CN116516057A - 鉴别辣椒果实香气性状的snp分子标记及应用 - Google Patents
鉴别辣椒果实香气性状的snp分子标记及应用 Download PDFInfo
- Publication number
- CN116516057A CN116516057A CN202310747447.4A CN202310747447A CN116516057A CN 116516057 A CN116516057 A CN 116516057A CN 202310747447 A CN202310747447 A CN 202310747447A CN 116516057 A CN116516057 A CN 116516057A
- Authority
- CN
- China
- Prior art keywords
- seq
- pepper
- molecular marker
- snp molecular
- primer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6876—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
- C12Q1/6888—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
- C12Q1/6895—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for plants, fungi or algae
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01H—NEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
- A01H1/00—Processes for modifying genotypes ; Plants characterised by associated natural traits
- A01H1/04—Processes of selection involving genotypic or phenotypic markers; Methods of using phenotypic markers for selection
- A01H1/045—Processes of selection involving genotypic or phenotypic markers; Methods of using phenotypic markers for selection using molecular markers
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8201—Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
- C12N15/8202—Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation by biological means, e.g. cell mediated or natural vector
- C12N15/8205—Agrobacterium mediated transformation
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8216—Methods for controlling, regulating or enhancing expression of transgenes in plant cells
- C12N15/8218—Antisense, co-suppression, viral induced gene silencing [VIGS], post-transcriptional induced gene silencing [PTGS]
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8241—Phenotypically and genetically modified plants via recombinant DNA technology
- C12N15/8242—Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
- C12N15/8243—Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
- C12N15/8249—Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine involving ethylene biosynthesis, senescence or fruit development, e.g. modified tomato ripening, cut flower shelf-life
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/0004—Oxidoreductases (1.)
- C12N9/0008—Oxidoreductases (1.) acting on the aldehyde or oxo group of donors (1.2)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6844—Nucleic acid amplification reactions
- C12Q1/6858—Allele-specific amplification
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y102/00—Oxidoreductases acting on the aldehyde or oxo group of donors (1.2)
- C12Y102/04—Oxidoreductases acting on the aldehyde or oxo group of donors (1.2) with a disulfide as acceptor (1.2.4)
- C12Y102/04004—3-Methyl-2-oxobutanoate dehydrogenase (2-methylpropanoyl-transferring) (1.2.4.4), i.e. branched-chain-alpha-ketoacid dehydrogenase
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2600/00—Oligonucleotides characterized by their use
- C12Q2600/13—Plant traits
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2600/00—Oligonucleotides characterized by their use
- C12Q2600/156—Polymorphic or mutational markers
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Biotechnology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Physics & Mathematics (AREA)
- Microbiology (AREA)
- Biophysics (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Analytical Chemistry (AREA)
- Plant Pathology (AREA)
- Cell Biology (AREA)
- Immunology (AREA)
- Botany (AREA)
- Developmental Biology & Embryology (AREA)
- Environmental Sciences (AREA)
- Medicinal Chemistry (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Nutrition Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Mycology (AREA)
- Virology (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
本发明属于基因工程技术领域,公开了鉴别辣椒果实香气性状的SNP分子标记及应用。该SNP分子标记的核苷酸序列如SEQ ID NO.1或SEQ ID NO.2所示。该分子标记能够准确、快速地鉴别出高果香辣椒品种和个体。将其应用于辣椒育种中,能够用来预测、鉴定和筛选辣椒果实香气性状,在苗期就能够进行有效筛选,提高育种效率,减少种质资源创新和筛选过程的成本。
Description
技术领域
本发明属于基因工程技术领域,具体涉及鉴别辣椒果实香气性状的SNP分子标记及应用。
背景技术
辣椒(Capsicum spp.)是茄科(Solanaceae)辣椒属(Capsicum L.)植物。香气是辣椒的重要品质性状。辣椒的主要栽培种‘中国辣椒’(C.chinense Jacq.)普遍具有浓郁果香,‘一年生辣椒’(Capsicum annuum L.)则普遍无果香。该性状主要由支链酯类挥发性物质产生,能丰富辣椒味觉层次,提高辣椒商品价值。但是目前识别辣椒是否为高果香,只能对成熟的辣椒果实进行嗅闻判断,无法从幼苗期就准确、快速地鉴别出辣椒苗是高果香辣椒品种或无果香品种,进而也不能实现高果香辣椒种质资源的预测和筛选。
因此,亟需提供一种能够准确、快速地鉴别出高果香辣椒品种的方法,用于高果香辣椒种质资源的预测和筛选。
发明内容
本发明旨在至少解决上述现有技术中存在的技术问题之一。为此,本发明提出了鉴别辣椒果实香气性状的SNP分子标记及应用。本发明提供的SNP分子标记能够用来预测、鉴定和筛选辣椒果实香气性状,在苗期就能够进行有效筛选,提高育种效率,减少种质资源创新和筛选过程的成本。
本发明提供了鉴别辣椒果实香气性状的SNP分子标记。
具体地,所述SNP分子标记的核苷酸序列为SEQ ID NO.1或SEQ ID NO.2。
SEQ ID NO.1:5'-TTCACTTTTTTAGAAACAGTACGACACCGTTTTGCTCATATAATAAGGTAACTGAGTGTATTTATTTGCCTTTAACAACTATTTGTATGTCAGA-3'。
SEQ ID NO.2:5'-TTCACTTTTTTAGAAACAGTACGACAGCGTTTTGCTCATATAATAAGGTAACTGAGTGTATTTATTTGCCTTTAACAACTATTTGTATGTCAGA-3'。
本发明采用多组学结合分析进行SNP变异位点查找,发现与辣椒果实香气性状相关的SNP位点位于BCKDC-E2基因(序列如SEQ ID NO.3所示,全为外显子序列)中,且核苷酸多态性为G/C,并将所述SNP分子标记命名为SNP165。该分子标记的预测扩增片段长度为94个碱基,序列如SEQ ID NO.1或SEQ ID NO.2所示,G/C SNP位于第27个碱基。所述SNP分子标记能够准确、快速地鉴别出高果香辣椒品种和个体,所述SNP分子标记的CC基因型或GC基因型对应的高果香性状,所述的SNP分子标记的GG基因型对应的为无果香性状。
SEQ ID NO.3:5'-ATGATTTGCCGGAAAATTTATCAGAGTAAACTCCGGAATTCCGTGGTCCGGCAGAGCATTTGCCGGTGGTTTCAGTCTTCTGTTGCTCCGTTGACGCCTGCTGCTACTGTATGTAGTGGTAGTAGTGGCAAGAGAATTCAATCTCAACTTCACTTTTTTAGAAACAGTACGACASCGTTTTGCTCATATAATAAGCCAAATGTTTCATTTACTCTAAGAGGGTGTAGTTTTACAACTCAAGCTGCAATAGATCTCCCTGCTGGCGGGGTAATTGATATACCTCTGGCACAAACAGGTGAAGGTATTGCTGAATGTGAACTTCTCAAATGGTTTGTTCAGGAGGGGGACCTGGTTGAAGAATTCCAACCTCTTTGTGAAGTTCAAAGTGACAAGGCAACGATTGAAATAACAAGTCGTTACAAGGGAAAAATTTCTCAAATTCTTCATGTTCCTGGTGACATCGTAAAGGTTGGAGAAACACTTTTGAAGATTGGCATTGATGAAATTCCAGATCCCATTGAAACTTCTGATGCGTCAGAAAAAATGACATCCCTGGAATCTGATTGCAGTGGCTCAAGTGACATCAGCTCTGTGCCTGGAAAACCCAAGATCGGTGGAGTGTCATCCACACCTGCTATTCGCAACCTTGCAAAGCAGTATGGTTTGGACATAAATGATGTACCTGCAACTGGGAAAGATGGAAGGATACTTAAAGAGGACGTTATAAATTACGCAATGCAAAAAGGACTAATTGAAGCACCGGCATGTGCACTACAAAAACTTTCAGAGGTTTCACCTCTCATTGGAGGGGGATATGAAGATAAGACACTTCAGCTAAGGGGATACCAGCGTGCAATGGTTAAGTCAATGACATTAGCTGCAAAAATTCCACATTTCTATTATGTCGAAGAGATGAATTGTGATGCACTTGTGGAGCTCAAAACATCATTCCAGAATGAGAATTCTGATCCGGAGATCAAGCATACTTTCCTTCCTGTCCTCATAAAATCACTTTCGATGGCTTTAACTACACATCCCATGCTAAATAGTCGCTTCAATGAGGAATCCTACGAGGTCATCCTAAAAGGGTCTCACAACATCGGAATAGCAATGGCTACTCCAAATGGTTTGGTTGTACCAAACATAAAAAATGTTCAGTCTCTCTCAATCTTGGAGATAACAAAGGAACTGTCACGACTACAGAAATTTGCTAAGATAAACAAGCTTAGTCCTGATGATATATCAGGGGGAACTATTACTCTAAGCAATATTGGAGGAATTGGTGGAAAGTTTGGTTGTCCGCTCATAAATTCACCTGAAGTTGCCATCATAGGAATGGGCCGGATCCAGAAAATTCCACACTTTGCTGAAGATGGGAATATATATCCTGCATCAGTCATGACGATTAATGTAGGTGCAGATCATAGAGTTCTTGATGGAGCAACAGTTGCAAGGTTCTGCAATGACTGGAAAAAGTTTGTGGAAAAGCCAGACCTCCTGTTGTTGCATACGAGATAA-3',其中S代表G/C。
本发明还提供了上述SNP分子标记在辣椒育种中的应用。
优选地,所述辣椒为高果香辣椒。
通过与辣椒果实香气性状紧密连锁的SNP分子标记(记为SNP165)进行辅助育种,具体包括辣椒果实香气早期预测和选育高果香辣椒品种,所述SNP分子标记的核苷酸序列为SEQ ID NO.1或SEQ ID NO.2。
本发明还提供了一种用于扩增上述SNP分子标记的引物组合物,所述引物组合物包括两条正向引物和一条反向引物。
优选地,在所述引物组合物中,两条所述正向引物的5’端设置有不同的荧光基团。如两条所述正向引物的5’端分别含有HEX基团和FAM基团。在确定与辣椒高果香性状相关的SNP分子标记后,进一步设计检测SNP位点的KASP引物。
优选地,在所述引物组合物中,两条所述正向引物的核苷酸序列如下所示:
正向引物F1(SEQ ID NO.4):5'-GAAGGTCGGAGTCAACGGATTTTCACTTTTTTAGAAACAGTACGACAG-3';
正向引物F2(SEQ ID NO.5):5'-GAAGGTGACCAAGTTCATGCTTTCACTTTTTTAGAAACAGTACGACAC-3';
所述反向引物的核苷酸序列如SEQ ID NO.6所示:
反向引物R(SEQ ID NO.6):5'-TCTGACATACAAATAGTTGTTAAAGGC-3'。
本发明还提供了一种鉴定辣椒果实香气性状的方法。
具体地,一种鉴定辣椒果实香气性状的方法,包括以下步骤:
S1、提取待测辣椒的基因组DNA;
S2、以所述基因组DNA为模板,利用上述引物组合物进行PCR扩增反应;
S3、采用荧光检测平台对步骤S2的扩增产物进行检测,若所得荧光信号对应正向引物F1所含荧光基团时,则待测辣椒为无果香;若所得荧光信号对应正向引物F2所含荧光基团时,则待测辣椒为高果香。
优选地,所述PCR扩增的反应体系包括:KASP master mix、上述的引物组合物、基因组DNA和ddH2O。如所述PCR扩增的反应体系为10μL,包含2×KASP master mix 5μL,反向引物0.4μL,每种正向引物各0.15μL,10-100ng基因组DNA 1μL,ddH2O为3.3μL。
优选地,所述PCR扩增反应的程序为94℃、15min;94℃、20s,65-57℃ Touch-down,-0.88℃/cycles,10个循环;94℃、20s,57℃、1min,30个循环。
优选地,步骤S3中所述检测的方法为:使用TECAN infinite M1000酶标仪读取荧光信号,并利用在线软件snpdecoder解析转换荧光信号,得到清晰直观的分型图。
本发明还提供了BCKDH E2基因在调控辣椒果香物质含量中的应用,所述BCKDH E2基因的核苷酸序列如SEQ ID NO.3所示。试验结果表明,当所述BCKDH E2基因的核苷酸序列中S为C时,辣椒果实中的BCKDH E2基因表达与果香物质含量呈正相关。
本发明还提供了BCKDH E2基因在辣椒育种中的应用,所述BCKDH E2基因的核苷酸序列如SEQ ID NO.3所示。
与现有技术相比,本发明的有益效果是:
本发明提供了鉴别辣椒果实香气性状的SNP分子标记,其核苷酸序列为SEQ IDNO.1或SEQ ID NO.2,核苷酸多态性为G/C。该分子标记能够准确、快速地鉴别出高果香辣椒品种和个体。将其应用于辣椒育种中,能够用来预测、鉴定和筛选辣椒果实香气性状,在苗期就能够进行有效筛选,提高育种效率,减少种质资源创新和筛选过程的成本。
附图说明
图1为田间群体图片和部分F2果实图片;
图2为无香气材料(TJ)和浓果香材料(CC)支链酯类代谢通路及组学检测结果图;
图3为部分植株果实GC-MS峰面积图;
图4为BSA测序结果;
图5为BCHKD-E2序列比对及分子标记、香气分析结果图;
图6为具果香‘中国辣椒’自交系‘CC’果实中瞬时过表达BCKDH E2的结果图;
图7为具果香‘中国辣椒’自交系‘CC’果实中VIGS沉默BCKDH E2的结果图。
具体实施方式
为了让本领域技术人员更加清楚明白本发明所述技术方案,现列举以下实施例进行说明。需要指出的是,以下实施例对本发明要求的保护范围不构成限制作用。
以下实施例中所用的原料、试剂或装置如无特殊说明,均可从常规商业途径得到,或者可以通过现有已知方法得到。
以下实施例中所采用的常见分子生物学实验技术,比如DNA提取、PCR扩增等,若无特殊说明,通常按照常规方法操作,具体参见《分子克隆实验指南》(第三版)(Sambrook J&Russell DW, Molecular Cloning: a Laboratory Manual, 2001),或按照制造厂商说明书建议的条件实施。
实施例1:辣椒果实果香味差异遗传群体构建与遗传分析
(1)试验材料
以广东省农业科学院蔬菜研究所选育保存的具有优良商品性和丰产性的高果香自交系(7054,浓香型自交系‘CC’)和无果香自交系(TJ)为亲本,杂交获得F1,F1自交获得200株F2分离群体(田间群体图片和部分F2果实图片如图1所示)。
(2)辣椒高果香性状遗传分析
针对无果香‘一年生辣椒’自交系‘TJ’和具果香‘中国辣椒’自交系‘CC’的幼果期、青熟期、转色期及成熟期果实的代谢及转录组学联合分析发现,‘一年生辣椒TJ’中支链酯类合成通路中的支链α酮酸脱氢酶(Branched-chain α-ketoacid dehydrogenase,BCKDH)复合体活性较低有可能是造成其果实支链酯类含量低的原因。无香气材料(TJ)和浓果香材料(CC)支链酯类代谢通路及组学检测结果图如图2所示。
进一步,使用顶空固相微萃取(HS-SPME)结合气相色谱质谱联用(GC-MS)方法结合嗅闻感官评价,分析群体亲本及F1,F2各单株果实辣椒挥发性物质。发现辣椒果实中呈现果香味的物质主要为支链酯类物质。该类物质在具果香辣椒自交系果实发育青熟期即可大量积累。并且赋予辣椒果实浓郁的果香味。对F1果实的挥发性物质检测及嗅闻感官分析显示,F1代果实都具有果香,对F2代群体进行香气分析结合嗅闻感官评价显示,具果香和不具果香的单株分别为49和151株,表明果实果香味性状由一对显性主效基因控制。
实施例2:辣椒果实果香味基因定位与KASP引物开发
(1)基因初步定位
利用F2群体中的高果香和无果香单株各30株,提取DNA,构建两个DNA池并进行混池测序(BSA-seq)。筛选出子代与双亲纯合且有差异的SNP位点,并计算出显性池与隐性池的SNP-index值。利用QTLseq-R计算两个混合池的G’value,并以1Mb为窗口、1kb为步长进行滑窗分析,将该辣椒高果香显性基因定位于1号染色体上的138.618-140.745 Mb区间;根据亲本的序列变异,在区间内开发多态性分子标记,对200个F2单株进行基因分型,结合青枯病发病表型数据进一步缩小定位区间。将茄子抗青枯病基因定位到261kb区间内。根据两个亲本的全基因组重测序数据,查找该定位区间内的SNP变异位点,在91075951bp位置查找到一个SNP位点变异G/C,并造成了氨基酸序列改变(丙氨酸/脯氨酸)。该SNP位点位于BCKDC-E2基因(序列如SEQ ID NO.3所示)中,该基因初步定位过程中的部分植株果实GC-MS峰面积图如图3所示,BSA测序结果如图4所示。
(2)设计KASP引物
根据91075951bp位置SNP位点上下游100bp的序列,利用primer premier5 .0软件设计KASP引物。
针对该SNP,设计等位基因特异性引物进行扩增和检测,获得SNP分子标记(记为SNP165)。该分子标记的预测扩增片段长度为94个碱基,序列如SEQ ID NO.1或SEQ ID NO.2所示,G/C SNP位于第27个碱基;扩增的正向引物为两个分别与G和C结合的特异性引物,序列分别为SEQ ID NO.4和SEQ ID NO.5,反向引物为SEQ ID NO.6。在两条特异性正向引物的5’端添加荧光报告基团,其中SEQ ID NO.4的5’端含有HEX基团(对应碱基为G),而SEQ IDNO.5的5’端含有FAM基团(对应碱基为C),从而可以通过兼容的荧光检测平台进行分型。
SEQ ID NO.1:5'-TTCACTTTTTTAGAAACAGTACGACACCGTTTTGCTCATATAATAAGGTAACTGAGTGTATTTATTTGCCTTTAACAACTATTTGTATGTCAGA-3'。
SEQ ID NO.2:5'-TTCACTTTTTTAGAAACAGTACGACAGCGTTTTGCTCATATAATAAGGTAACTGAGTGTATTTATTTGCCTTTAACAACTATTTGTATGTCAGA-3'。
BCKDH E2基因序列(SEQ ID NO.3):5'-ATGATTTGCCGGAAAATTTATCAGAGTAAACTCCGGAATTCCGTGGTCCGGCAGAGCATTTGCCGGTGGTTTCAGTCTTCTGTTGCTCCGTTGACGCCTGCTGCTACTGTATGTAGTGGTAGTAGTGGCAAGAGAATTCAATCTCAACTTCACTTTTTTAGAAACAGTACGACASCGTTTTGCTCATATAATAAGCCAAATGTTTCATTTACTCTAAGAGGGTGTAGTTTTACAACTCAAGCTGCAATAGATCTCCCTGCTGGCGGGGTAATTGATATACCTCTGGCACAAACAGGTGAAGGTATTGCTGAATGTGAACTTCTCAAATGGTTTGTTCAGGAGGGGGACCTGGTTGAAGAATTCCAACCTCTTTGTGAAGTTCAAAGTGACAAGGCAACGATTGAAATAACAAGTCGTTACAAGGGAAAAATTTCTCAAATTCTTCATGTTCCTGGTGACATCGTAAAGGTTGGAGAAACACTTTTGAAGATTGGCATTGATGAAATTCCAGATCCCATTGAAACTTCTGATGCGTCAGAAAAAATGACATCCCTGGAATCTGATTGCAGTGGCTCAAGTGACATCAGCTCTGTGCCTGGAAAACCCAAGATCGGTGGAGTGTCATCCACACCTGCTATTCGCAACCTTGCAAAGCAGTATGGTTTGGACATAAATGATGTACCTGCAACTGGGAAAGATGGAAGGATACTTAAAGAGGACGTTATAAATTACGCAATGCAAAAAGGACTAATTGAAGCACCGGCATGTGCACTACAAAAACTTTCAGAGGTTTCACCTCTCATTGGAGGGGGATATGAAGATAAGACACTTCAGCTAAGGGGATACCAGCGTGCAATGGTTAAGTCAATGACATTAGCTGCAAAAATTCCACATTTCTATTATGTCGAAGAGATGAATTGTGATGCACTTGTGGAGCTCAAAACATCATTCCAGAATGAGAATTCTGATCCGGAGATCAAGCATACTTTCCTTCCTGTCCTCATAAAATCACTTTCGATGGCTTTAACTACACATCCCATGCTAAATAGTCGCTTCAATGAGGAATCCTACGAGGTCATCCTAAAAGGGTCTCACAACATCGGAATAGCAATGGCTACTCCAAATGGTTTGGTTGTACCAAACATAAAAAATGTTCAGTCTCTCTCAATCTTGGAGATAACAAAGGAACTGTCACGACTACAGAAATTTGCTAAGATAAACAAGCTTAGTCCTGATGATATATCAGGGGGAACTATTACTCTAAGCAATATTGGAGGAATTGGTGGAAAGTTTGGTTGTCCGCTCATAAATTCACCTGAAGTTGCCATCATAGGAATGGGCCGGATCCAGAAAATTCCACACTTTGCTGAAGATGGGAATATATATCCTGCATCAGTCATGACGATTAATGTAGGTGCAGATCATAGAGTTCTTGATGGAGCAACAGTTGCAAGGTTCTGCAATGACTGGAAAAAGTTTGTGGAAAAGCCAGACCTCCTGTTGTTGCATACGAGATAA-3',其中S代表G/C。
SEQ ID NO.4(正向引物F1):5'-GAAGGTCGGAGTCAACGGATTTTCACTTTTTTAGAAACAGTACGACAG-3';
SEQ ID NO.5(正向引物F2):5'-GAAGGTGACCAAGTTCATGCTTTCACTTTTTTAGAAACAGTACGACAC-3';
SEQ ID NO.6(反向引物R):5'-TCTGACATACAAATAGTTGTTAAAGGC-3'。
实施例3:与辣椒果实香气性状连锁的分子标记SNP165的应用
通过188株辣椒材料(不同香气含量的自然群体)验证分子标记SNP165的应用效果。取群体样本叶片,通过CTAB法提取辣椒基因组DNA,利用上述引物(SEQ ID NO.2、3、4)进行PCR扩增,PCR反应体系为10μL,其中包含2×KASP master mix 5μL,反向引物0.4μL,正向引物F1为0.15μL,正向引物F2为0.15μL,基因组DNA(10-100ng)1μL,ddH2O为3.3μL。PCR反应程序为94℃、15min;94℃、20s,65-57℃ Touch-down, -0.88℃/cycles,10个循环;94℃、20s,57℃、1min,30个循环,使用TECAN infinite M1000酶标仪读取荧光信号,并利用在线软件snpdecoder (http://www. snpway.com/snpdecoder/)解析转换荧光信号,得到清晰直观的分型图,然后根据颜色不同,输出基因型检测结果。结果发现,在200个F2群体的随机单株中存在C、G、H共3种基因型,其中A:B:H=54:49:97,结合果实香气表型,检测结果与表型的一致的准确率为100%(200/200)。188株株辣椒材料(不同香气含量的自然群体)的检测结果如图5所示。图5中A为不同自然群体材料的SNP区段测序结果、嗅闻结果,以及GC-MS分析的支链酯含量结果;图5中B为188份自然群体材料SNP标记基因分型结果图,其中聚合在X轴的样本为高果香基因型(C基因型,对应荧光信号为FAM,对应碱基为C);聚合在Y轴的样本为无果香基因型(G基因型,对应荧光信号为HEX,对应碱基为G));聚合在中间的样本为杂合高果香基因型(H基因型,对应荧光信号为FAM,对应碱基为G/C);图5中C为基因分型结果与嗅闻结果比对韦恩图,结果显示C:G:H=43:140:4(其中一份辣椒材料未检出),结合香气表型,检测结果与表型一致的准确率约为100%。上述结果表明,本发明的SNP分子标记能够用来预测、鉴定和筛选辣椒果实香气性状,在苗期可以有效地进行筛选,提高工作效率,减少种质资源创新和筛选过程的各种成本。
实施例4:在中国辣椒果实中瞬时过表达BCKDH E2增加果香物质含量
将带有Nimble Cloning通用接头的中国辣椒BCKDH-E2基因序列插入pNC-Cam1304-SubC载体上的NC克隆框,构建载体pNC-BCKDH E2-Cam1304-SubC载体,转入大肠杆菌后测序验证。以空载pNC- Cam1304-SubC为对照组。将验证后的载体用感受态转化法转入农杆菌LBA4404中,并通过菌液PCR挑选阳性克隆后,加入LB液体培养基扩繁,收集菌体后,调节OD值至0.8-1.0。使用1mL注射器,选择大小相等的中国辣椒果实(具果香‘中国辣椒’自交系‘CC’),果实表皮下注射菌液进入,至整个果实水渍状。3d后取样,果实采摘后进行QPCR及GC-MS分析,分析结果如图6所示,图6中A为瞬时过表达空载及处理组果实对照图;图6中B为瞬时过表达空载及处理组BCKDH E2基因相对表达量图;图6中C为瞬时过表达空载及处理组果实中支链酯类物质含量图。由图6可知,BCKDH E2基因在处理组中表达量升高3.6倍,酯类物质的含量增加了0.5倍。
实施例5:VIGS干扰BCKDH E2表达降低辣椒果实中果香物质含量
构建含BCKDH-E2基因片段的TRV2载体pNC-TRV2- BCKDH-E2,并测序验证。对照组为载体pNC-TRV2。感受态转化法将重组质粒转入农杆菌LBA4404中。挑选单菌落接种于含Kan和Rif抗生素的20mL LB液体培养基中,28℃、280rpm振荡培养12-16h,4000rpm离心10min收集菌体。收集到的菌体重悬于10mL诱导Buffer中(9 mM MES,100 μM乙酰丁香酮),28℃培养箱静置诱导培养3h。4000rpm离心10min收集菌体。收集到菌体重悬于5mL侵染Buffer中,调节菌液OD600为0.8-1.0左右。使用1mL注射器,选择大小相等的中国辣椒果实(具果香‘中国辣椒’自交系‘CC’),果实表皮下注射菌液进入,至整个果实水渍状。注射后的果实暗培养12h,随后正常培养。12d后取样,果实采摘后进行QPCR及GC-MS分析,分析结果如图7所示。图7中A为VIGS干扰对照组与处理组的果实对比图;图7中B为VIGS干扰对照组与处理组中BCKDH E2基因相对表达量;图7中C为VIGS干扰对照组与处理组果实中支链酯类物质含量。由图7可知,BCKDH E2基因在处理组中表达量降低到对照组的0.3倍,处理组中总酯类物质含量也显著下降。
Claims (10)
1.鉴别辣椒果实香气性状的SNP分子标记,其特征在于,所述SNP分子标记的核苷酸序列如SEQ ID NO.1或SEQ ID NO.2所示。
2.权利要求1所述的SNP分子标记在辣椒育种中的应用。
3.一种用于扩增权利要求1或2所述的SNP分子标记的引物组合物,其特征在于,所述引物组合物包括两条正向引物和一条反向引物。
4.根据权利要求3所述的引物组合物,其特征在于,两条所述正向引物的5’端设置有不同的荧光基团。
5.根据权利要求4所述的引物组合物,其特征在于,两条所述正向引物的核苷酸序列如下所示:正向引物F1:SEQ ID NO.4,正向引物F2:SEQ ID NO.5;
所述反向引物的核苷酸序列如SEQ ID NO.6所示。
6.一种鉴定辣椒果实香气性状的方法,其特征在于,包括以下步骤:
S1、提取待测辣椒的基因组DNA;
S2、以所述基因组DNA为模板,利用权利要求5所述的引物组合物进行PCR扩增;
S3、采用荧光检测平台对步骤S2的扩增产物进行检测;若所得荧光信号对应正向引物F1所含荧光基团时,则待测辣椒为无果香;若所得荧光信号对应正向引物F2所含荧光基团时,则待测辣椒为高果香。
7.根据权利要求6所述的方法,其特征在于,所述PCR扩增的反应体系包括:KASPmaster mix、权利要求5所述的引物组合物、基因组DNA和ddH2O。
8.根据权利要求6所述的方法,其特征在于,步骤S3中所述检测的方法为:使用TECANinfinite M1000酶标仪读取荧光信号,并利用在线软件snpdecoder解析转换荧光信号,得到荧光信号与果香性状的分型图。
9.BCKDH E2基因在调控辣椒果香物质含量中的应用,其特征在于,所述BCKDH E2基因的核苷酸序列如SEQ ID NO.3所示。
10.BCKDH E2基因在辣椒育种中的应用,其特征在于,所述BCKDH E2基因的核苷酸序列如SEQ ID NO.3所示。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310747447.4A CN116516057B (zh) | 2023-06-25 | 2023-06-25 | 鉴别辣椒果实香气性状的snp分子标记及应用 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310747447.4A CN116516057B (zh) | 2023-06-25 | 2023-06-25 | 鉴别辣椒果实香气性状的snp分子标记及应用 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN116516057A true CN116516057A (zh) | 2023-08-01 |
CN116516057B CN116516057B (zh) | 2023-09-05 |
Family
ID=87406635
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202310747447.4A Active CN116516057B (zh) | 2023-06-25 | 2023-06-25 | 鉴别辣椒果实香气性状的snp分子标记及应用 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN116516057B (zh) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1366080A (zh) * | 2001-10-31 | 2002-08-28 | 浙江大学 | 一类水稻胚乳特异表达序列标签及其构成的生物芯片 |
CN104560973A (zh) * | 2014-12-24 | 2015-04-29 | 江苏省农业科学院 | 一种获得辣椒疫病抗性候选基因及分子标记的方法及应用 |
CN104726450A (zh) * | 2015-03-25 | 2015-06-24 | 广东省农业科学院蔬菜研究所 | 与辣椒根腐疫病特异抗性基因紧密连锁的分子标记及其应用 |
KR101573419B1 (ko) * | 2014-05-21 | 2015-12-01 | 서울대학교산학협력단 | 캡시노이드 고 함유 고추 품종의 구별을 위한 프라이머 세트 및 이의 용도 |
CN107151709A (zh) * | 2017-07-13 | 2017-09-12 | 中国农业科学院蔬菜花卉研究所 | 与辣椒辣味相关的snp标记及其应用 |
CN108486276A (zh) * | 2018-06-01 | 2018-09-04 | 江西省农业科学院蔬菜花卉研究所 | 辣椒熟性snp分子标记及其应用 |
CN113461793A (zh) * | 2021-06-30 | 2021-10-01 | 华南农业大学 | 辣椒ERF转录因子CaERF102及其在提高辣椒素含量中的应用 |
-
2023
- 2023-06-25 CN CN202310747447.4A patent/CN116516057B/zh active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1366080A (zh) * | 2001-10-31 | 2002-08-28 | 浙江大学 | 一类水稻胚乳特异表达序列标签及其构成的生物芯片 |
KR101573419B1 (ko) * | 2014-05-21 | 2015-12-01 | 서울대학교산학협력단 | 캡시노이드 고 함유 고추 품종의 구별을 위한 프라이머 세트 및 이의 용도 |
CN104560973A (zh) * | 2014-12-24 | 2015-04-29 | 江苏省农业科学院 | 一种获得辣椒疫病抗性候选基因及分子标记的方法及应用 |
CN104726450A (zh) * | 2015-03-25 | 2015-06-24 | 广东省农业科学院蔬菜研究所 | 与辣椒根腐疫病特异抗性基因紧密连锁的分子标记及其应用 |
CN107151709A (zh) * | 2017-07-13 | 2017-09-12 | 中国农业科学院蔬菜花卉研究所 | 与辣椒辣味相关的snp标记及其应用 |
CN108486276A (zh) * | 2018-06-01 | 2018-09-04 | 江西省农业科学院蔬菜花卉研究所 | 辣椒熟性snp分子标记及其应用 |
CN113461793A (zh) * | 2021-06-30 | 2021-10-01 | 华南农业大学 | 辣椒ERF转录因子CaERF102及其在提高辣椒素含量中的应用 |
Non-Patent Citations (4)
Title |
---|
HEE-JIN JEONG等: "Identification of Capsicum species using SNP markers based on high resolution melting analysis", GENOME, vol. 53, no. 12, pages 1029 - 1040 * |
ZHOU HENG等: "Integrated transcriptomic and metabolomic analysis of chili pepper fruits provides new insight into the regulation of the branched chain esters and capsaicin biosynthesis", FOOD RESEARCH INTERNATIONAL, vol. 169, pages 1 - 8 * |
尹小庆等: "小米辣鲊辣椒发酵过程中风味物质及微生物多样性的变化", 食品与发酵工业, no. 5, pages 74 - 82 * |
张西露等: "辣椒素类物质生物合成研究进展", 辣椒杂志, no. 2, pages 1 - 11 * |
Also Published As
Publication number | Publication date |
---|---|
CN116516057B (zh) | 2023-09-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Chen et al. | A simple allele-specific PCR assay for detecting FAD2 alleles in both A and B genomes of the cultivated peanut for high-oleate trait selection | |
Oh et al. | Genomic characterization of the fruity aroma gene, FaFAD1, reveals a gene dosage effect on γ-decalactone production in strawberry (Fragaria× ananassa) | |
Gobbin et al. | Microsatellite-based characterization of the Castanea sativa cultivar heritage of southern Switzerland | |
CN106676102A (zh) | 一种与油茶种子油脂中花生烯酸含量相关的snp分子标记及其应用 | |
CN112063746B (zh) | 位于花生fad2a基因启动子区与花生油酸和亚油酸含量相关的snp分子标记及其应用 | |
CN103013966A (zh) | 与黄瓜苦味性状相关的snp标记及其应用 | |
CN104673884B (zh) | 利用全基因组和est数据开发多态性est‑ssr标记的方法 | |
CN110195123B (zh) | 基于叶绿体基因组序列开发的苦蘵cpSSR标记引物及其应用 | |
Berg et al. | High-throughput screening of suppression subtractive hybridization cDNA libraries using DNA microarray analysis | |
CN107828897B (zh) | 与猪达100kg体重日龄性状相关的SNP分子标记及其应用 | |
CN111321241B (zh) | 一种小麦千粒重和粒长基因TaGS3-4A的分子标记及其应用 | |
CN110551844B (zh) | 一种甘蔗栽培种基因组ssr分子标记开发方法和应用 | |
CN116516057B (zh) | 鉴别辣椒果实香气性状的snp分子标记及应用 | |
CN116926230B (zh) | 一种与棉花纤维长度相关的分子标记及其应用 | |
CN107858441B (zh) | 与猪达100kg体重日龄性状相关的SNP分子标记及其应用 | |
Tanaka | Specific in situ visualization of the pathogenic endophytic fungus Aciculosporium take, the cause of witches’ broom in bamboo | |
CN114015701B (zh) | 一种检测大麦籽粒皱缩性状的分子标记及其应用 | |
CN107815499B (zh) | 一个与猪100kg体重背膘厚相关的SNP位点及其应用 | |
CN107287210B (zh) | 一种水稻外观品质基因qAQ7及其分子标记方法和应用 | |
CN103333899B (zh) | 猪肉质性状相关cdc16基因分子标记的克隆及其应用 | |
US7659067B2 (en) | Method for identification of medically relevant fungi | |
CN111304353B (zh) | 利用异交亲和基因连锁标记选育水稻东野型三系保持系的方法 | |
Zhang et al. | Dissecting the telomere region of barley chromosome 5HL using rice genomic sequences as references: new markers for tracking a complex region in breeding | |
CN119372371B (zh) | 检测小麦抗秆锈病基因Sr8155B1的功能分子标记、检测方法及其应用 | |
CN117265171B (zh) | 一种与小黑麦抗条锈病基因YrXY紧密连锁的分子标记及其应用 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |