[go: up one dir, main page]

CN116471842A - Non-volatile memory device - Google Patents

Non-volatile memory device Download PDF

Info

Publication number
CN116471842A
CN116471842A CN202310064288.8A CN202310064288A CN116471842A CN 116471842 A CN116471842 A CN 116471842A CN 202310064288 A CN202310064288 A CN 202310064288A CN 116471842 A CN116471842 A CN 116471842A
Authority
CN
China
Prior art keywords
gate structure
volatile memory
floating gate
memory device
gate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310064288.8A
Other languages
Chinese (zh)
Inventor
范德慈
黄义欣
郑宗文
郑育明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iotmemory Technology Inc
Original Assignee
Iotmemory Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US18/090,468 external-priority patent/US20240162315A1/en
Application filed by Iotmemory Technology Inc filed Critical Iotmemory Technology Inc
Publication of CN116471842A publication Critical patent/CN116471842A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Memories (AREA)

Abstract

The invention discloses a non-volatile memory element, which comprises at least one memory unit, wherein the memory unit comprises a substrate, an auxiliary gate structure, a tunneling dielectric layer, a floating gate and an upper gate structure. The auxiliary gate structure is disposed on the substrate. The floating gate includes two opposing first uppermost edges disposed along a first direction, two opposing first sidewalls disposed along the first direction, and two opposing second sidewalls disposed along a second direction different from the first direction. The upper gate structure covers the auxiliary gate structure and the floating gate, wherein at least one first uppermost edge of the floating gate is embedded in the upper gate structure. A portion of the upper gate structure extends beyond the second sidewall of the floating gate in the second direction, and the portion of the upper gate structure is disposed on the substrate.

Description

非挥发性内存元件NVM

技术领域technical field

本发明是关于一种半导体元件。更具体地,本发明是关于非挥发性内存元件。The present invention relates to a semiconductor element. More specifically, the present invention relates to non-volatile memory elements.

背景技术Background technique

由于非挥发性内存(non-volatile memory)可例如重复施行储存、读取和抹除数据等操作,且在关闭非挥发性内存后,储存的数据不会遗失,因此非挥发性内存已被广泛应用于个人计算机和电子设备中。Non-volatile memory has been widely used in personal computers and electronic devices because non-volatile memory can perform operations such as storing, reading, and erasing data repeatedly, and the stored data will not be lost after the non-volatile memory is turned off.

现有非挥发性内存的结构具有堆叠闸极结构,包括依次设置在衬底上的穿隧氧化层(tunneling oxide layer)、浮置闸极(floating gate)、耦合介电层(couplingdielectric layer)和控制闸极(control gate)。当对这种闪存元件施行编程或抹除操作时,适当的电压会被分别施加到源极区域、汲极区域和控制闸极,使得电子被注入到浮置闸极中,或者使得电子自浮置闸极中被拉出。The existing non-volatile memory has a stacked gate structure, including a tunneling oxide layer, a floating gate, a coupling dielectric layer and a control gate sequentially disposed on a substrate. When programming or erasing the flash memory device, appropriate voltages are applied to the source region, the drain region, and the control gate, respectively, so that electrons are injected into the floating gate, or electrons are pulled out of the floating gate.

在非挥发性内存的编程和抹除操作中,浮置闸极和控制闸极之间较大的闸极耦合比(gate-coupling ratio,GCR)通常代表着操作时所需的操作电压较低,因此显著提高了闪存的操作速度和效率。然而,在编程或抹除操作期间,电子必须流经设置在浮置闸极下方的穿隧氧化物层,以被注入至浮置闸极或自浮置闸极中被取出,此过程通常会对穿隧氧化物层的结构造成损害,因而降低内存元件的可靠性。In the programming and erasing operations of non-volatile memory, a larger gate-coupling ratio (GCR) between the floating gate and the control gate usually means that the operating voltage required for operation is lower, thus significantly improving the operating speed and efficiency of the flash memory. However, during programming or erasing operations, electrons must flow through the tunnel oxide layer disposed under the floating gate to be injected into or taken out from the floating gate. This process usually causes damage to the structure of the tunnel oxide layer, thereby reducing the reliability of the memory device.

为了提升内存元件的可靠性,可采用抹除闸极(erase gate),并将抹除闸极整合至内存元件中。通过施加正电压至抹除闸极,抹除闸极便能够将电子从浮置闸极中拉出。因此,由于浮置闸极中的电子是流经设置在浮置闸极上的穿隧氧化层而被拉出,而并非流经设置在浮置闸极下的穿隧氧化层而被拉出,所以进一步提高了内存元件的可靠性。In order to improve the reliability of the memory device, an erase gate can be used and integrated into the memory device. By applying a positive voltage to the erase gate, the erase gate can pull electrons out of the floating gate. Therefore, since the electrons in the floating gate flow through the tunnel oxide layer disposed on the floating gate and are pulled out instead of flowing through the tunnel oxide layer disposed under the floating gate, the reliability of the memory element is further improved.

然而,即使将抹除闸极结合到内存元件中能成功地提高内存元件的可靠性,但是抹除闸极的对准偏差(misalignment)通常会导致抹除闸极和下方的浮置闸极之间的耦合比有显著变化,这增加了所需抹除电压的变化,因而劣化了内存元件之间的电性一致性。However, even though the incorporation of erase gates into memory devices has been successful in improving the reliability of the memory devices, misalignment of the erase gates often results in significant variations in the coupling ratio between the erase gates and the underlying floating gates, which increases the variation in required erase voltages and thus degrades the electrical consistency between memory devices.

随着对高效内存元件需求的增加,仍需要提供一种改进的内存元件,其得以高效地抹除已储存的数据。As the demand for high-efficiency memory devices increases, there remains a need to provide an improved memory device that can efficiently erase stored data.

发明内容Contents of the invention

本发明的目的在于提供一种非挥发性内存元件,其能够以改善的电性一致性而有效地抹除储存的数据。It is an object of the present invention to provide a non-volatile memory device capable of effectively erasing stored data with improved electrical consistency.

根据本发明的一些实施例,其提供了一种非挥发性内存元件。非挥发性内存元件包括至少一内存单元,且至少一内存单元包括衬底、辅助闸极结构、穿隧介电层、浮置闸极和上闸极结构。辅助闸极结构设置在衬底上,且包括闸极介电层。穿隧介电层设置在辅助闸极结构一侧的衬底上。浮置闸极设置在穿隧介电层上,且包括两个第一最上边缘、两个第一侧壁和两个第二侧壁。两个第一最上边缘彼此相对且沿第一方向排列。两个第一侧壁彼此相对且沿第一方向排列,两个第一侧壁分别连接至两个第一最上边缘。两个第二侧壁彼此相对且沿着不同于第一方向的第二方向排列。上闸极结构覆盖辅助闸极结构和浮置闸极,浮置闸极的至少一第一最上边缘嵌入于上闸极结构中。部分的上闸极结构在第二方向上延伸超过浮置闸极的两个第二侧壁,且上闸极结构的所述部分设置在衬底上。According to some embodiments of the present invention, a non-volatile memory element is provided. The non-volatile memory element includes at least one memory unit, and the at least one memory unit includes a substrate, an auxiliary gate structure, a tunnel dielectric layer, a floating gate and an upper gate structure. The auxiliary gate structure is disposed on the substrate and includes a gate dielectric layer. The tunnel dielectric layer is disposed on the substrate on one side of the auxiliary gate structure. The floating gate is disposed on the tunnel dielectric layer and includes two first uppermost edges, two first sidewalls and two second sidewalls. The two first uppermost edges are opposite to each other and arranged along the first direction. The two first side walls are opposite to each other and arranged along the first direction, and the two first side walls are respectively connected to the two first uppermost edges. The two second sidewalls are opposite to each other and arranged along a second direction different from the first direction. The upper gate structure covers the auxiliary gate structure and the floating gate, and at least a first uppermost edge of the floating gate is embedded in the upper gate structure. A portion of the upper gate structure extends in the second direction beyond two second sidewalls of the floating gate, and the portion of the upper gate structure is disposed on the substrate.

通过使用根据本发明实施例的非挥发性内存元件,即使上闸极结构和其下的浮置闸极之间发生对准偏差,施加至上闸极结构的所需电压的变化,例如抹除电压的变化,也会减小或者甚至可以忽略。By using a non-volatile memory device according to an embodiment of the present invention, even if an alignment misalignment occurs between the upper gate structure and the underlying floating gate, the variation in the required voltage applied to the upper gate structure, such as the change in the erase voltage, is reduced or even negligible.

为了使本发明的上述特征和优点更容易理解,下面结合图式对实施例进行详细描述。In order to make the above-mentioned features and advantages of the present invention easier to understand, the embodiments are described in detail below in conjunction with the drawings.

对于本技术领域中具有通常知识者而言,在阅读了以下各图式中所示的优选实施例的详细说明后,本发明的上述和其他目的无疑将变得显而易见。The above and other objects of the present invention will no doubt become apparent to those skilled in the art after reading the following detailed description of the preferred embodiments shown in the drawings.

附图说明Description of drawings

下列图式的目的在于使本发明能更容易地被理解,这些图式会被并入并构成说明书的一部分。图式绘示了本发明的实施例,且连同实施方式的段落以阐述发明的作用原理。The following drawings are intended to make the present invention easier to understand, and are incorporated in and constitute a part of the specification. The drawings illustrate embodiments of the invention and, together with the description, illustrate the principle of operation of the invention.

图1是本发明一实施例的非挥发性内存元件的俯视示意图。FIG. 1 is a schematic top view of a non-volatile memory device according to an embodiment of the present invention.

图2是本发明一些实施例对应于图1的剖线A-A’、剖线B-B’和剖线C-C’的非挥发性内存元件的剖面示意图,其中上闸极结构覆盖浮置闸极和中间结构。2 is a schematic cross-sectional view of a non-volatile memory element corresponding to the section line A-A', section line B-B' and section line C-C' of some embodiments of the present invention, wherein the upper gate structure covers the floating gate and the intermediate structure.

图3是本发明一些实施例如图2所示的非挥发性内存元件的区域R1的放大剖面图。FIG. 3 is an enlarged cross-sectional view of the region R1 of the non-volatile memory device shown in FIG. 2 according to some embodiments of the present invention.

图4是本发明其他实施例对应于图1的剖线A-A’、剖线B-B’和剖线C-C’的非挥发性内存元件的剖面示意图,其中顶介电层覆盖浮置闸极。4 is a schematic cross-sectional view of a non-volatile memory element corresponding to the section line A-A', section line B-B' and section line C-C' of FIG. 1 according to other embodiments of the present invention, wherein the top dielectric layer covers the floating gate.

图5是本发明一些实施例如图4所示的非挥发性内存元件的区域R2的放大剖面图。FIG. 5 is an enlarged cross-sectional view of the region R2 of the non-volatile memory device shown in FIG. 4 according to some embodiments of the present invention.

图6是本发明其他实施例对应于图1的剖线A-A’、剖线B-B’和剖线C-C’的非挥发性内存元件的剖面示意图,其中浮置闸极是L型浮置闸极。6 is a cross-sectional schematic diagram of a non-volatile memory element corresponding to the section line A-A', section line B-B' and section line C-C' of other embodiments of the present invention, wherein the floating gate is an L-type floating gate.

图7是本发明一些实施例如图6所示的非挥发性内存元件的区域R3的放大剖面图。FIG. 7 is an enlarged cross-sectional view of the region R3 of the non-volatile memory device shown in FIG. 6 according to some embodiments of the present invention.

图8是本发明其他实施例的非挥发性内存元件的俯视示意图。FIG. 8 is a schematic top view of a non-volatile memory device according to another embodiment of the present invention.

图9是本发明一些其他实施例对应于图8的剖线A-A’、剖线B-B’和剖线C-C’的非挥发性内存元件的剖面示意图,其中源极区从中间结构暴露出。9 is a schematic cross-sectional view of a non-volatile memory element corresponding to the section line A-A', section line B-B' and section line C-C' of some other embodiments of the present invention, wherein the source region is exposed from the intermediate structure.

图10是本发明一些其他实施例如图9所示的非挥发性内存元件的区域R4的放大剖面图。FIG. 10 is an enlarged cross-sectional view of some other embodiments of the present invention, such as the region R4 of the non-volatile memory element shown in FIG. 9 .

图11至图14是本发明一些实施例用于制造图1至图3的非挥发性内存元件的制造方法的不同阶段的剖面图。11 to 14 are cross-sectional views of different stages of the manufacturing method for manufacturing the non-volatile memory device of FIGS. 1 to 3 according to some embodiments of the present invention.

图15至图17是本发明一些实施例用于制造图4至图5的非挥发性内存元件的制造方法的不同阶段的剖面图。15-17 are cross-sectional views of different stages of the manufacturing method for manufacturing the non-volatile memory device of FIGS. 4-5 according to some embodiments of the present invention.

图18至图19是本发明一些其他实施例用于制造图1至图3的非挥发性内存元件的制造方法的不同阶段的剖面图。FIGS. 18-19 are cross-sectional views of different stages of the manufacturing method for manufacturing the non-volatile memory device shown in FIGS. 1-3 according to some other embodiments of the present invention.

图20至图21是本发明一些其他实施例用于制造图4至图5的非挥发性内存元件的制造方法的不同阶段的剖面图。20-21 are cross-sectional views of different stages of the manufacturing method for manufacturing the non-volatile memory device shown in FIGS. 4-5 according to some other embodiments of the present invention.

图22至图26是本发明的一些实施例用于制造图6至图7的非挥发性内存元件的制造方法的不同阶段的剖面图。22-26 are cross-sectional views of different stages of the manufacturing method for manufacturing the non-volatile memory device of FIGS. 6-7 according to some embodiments of the present invention.

图27至图30是本发明的一些实施例用于制造图8至图10的非挥发性内存元件的制造方法的不同阶段的剖面图。27-30 are cross-sectional views of different stages of the manufacturing method for manufacturing the non-volatile memory device of FIGS. 8-10 according to some embodiments of the present invention.

附图标记说明:102-隔离结构;110-第一内存区域;112-第二内存区域;114-第三内存区域;116-第四内存区域;200-衬底;202-闸极介电层;204-辅助闸极;206-绝缘层;208-牺牲层;210-堆叠结构;211-侧壁;212-隔离材料层;213-侧壁;214-介电层;216-介电层;218-穿隧介电层;220a-图案化导电层;220a_2-侧壁;220b-图案化导电层;220b_0-顶面;220b_1-内表面;220b_2-外表面;220b_3-侧壁;221_1-垂直部分;221_2-水平部分;222-源极区;224-浮置闸极;224a-浮置闸极;224a_0-顶面;224a_1-侧壁;224a_2-侧壁;224b-浮置闸极;224b_1-垂直部分;224b_2-水平部分;225_0-顶面;225_1-内表面;225_2-外表面;226a_1-第一最上边缘;234-上闸极介电层;235-上闸极;235_0-顶面;236-上闸极结构;238-薄介电层;239-中间层;239_0-顶面;240-中间结构;240a-中间结构;240b-中间结构;242-汲极区;260-顶介电层;260_0-顶面;262-间隙壁;270a-保形层;270b-堆叠保形层;270b_1-下层;270b_2-上层;272a-间隙壁;272b-间隙壁;R1-区域;R2-区域;R3-区域;R4-区域;X-方向;Y-方向;Z-方向。Description of reference numerals: 102-isolating structure; 110-first memory area; 112-second memory area; 114-third memory area; 116-fourth memory area; 200-substrate; 202-gate dielectric layer; 204-auxiliary gate; 206-insulating layer; 6-dielectric layer; 218-tunnel dielectric layer; 220a-patterned conductive layer; 220a_2-sidewall; 220b-patterned conductive layer; 220b_0-top surface; 220b_1-inner surface; 220b_2-outer surface; 220b_3-sidewall; 4a-floating gate; 224a_0-top; 224a_1-sidewall; 224a_2-sidewall; 224b-floating gate; 224b_1-vertical part; 224b_2-horizontal part; 225_0-top; 225_1-inner surface; Gate; 235_0-top surface; 236-upper gate structure; 238-thin dielectric layer; 239-intermediate layer; 239_0-top surface; 240-intermediate structure; 240a-intermediate structure; 240b-intermediate structure; 70b_1-lower layer; 270b_2-upper layer; 272a-spacer; 272b-spacer; R1-region; R2-region; R3-region; R4-region; X-direction; Y-direction; Z-direction.

具体实施方式Detailed ways

本发明提供了数个不同的实施例,可用于实现本发明的不同特征。为简化说明起见,本发明也同时描述了特定构件与布置的范例。提供这些实施例的目的仅在于示意,而非予以任何限制。举例而言,下文中针对“第一特征形成在第二特征上或上方”的叙述,其可以是指“第一特征与第二特征直接接触”,也可以是指“第一特征与第二特征间另存在有其他特征”,致使第一特征与第二特征并不直接接触。此外,本发明中的各种实施例可能使用重复的参考符号和/或文字注记。使用这些重复的参考符号与注记是为了使叙述更简洁和明确,而非用以指示不同的实施例及/或配置之间的关联性。The invention provides several different embodiments that can be used to implement the different features of the invention. Examples of specific components and arrangements are also described herein for simplicity of description. These examples are provided for the purpose of illustration only, without any limitation. For example, the following description of "the first feature is formed on or above the second feature" may refer to "the first feature is in direct contact with the second feature", or may refer to "other features exist between the first feature and the second feature", so that the first feature is not in direct contact with the second feature. In addition, the various embodiments of the present invention may use repeated reference signs and/or text notations. The use of these repeated reference signs and notations is to make the description more concise and clear, but not to indicate the relationship between different embodiments and/or configurations.

另外,针对本发明中所提及的空间相关的叙述词汇,例如:“在...之下”,“低”,“下”,“上方”,“之上”,“下”,“顶”,“底”和类似词汇时,为便于叙述,其用法均在于描述图式中一个元件或特征与另一个(或多个)元件或特征的相对关系。除了图式中所显示的摆向外,这些空间相关词汇也用来描述半导体装置在使用中以及操作时的可能摆向。随着半导体装置的摆向的不同(旋转90度或其它方位),用以描述其摆向的空间相关叙述亦应通过类似的方式予以解释。In addition, for the space-related descriptive words mentioned in the present invention, such as: "below", "lower", "lower", "above", "above", "under", "top", "bottom" and similar words, for the convenience of description, their usage is to describe the relative relationship between one element or feature and another (or more) elements or features in the drawing. In addition to the orientations shown in the drawings, these space-related terms are also used to describe possible orientations of semiconductor devices during use and operation. Depending on the orientation of the semiconductor device (rotated by 90 degrees or other orientations), the spatially relative descriptions used to describe its orientation should be interpreted in a similar manner.

虽然下文通过具体实施例以描述本发明的发明,然而本发明的发明原理由权利要求书所界定,因而亦可被应用至其他的实施例。此外,为了不致使本发明的精神晦涩难懂,特定的细节会被予以省略,该些被省略的细节属于所属技术领域中具有通常知识者的知识范围。Although the invention of the present invention is described below through specific embodiments, the inventive principle of the present invention is defined by the claims, and thus can also be applied to other embodiments. In addition, in order not to obscure the spirit of the present invention, certain details have been omitted, and such omitted details belong to the knowledge of those having ordinary skill in the art.

图1是本发明一实施例的非挥发性内存元件的俯视示意图。参考图1,非挥发性内存元件可以是NOR闪存元件,其包括至少一个内存单元,例如分别容纳在第一内存区域110、第二内存区域112、第三内存区域114和第四内存区域116中的四个内存单元。第一内存区域110和第二内存区域112中的结构彼此呈现镜像,且第三内存区域114和第四内存区域116中的结构彼此呈现镜像。根据本发明的一实施例,非挥发性内存元件包括多于四个的内存单元,且这些内存单元可以排列成具有许多行和列的阵列。FIG. 1 is a schematic top view of a non-volatile memory device according to an embodiment of the present invention. Referring to FIG. 1, the non-volatile memory element may be a NOR flash memory element, which includes at least one memory unit, such as four memory units accommodated in a first memory area 110, a second memory area 112, a third memory area 114, and a fourth memory area 116, respectively. The structures in the first memory area 110 and the second memory area 112 are mirror images of each other, and the structures in the third memory area 114 and the fourth memory area 116 are mirror images of each other. According to an embodiment of the present invention, the non-volatile memory device includes more than four memory cells, and the memory cells can be arranged in an array with many rows and columns.

参考图1,非挥发性内存元件包括衬底200和隔离结构102。衬底200可以是半导体衬底,例如硅衬底或绝缘体上覆硅(SOI)衬底,但不限于此。隔离结构102可以由绝缘材料组成,且用于定义出内存单元的主动区。Referring to FIG. 1 , a non-volatile memory element includes a substrate 200 and an isolation structure 102 . The substrate 200 may be a semiconductor substrate, such as a silicon substrate or a silicon-on-insulator (SOI) substrate, but is not limited thereto. The isolation structure 102 can be made of insulating material and is used to define the active area of the memory cell.

各内存单元包括设置在由隔离结构102定义的主动区中的源极区222和汲极区242。源极区222和汲极区242可以是相同导电类型的掺杂区,例如n型或p型。源极区222和汲极区242的导电类型不同于衬底200的导电类型,或者不同于用于容纳有源极区222和汲极区242的掺杂井(未绘示)的导电类型。源极区222可以设置在主动区的一侧,汲极区242可以设置在主动区的另一侧。根据本发明的一些实施例,源极区222是沿着Y方向延伸的连续区域,且由同一行中的内存单元共享。Each memory cell includes a source region 222 and a drain region 242 disposed in an active region defined by the isolation structure 102 . The source region 222 and the drain region 242 may be doped regions of the same conductivity type, such as n-type or p-type. The conductivity type of the source region 222 and the drain region 242 is different from that of the substrate 200 or the conductivity type of a doped well (not shown) accommodating the source region 222 and the drain region 242 . The source region 222 may be disposed on one side of the active region, and the drain region 242 may be disposed on the other side of the active region. According to some embodiments of the present invention, the source region 222 is a continuous region extending along the Y direction and shared by memory cells in the same row.

各内存单元还可以包括设置在衬底200上且与汲极区242相邻的堆叠结构。堆叠结构可以沿着Y方向延伸,且由同一行中的内存单元共享。堆叠结构包括辅助闸极204、绝缘层206和上闸极结构236,它们沿着Z方向依序向上堆叠。辅助闸极204可以由诸如多晶硅或金属的导电材料组成,且辅助闸极204可以作为字线,其被配置为开启/关闭设置在同一行中的内存单元的通道区。Each memory cell may further include a stack structure disposed on the substrate 200 and adjacent to the drain region 242 . The stack structure can extend along the Y direction and be shared by memory cells in the same row. The stack structure includes the auxiliary gate 204 , the insulating layer 206 and the upper gate structure 236 , which are sequentially stacked upward along the Z direction. The auxiliary gate 204 may be composed of a conductive material such as polysilicon or metal, and may serve as a word line configured to turn on/off a channel region of memory cells disposed in the same row.

隔离材料层212可以设置在辅助闸极204和绝缘层206的侧壁上,以便将辅助闸极204与其他导电部件绝缘。隔离材料层212可以是设置在辅助闸极204的各侧壁上的单层、双层或多层间隙壁,但不限于此。A layer of isolation material 212 may be disposed on sidewalls of the auxiliary gate 204 and the insulating layer 206 to insulate the auxiliary gate 204 from other conductive components. The isolation material layer 212 may be a single-layer, double-layer or multi-layer spacer disposed on each sidewall of the auxiliary gate 204, but is not limited thereto.

各内存单元还包括设置在衬底200上且邻近源极区222的浮置闸极224。因此,浮置闸极224设置在辅助闸极204的一侧,汲极区242设置在辅助闸极204的另一侧。浮置闸极224由导电材料组成,例如多晶硅或其他半导体。浮置闸极224彼此分离,使得电流不能在浮置闸极224之间直接传输。由于浮置闸极224彼此分离,所以各浮置闸极224能被独立地编程或抹除,从而确定各内存单元的状态,例如状态“1”或状态“0”。Each memory cell also includes a floating gate 224 disposed on the substrate 200 adjacent to the source region 222 . Therefore, the floating gate 224 is disposed on one side of the auxiliary gate 204 , and the drain region 242 is disposed on the other side of the auxiliary gate 204 . The floating gate 224 is made of conductive material, such as polysilicon or other semiconductors. The floating gates 224 are separated from each other such that current cannot be transferred directly between the floating gates 224 . Since the floating gates 224 are separated from each other, each floating gate 224 can be programmed or erased independently, thereby determining the state of each memory cell, such as state "1" or state "0".

中间结构240设置在相邻浮置闸极224之间的间隙中,以围绕浮置闸极224的周围。根据不同的要求,中间结构240可以包括被配置为防止相邻浮置闸极224之间的漏电流的绝缘结构,或者中间结构240可以包括控制闸极结构,其被配置为使热载子(例如电子)从通道注入浮置闸极224。The intermediate structure 240 is disposed in the gap between adjacent floating gates 224 to surround the floating gates 224 . According to different requirements, the intermediate structure 240 may include an insulating structure configured to prevent leakage current between adjacent floating gates 224, or the intermediate structure 240 may include a control gate structure configured to inject hot carriers (such as electrons) from the channel into the floating gate 224.

图2是本发明一些实施例对应于图1的剖线A-A’、剖线B-B’和剖线C-C’的非挥发性内存元件的剖面示意图,其中上闸极结构覆盖浮置闸极和中间结构。参考图2的剖面AA’,汲极区242分别设置在第一内存区域110和第二内存区域112中。源极区222设置在第一内存区域110和第二内存区域112的边界。2 is a schematic cross-sectional view of a non-volatile memory element corresponding to the section line A-A', section line B-B' and section line C-C' of some embodiments of the present invention, wherein the upper gate structure covers the floating gate and the intermediate structure. Referring to the section AA' of FIG. 2 , the drain regions 242 are disposed in the first memory area 110 and the second memory area 112, respectively. The source area 222 is disposed at the boundary of the first memory area 110 and the second memory area 112 .

对于第一内存区域110中的内存单元,闸极介电层202设置在衬底200和辅助闸极204之间。通过以预定电压施加辅助闸极204偏压,闸极介电层202下的载子通道可以被导通/截止。绝缘层206可以选择性地设置在辅助闸极204和上闸极结构236之间,以防止它们之间的漏电流。For the memory cells in the first memory area 110 , the gate dielectric layer 202 is disposed between the substrate 200 and the auxiliary gate 204 . By biasing the auxiliary gate 204 with a predetermined voltage, the carrier channel under the gate dielectric layer 202 can be turned on/off. An insulating layer 206 may be selectively disposed between the auxiliary gate 204 and the upper gate structure 236 to prevent leakage current therebetween.

上闸极结构236包括依序堆叠的上闸极介电层234和上闸极235。上闸极介电层234的组成是介电层,其可以允许电子通过F-N穿隧机制(Fowler-Nordheim tunnelingmechanism)通过。上闸极235可以由导电材料组成,例如多晶硅或金属。上闸极结构236的顶面(对应于上闸极235的顶面235_0)高于浮置闸极224a的顶面。此外,上闸极结构236可以进一步朝向辅助闸极204延伸,因此上闸极结构236的一部分可以延伸超过辅助闸极204的侧壁,从而覆盖浮置闸极224a的顶面224a_0。The upper gate structure 236 includes an upper gate dielectric layer 234 and an upper gate 235 stacked in sequence. The composition of the upper gate dielectric layer 234 is a dielectric layer, which can allow electrons to pass through through the F-N tunneling mechanism (Fowler-Nordheim tunneling mechanism). The upper gate 235 may be made of conductive material, such as polysilicon or metal. The top surface of the upper gate structure 236 (corresponding to the top surface 235_0 of the upper gate 235 ) is higher than the top surface of the floating gate 224a. In addition, the upper gate structure 236 can further extend toward the auxiliary gate 204 , so a part of the upper gate structure 236 can extend beyond the sidewall of the auxiliary gate 204 to cover the top surface 224a_0 of the floating gate 224a.

浮置闸极224a包括沿X方向设置的两个相对第一侧壁224a_1。第一侧壁224a_1可以是垂直或倾斜的侧壁,而不是曲面。浮置闸极224a的顶面224a_0是平坦或略微倾斜的表面,而不是曲面。应注意的是,图2所示的浮置闸极224a可以是矩形浮置闸极,因为剖面AA’中的浮置闸极224a的轮廓类似于矩形。The floating gate 224a includes two opposite first sidewalls 224a_1 disposed along the X direction. The first sidewall 224a_1 may be a vertical or inclined sidewall instead of a curved surface. The top surface 224a_0 of the floating gate 224a is a flat or slightly inclined surface instead of a curved surface. It should be noted that the floating gate 224a shown in FIG. 2 may be a rectangular floating gate because the outline of the floating gate 224a in section AA' resembles a rectangle.

穿隧介电层218设置在衬底200上,且至少位于衬底200和浮置闸极224a之间。穿隧介电层218的材料例如是氧化硅或允许载子通道中的热电子穿通过的其他层。The tunnel dielectric layer 218 is disposed on the substrate 200 and at least between the substrate 200 and the floating gate 224a. The material of the tunneling dielectric layer 218 is, for example, silicon oxide or other layers that allow hot electrons in the carrier channel to pass through.

如上所述,中间结构240a可以包括绝缘结构,例如中间基体结构,或者中间结构240b可以包括控制闸极结构,例如控制闸极结构(控制闸极结构可以覆盖浮置闸极224a的侧壁224a_1、224a_2,以对浮置闸极提供额外耦合)。中间结构240a、240b(例如,中间基体结构或控制闸极结构)包括薄介电层238和中间层239。薄介电层238设置在浮置闸极224a的第一侧壁224a_1上,中间层239设置在相邻浮置闸极224a之间的间隙中。根据本发明的一些实施例,中间结构240a、240b的中间层239的顶面239_0低于浮置闸极224a的顶面224a_0。As mentioned above, the intermediate structure 240a may include an insulating structure, such as an intermediate base structure, or the intermediate structure 240b may include a control gate structure, such as a control gate structure (the control gate structure may cover the sidewalls 224a_1, 224a_2 of the floating gate 224a to provide additional coupling to the floating gate). An intermediate structure 240 a , 240 b (eg, an intermediate base structure or a control gate structure) includes a thin dielectric layer 238 and an intermediate layer 239 . The thin dielectric layer 238 is disposed on the first sidewall 224a_1 of the floating gates 224a, and the intermediate layer 239 is disposed in the gap between adjacent floating gates 224a. According to some embodiments of the invention, the top surface 239_0 of the intermediate layer 239 of the intermediate structures 240a, 240b is lower than the top surface 224a_0 of the floating gate 224a.

根据不同的要求,上闸极结构236可以作为抹除闸极结构,其被配置为通过浮置闸极224a的最上转角和/或最上边缘将电子拉出浮置闸极224a,或者不仅作为抹除闸极结构,还作为控制闸极结构,其被配置为将热载子从载子通道吸引到浮置闸极224a中。一方面,当中间结构240b被配置作为控制闸极结构时,上闸极结构236可以仅作为抹除闸极结构,而不是控制闸极结构。另一方面,当中间结构240a被配置作为绝缘结构时,上闸极结构236可以作为抹除闸极结构和控制闸极结构。According to different requirements, the upper gate structure 236 may serve as an erase gate structure configured to pull electrons out of the floating gate 224a through the uppermost corner and/or uppermost edge of the floating gate 224a, or not only as an erase gate structure, but also as a control gate structure configured to attract hot carriers from the carrier channel into the floating gate 224a. On the one hand, when the intermediate structure 240b is configured as a control gate structure, the upper gate structure 236 may only serve as an erase gate structure instead of a control gate structure. On the other hand, when the intermediate structure 240a is configured as an insulating structure, the upper gate structure 236 may serve as an erase gate structure and a control gate structure.

参考图2的剖面BB’,辅助闸极204、上闸极结构236和中间结构240a、240b(例如,中间基体结构或控制闸极结构)还设置在隔离结构102上。中间结构240a、240b的一部分可以设置在从辅助闸极204的侧壁延伸出来的上闸极结构236和隔离结构102之间,或者中间结构的所述部分可以设置在上闸极结构236和衬底200之间。Referring to section BB' of FIG. 2 , auxiliary gate 204 , upper gate structure 236 and intermediate structures 240 a , 240 b (eg, intermediate base structures or control gate structures) are also disposed on isolation structure 102 . A portion of the intermediate structure 240 a , 240 b may be disposed between the upper gate structure 236 extending from the sidewall of the auxiliary gate 204 and the isolation structure 102 , or the portion of the intermediate structure may be disposed between the upper gate structure 236 and the substrate 200 .

参考图2的剖面CC’,浮置闸极224a包括沿Y方向设置的两个相对的第二侧壁224a_2。第二侧壁224a_2可以是垂直或倾斜的侧壁。浮置闸极224a的第二侧壁224a_2的上部可以被上闸极结构236覆盖,浮置闸极224的第二侧壁224a_2的下部可以被中间结构240a、240b(例如,中间基体结构或控制闸结构)覆盖。根据本发明的一些实施例,各第二侧壁224a_2的60%至95%表面积被中间层239覆盖,因此上闸极结构236和第二侧壁224a_2之间的接触面积较小。此外,由于中间结构240a、240b的存在,延伸超出浮置闸极224的第二侧壁224a_2的上闸极结构236的底面可以与隔离结构102、穿隧介电层218和衬底200分离。Referring to section CC' of FIG. 2 , the floating gate 224a includes two opposite second sidewalls 224a_2 disposed along the Y direction. The second sidewall 224a_2 may be a vertical or inclined sidewall. The upper portion of the second sidewall 224a_2 of the floating gate 224a may be covered by the upper gate structure 236, and the lower portion of the second sidewall 224a_2 of the floating gate 224 may be covered by intermediate structures 240a, 240b (eg, intermediate base structures or control gate structures). According to some embodiments of the present invention, 60% to 95% of the surface area of each second sidewall 224a_2 is covered by the intermediate layer 239, so the contact area between the upper gate structure 236 and the second sidewall 224a_2 is relatively small. In addition, the bottom surface of the upper gate structure 236 extending beyond the second sidewall 224a_2 of the floating gate 224 can be separated from the isolation structure 102 , the tunneling dielectric layer 218 and the substrate 200 due to the existence of the intermediate structures 240a, 240b.

根据本发明的一些实施例,非挥发性内存元件还可以包括其他部件,例如通孔、位线、层间介电质等,且图2所示的结构可以根据实际需要进一步修改。According to some embodiments of the present invention, the non-volatile memory element may also include other components, such as via holes, bit lines, interlayer dielectrics, etc., and the structure shown in FIG. 2 may be further modified according to actual needs.

图3是本发明一些实施例如图2所示的非挥发性内存元件的区域R1的放大剖面图。参照图3,浮置闸极224a包括两个第一最上边缘226a_1,这两个第一最上边缘226a_1彼此相对且沿着第一方向(例如X方向)设置。通过施加偏压在上闸极结构236,储存在浮置闸极224a中的大部分电子可以通过嵌入在上闸极结构236中的第一最上边缘226a_1被拉出。浮置闸极224a的第一侧壁224a_1沿着诸如X方向的第一方向设置,且第一侧壁224a_1分别连接到第一最上边缘226a_1。浮置闸极224a的第二侧壁(未绘示)沿第二方向(例如Y方向)设置,且其被由介电材料组成的介电中间层239覆盖,或者由作为控制闸极(即耦合闸极)的导电中间层239覆盖。由于65%到95%的第二侧壁(即垂直于Y方向的侧壁)被中间层239覆盖,且两个第一最上边缘226a_1都高于上闸极235的最低底面,所以即使上闸极235和浮置闸极224a之间存在对准偏差,上闸极结构236和其下的浮置闸极224a之间的耦合比也不会显著改变。因此,可以提高非挥发性内存元件之间的电性一致性。FIG. 3 is an enlarged cross-sectional view of the region R1 of the non-volatile memory device shown in FIG. 2 according to some embodiments of the present invention. Referring to FIG. 3 , the floating gate 224a includes two first uppermost edges 226a_1 that are opposite to each other and disposed along a first direction (eg, X direction). By applying a bias voltage on the upper gate structure 236 , most of the electrons stored in the floating gate 224 a can be pulled out through the first uppermost edge 226 a_1 embedded in the upper gate structure 236 . The first sidewalls 224a_1 of the floating gate 224a are disposed along a first direction such as the X direction, and the first sidewalls 224a_1 are respectively connected to the first uppermost edges 226a_1. The second sidewall (not shown) of the floating gate 224a is disposed along the second direction (for example, the Y direction), and it is covered by a dielectric interlayer 239 made of a dielectric material, or covered by a conductive interlayer 239 as a control gate (ie, a coupling gate). Since 65% to 95% of the second sidewall (that is, the sidewall perpendicular to the Y direction) is covered by the intermediate layer 239, and the two first uppermost edges 226a_1 are higher than the lowest bottom surface of the upper gate 235, even if there is an alignment deviation between the upper gate 235 and the floating gate 224a, the coupling ratio between the upper gate structure 236 and the floating gate 224a below it will not change significantly. Therefore, electrical consistency among nonvolatile memory elements can be improved.

在以下段落中,进一步描述了本发明的其他实施例,且为了简洁,仅描述了实施例之间的主要差异。In the following paragraphs, other embodiments of the invention are further described, and for the sake of brevity, only the main differences between the embodiments are described.

图4是本发明的其他实施例对应于图1的剖线A-A’、剖线B-B’和剖线C-C’的非挥发性内存元件的剖面示意图,其中顶介电层覆盖浮置闸极。参考图4的剖面AA’,图4所示的结构类似于图2所示的结构,主要区别在于顶介电层260进一步设置在浮置闸极224a的顶面224a_0上。在图4的剖面AA’中,顶介电层260不会延伸超过浮置闸极224a的第一侧壁224a_1。在图4的剖面CC’中,顶介电层260也不会延伸超过浮置闸极224a的第二侧壁224a_2。4 is a schematic cross-sectional view of a non-volatile memory element corresponding to the section line A-A', section line B-B' and section line C-C' of FIG. 1 according to other embodiments of the present invention, wherein the top dielectric layer covers the floating gate. Referring to section AA' of FIG. 4 , the structure shown in FIG. 4 is similar to the structure shown in FIG. 2 , the main difference is that the top dielectric layer 260 is further disposed on the top surface 224a_0 of the floating gate 224a. In the section AA' of FIG. 4 , the top dielectric layer 260 does not extend beyond the first sidewall 224a_1 of the floating gate 224a. In the section CC' of FIG. 4 , the top dielectric layer 260 also does not extend beyond the second sidewall 224a_2 of the floating gate 224a.

图5是本发明一些实施例如图4所示的非挥发性内存元件的区域R2的放大剖面图。参考图5,浮置闸极224a的第一最上边缘226a_1没有被顶介电层260覆盖,使得浮置闸极224a的第一最上边缘226a_1中的至少一个仍然可以与上闸极结构236直接接触。换句话说,从俯视角度来看,顶介电层260的顶面260_0的面积小于浮置闸极224a的顶面224a_0的面积。由于顶介电层260的存在,设置在浮置闸极224a上的部分上闸极结构236会远离浮置闸极224a的顶面224a_0设置。因此,可以降低由设置在顶介电层260上的闸极结构236引起的耦合比,从而提高非挥发性内存元件之间的电性一致性。FIG. 5 is an enlarged cross-sectional view of the region R2 of the non-volatile memory device shown in FIG. 4 according to some embodiments of the present invention. Referring to FIG. 5 , the first uppermost edges 226a_1 of the floating gates 224a are not covered by the top dielectric layer 260 such that at least one of the first uppermost edges 226a_1 of the floating gates 224a can still be in direct contact with the upper gate structure 236 . In other words, from a plan view, the area of the top surface 260_0 of the top dielectric layer 260 is smaller than the area of the top surface 224a_0 of the floating gate 224a. Due to the existence of the top dielectric layer 260 , a portion of the upper gate structure 236 disposed on the floating gate 224 a is disposed away from the top surface 224 a_0 of the floating gate 224 a. Therefore, the coupling ratio caused by the gate structure 236 disposed on the top dielectric layer 260 can be reduced, thereby improving the electrical consistency between the non-volatile memory elements.

图6是本发明的其他实施例对应于图1的剖线A-A’、剖线B-B’和剖线C-C’的非挥发性内存元件的剖面示意图,其中浮置闸极是L型浮置闸极。参考图6的剖面AA’,图6所示的结构类似于图2所示的结构,主要区别在于浮置闸极224b是包括垂直部分224b_1和水平部分224b_2的L型浮置闸极。垂直部分224b_1和水平部分224b_2可以具有实质相同的厚度和组成。垂直部分224b_1的顶面225_0高于中间结构240a、240b(即中间基体结构或控制闸极结构)的顶面,或者高于中间层239的顶面239_0。水平部分224b_2被中间层239覆盖。6 is a cross-sectional schematic diagram of a non-volatile memory element corresponding to the section line A-A', section line B-B' and section line C-C' of other embodiments of the present invention, wherein the floating gate is an L-type floating gate. Referring to section AA' of FIG. 6, the structure shown in FIG. 6 is similar to the structure shown in FIG. 2, the main difference is that the floating gate 224b is an L-shaped floating gate including a vertical portion 224b_1 and a horizontal portion 224b_2. The vertical portion 224b_1 and the horizontal portion 224b_2 may have substantially the same thickness and composition. The top surface 225_0 of the vertical portion 224b_1 is higher than the top surface of the intermediate structure 240a, 240b (ie, the intermediate base structure or the control gate structure), or is higher than the top surface 239_0 of the intermediate layer 239 . The horizontal portion 224b_2 is covered by the middle layer 239 .

图7是本发明一些实施例如图6所示的非挥发性内存元件的区域R3的放大剖面图。参照图7,浮置闸极224b包括内表面225_1和与内表面225_1相对的外表面225_2。外表面225_2面向中间结构240a、240b。浮置闸极224b的垂直部分224b_1包括顶面225_0和沿第一方向(例如X方向)设置的两个相对第一最上边缘226a_1。顶面225_0在X方向上的宽度是浮置闸极224b的底面宽度的1/20到1/3。第一最上边缘226a_1中的一个或两个可以被上闸极结构236覆盖。因为顶面225_0在X方向上的宽度远小于浮置闸极224b的底面宽度,且浮置闸极224b的第二侧壁(即垂直于Y方向的侧壁)的65%至95%被中间层239覆盖,所以即使上闸极235和浮置闸极224b之间存在对准偏差,上闸极结构236和其下的浮置闸极224b之间的耦合比也不会显著改变。因此,可以提高非挥发性内存元件之间的电性一致性。FIG. 7 is an enlarged cross-sectional view of the region R3 of the non-volatile memory device shown in FIG. 6 according to some embodiments of the present invention. Referring to FIG. 7, the floating gate 224b includes an inner surface 225_1 and an outer surface 225_2 opposite to the inner surface 225_1. The outer surface 225_2 faces the intermediate structures 240a, 240b. The vertical portion 224b_1 of the floating gate 224b includes a top surface 225_0 and two opposite first uppermost edges 226a_1 disposed along a first direction (eg, X direction). The width of the top surface 225_0 in the X direction is 1/20 to 1/3 of the width of the bottom surface of the floating gate 224b. One or both of the first uppermost edges 226a_1 may be covered by the upper gate structure 236 . Because the width of the top surface 225_0 in the X direction is much smaller than the width of the bottom surface of the floating gate 224b, and 65% to 95% of the second sidewall (ie, the sidewall perpendicular to the Y direction) of the floating gate 224b is covered by the intermediate layer 239, so even if there is an alignment deviation between the upper gate 235 and the floating gate 224b, the coupling ratio between the upper gate structure 236 and the lower floating gate 224b will not change significantly. Therefore, electrical consistency among nonvolatile memory elements can be improved.

图8是本发明其他实施例的非挥发性内存元件的俯视示意图。参考图8,图8所示的结构类似于图1所示的结构,主要区别在于浮置闸极224是L型浮置闸极,而不是沿剖线AA’的矩形浮置闸极,且非挥发性内存元件的源极区222没有被中间结构240覆盖。因此,第一内存区域110中的中间结构240与第二内存区域112中的中间结构240分离,且第三内存区域114中的中间结构240与第四内存区域116中的中间结构240分离。FIG. 8 is a schematic top view of a non-volatile memory device according to another embodiment of the present invention. Referring to FIG. 8, the structure shown in FIG. 8 is similar to the structure shown in FIG. 1, the main difference is that the floating gate 224 is an L-shaped floating gate instead of a rectangular floating gate along the section line AA', and the source region 222 of the non-volatile memory element is not covered by the intermediate structure 240. Therefore, the intermediate structure 240 in the first memory area 110 is separated from the intermediate structure 240 in the second memory area 112 , and the intermediate structure 240 in the third memory area 114 is separated from the intermediate structure 240 in the fourth memory area 116 .

图9是本发明一些其他实施例对应于图8的剖线A-A’、剖线B-B’和剖线C-C’的非挥发性内存元件的剖面示意图,其中源极区从中间结构暴露出。参考图9的剖面AA’,浮置闸极224b是类似于图6所示的浮置闸极224b的L型浮置闸极。浮置闸极224b的水平部分224b_2的顶面被中间结构240a、240b覆盖,且水平部分224b_2的末端远离浮置闸极224b,所述末端从中间结构240a、240b暴露。此外,中间结构240a、240b具有曲面。9 is a schematic cross-sectional view of a non-volatile memory element corresponding to the section line A-A', section line B-B' and section line C-C' of some other embodiments of the present invention, wherein the source region is exposed from the intermediate structure. Referring to section AA' of FIG. 9 , the floating gate 224b is an L-shaped floating gate similar to the floating gate 224b shown in FIG. 6 . The top surface of the horizontal portion 224b_2 of the floating gate 224b is covered by the intermediate structures 240a, 240b, and the end of the horizontal portion 224b_2 is away from the floating gate 224b, the end being exposed from the intermediate structures 240a, 240b. Furthermore, the intermediate structures 240a, 240b have curved surfaces.

参考图9的剖面BB’,上闸极结构236的一部分覆盖中间结构240a、240b的曲面,因此具有弯曲的底面。Referring to section BB' of FIG. 9 , a portion of the upper gate structure 236 covers the curved surfaces of the intermediate structures 240a, 240b and thus has a curved bottom surface.

图10是本发明一些其他实施例如图9所示的非挥发性内存元件的区域R4的放大剖面图。参照图10,类似于图7所示的结构,浮置闸极224b的垂直部分224b_1包括顶面225_0和沿第一方向(例如X方向)设置的两个相对第一最上边缘226a_1。顶面225_0在X方向上的宽度是浮置闸极224b的底面宽度的1/20至1/3。第一最上边缘226a_1中的一个或两个可以被上闸极结构236覆盖。此外,中间结构240a、240b不仅覆盖浮置闸极224b的外表面225_2,还覆盖沿Y方向排列的浮置闸极224b的第二侧壁(未绘示)。根据本发明的一些实施例,中间结构240a、240b的最上顶点和浮置闸极224b的顶面225_0可以实质上处于相同的高度。因为顶面225_0在X方向上的宽度远小于浮置闸极224b的底面宽度,且浮置闸极224b中超过95%的外表面225_2和超过95%的第二侧壁(即垂直于Y方向的侧壁)被中间结构240a、240b覆盖,所以即使上闸极235和浮置闸极224b之间存在对准偏差,上闸极结构236和其下的浮置闸极224b之间的耦合比也不会显著改变。因此,可以提高非挥发性内存元件之间的电性一致性。FIG. 10 is an enlarged cross-sectional view of some other embodiments of the present invention, such as the region R4 of the non-volatile memory element shown in FIG. 9 . Referring to FIG. 10 , similar to the structure shown in FIG. 7 , the vertical portion 224b_1 of the floating gate 224b includes a top surface 225_0 and two opposite first uppermost edges 226a_1 disposed along a first direction (eg, X direction). The width of the top surface 225_0 in the X direction is 1/20 to 1/3 of the width of the bottom surface of the floating gate 224b. One or both of the first uppermost edges 226a_1 may be covered by the upper gate structure 236 . In addition, the intermediate structures 240a, 240b not only cover the outer surface 225_2 of the floating gate 224b, but also cover the second sidewalls (not shown) of the floating gate 224b arranged along the Y direction. According to some embodiments of the present invention, the uppermost vertices of the intermediate structures 240a, 240b and the top surface 225_0 of the floating gate 224b may be substantially at the same height. Because the width of the top surface 225_0 in the X direction is much smaller than the width of the bottom surface of the floating gate 224b, and more than 95% of the outer surface 225_2 and more than 95% of the second sidewall (ie, the sidewall perpendicular to the Y direction) of the floating gate 224b are covered by the intermediate structures 240a and 240b, so even if there is an alignment deviation between the upper gate 235 and the floating gate 224b, the upper gate structure 236 and the floating gate below it The coupling ratio between 224b also does not change significantly. Therefore, electrical consistency among nonvolatile memory elements can be improved.

图11至图14是本发明一些实施例用于制造图1至图3的非挥发性内存元件的制造方法的不同阶段的剖面图。在图11至图14中,剖面AA’、剖面BB’和剖面CC’分别对应于图1的剖线A-A’、剖线B-B’和剖线C-C’。11 to 14 are cross-sectional views of different stages of the manufacturing method for manufacturing the non-volatile memory device of FIGS. 1 to 3 according to some embodiments of the present invention. In Fig. 11 to Fig. 14, the section AA', the section BB' and the section CC' respectively correspond to the section line A-A', the section line B-B' and the section line C-C' of Fig. 1 .

参考图11的剖面AA’、剖面BB’和剖面CC’,在此制造阶段形成的结构至少包括衬底200、至少一堆叠结构210、隔离材料层212、穿隧介电层218和图案化导电层220a。Referring to section AA', section BB' and section CC' of FIG. 11, the structure formed at this manufacturing stage includes at least a substrate 200, at least one stack structure 210, an isolation material layer 212, a tunneling dielectric layer 218 and a patterned conductive layer 220a.

根据本发明的一些实施例,衬底200可以是具有合适导电类型的半导体衬底,例如p型或n型。衬底200的组成可以包括硅、锗、氮化镓或其他合适的半导体材料,但不限于此。According to some embodiments of the present invention, the substrate 200 may be a semiconductor substrate with a suitable conductivity type, such as p-type or n-type. The composition of the substrate 200 may include silicon, germanium, gallium nitride or other suitable semiconductor materials, but is not limited thereto.

至少一堆叠结构210在衬底200上。例如,两个堆叠结构210设置在衬底200上,且彼此横向隔开。各堆叠结构210包括依次堆叠的闸极介电层202、辅助闸极204、绝缘层206和牺牲层208。各堆叠结构210包括第一侧壁211和第二侧壁213,且堆叠结构210的第一侧壁211彼此面对。辅助闸极204由导电材料组成,且辅助闸极204被配置为当被施加合适的电压时,辅助闸极204会开启/关闭位于辅助闸极204下的衬底200中的载子通道。绝缘层206由绝缘材料组成,例如氧化硅或氮氧化硅,但不限于此,其用于将辅助闸极204与设置在辅助闸极204上各层电性隔离。牺牲层208是堆叠结构210中的最上层,其是临时层,被配置为在辅助闸极204上形成闸极结构(例如上闸极结构)的后续制程之前被去除。At least one stack structure 210 is on the substrate 200 . For example, two stack structures 210 are disposed on the substrate 200 and laterally spaced from each other. Each stack structure 210 includes a gate dielectric layer 202 , an auxiliary gate 204 , an insulating layer 206 and a sacrificial layer 208 stacked in sequence. Each stack structure 210 includes a first sidewall 211 and a second sidewall 213 , and the first sidewalls 211 of the stack structures 210 face each other. The auxiliary gate 204 is made of conductive material, and the auxiliary gate 204 is configured such that when an appropriate voltage is applied, the auxiliary gate 204 will open/close the carrier channel in the substrate 200 under the auxiliary gate 204 . The insulating layer 206 is made of insulating material, such as silicon oxide or silicon oxynitride, but not limited thereto, and is used to electrically isolate the auxiliary gate 204 from various layers disposed on the auxiliary gate 204 . The sacrificial layer 208 is the uppermost layer in the stack structure 210 , which is a temporary layer configured to be removed before a subsequent process of forming a gate structure (eg, an upper gate structure) on the auxiliary gate 204 .

隔离材料层212形成在堆叠结构210的侧壁211、213上。隔离材料层212的材料例如是氧化硅/氮化硅/氧化硅或氮化硅/氧化硅。隔离材料层212的形成方法包括,例如,首先在衬底200上依序形成覆盖各堆叠结构210的介电层214及介电层216,然后移除部分介电层214及介电层216,以在各堆叠结构210的侧壁上形成隔离材料层212。介电层214的材料例如是氮化硅,介电层216的材料例如是氧化硅。介电层214和介电层216的形成方法例如是化学气相沉积法。移除部分介电层214和介电层216的方法例如是非等向蚀刻法。The isolation material layer 212 is formed on the sidewalls 211 , 213 of the stack structure 210 . The material of the isolation material layer 212 is, for example, silicon oxide/silicon nitride/silicon oxide or silicon nitride/silicon oxide. The method for forming the isolation material layer 212 includes, for example, firstly forming a dielectric layer 214 and a dielectric layer 216 covering each stack structure 210 on the substrate 200 sequentially, and then removing part of the dielectric layer 214 and the dielectric layer 216 to form the isolation material layer 212 on the sidewall of each stack structure 210. The material of the dielectric layer 214 is, for example, silicon nitride, and the material of the dielectric layer 216 is, for example, silicon oxide. The dielectric layer 214 and the dielectric layer 216 are formed by chemical vapor deposition, for example. The method for removing part of the dielectric layer 214 and the dielectric layer 216 is, for example, anisotropic etching.

穿隧介电层218形成在至少在堆叠结构210之间的衬底200上,或者进一步形成在堆叠结构210的两侧的衬底200上。穿隧介电层218的材料例如是氧化硅,或允许热电子通过穿隧效应穿透过的其它层。穿隧介电层218的形成方法例如是热氧化法或沉积法,但不以此为限。The tunnel dielectric layer 218 is formed on the substrate 200 at least between the stack structures 210 , or further formed on the substrate 200 on both sides of the stack structures 210 . The material of the tunneling dielectric layer 218 is, for example, silicon oxide, or other layers that allow hot electrons to penetrate through the tunneling effect. The forming method of the tunneling dielectric layer 218 is, for example, a thermal oxidation method or a deposition method, but not limited thereto.

参考图11的剖面AA’,图案化导电层220a形成在堆叠结构210之间的间隙中,且覆盖各堆叠结构210的侧壁211。形成图案化导电层220a的方法可包括以下步骤。首先,在衬底200上形成导电层(未绘示),导电层的材料例如是掺杂多晶硅、多晶硅化物或其他合适的导电材料。当导电层的材料为掺杂多晶硅时,其形成方法包括,例如,在通过化学气相沉积法形成未掺杂多晶硅层之后,进行离子布植步骤;或者利用原位掺质布植方法(in-situdopant implantation)施行化学气相沉积方法。然后,施行蚀刻制程,例如非等向蚀刻制程或回蚀制程,以蚀刻导电层。因此,导电层可以被图案化以形成沿X方向排列的多个导电块(未绘示)。在这个制造阶段,导电块覆盖各堆叠结构210的侧壁211和侧壁213。然后,通过微影和蚀刻制程移除设置在邻近堆叠结构210的侧壁213的导电块。如此一来,仅保留设置在堆叠结构210的第一侧壁211上的图案化导电层220a。此外,针对设置于堆叠结构210的第一侧壁211上的图案化导电层220a,从俯视角度来看,此图案化导电层220a可具有矩形轮廓。图案化导电层220a的高度可以通过施行回蚀制程来适当控制。Referring to section AA' of FIG. The method of forming the patterned conductive layer 220a may include the following steps. First, a conductive layer (not shown) is formed on the substrate 200 , and the material of the conductive layer is, for example, doped polysilicon, polysilicon or other suitable conductive materials. When the material of the conductive layer is doped polysilicon, the forming method includes, for example, performing an ion implantation step after forming the undoped polysilicon layer by chemical vapor deposition; or performing chemical vapor deposition by using an in-situ dopant implantation method. Then, an etching process, such as an anisotropic etching process or an etch-back process, is performed to etch the conductive layer. Therefore, the conductive layer can be patterned to form a plurality of conductive blocks (not shown) arranged along the X direction. At this stage of fabrication, the conductive blocks cover the sidewalls 211 and 213 of each stacked structure 210 . Then, the conductive blocks disposed adjacent to the sidewalls 213 of the stacked structure 210 are removed through lithography and etching processes. In this way, only the patterned conductive layer 220 a disposed on the first sidewall 211 of the stack structure 210 remains. In addition, for the patterned conductive layer 220 a disposed on the first sidewall 211 of the stack structure 210 , the patterned conductive layer 220 a may have a rectangular outline from a top view. The height of the patterned conductive layer 220a can be appropriately controlled by performing an etch-back process.

参考图11的剖面BB’,图案化导电层不存在于衬底200上的预定区域中。参考图11的剖面CC’,图案化导电层220a可以具有垂直或倾斜的侧壁220a_2。Referring to section BB' of FIG. 11 , the patterned conductive layer does not exist in a predetermined region on the substrate 200. Referring to FIG. Referring to section CC' of FIG. 11 , the patterned conductive layer 220a may have vertical or inclined sidewalls 220a_2.

图12是本发明一些实施例在图11之后的制造阶段的剖面示意图,其中间隙壁形成在图案化导电层上。在图11所示的结构被制造之后,形成由介电材料组成的复数间隙壁262,以覆盖图案化导电层220a的顶面和堆叠结构210的侧壁211、213。12 is a schematic cross-sectional view of some embodiments of the present invention at a fabrication stage following FIG. 11 , wherein spacers are formed on the patterned conductive layer. After the structure shown in FIG. 11 is fabricated, a plurality of spacers 262 composed of a dielectric material are formed to cover the top surface of the patterned conductive layer 220 a and the sidewalls 211 , 213 of the stacked structure 210 .

图13是本发明一些实施例在图12之后的制造阶段的剖面示意图,其形成了浮置闸极。在图12所示的结构被制造之后,使用间隙壁262作为蚀刻屏蔽在图案化导电层上施行蚀刻制程。因此,图案化导电层被进一步图案化,以形成邻近堆叠结构210的第一侧壁211的复数浮置闸极224a。之后,在两个相邻浮置闸极224a之间的衬底200中形成源极区222。形成源极区222的方法包括,例如,使用间隙壁262作为蚀刻屏蔽来施行离子布植制程。根据元件的需求,布植的掺质可以是n型或p型掺质。源极区222可以被视为共享的源极区,因为源极区222由两个相邻的内存单元共享。之后,可以剥除间隙壁262。Figure 13 is a schematic cross-sectional view of some embodiments of the present invention at a fabrication stage subsequent to Figure 12, which forms a floating gate. After the structure shown in FIG. 12 is fabricated, an etch process is performed on the patterned conductive layer using the spacer 262 as an etch mask. Therefore, the patterned conductive layer is further patterned to form a plurality of floating gates 224 a adjacent to the first sidewall 211 of the stack structure 210 . Afterwards, a source region 222 is formed in the substrate 200 between two adjacent floating gates 224a. A method of forming the source region 222 includes, for example, performing an ion implantation process using the spacer 262 as an etch mask. According to the requirements of the device, the implanted dopant can be n-type or p-type dopant. The source region 222 can be considered a shared source region because the source region 222 is shared by two adjacent memory cells. Afterwards, the spacer 262 may be peeled off.

图14是本发明一些实施例在图13之后的制造阶段的剖面示意图,其中中间结构形成在两个相邻浮置闸极之间的间隙中。在图13所示的结构被制造之后,参考图14的剖面AA’,可以在两个相邻浮置闸极224a之间的间隙中形成中间结构240a、240b。中间结构240a、240b包括薄介电层238和中间层239。薄介电层238设置在浮置闸极224a的第一侧壁224a_1上,中间层239设置在相邻浮置闸极224a之间的间隙中。薄介电层238的厚度(即在X方向上)小于中间层239的厚度(即在Z方向上)。例如,薄介电层238和中间层239的厚度比为0.01至0.2。根据本发明的一些实施例,中间结构240a、240b的顶面低于浮置闸极224a的顶面224a_0。14 is a schematic cross-sectional view of some embodiments of the present invention at a fabrication stage subsequent to FIG. 13 , where an intermediate structure is formed in the gap between two adjacent floating gates. After the structure shown in Figure 13 is fabricated, referring to section AA' of Figure 14, intermediate structures 240a, 240b may be formed in the gap between two adjacent floating gates 224a. The intermediate structure 240 a , 240 b includes a thin dielectric layer 238 and an intermediate layer 239 . The thin dielectric layer 238 is disposed on the first sidewall 224a_1 of the floating gates 224a, and the intermediate layer 239 is disposed in the gap between adjacent floating gates 224a. The thickness of the thin dielectric layer 238 (ie, in the X direction) is less than the thickness of the intermediate layer 239 (ie, in the Z direction). For example, the thickness ratio of the thin dielectric layer 238 and the intermediate layer 239 is 0.01 to 0.2. According to some embodiments of the invention, the top surfaces of the intermediate structures 240a, 240b are lower than the top surface 224a_0 of the floating gate 224a.

参考图14的剖面CC’,浮置闸极224a包括沿Y方向设置的两个相对第二侧壁224a_2。各第二侧壁224a_2可以是垂直的或倾斜的侧壁。浮置闸极224a的第二侧壁224a_2的上部可以被随后形成的上闸极结构覆盖,且浮置闸极224的第二侧壁224a_2的下部被中间结构240a、240b(例如,中间基体结构或控制闸极结构)覆盖。根据本发明一些实施例,各第二侧壁224a_2的60%至95%表面积被中间层239覆盖,因此在后续形成的上闸极结构和第二侧壁224a_2之间的接触面积小。此外,由于中间结构240的存在,延伸超过浮置闸极224的第二侧壁224a_2的上闸极结构236的底面可以与隔离结构102、穿隧介电层218和衬底200分离。Referring to section CC' of FIG. 14 , the floating gate 224a includes two opposite second sidewalls 224a_2 disposed along the Y direction. Each second sidewall 224a_2 may be a vertical or inclined sidewall. The upper portion of the second sidewall 224a_2 of the floating gate 224a may be covered by a subsequently formed upper gate structure, and the lower portion of the second sidewall 224a_2 of the floating gate 224 may be covered by intermediate structures 240a, 240b (eg, intermediate base structures or control gate structures). According to some embodiments of the present invention, 60% to 95% of the surface area of each second sidewall 224a_2 is covered by the intermediate layer 239, so the contact area between the subsequently formed upper gate structure and the second sidewall 224a_2 is small. In addition, due to the existence of the intermediate structure 240 , the bottom surface of the upper gate structure 236 extending beyond the second sidewall 224 a_2 of the floating gate 224 may be separated from the isolation structure 102 , the tunneling dielectric layer 218 and the substrate 200 .

之后,可以形成上闸极结构和其他部件,以获得类似于图1至图3所示的结构的非挥发性内存元件。Afterwards, the upper gate structure and other components can be formed to obtain a non-volatile memory element similar to the structures shown in FIGS. 1 to 3 .

图15至图17是本发明一些实施例用于制造图4至图5的非挥发性内存元件的制造方法的各个阶段的剖面图。在图15至图17中,剖面AA’、剖面BB’和剖面CC’分别对应于图1的剖线A-A’、剖线B-B’和剖线C-C’。此外,由于图15至图17所示的实施例的制造过程类似于图11至图14所示的实施例的制造过程,因此为了简洁起见,仅描述实施例之间的主要差异。15-17 are cross-sectional views of various stages of the manufacturing method for manufacturing the non-volatile memory device of FIGS. 4-5 according to some embodiments of the present invention. In Figs. 15 to 17, the section AA', the section BB' and the section CC' correspond to the section line A-A', the section line B-B' and the section line C-C' of Fig. 1, respectively. In addition, since the manufacturing process of the embodiment shown in FIGS. 15 to 17 is similar to that of the embodiment shown in FIGS. 11 to 14 , only the main differences between the embodiments are described for the sake of brevity.

参考图15的剖面AA’、剖面BB’和剖面CC’,在该制造阶段形成的结构类似于图11所示的结构,主要区别在于顶介电层260设置在图案化导电层220a上。因为顶介电层260是在如图11所示的导电层全面性沉积之后且在图案化导电层以形成导电块(未绘示)之前形成的,所以图案化导电层220a的侧壁没有被顶介电层260覆盖。顶介电层260的厚度为图案化导电层220a厚度的1/3至1/10。Referring to section AA', section BB' and section CC' of Figure 15, the structure formed at this stage of fabrication is similar to the structure shown in Figure 11, the main difference being that the top dielectric layer 260 is disposed on the patterned conductive layer 220a. Since the top dielectric layer 260 is formed after the overall deposition of the conductive layer as shown in FIG. 11 and before patterning the conductive layer to form conductive blocks (not shown), the sidewalls of the patterned conductive layer 220 a are not covered by the top dielectric layer 260 . The thickness of the top dielectric layer 260 is 1/3 to 1/10 of the thickness of the patterned conductive layer 220a.

图16是本发明一些实施例在图15之后的制造阶段的剖面示意图,其中间隙壁形成在图案化导电层上。在图15所示的结构被制造之后,形成由介电材料组成的复数间隙壁262,以覆盖顶介电层260的顶面和堆叠结构210的侧壁211、213。16 is a schematic cross-sectional view of some embodiments of the present invention at a fabrication stage following FIG. 15 , wherein spacers are formed on the patterned conductive layer. After the structure shown in FIG. 15 is fabricated, a plurality of spacers 262 composed of a dielectric material are formed to cover the top surface of the top dielectric layer 260 and the sidewalls 211 , 213 of the stack structure 210 .

参考图17的剖面AA’、剖面BB’和剖面CC’,在此制造阶段形成的结构类似于图13所示的结构,主要区别在于顶介电层260设置在间隙壁262和浮置闸极224a之间。然后,可以剥除间隙壁262。之后,可以形成上闸极结构和其他部件,以获得类似于图4至图5所示的结构的非挥发性内存元件。Referring to section AA', section BB' and section CC' of FIG. 17, the structure formed at this stage of fabrication is similar to that shown in FIG. Then, the spacer 262 may be stripped away. After that, the upper gate structure and other components can be formed to obtain a non-volatile memory element similar to the structures shown in FIGS. 4 to 5 .

图18至图19是本发明一些其他实施例用于制造图1至图3的非挥发性内存元件的制造方法的不同阶段的剖面图。图18至图19所示的制造过程类似于图11至图14所示的制造过程,为了简洁起见,仅描述实施例之间的主要差异。FIGS. 18-19 are cross-sectional views of different stages of the manufacturing method for manufacturing the non-volatile memory device shown in FIGS. 1-3 according to some other embodiments of the present invention. The manufacturing process shown in FIGS. 18 to 19 is similar to the manufacturing process shown in FIGS. 11 to 14 , and for the sake of brevity, only the main differences between the embodiments are described.

参考图18的剖面AA’、剖面BB’和剖面CC’,在此制造阶段形成的结构类似于图11所示的结构,主要区别在于沿Y方向延伸的附加堆叠结构210设置在两个相邻堆叠结构210之间的衬底200上。由于附加堆叠结构210的存在,附加堆叠结构210可以用于防止图案化导电层220a被形成在已经被附加堆叠结构210占据的区域中。Referring to section AA', section BB' and section CC' of FIG. 18, the structure formed at this manufacturing stage is similar to the structure shown in FIG. Due to the presence of the additional stack structure 210 , the additional stack structure 210 may be used to prevent the patterned conductive layer 220 a from being formed in a region already occupied by the additional stack structure 210 .

图19是本发明一些其他实施例在图18之后的制造阶段的剖面示意图。在制造图18所示的结构之后,剥除设置在堆叠结构210的第二侧壁213上的图案化导电层,从而形成浮置闸极224a。FIG. 19 is a schematic cross-sectional view of some other embodiments of the present invention at a manufacturing stage subsequent to FIG. 18 . After manufacturing the structure shown in FIG. 18 , the patterned conductive layer disposed on the second sidewall 213 of the stacked structure 210 is stripped, thereby forming the floating gate 224 a.

之后,可以制造图2所示的中间结构240a、240b来取代设置在两个相邻浮置闸极224a之间的附加堆叠结构210。然后,可以形成上闸极结构和其他部件,以获得类似于图1至图3所示结构的非挥发性内存元件。Thereafter, intermediate structures 240a, 240b shown in FIG. 2 may be fabricated to replace the additional stack structure 210 disposed between two adjacent floating gates 224a. Then, an upper gate structure and other components can be formed to obtain a non-volatile memory element similar to the structure shown in FIGS. 1 to 3 .

图20至图21是本发明一些其他实施例用于制造图4至图5的非挥发性内存元件的制造方法的不同阶段的剖面图。图20至图21所示的制造过程类似于图18至图19所示的制造过程,为了简洁起见,仅描述实施例之间的主要差异。20-21 are cross-sectional views of different stages of the manufacturing method for manufacturing the non-volatile memory device shown in FIGS. 4-5 according to some other embodiments of the present invention. The manufacturing process shown in FIGS. 20 to 21 is similar to that shown in FIGS. 18 to 19 , and for the sake of brevity, only the main differences between the embodiments are described.

参考图20的剖面AA’、剖面BB’和剖面CC’,在此制造阶段形成的结构类似于图18所示的结构,主要区别在于顶介电层260设置在图案化导电层220a上。因为顶介电层260是在导电层(未绘示)全面性沉积之后且在图案化导电层以形成导电块(未绘示)之前形成的,所以图案化导电层220a的侧壁未被顶介电层260覆盖。顶介电层260的厚度为图案化导电层220a厚度的1/3至1/10。Referring to section AA', section BB' and section CC' of Figure 20, the structure formed at this stage of fabrication is similar to that shown in Figure 18, the main difference being that the top dielectric layer 260 is disposed on the patterned conductive layer 220a. The sidewalls of the patterned conductive layer 220 a are not covered by the top dielectric layer 260 because the top dielectric layer 260 is formed after the overall deposition of the conductive layer (not shown) and before patterning the conductive layer to form conductive blocks (not shown). The thickness of the top dielectric layer 260 is 1/3 to 1/10 of the thickness of the patterned conductive layer 220a.

图21是本发明一些实施例在图20之后的制造阶段的剖面示意图。在制造图20所示的结构之后,剥除设置在堆叠结构210的第二侧壁213上的图案化导电层220a,从而形成浮置闸极224a。FIG. 21 is a schematic cross-sectional view of some embodiments of the present invention at a fabrication stage subsequent to FIG. 20 . After manufacturing the structure shown in FIG. 20 , the patterned conductive layer 220 a disposed on the second sidewall 213 of the stacked structure 210 is stripped, thereby forming a floating gate 224 a.

之后,附加堆叠结构210可以用图4所示的中间结构240a、240b取代。然后,可以形成上闸极结构和其他部件,以获得类似于图4至图5所示的结构的非挥发性内存元件。Afterwards, the additional stack structure 210 may be replaced by the intermediate structures 240a, 240b shown in FIG. 4 . Then, an upper gate structure and other components can be formed to obtain a non-volatile memory element similar to the structure shown in FIGS. 4-5 .

图22至图26是本发明的一些实施例用于制造图6至图7的非挥发性内存元件的制造方法的不同阶段的剖面图。在图22至图26中,剖面AA’、剖面BB’和剖面CC’分别对应于图1的剖线A-A’、剖线B-B’和剖线C-C’。此外,图22至图26所示的制造过程可被视为衍生自图11至图14所示的制造过程,为了简洁起见,仅描述实施例之间的主要差异。22-26 are cross-sectional views of different stages of the manufacturing method for manufacturing the non-volatile memory device of FIGS. 6-7 according to some embodiments of the present invention. In Fig. 22 to Fig. 26, the section AA', the section BB' and the section CC' correspond to the section line A-A', the section line B-B' and the section line C-C' of Fig. 1, respectively. Furthermore, the manufacturing process shown in FIGS. 22 to 26 can be considered as derived from the manufacturing process shown in FIGS. 11 to 14 , and for the sake of brevity, only the main differences between the embodiments are described.

参考图22的剖面AA’、剖面BB’和剖面CC’,复数图案化导电层220b形成在衬底200上。在图22的剖面AA’中,图案化导电层220b是沿X方向延伸且覆盖堆叠结构210的连续层。图案化导电层220b包含相对的内表面220b_1和外表面220b_2。在图22的剖面BB’中,不存在任何图案化导电层220b。因此,从俯视角度来看,如图8所示,各图案化导电层220b是条形的,且在X方向上延伸,且图案化导电层220b沿着Y方向彼此分离。然后,在形成图案化导电层220b之后,施行全面性沉积以形成覆盖图案化导电层220b和衬底200的保形层270a。在图22的剖面CC’中,图案化导电层220b的侧壁220b_3被保形层270a覆盖。Referring to the section AA', the section BB' and the section CC' of FIG. 22, a plurality of patterned conductive layers 220b are formed on the substrate 200. In the section AA' of FIG. 22 , the patterned conductive layer 220b is a continuous layer extending along the X direction and covering the stacked structure 210 . The patterned conductive layer 220b includes opposite inner surfaces 220b_1 and outer surfaces 220b_2. In section BB' of Figure 22, there is no patterned conductive layer 220b. Therefore, from a top view, as shown in FIG. 8 , each patterned conductive layer 220 b is strip-shaped and extends in the X direction, and the patterned conductive layers 220 b are separated from each other along the Y direction. Then, after the patterned conductive layer 220b is formed, blanket deposition is performed to form a conformal layer 270a covering the patterned conductive layer 220b and the substrate 200 . In section CC' of Fig. 22, the sidewall 220b_3 of the patterned conductive layer 220b is covered by the conformal layer 270a.

然后,参考图23的剖面AA’、剖面BB’和剖面CC’,通过非等向蚀刻制程蚀刻保形层270a,从而在堆叠结构210的侧壁211、213上形成间隙壁272a。在图22的剖面CC’中,图案化导电层220b的侧壁被间隙壁272a覆盖。本实施例中的间隙壁272a可以在不施行任何微影制程的情况下而被形成。Then, referring to the section AA', the section BB' and the section CC' of FIG. In section CC' of FIG. 22 , the sidewalls of the patterned conductive layer 220b are covered by spacers 272a. The spacer 272a in this embodiment can be formed without performing any lithography process.

之后,参考图24的剖面AA’,使用间隙壁272a作为蚀刻屏蔽蚀刻图案化导电层,从而在堆叠结构210的侧壁211、213上形成L型图案化导电层。各L型图案化导电层包括垂直部分221_1和水平部分221_2。通过使用间隙壁272a作为蚀刻屏蔽,不需要施行额外的微影制程来定义L型图案化导电层的轮廓。然后,在衬底200中形成源极区222,源极区222设置于在堆叠结构210的第一侧壁211上的两个相邻间隙壁272a之间。Afterwards, referring to section AA' of FIG. 24 , the patterned conductive layer is etched using the spacer 272a as an etching mask, thereby forming an L-shaped patterned conductive layer on the sidewalls 211, 213 of the stacked structure 210. Each L-shaped patterned conductive layer includes a vertical portion 221_1 and a horizontal portion 221_2 . By using the spacer 272a as an etching mask, no additional lithography process is required to define the contour of the L-shaped patterned conductive layer. Then, a source region 222 is formed in the substrate 200 , and the source region 222 is disposed between two adjacent spacers 272 a on the first sidewall 211 of the stack structure 210 .

之后,参考图25的剖面AA’、剖面BB’和剖面CC’,剥除间隙壁和牺牲层。如此一来,图案化导电层220b的垂直部分221_1的顶面220b_0可从残留的堆叠结构210的顶面凸出。此外,在图25的剖面CC’中,图案化导电层220b的侧壁220b_3会被暴露出。Afterwards, referring to the section AA', the section BB', and the section CC' of FIG. 25, the spacer and the sacrificial layer are stripped. In this way, the top surface 220b_0 of the vertical portion 221_1 of the patterned conductive layer 220b can protrude from the top surface of the remaining stacked structure 210 . In addition, in the section CC' of FIG. 25 , the sidewall 220b_3 of the patterned conductive layer 220b is exposed.

之后,参考图26的剖面AA’、剖面BB’和剖面CC’,通过施行微影和蚀刻制程来蚀刻设置于邻近堆叠结构210的第二侧壁213的图案化导电层。因此,浮置闸极224b会被形成在堆叠结构210的第一侧壁211上。然后,在两个相邻堆叠结构210之间的间隙中形成中间结构240a、240b。在剖面AA’和剖面CC’中,可以适当地控制中间结构240a、240b的高度,以覆盖浮置闸极224b的65%至95%侧壁。After that, referring to the section AA', the section BB' and the section CC' of FIG. 26, the patterned conductive layer disposed adjacent to the second sidewall 213 of the stack structure 210 is etched by performing lithography and etching processes. Therefore, the floating gate 224 b is formed on the first sidewall 211 of the stack structure 210 . Then, intermediate structures 240 a , 240 b are formed in the gap between two adjacent stacked structures 210 . In section AA' and section CC', the height of the intermediate structures 240a, 240b can be appropriately controlled to cover 65% to 95% of the sidewalls of the floating gate 224b.

之后,可以形成上闸极结构和其他部件,以获得类似于图6至图7所示的结构的非挥发性内存元件。Afterwards, the upper gate structure and other components can be formed to obtain a non-volatile memory element similar to the structures shown in FIGS. 6-7 .

图27至图30是本发明的一些实施例用于制造图8至图10的非挥发性内存元件的制造方法的不同阶段的剖面图。在图27至图30中,剖面AA’、剖面BB’和剖面CC’分别对应于图8的剖线A-A’、剖线B-B’和剖线C-C’。此外,由于图27至图30所示的实施例的制造过程类似于图22至图26所示的实施例的制造过程,为了简洁起见,仅描述实施例之间的主要差异。27-30 are cross-sectional views of different stages of the manufacturing method for manufacturing the non-volatile memory device of FIGS. 8-10 according to some embodiments of the present invention. In Figs. 27 to 30, the section AA', the section BB' and the section CC' correspond to the section line A-A', the section line B-B' and the section line C-C' of Fig. 8, respectively. In addition, since the manufacturing process of the embodiment shown in FIGS. 27 to 30 is similar to that of the embodiment shown in FIGS. 22 to 26 , only the main differences between the embodiments are described for the sake of brevity.

参考图27的剖面AA’、剖面BB’和剖面CC’,在此制造阶段形成的结构类似于图22所示的结构,主要区别在于使用包括下层270b_1和上层270b_2的堆叠保形层270b来取代图22所示的保形层270a。根据本发明一些实施例,下层270b_1是包括氧化硅/氮化硅/氧化硅的复合介电层,但不限于此。上层270b_2是包括多晶硅或金属的导电层,但不限于此。Referring to section AA', section BB' and section CC' of Figure 27, the structure formed at this stage of fabrication is similar to the structure shown in Figure 22 with the main difference being the use of a stacked conformal layer 270b comprising a lower layer 270b_1 and an upper layer 270b_2 in place of the conformal layer 270a shown in Figure 22. According to some embodiments of the present invention, the lower layer 270b_1 is a composite dielectric layer including silicon oxide/silicon nitride/silicon oxide, but is not limited thereto. The upper layer 270b_2 is a conductive layer including polysilicon or metal, but is not limited thereto.

然后,参考图28的剖面AA’、剖面BB’和剖面CC’,通过非等向蚀刻制程蚀刻保形层270b,从而在堆叠结构210的侧壁211、213上形成间隙壁272b。在图28的剖面CC’中,图案化导电层220b的侧壁220b_3被间隙壁272b覆盖。本实施例中的间隙壁272b可以在不施行额外的微影制程的情况下形成。Then, referring to the section AA', the section BB' and the section CC' of FIG. In the section CC' of FIG. 28 , the sidewall 220b_3 of the patterned conductive layer 220b is covered by the spacer 272b. The spacer 272b in this embodiment can be formed without additional lithography process.

之后,参考图29的剖面AA’,使用间隙壁272b作为蚀刻屏蔽蚀刻图案化导电层,从而在堆叠结构210的侧壁211、213上形成L型图案化导电层。各L型图案化导电层包括垂直部分221_1和水平部分221_2。通过使用间隙壁272b作为蚀刻屏蔽,不需要施行额外的微影制程来定义L型图案化导电层的轮廓。然后,在衬底200中形成源极区222,该源极区222位于堆叠结构210的侧壁211上的两个相邻间隙壁272b之间。Afterwards, referring to section AA' of FIG. 29 , the patterned conductive layer is etched using the spacer 272b as an etching mask, thereby forming an L-shaped patterned conductive layer on the sidewalls 211, 213 of the stacked structure 210. Each L-shaped patterned conductive layer includes a vertical portion 221_1 and a horizontal portion 221_2 . By using the spacer 272b as an etching mask, no additional lithography process is required to define the contour of the L-shaped patterned conductive layer. Then, a source region 222 is formed in the substrate 200 , the source region 222 is located between two adjacent spacers 272 b on the sidewall 211 of the stack structure 210 .

之后,参考图26的剖面AA’、剖面BB’和剖面CC’,通过施行微影和蚀刻制程来蚀刻设置在邻近堆叠结构210的第二侧壁213的图案化导电层和间隙壁。因此,浮置闸极224b和中间结构240a、240b形成在堆叠结构210的第一侧壁211上。换句话说,中间结构240a、240b由原始堆叠保形层270a形成,如图27所示。在剖面AA’和剖面CC’中,可以适当地控制中间结构240a、240b的高度,以覆盖浮置闸极224b的65%到95%侧壁。Afterwards, referring to the section AA', the section BB' and the section CC' of FIG. 26, the patterned conductive layer and the spacer disposed adjacent to the second sidewall 213 of the stack structure 210 are etched by performing lithography and etching processes. Therefore, the floating gate 224 b and the intermediate structures 240 a , 240 b are formed on the first sidewall 211 of the stack structure 210 . In other words, the intermediate structures 240a, 240b are formed from the original stack conformal layer 270a, as shown in FIG. 27 . In section AA' and section CC', the height of the intermediate structures 240a, 240b can be appropriately controlled to cover 65% to 95% of the sidewalls of the floating gate 224b.

之后,可以形成上闸极结构和其他部件,以获得类似于图8至图10所示结构的非挥发性内存元件。Afterwards, the upper gate structure and other components can be formed to obtain a non-volatile memory element similar to the structures shown in FIGS. 8 to 10 .

以上所述仅为本发明的较佳实施例,凡依本发明权利要求书所做的均等变化与修饰,皆应属本发明的涵盖范围。The above descriptions are only preferred embodiments of the present invention, and all equivalent changes and modifications made according to the claims of the present invention shall fall within the scope of the present invention.

Claims (22)

1.一种非挥发性内存元件,其特征在于,包括至少一内存单元,其中所述至少一内存单元包括:1. A non-volatile memory element, characterized in that it comprises at least one memory unit, wherein said at least one memory unit comprises: 一衬底;a substrate; 一辅助闸极结构,设置在所述衬底上,且包括一闸极介电层;an auxiliary gate structure disposed on the substrate and including a gate dielectric layer; 一穿隧介电层,设置在所述辅助闸极结构一侧的所述衬底上;a tunneling dielectric layer disposed on the substrate on one side of the auxiliary gate structure; 一浮置闸极,设置在所述穿隧介电层上,且包括:A floating gate is arranged on the tunnel dielectric layer and includes: 两个第一最上边缘,彼此相对且沿一第一方向排列;Two first uppermost edges are opposite to each other and arranged along a first direction; 两个第一侧壁,彼此相对且沿所述第一方向排列,其中所述两个第一侧壁分别连接至所述两个第一最上边缘;以及two first side walls, opposite to each other and arranged along the first direction, wherein the two first side walls are respectively connected to the two first uppermost edges; and 两个第二侧壁,彼此相对且沿着一第二方向排列,其中所述第二方向不同于所述第一方向;two second sidewalls are opposite to each other and arranged along a second direction, wherein the second direction is different from the first direction; 一上闸极结构,覆盖所述辅助闸极结构和所述浮置闸极,其中所述浮置闸极的所述两个第一最上边缘中的至少一个嵌入于所述上闸极结构中,an upper gate structure covering the auxiliary gate structure and the floating gate, wherein at least one of the two first uppermost edges of the floating gate is embedded in the upper gate structure, 其中,部分的所述上闸极结构在所述第二方向上延伸超过所述浮置闸极的所述两个第二侧壁,且所述上闸极结构的所述部分设置在所述衬底上。Wherein, a portion of the upper gate structure extends in the second direction beyond the two second sidewalls of the floating gate, and the portion of the upper gate structure is disposed on the substrate. 2.如权利要求1所述的非挥发性内存元件,其特征在于,所述浮置闸极的所述第一侧壁中的一个面向所述辅助闸极结构,且面向所述辅助闸极结构的所述第一侧壁被所述辅助闸极结构覆盖。2. The non-volatile memory device according to claim 1, wherein one of the first sidewalls of the floating gate faces the auxiliary gate structure, and the first sidewall facing the auxiliary gate structure is covered by the auxiliary gate structure. 3.如权利要求2所述的非挥发性内存元件,其特征在于,所述第一侧壁中的另一个与所述辅助闸极结构相对,且与所述辅助闸极结构相对的所述第一侧壁是垂直或倾斜的侧壁。3. The non-volatile memory device as claimed in claim 2, wherein another one of the first sidewalls is opposite to the auxiliary gate structure, and the first sidewall opposite to the auxiliary gate structure is a vertical or inclined sidewall. 4.如权利要求1所述的非挥发性内存元件,其特征在于,所述浮置闸极的所述两个第一最上边缘高于所述辅助闸极结构的顶面。4. The non-volatile memory device as claimed in claim 1, wherein the two first uppermost edges of the floating gate are higher than the top surface of the auxiliary gate structure. 5.如权利要求1所述的非挥发性内存元件,其特征在于,所述两个第二侧壁被一中间结构覆盖,其中所述中间结构设置在所述上闸极结构的所述部分和所述衬底之间。5. The non-volatile memory device of claim 1, wherein the two second sidewalls are covered by an intermediate structure, wherein the intermediate structure is disposed between the portion of the upper gate structure and the substrate. 6.如权利要求1所述的非挥发性内存元件,其特征在于,设置在所述衬底上的所述上闸极结构的所述部分的底面低于所述浮置闸极的所述两个第一最上边缘。6. The non-volatile memory element according to claim 1, wherein the bottom surface of the portion of the upper gate structure disposed on the substrate is lower than the two first uppermost edges of the floating gate. 7.如权利要求1所述的非挥发性内存元件,其特征在于,所述至少一内存单元还包括一控制闸极结构,且部分的所述控制闸极结构覆盖所述浮置闸极的所述两个第二侧壁。7. The non-volatile memory device according to claim 1, wherein the at least one memory cell further comprises a control gate structure, and part of the control gate structure covers the two second sidewalls of the floating gate. 8.如权利要求7所述的非挥发性内存元件,其特征在于,所述控制闸极结构的所述部分被延伸超过所述浮置闸极的所述两个第二侧壁的所述上闸极结构的所述部分覆盖。8. The non-volatile memory device of claim 7, wherein the portion of the control gate structure is covered by the portion of the upper gate structure extending beyond the two second sidewalls of the floating gate. 9.如权利要求7所述的非挥发性内存元件,其特征在于,所述控制闸极结构的顶面低于所述上闸极结构的顶面。9. The non-volatile memory device as claimed in claim 7, wherein the top surface of the control gate structure is lower than the top surface of the upper gate structure. 10.如权利要求9所述的非挥发性内存元件,其特征在于,所述控制闸极结构的所述顶面被所述上闸极结构覆盖。10. The non-volatile memory device of claim 9, wherein the top surface of the control gate structure is covered by the upper gate structure. 11.如权利要求7所述的非挥发性内存元件,其特征在于,所述控制闸极结构的顶面低于所述两个第一最上边缘。11. The non-volatile memory device of claim 7, wherein a top surface of the control gate structure is lower than the two first uppermost edges. 12.如权利要求1所述的非挥发性内存元件,其特征在于,所述至少一内存单元还包括一顶介电层,设置在所述浮置闸极上,其中,所述顶介电层的顶面被所述上闸极结构覆盖。12. The non-volatile memory element according to claim 1, wherein the at least one memory cell further comprises a top dielectric layer disposed on the floating gate, wherein a top surface of the top dielectric layer is covered by the upper gate structure. 13.如权利要求12所述的非挥发性内存元件,其特征在于,所述顶介电层的所述顶面的面积小于所述浮置闸极的顶面的面积。13. The non-volatile memory device as claimed in claim 12, wherein the area of the top surface of the top dielectric layer is smaller than the area of the top surface of the floating gate. 14.如权利要求1所述的非挥发性内存元件,其特征在于,所述浮置闸极还包括一垂直部分和一水平部分,其中,所述垂直部分的顶面高于所述水平部分的顶面。14. The non-volatile memory device according to claim 1, wherein the floating gate further comprises a vertical portion and a horizontal portion, wherein a top surface of the vertical portion is higher than a top surface of the horizontal portion. 15.如权利要求14所述的非挥发性内存元件,其特征在于,所述浮置闸极的所述垂直部分包括所述两个第一最上边缘。15. The non-volatile memory device of claim 14, wherein the vertical portion of the floating gate comprises the two first uppermost edges. 16.如权利要求14所述的非挥发性内存元件,其特征在于,所述至少一内存单元还包括一控制闸极结构,覆盖所述浮置闸极的所述水平部分的所述顶面。16. The non-volatile memory device of claim 14, wherein said at least one memory cell further comprises a control gate structure covering said top surface of said horizontal portion of said floating gate. 17.如权利要求1所述的非挥发性内存元件,其特征在于,所述至少一内存单元包括一第一内存单元和一第二内存单元,所述第一内存单元和所述第二内存单元各包括所述辅助闸极结构和所述浮置闸极,所述非挥发性内存元件还包括一源极区,所述源极区由所述第一内存单元和所述第二内存单元共享,且所述源极区被所述上闸极结构覆盖。17. The non-volatile memory element according to claim 1, wherein the at least one memory unit comprises a first memory unit and a second memory unit, the first memory unit and the second memory unit each include the auxiliary gate structure and the floating gate, the non-volatile memory element further comprises a source region, the source region is shared by the first memory unit and the second memory unit, and the source region is covered by the upper gate structure. 18.如权利要求17所述的非挥发性内存元件,其特征在于,所述第一内存单元和所述第二内存单元彼此间呈现镜像。18. The non-volatile memory device of claim 17, wherein the first memory cell and the second memory cell are mirror images of each other. 19.如权利要求17所述的非挥发性内存元件,其特征在于,所述上闸极结构填满所述第一内存单元的所述浮置闸极和所述第二内存单元的所述浮置闸极之间的间隙。19. The non-volatile memory device of claim 17, wherein the upper gate structure fills up a gap between the floating gate of the first memory unit and the floating gate of the second memory unit. 20.如权利要求17所述的非挥发性内存元件,其特征在于,还包括一控制闸极结构,由所述第一内存单元和所述第二内存单元共享,其中,所述控制闸极结构覆盖所述源极区。20. The non-volatile memory device of claim 17, further comprising a control gate structure shared by the first memory unit and the second memory unit, wherein the control gate structure covers the source region. 21.如权利要求20所述的非挥发性内存元件,其特征在于,部分的所述控制闸极结构覆盖各所述浮置闸极的所述两个第二侧壁,且所述控制闸极结构的所述部分设置在所述上闸极结构和所述衬底之间。21. The non-volatile memory device according to claim 20, wherein a part of the control gate structure covers the two second sidewalls of each of the floating gates, and the part of the control gate structure is disposed between the upper gate structure and the substrate. 22.如权利要求20所述的非挥发性内存元件,其特征在于,还包括设置在所述衬底中的一隔离结构,其中,延伸超过所述浮置闸极的所述两个第二侧壁的所述上闸极结构的所述部分被设置在所述隔离结构上。22. The non-volatile memory device of claim 20, further comprising an isolation structure disposed in the substrate, wherein the portion of the upper gate structure extending beyond the two second sidewalls of the floating gate is disposed on the isolation structure.
CN202310064288.8A 2022-01-18 2023-01-13 Non-volatile memory device Pending CN116471842A (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US17/578,414 2022-01-18
US17/709,370 2022-03-30
US63/424,139 2022-11-10
US18/090,468 US20240162315A1 (en) 2022-11-10 2022-12-28 Non-volatile memory device
US18/090,468 2022-12-28

Publications (1)

Publication Number Publication Date
CN116471842A true CN116471842A (en) 2023-07-21

Family

ID=87175999

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310064288.8A Pending CN116471842A (en) 2022-01-18 2023-01-13 Non-volatile memory device

Country Status (1)

Country Link
CN (1) CN116471842A (en)

Similar Documents

Publication Publication Date Title
CN111180508B (en) Nonvolatile memory and method of manufacturing the same
CN111180447B (en) Nonvolatile memory and method of manufacturing the same
CN101273441A (en) Double-gate nonvolatile memory and method of manufacturing the same
US7049189B2 (en) Method of fabricating non-volatile memory cell adapted for integration of devices and for multiple read/write operations
CN108231561A (en) The manufacturing method and semiconductor device of semiconductor device
CN106328653B (en) Nonvolatile memory and method of manufacturing the same
US20220383953A1 (en) Three-dimensional memory structure fabricated using repeated active stack sections
CN105990360B (en) Nonvolatile memory and method of manufacturing the same
US11257830B2 (en) Memory structure
CN114335185A (en) Split-gate dual-bit nonvolatile memory cell with erase gate disposed over wordline gate and method of making the same
TWI605572B (en) Non-volatile memory and manufacturing method thereof
TWI815380B (en) Method of manufacturing non-volatile memory device
US8865548B2 (en) Method of making a non-volatile double gate memory cell
CN113903789B (en) Flash memory and manufacturing method and operation method thereof
TWI845109B (en) Non-volatile memory device
CN116471842A (en) Non-volatile memory device
US20240162315A1 (en) Non-volatile memory device
TWI858963B (en) Non-volatile memory device and method for manufacturing the same
RU2807966C1 (en) Non-volatile memory device
JP7566262B2 (en) Non-volatile Memory Devices
CN100463145C (en) Non-volatile memory and manufacturing method thereof
CN118019335A (en) Non-volatile memory element and manufacturing method thereof
US20240274682A1 (en) Non-volatile memory device
KR100642383B1 (en) Flash memory device having improved erase efficiency and manufacturing method thereof
CN118019336A (en) Non-volatile memory device and method for manufacturing the same

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination