol硝酸锌搅拌均匀,然后转入600℃高温环境下热解2h,得到PCF/ZnO基底。0.5mmol sucrose and 1mmol zinc nitrate were stirred evenly, and then transferred to a high temperature environment of 600°C for 2h for pyrolysis to obtain a PCF/ZnO substrate.
对比例2Comparative example 2
将1mmol硝酸锌和1mmol的醋酸锌水溶液常温搅拌24h,得到(Zn,Zn)HDS中间体,加入16mmol的2-甲基咪唑,在120℃下反应2h,最后将所得沉淀物洗涤、干燥,得到ZIF-8材料。Stir 1mmol of zinc nitrate and 1mmol of zinc acetate aqueous solution at room temperature for 24h to obtain (Zn, Zn)HDS intermediate, add 16mmol of 2-methylimidazole, react at 120°C for 2h, and finally wash and dry the obtained precipitate to obtain ZIF-8 material.
对比例3Comparative example 3
将0.5mmol蔗糖与1mmol硝酸锌搅拌均匀,然后转入600℃高温环境下热解2h,得到PCF/ZnO基底;加入16mmol的2-甲基咪唑,在120℃下反应2h,最后将所得沉淀物洗涤、干燥,得到PCF/mIm复合吸附剂。Stir 0.5mmol of sucrose and 1mmol of zinc nitrate evenly, then transfer to 600°C for 2 hours of pyrolysis to obtain PCF/ZnO substrate; add 16mmol of 2-methylimidazole, react at 120°C for 2h, and finally remove the After washing and drying, a PCF/mIm composite adsorbent is obtained.
(1)PCF/ZnO、PCF/ZIF-8和PCF/ZIF-8-Co复合吸附剂的SEM图(1) SEM images of PCF/ZnO, PCF/ZIF-8 and PCF/ZIF-8-Co composite adsorbents
采用扫描电子显微镜(SEM)分析对本发明所制备的本征PCF/ZnO和PCF/ZIF-8、PCF/ZIF-8-Co复合吸附剂的微观形貌,测试结果如图1所示。结果表明,化学发泡的PCF上锚固了大量的ZnO纳米颗粒,加入有机配体(2-甲基咪唑)后,ZnO转化为ZIF-8材料,实现了PCF/ZIF-8复合吸附剂的原位合成,且表面的ZIF-8颗粒均一且分散、晶体表面光滑、暴露了更多的吸附位点。加入Co金属源后,PCF/ZnO转化为双金属PCF/ZIF-8-Co复合吸附剂,实现了PCF/ZIF-8-Co复合吸附剂的原位合成,且表面的ZIF-8-Co颗粒均一且分散、晶体表面光滑、暴露了更多的吸附位点。Scanning electron microscopy (SEM) was used to analyze the microscopic morphology of the intrinsic PCF/ZnO and PCF/ZIF-8, PCF/ZIF-8-Co composite adsorbent prepared by the present invention, and the test results are shown in Figure 1. The results showed that a large number of ZnO nanoparticles were anchored on the chemically foamed PCF, and after adding an organic ligand (2-methylimidazole), ZnO was transformed into ZIF-8 material, realizing the original principle of PCF/ZIF-8 composite adsorbent. The ZIF-8 particles on the surface are uniform and dispersed, the crystal surface is smooth, and more adsorption sites are exposed. After adding Co metal source, PCF/ZnO was transformed into bimetallic PCF/ZIF-8-Co composite adsorbent, realizing the in situ synthesis of PCF/ZIF-8-Co composite adsorbent, and the ZIF-8-Co particles on the surface Uniform and dispersed, the crystal surface is smooth, and more adsorption sites are exposed.
(2)PCF/ZnO、ZIF-8、PCF/mIm和PCF/ZIF-8复合吸附剂的N2吸附-脱附等温线(2) N2 adsorption-desorption isotherms of PCF/ZnO, ZIF-8, PCF/mIm and PCF/ZIF-8 composite adsorbents
采用Autosorb-IQ2吸附仪对本发明所制备的PCF/ZnO、ZIF-8、PCF/mIm和PCF/ZIF-8复合吸附剂进行N2吸附-脱附等温测定,分析其比表面积和吸附量的变化,测试结果如图2所示。结果表明,仅加入有机配体(2-甲基咪唑)时,样品PCF/mIm的比表面积提高了439%,但仍低于ZIF-8材料,可能是仅合成了部分的ZIF-8晶体。加入桥接剂Zn2+以后,PCF/ZIF-8复合吸附剂的比表面积进一步提升,相比本征材料PCF/ZnO和ZIF-8分别提高了501%和26%,说明外部Zn2+的加入可以为ZIF-8晶体的生长提供更多的金属离子,进而促进ZIF-8晶体均匀且分散负载到PCF的表面。PCF/ZnO, ZIF-8, PCF/mIm and PCF/ZIF-8 composite adsorbent prepared by the present invention are carried out by using Autosorb- IQ Adsorber N Adsorption-desorption isothermal measurement, analysis of its specific surface area and adsorption capacity The test results are shown in Figure 2. The results showed that when only organic ligand (2-methylimidazole) was added, the specific surface area of PCF/mIm of the sample increased by 439%, but it was still lower than that of ZIF-8 material, which may be because only a part of ZIF-8 crystal was synthesized. After adding the bridging agent Zn 2+ , the specific surface area of the PCF/ZIF-8 composite adsorbent was further improved, which was 501% and 26% higher than the intrinsic material PCF/ZnO and ZIF-8, respectively, indicating that the addition of external Zn 2+ It can provide more metal ions for the growth of ZIF-8 crystals, and then promote the uniform and dispersed loading of ZIF-8 crystals on the surface of PCF.
对本发明所制备的PCF/ZnO、ZIF-8、PCF/mIm和PCF/ZIF-8复合吸附剂进行了孔径分布的分析,测试结果如表1、图3所示。结果表明,PCF/ZnO的微孔体积相对较小(<2nm),低于ZIF-8。直接加入有机配体mIm,PCF/mIm的微孔得到了大幅的提高,远优于本征材料PCF/ZnO和ZIF-8。随后,羟基双盐HDS转化的PCF/ZIF-8微孔体积增加最为明显,优于ZnO直接转化的PCF/mIm,进一步表明了本发明方法的优势之处,有利于己烷的吸附分离。The PCF/ZnO, ZIF-8, PCF/mIm and PCF/ZIF-8 composite adsorbents prepared by the present invention were analyzed for pore size distribution, and the test results are shown in Table 1 and Figure 3. The results showed that the micropore volume of PCF/ZnO was relatively small (<2nm), lower than that of ZIF-8. Directly adding the organic ligand mIm, the micropore of PCF/mIm has been greatly improved, far superior to the intrinsic materials PCF/ZnO and ZIF-8. Subsequently, the micropore volume of PCF/ZIF-8 transformed by hydroxyl double salt HDS increased most obviously, which was better than that of PCF/mIm directly transformed by ZnO, further demonstrating the advantages of the method of the present invention, which is beneficial to the adsorption and separation of hexane.
(3)PCF/ZnO、ZIF-8和PCF/ZIF-8复合吸附剂的XRD图(3) XRD patterns of PCF/ZnO, ZIF-8 and PCF/ZIF-8 composite adsorbents
采用X射线粉末衍射仪(XRD)对本发明所制备的PCF/ZnO、ZIF-8和PCF/ZIF-8复合吸附剂进行晶体结构的测定,测试结果如图4所示。结果表明,化学发泡后的PCF/ZnO与模拟ZnO的特征峰一致,表明产物中含有金属源ZnO。加入金属盐桥接剂和有机配体(2-甲基咪唑)以后,ZnO的特征峰已基本消失,所合成样品PCF/ZIF-8的特征峰与ZIF-8样品的特征峰基本保持一致,进一步证明了ZnO已完全转化为ZIF-8。以上结果也证实了PCF/ZnO可以作为金属源,在有机配体的作用下,可以原位转化为PCF/ZIF-8复合吸附剂。The crystal structure of the PCF/ZnO, ZIF-8 and PCF/ZIF-8 composite adsorbents prepared by the present invention was determined by X-ray powder diffractometer (XRD). The test results are shown in FIG. 4 . The results showed that the characteristic peaks of PCF/ZnO after chemical foaming were consistent with those of simulated ZnO, indicating that the product contained metal source ZnO. After adding the metal salt bridging agent and organic ligand (2-methylimidazole), the characteristic peaks of ZnO have basically disappeared, and the characteristic peaks of the synthesized sample PCF/ZIF-8 are basically consistent with the characteristic peaks of the ZIF-8 sample. It is proved that ZnO has been completely converted to ZIF-8. The above results also confirmed that PCF/ZnO can be used as a metal source, which can be converted into PCF/ZIF-8 composite adsorbent in situ under the action of organic ligands.
(4)PCF/ZnO、ZIF-8、PCF/mIm和PCF/ZIF-8复合吸附剂的C6蒸气吸附等温线(4) C6 vapor adsorption isotherms of PCF/ZnO, ZIF-8, PCF/mIm and PCF/ZIF-8 composite adsorbents
采用Autosorb-IQ2吸附仪对本发明所制备的PCF/ZnO、ZIF-8、PCF/mIm和PCF/ZIF-8复合吸附剂进行己烷蒸气吸附等温线测定,探讨其对C6同分异构体的分离性能,测试结果如图5所示。结果表明,本征材料PCF/ZnO对正己烷蒸气和3-甲基戊烷蒸气具有相当量的吸附量,且优先吸附直链正己烷蒸气。对于本征ZIF-8材料,由于其特殊的孔径范围,在低压下表现出较强的正己烷/3-甲基戊烷分离效果。加入有机配体(2-甲基咪唑)和桥接剂Zn2+后,由于PCF和ZIF-8的协同作用,复合样品PCF/ZIF-8兼具了吸附容量和分离选择性,不仅实现了低辛烷值的直链正己烷蒸气的高效吸附,还分离高辛烷值的支链3-甲基戊烷蒸气,效果明显优于PCF/mIm,有助于提高汽油品质。PCF/ZnO, ZIF-8, PCF/mIm and PCF/ZIF-8 composite adsorbents prepared by the present invention are carried out by using Autosorb-IQ 2 adsorption instrument to measure the hexane vapor adsorption isotherm, and explore its effect on C6 isomers The separation performance, the test results are shown in Figure 5. The results show that the intrinsic material PCF/ZnO has a considerable amount of adsorption capacity for n-hexane vapor and 3-methylpentane vapor, and preferentially adsorbs linear n-hexane vapor. For the intrinsic ZIF-8 material, due to its special pore size range, it shows a strong n-hexane/3-methylpentane separation effect at low pressure. After adding organic ligand (2-methylimidazole) and bridging agent Zn 2+ , due to the synergistic effect of PCF and ZIF-8, the composite sample PCF/ZIF-8 has both adsorption capacity and separation selectivity, not only achieving low High-efficiency adsorption of straight-chain n-hexane vapor with octane number, and separation of branched-chain 3-methylpentane vapor with high octane number, the effect is obviously better than PCF/mIm, which helps to improve gasoline quality.
(5)双金属PCF/ZIF-8-Co和双配体PCF/ZIF-8-NH2复合吸附剂的C6蒸气吸附等温线(5) C6 vapor adsorption isotherms of bimetallic PCF/ZIF-8-Co and dual-ligand PCF/ZIF-8- NH composite adsorbents
基于PCF/ZIF-8的优异吸附分离特性,进一步分析了实施例2和3所制备的双金属PCF/ZIF-8-Co和双配体PCF/ZIF-8-NH2的C6吸附分离性能,结果如图6所示。结果表明,双金属PCF/ZIF-8-Co和双配体PCF/ZIF-8-NH2可以很好的兼具吸附容量和分离选择性,几乎不吸附高辛烷值的支链3-甲基戊烷,进一步表明本发明的优越性和普适性,为功能化PCF/MOF的原位合成提供支撑。Based on the excellent adsorption and separation characteristics of PCF/ZIF-8, the C6 adsorption and separation performance of the bimetallic PCF/ZIF-8-Co and double ligand PCF/ZIF-8-NH prepared in Examples 2 and 3 were further analyzed, The result is shown in Figure 6. The results show that the bimetallic PCF/ZIF-8-Co and double ligand PCF/ZIF-8-NH 2 can have good adsorption capacity and separation selectivity, almost no adsorption of high-octane branched-chain 3-formazan Pentane further demonstrates the superiority and universality of the present invention, providing support for the in situ synthesis of functionalized PCF/MOF.
(6)本发明所合成PCF/MOF复合吸附剂和已报道MOF材料的正己烷吸附量和正己烷/3-甲基戊烷吸附量之比(6) The ratio of the normal hexane adsorption capacity of the synthesized PCF/MOF composite adsorbent of the present invention and the reported MOF material and normal hexane/3-methylpentane adsorption capacity
为了凸显本发明技术的先进性,将本发明所合成PCF/MOF复合吸附剂和已报道MOF材料的正己烷吸附量和正己烷/3-甲基戊烷吸附量之比进行比较,结果如图7所示。结果表明,双金属和双配体所合成的PCF/ZIF-8-Co(实施例2)和PCF/ZIF-8-NH2(实施例3)兼具了吸附容量和分离选择性,分离效果更显著。进一步表明了本发明技术的先进性和适用性,可以实现更多功能材料的原位合成,从而实现混合物的高效吸附分离。In order to highlight the advancement of the technology of the present invention, the PCF/MOF composite adsorbent synthesized by the present invention is compared with the ratio of n-hexane adsorption capacity and n-hexane/3-methylpentane adsorption capacity of the reported MOF material, the results are shown in Fig. 7. The results show that PCF/ZIF-8-Co (Example 2) and PCF/ZIF-8-NH 2 (Example 3) synthesized by double metals and double ligands have both adsorption capacity and separation selectivity, and the separation effect more significant. It further demonstrates the advancement and applicability of the technology of the present invention, which can realize the in-situ synthesis of more functional materials, thereby realizing the efficient adsorption separation of the mixture.
表1对比例1-3和实施例1-3制备的材料的性能比较The performance comparison of the material prepared by table 1 comparative example 1-3 and embodiment 1-3
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310418757.1A CN116532082A (en) | 2023-04-19 | 2023-04-19 | Porous carbon foam/metal organic framework composite adsorbent for separating C6 alkane isomer and preparation method and application thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310418757.1A CN116532082A (en) | 2023-04-19 | 2023-04-19 | Porous carbon foam/metal organic framework composite adsorbent for separating C6 alkane isomer and preparation method and application thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN116532082A true CN116532082A (en) | 2023-08-04 |
Family
ID=87451524
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202310418757.1A Pending CN116532082A (en) | 2023-04-19 | 2023-04-19 | Porous carbon foam/metal organic framework composite adsorbent for separating C6 alkane isomer and preparation method and application thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN116532082A (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105110314A (en) * | 2015-07-28 | 2015-12-02 | 大连理工大学 | A synthesis method of nitrogen-doped nano-foamed carbon embedded with metal oxide hollow nanoparticles |
CN110548488A (en) * | 2019-09-04 | 2019-12-10 | 华中科技大学 | biochar-based nitrogen-rich composite material, and preparation and application thereof |
CN111672341A (en) * | 2020-06-15 | 2020-09-18 | 大连理工大学 | A method for preparing bimetallic MOF membrane by self-conversion of hydroxy bimetallic salt and its application in pervaporation separation |
CN112280052A (en) * | 2020-09-30 | 2021-01-29 | 华南理工大学 | Hierarchical pore ZIF-8 material and preparation method and application thereof |
CN112691553A (en) * | 2019-10-23 | 2021-04-23 | 中国石油化工股份有限公司 | Method for preparing dopamine cross-linking MOFs separation membrane |
CN114849652A (en) * | 2022-05-11 | 2022-08-05 | 中山大学 | Activated carbon-encapsulated imidazole metal-organic framework composite material with high gas separation selectivity and preparation method thereof |
-
2023
- 2023-04-19 CN CN202310418757.1A patent/CN116532082A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105110314A (en) * | 2015-07-28 | 2015-12-02 | 大连理工大学 | A synthesis method of nitrogen-doped nano-foamed carbon embedded with metal oxide hollow nanoparticles |
CN110548488A (en) * | 2019-09-04 | 2019-12-10 | 华中科技大学 | biochar-based nitrogen-rich composite material, and preparation and application thereof |
CN112691553A (en) * | 2019-10-23 | 2021-04-23 | 中国石油化工股份有限公司 | Method for preparing dopamine cross-linking MOFs separation membrane |
CN111672341A (en) * | 2020-06-15 | 2020-09-18 | 大连理工大学 | A method for preparing bimetallic MOF membrane by self-conversion of hydroxy bimetallic salt and its application in pervaporation separation |
CN112280052A (en) * | 2020-09-30 | 2021-01-29 | 华南理工大学 | Hierarchical pore ZIF-8 material and preparation method and application thereof |
CN114849652A (en) * | 2022-05-11 | 2022-08-05 | 中山大学 | Activated carbon-encapsulated imidazole metal-organic framework composite material with high gas separation selectivity and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wang et al. | Exploration of the adsorption performance and mechanism of zeolitic imidazolate framework-8@ graphene oxide for Pb (II) and 1-naphthylamine from aqueous solution | |
Li et al. | Mechanochemical synthesis of Cu-BTC@ GO with enhanced water stability and toluene adsorption capacity | |
Zhong et al. | The application of ZIF-67 and its derivatives: adsorption, separation, electrochemistry and catalysts | |
Liu et al. | Rapid mechanochemical construction of HKUST-1 with enhancing water stability by hybrid ligands assembly strategy for efficient adsorption of SF6 | |
Zhao et al. | Synthesis and characterization of MOF-aminated graphite oxide composites for CO2 capture | |
CN105170097B (en) | A kind of TiO2Nuclear-shell structured nano-composite materials of/ZIF 8 and preparation method thereof | |
Chen et al. | Highly efficient mechanochemical synthesis of an indium based metal-organic framework with excellent water stability | |
CN103372420B (en) | The composite of metallic organic framework and amine-modified graphite oxide and preparation thereof | |
Guo et al. | Controllable construction of N-enriched hierarchically porous carbon nanosheets with enhanced performance for CO2 capture | |
CN107722285B (en) | Hydrophobic zirconium metal organic framework material and preparation method thereof | |
Luo et al. | Heteroatom-N, S co-doped porous carbons derived from waste biomass as bifunctional materials for enhanced CO2 adsorption and conversion | |
Li et al. | High dispersion of polyethyleneimine within mesoporous UiO-66s through pore size engineering for selective CO2 capture | |
CN107875801B (en) | A kind of preparation of nitrogen-doped carbon material using porous nitrogen-containing polymer as precursor and its application | |
CN111408376B (en) | Preparation method and application of multifunctional biochar with heavy metal adsorption and organic matter degradation functions | |
CN106669612A (en) | An aluminum-based metal-organic framework@graphene oxide composite material and its preparation method and application | |
CN113083237B (en) | MOFs desulfurizing agent based on organic amine in-situ modification, and preparation and application thereof | |
Esfandiari et al. | Optimizing parameters affecting synthetize of CuBTC using response surface methodology and development of AC@ CuBTC composite for enhanced hydrogen uptake | |
CN114849652A (en) | Activated carbon-encapsulated imidazole metal-organic framework composite material with high gas separation selectivity and preparation method thereof | |
Tang et al. | Hydrophilic carbon monoliths derived from metal-organic frameworks@ resorcinol-formaldehyde resin for atmospheric water harvesting | |
Ding et al. | Pore engineering of metal–organic frameworks for boosting low-pressure CO 2 capture | |
Zhang et al. | Hydrate-based adsorption-hydration hybrid approach enhances methane storage in wet MIL-101 (Cr)@ AC under mild condition | |
CN107827108A (en) | A kind of pole micro-pore carbon material and preparation method thereof | |
Mujmule et al. | Engineered cellulose-based porous carbon adsorbents for superior gas adsorption and selective separation of CH4/H2 and CH4/N2 | |
CN110436462B (en) | Microporous carbon material for preparing high-selectivity propylene propane separation by using starch and preparation method and application thereof | |
CN114849651A (en) | Activated carbon packaged carboxylic acid metal organic framework composite material, preparation thereof and gas adsorption separation application |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |