[go: up one dir, main page]

CN116460856A - Hydraulic mechanical arm self-adaptive robust control method based on nonlinear state observation - Google Patents

Hydraulic mechanical arm self-adaptive robust control method based on nonlinear state observation Download PDF

Info

Publication number
CN116460856A
CN116460856A CN202310590367.2A CN202310590367A CN116460856A CN 116460856 A CN116460856 A CN 116460856A CN 202310590367 A CN202310590367 A CN 202310590367A CN 116460856 A CN116460856 A CN 116460856A
Authority
CN
China
Prior art keywords
joint
nonlinear
observer
hydraulic
mechanical arm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202310590367.2A
Other languages
Chinese (zh)
Other versions
CN116460856B (en
Inventor
周时钊
沈翀
夏杨修
陈正
梅德庆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN202310590367.2A priority Critical patent/CN116460856B/en
Publication of CN116460856A publication Critical patent/CN116460856A/en
Application granted granted Critical
Publication of CN116460856B publication Critical patent/CN116460856B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1628Programme controls characterised by the control loop
    • B25J9/163Programme controls characterised by the control loop learning, adaptive, model based, rule based expert control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1602Programme controls characterised by the control system, structure, architecture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1656Programme controls characterised by programming, planning systems for manipulators
    • B25J9/1664Programme controls characterised by programming, planning systems for manipulators characterised by motion, path, trajectory planning
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Feedback Control In General (AREA)

Abstract

本发明公开了一种基于非线性状态观测的液压机械臂自适应鲁棒控制方法。将动力学参数的参数估计值输入中间转换状态量模型,输出中间转换状态量,非线性状态观测器进行观测输出观测状态,获得关节角速度的估计值;输入关节角速度的估计值和目标轨迹,输出阀芯位移的控制信号控制多关节液压机械臂运行,获得跟踪误差输出至自适应鲁棒控制律中,重复步骤同时非线性状态观测器进行自更新,最终实现自适应鲁棒控制。本发明方法实现基于模型参数不确定的不可测状态实时观测,解决了实际情况中因传感器限制所导致的反馈状态不可测的情况,并且在保证控制系统与观测系统整体稳定性的同时,减小机械臂末端跟踪误差,提升控制性能。

The invention discloses an adaptive robust control method of a hydraulic mechanical arm based on nonlinear state observation. The estimated value of the dynamic parameters is input into the intermediate transition state quantity model, the intermediate transition state quantity is output, the nonlinear state observer observes and outputs the observed state, and obtains the estimated value of the joint angular velocity; the estimated value of the joint angular velocity and the target trajectory are input, and the control signal of the valve core displacement is output to control the operation of the multi-joint hydraulic manipulator, and the tracking error is obtained and output to the adaptive robust control law. Repeat the steps while the nonlinear state observer performs self-update, and finally realizes adaptive robust control. The method of the present invention realizes real-time observation of unmeasurable states based on uncertain model parameters, solves the situation of unmeasurable feedback states caused by sensor limitations in actual situations, and while ensuring the overall stability of the control system and the observation system, reduces the tracking error at the end of the mechanical arm and improves control performance.

Description

基于非线性状态观测的液压机械臂自适应鲁棒控制方法Adaptive robust control method for hydraulic manipulator based on nonlinear state observation

技术领域Technical Field

本发明涉及了一种液压机械臂自适应鲁棒控制方法,具体涉及一种基于非线性状态观测的液压机械臂自适应鲁棒控制方法。The invention relates to an adaptive robust control method for a hydraulic mechanical arm, and in particular to an adaptive robust control method for a hydraulic mechanical arm based on nonlinear state observation.

背景技术Background Art

液压机械臂通常应用于重载等严苛的操作任务,但随着工业的发展和人类探索的不断向前,液压机械臂的作业任务的复杂性不断加大,其对作业精确性的要求也不断提高,传统的比例-积分-微分PID控制因未考虑机械臂动力学模型参数不确定等因素,逐渐无法满足高控制性能需求。在这种情况下,开发基于多关节液压机械臂动力学模型的全状态反馈控制器是一种有效的解决方案。但另一方面,多关节液压机械臂的工作场合也变得越发恶劣,在大多数实际应用中,出于安全性和可靠性的考虑,液压机械臂仅配置精度不高的位置传感器。这导致测量信号存在大噪声,并且无法进行其他状态测量,特别是速度测量。通过对位置信号进行微分并采用低通滤波的方法是现阶段获取速度信号的常用手段。然而,低通滤波器的存在严重影响了系统的闭环带宽,从而限制了多关节液压机械臂的控制性能。因此,现有的控制器难以在恶劣复杂的作业环境下综合考虑多关节液压机械臂动力学模型参数不确定以及状态不可测等问题,从而导致难以保证良好的机械臂末端控制精度、影响具体场合下的作业性能。Hydraulic manipulators are usually used for demanding operation tasks such as heavy loads. However, with the development of industry and the continuous advancement of human exploration, the complexity of hydraulic manipulators' operation tasks has continued to increase, and the requirements for operation accuracy have also continued to increase. The traditional proportional-integral-differential PID control has gradually failed to meet the high control performance requirements because it does not consider the uncertainty of the parameters of the manipulator's dynamic model. In this case, developing a full-state feedback controller based on the dynamic model of a multi-joint hydraulic manipulator is an effective solution. On the other hand, the working environment of a multi-joint hydraulic manipulator has become increasingly harsh. In most practical applications, for safety and reliability reasons, hydraulic manipulators are only equipped with low-precision position sensors. This results in large noise in the measurement signal and the inability to perform other state measurements, especially speed measurement. The method of differentiating the position signal and using a low-pass filter is a common means of obtaining the speed signal at this stage. However, the existence of the low-pass filter seriously affects the closed-loop bandwidth of the system, thereby limiting the control performance of the multi-joint hydraulic manipulator. Therefore, it is difficult for existing controllers to comprehensively consider problems such as uncertainty in the dynamic model parameters and unpredictable state of multi-joint hydraulic robotic arms in harsh and complex working environments, which makes it difficult to ensure good robotic arm end control accuracy and affects the operating performance in specific situations.

发明内容Summary of the invention

为了解决背景技术中存在的问题,本发明所提供一种基于非线性状态观测的液压机械臂自适应鲁棒控制方法,提升多关节液压机械臂动力学模型参数不确定和反馈状态不可测情况下的末端控制精度,并在保证控制系统和观测系统整体稳定性的同时,减小机械臂末端跟踪误差,增强控制性能。In order to solve the problems existing in the background technology, the present invention provides an adaptive robust control method for a hydraulic manipulator arm based on nonlinear state observation, which improves the end control accuracy of a multi-joint hydraulic manipulator arm when the parameters of the dynamic model are uncertain and the feedback state is unmeasurable, and reduces the end tracking error of the manipulator arm while ensuring the overall stability of the control system and the observation system, thereby enhancing the control performance.

本发明采用的技术方案是:The technical solution adopted by the present invention is:

本发明的液压机械臂自适应鲁棒控制方法包括如下步骤:The hydraulic mechanical arm adaptive robust control method of the present invention comprises the following steps:

步骤一:综合考虑液压特性与多自由度耦合特性,建立在动力学模型约束下的多关节液压机械臂的非线性动力学模型;设计多关节液压机械臂的不可测状态的中间转换状态量模型及其非线性状态空间,根据非线性状态空间使用非线性状态观测法建立非线性状态观测器。Step 1: Comprehensively consider the hydraulic characteristics and multi-degree-of-freedom coupling characteristics, and establish a nonlinear dynamic model of the multi-joint hydraulic robotic arm under the constraints of the dynamic model; design the intermediate conversion state quantity model of the unmeasurable state of the multi-joint hydraulic robotic arm and its nonlinear state space, and establish a nonlinear state observer based on the nonlinear state space using the nonlinear state observation method.

步骤二:将非线性动力学模型的动力学参数的参数估计值输入中间转换状态量模型中,中间转换状态量模型输出中间转换状态量,非线性状态观测器对中间转换状态量进行观测并输出中间转换状态量的观测状态,根据中间转换状态量的观测状态获得多关节液压机械臂的关节角速度的估计值。Step 2: Input the parameter estimation values of the dynamic parameters of the nonlinear dynamic model into the intermediate conversion state quantity model, the intermediate conversion state quantity model outputs the intermediate conversion state quantity, the nonlinear state observer observes the intermediate conversion state quantity and outputs the observation state of the intermediate conversion state quantity, and obtains the estimated value of the joint angular velocity of the multi-joint hydraulic robot arm according to the observation state of the intermediate conversion state quantity.

步骤三:根据非线性动力学模型和非线性状态观测器,使用自适应鲁棒控制方法设计自适应鲁棒控制律。Step 3: Based on the nonlinear dynamic model and nonlinear state observer, use the adaptive robust control method to design the adaptive robust control law.

步骤四:非线性状态空间将多关节液压机械臂的关节角速度的估计值输出至自适应鲁棒控制律中,同时将多关节液压机械臂的目标轨迹输入自适应鲁棒控制律,自适应鲁棒控制律输出多关节液压机械臂的阀芯位移的控制信号控制多关节液压机械臂运行,通过多关节液压机械臂的目标轨迹和运行时实际输出的关节角计算获得跟踪误差并输出至自适应鲁棒控制律中,自适应鲁棒控制律输出非线性动力学模型的动力学参数的参数估计值至中间转换状态量模型中并重复进行步骤二和步骤四,同时非线性状态观测器进行自更新,最终实现多关节液压机械臂的自适应鲁棒控制。Step 4: The nonlinear state space outputs the estimated value of the joint angular velocity of the multi-joint hydraulic mechanical arm to the adaptive robust control law, and at the same time inputs the target trajectory of the multi-joint hydraulic mechanical arm into the adaptive robust control law. The adaptive robust control law outputs the control signal of the valve core displacement of the multi-joint hydraulic mechanical arm to control the operation of the multi-joint hydraulic mechanical arm. The tracking error is obtained by calculating the target trajectory of the multi-joint hydraulic mechanical arm and the joint angle actually output during operation and output it to the adaptive robust control law. The adaptive robust control law outputs the parameter estimation value of the dynamic parameters of the nonlinear dynamic model to the intermediate conversion state quantity model and repeats steps 2 and 4. At the same time, the nonlinear state observer is self-updated to finally realize the adaptive robust control of the multi-joint hydraulic mechanical arm.

所述的步骤一中,建立的多关节液压机械臂的非线性动力学模型具体如下:In the step 1, the nonlinear dynamic model of the multi-joint hydraulic mechanical arm is established as follows:

a)连杆动力学模型:a) Connecting rod dynamics model:

τj=Jj(q)PL τ j =J j (q)P L

PL=AiPi-AoPo P L =A i P i -A o P o

其中,q、分别表示多关节液压机械臂的关节角、关节角速度和关节角加速度,q、n表示多关节液压机械臂的关节数;Mj()、Cj()和Gj()分别表示多关节液压机械臂的惯性动力学矩阵、科氏力矩阵和重力矩阵,Mj()、Cj()、Gj()∈Rn×n;τj表示多关节液压机械臂各关节的驱动扭矩,τj∈Rn;Jj()表示多关节液压机械臂各关节的多关节运动耦合表征矩阵;PL表示多关节液压机械臂各关节的液压缸等效推力,PL∈Rn;Ai和Ao分别表示多关节液压机械臂各关节的液压缸的进油腔和回油腔接触面积,Ai、Ao∈Rn×n;Pi和Po分别表示多关节液压机械臂各关节的液压缸的进油腔和回油腔油压,Pi、Po∈Rn;l表示多关节液压机械臂各关节的液压缸推杆伸长量,l∈Rn;动力学矩阵是斜对称的。Among them, q, and They represent the joint angle, joint angular velocity and joint angular acceleration of the multi-joint hydraulic manipulator, q, n represents the number of joints of the multi-joint hydraulic mechanical arm; M j (), C j () and G j () represent the inertial dynamics matrix, Coriolis force matrix and gravity matrix of the multi-joint hydraulic mechanical arm respectively, M j (), C j (), G j ()∈R n×n ; τ j represents the driving torque of each joint of the multi-joint hydraulic mechanical arm, τ j ∈R n ; J j () represents the multi-joint motion coupling characterization matrix of each joint of the multi-joint hydraulic mechanical arm; PL represents the equivalent thrust of the hydraulic cylinder of each joint of the multi-joint hydraulic mechanical arm, PL ∈R n ; Ai and Ao represent the contact areas of the oil inlet chamber and the oil return chamber of the hydraulic cylinder of each joint of the multi-joint hydraulic mechanical arm respectively, Ai , Ao ∈R n×n ; Pi and P o represent the oil pressures of the oil inlet chamber and the oil return chamber of the hydraulic cylinder of each joint of the multi-joint hydraulic mechanical arm respectively, Pi , P o ∈R n ; l represents the extension of the hydraulic cylinder push rod of each joint of the multi-joint hydraulic mechanical arm, l∈R n ; dynamic matrix It is obliquely symmetrical.

通过设定适当的连杆动力学模型的动力学参数θm,连杆动力学模型可线性化处理成如下形式:By setting appropriate dynamic parameters θ m of the connecting rod dynamic model, the connecting rod dynamic model can be linearized into the following form:

其中,表示连杆动力学模型的动力学参数θm的回归矩阵。in, Represents the regression matrix of the dynamic parameters θm of the connecting rod dynamic model.

b)考虑到液压驱动特性,在假定液压缸无泄漏前提下建立液压动力学模型:b) Considering the hydraulic drive characteristics, a hydraulic dynamics model is established under the assumption that the hydraulic cylinder has no leakage:

Vi=Vhi+Aidiag[l]V i = V hi + A i diag[l]

Vo=Vho-Aodiag[l]V o =V ho -A o diag[l]

其中,Vi和Vo分别表示多关节液压机械臂各关节的液压缸进油腔和回油腔容积,Vi、Vo∈Rn×n;βe表示液压油体积模量;Vhi和Vho分别表示在多关节液压机械臂各关节的液压缸推杆伸长量l=0的初始情况下的各驱动装置的各液压缸的进油腔和回油腔的容积;diag[·]表示以·为主元素的对角矩阵;Qi和Qo分别表示多关节液压机械臂各关节的液压缸进油腔和回油腔实际流量,Qid和Qod分别表示多关节液压机械臂各关节的液压缸进油腔和回油腔流量的预设理想流量,Qid、Qod∈Rn分别表示多关节液压机械臂各关节的液压缸进油腔和回油腔实际流量的可计算流量差,分别表示多关节液压机械臂各关节的液压缸进油腔和回油腔实际流量的不可计算流量差,分别表征实际流量与理想流量间的流量差;kqi和kqo分别表示多关节液压机械臂各关节的液压缸进油腔和回油腔的流量增益常数;xv表示多关节液压机械臂各关节的液压控制阀的阀芯位移;g1()表示多关节液压机械臂各关节的液压缸的进油腔油压Pi和液压控制阀的阀芯位移xv之间的非线性转换函数,g2()表示多关节液压机械臂各关节的液压缸的回油腔油压Po和液压控制阀的阀芯位移xv之间的非线性转换函数,g1()、g2()∈Rn×nWherein, Vi and Vo represent the volume of the oil inlet chamber and oil return chamber of the hydraulic cylinder of each joint of the multi-joint hydraulic mechanical arm, Vi , Vo ∈Rn ×n ; βe represents the bulk modulus of the hydraulic oil; Vhi and Vho represent the volume of the oil inlet chamber and oil return chamber of each hydraulic cylinder of each driving device under the initial condition that the extension of the hydraulic cylinder push rod of each joint of the multi-joint hydraulic mechanical arm is l=0; diag[·] represents a diagonal matrix with · as the main element; Qi and Qo represent the actual flow of the oil inlet chamber and oil return chamber of the hydraulic cylinder of each joint of the multi-joint hydraulic mechanical arm, Qid and Qod represent the preset ideal flow of the oil inlet chamber and oil return chamber of the hydraulic cylinder of each joint of the multi-joint hydraulic mechanical arm, Qid , Qod ∈Rn , and The calculable flow difference of the actual flow of the hydraulic cylinder oil inlet chamber and oil return chamber of each joint of the multi-joint hydraulic mechanical arm is respectively represented. and They represent the uncalculated flow difference of the actual flow of the oil inlet chamber and the oil return chamber of each joint of the multi-joint hydraulic mechanical arm, and They respectively represent the flow difference between the actual flow and the ideal flow; k qi and k qo respectively represent the flow gain constants of the oil inlet chamber and the oil return chamber of the hydraulic cylinder of each joint of the multi-joint hydraulic mechanical arm; x v represents the valve core displacement of the hydraulic control valve of each joint of the multi-joint hydraulic mechanical arm; g 1 () represents the nonlinear conversion function between the oil pressure Pi of the oil inlet chamber of the hydraulic cylinder of each joint of the multi-joint hydraulic mechanical arm and the valve core displacement x v of the hydraulic control valve, g 2 () represents the nonlinear conversion function between the oil pressure Po of the oil return chamber of the hydraulic cylinder of each joint of the multi-joint hydraulic mechanical arm and the valve core displacement x v of the hydraulic control valve, g 1 (), g 2 ()∈R n×n .

g1()、g2()具体如下:g 1 () and g 2 () are as follows:

其中,Ps是液压泵的供给压力,Pr是液压回油箱的参考压力。Among them, Ps is the supply pressure of the hydraulic pump and Pr is the reference pressure of the hydraulic return tank.

通过设定适当的液压动力学模型的动力学参数θp,液压动力学模型可线性化处理成如下形式:By setting appropriate dynamic parameters θ p of the hydraulic dynamic model, the hydraulic dynamic model can be linearized into the following form:

其中,表示液压动力学模型的动力学参数θp的回归矩阵。in, Represents the regression matrix of the dynamic parameters θp of the hydraulic dynamic model.

所述的动力学模型约束具体如下:The constraints of the dynamic model are as follows:

j|≤δj j |≤δ j

θ∈{θ:θmin≤θ≤θmax}θ∈{θ:θ min ≤θ≤θ max }

其中,Δj表示多关节液压机械臂运动过程中的不确定非线性和干扰,Δj∈Rn;δj表示预设常量向量;θmax和θmin分别表示非线性动力学模型的动力学参数θ的上下界,θ=[θm;θp]。Among them, Δ j represents the uncertain nonlinearity and interference in the motion process of the multi-joint hydraulic manipulator, Δ j ∈R n ; δ j represents the preset constant vector; θ max and θ min represent the upper and lower bounds of the dynamic parameter θ of the nonlinear dynamic model, respectively, θ=[θ m ; θ p ].

所述的多关节液压机械臂各关节的液压控制阀的阀芯位移xv,具体如下:The valve core displacement x v of the hydraulic control valve of each joint of the multi-joint hydraulic mechanical arm is as follows:

其中,QL表示液压缸腔室的等效流量,QL∈RnWherein, Q L represents the equivalent flow rate of the hydraulic cylinder chamber, Q L ∈R n .

所述的步骤一中,设计的多关节液压机械臂的不可测状态的中间转换状态量模型,具体如下:In the step 1, the intermediate conversion state quantity model of the unmeasurable state of the multi-joint hydraulic mechanical arm is designed, which is as follows:

s=[s1;s2;s3]s=[s 1 ;s 2 ;s 3 ]

s1=qs 1 =q

其中,s表示中间转换状态量,s1、s2和s3分别表示中间转换状态量s的第一、第二和第三个状态量;q和分别表示多关节液压机械臂的关节角和关节角速度;分别表示连杆动力学模型的连杆动力学参数θm的第一和第二个元素,Mj和Cj分别表示多关节液压机械臂的惯性动力学矩阵和科氏力矩阵,I表示单位矩阵;f1和f2分别表示中间转换状态量s的简化第一和第二等量矩阵;θ表示非线性动力学模型的动力学参数,表示非线性动力学模型的动力学参数θ的参数估计值,表示非线性动力学模型的动力学参数θ的参数自适应误差。Where s represents the intermediate conversion state quantity, s1 , s2 and s3 represent the first, second and third state quantities of the intermediate conversion state quantity s respectively; q and They represent the joint angles and joint angular velocities of the multi-joint hydraulic manipulator respectively; and denote the first and second elements of the connecting rod dynamics parameter θm of the connecting rod dynamics model, respectively. Mj and Cj represent the inertial dynamic matrix and Coriolis force matrix of the multi-joint hydraulic manipulator, respectively; I represents the unit matrix; f1 and f2 represent the simplified first and second equal-quantity matrices of the intermediate conversion state quantity s, respectively; θ represents the dynamic parameter of the nonlinear dynamic model, represents the parameter estimate of the kinetic parameter θ of the nonlinear kinetic model, Represents the parameter adaptation error of the dynamic parameter θ of the nonlinear dynamic model.

多关节液压机械臂的关节角速度即为多关节液压机械臂的不可测状态。Joint angular velocity of multi-joint hydraulic manipulator That is the unpredictable state of the multi-joint hydraulic robotic arm.

所述的步骤一中,非线性状态空间具体如下:In the step 1, the nonlinear state space is specifically as follows:

其中,分别表示中间转换状态量s的第一个状态量s1、第二个状态量s2和第三个状态量s3的微分;θm3表示连杆动力学模型的连杆动力学参数θm的第三个元素,θm3=Jj -1Cj;Δj表示多关节液压机械臂运动过程中的不确定非线性和干扰;分别表示液压动力学模型的液压动力学参数θp的第一和第二个元素,f3、f4和f5分别表示中间转换状态量s的简化第三、第四和第五等量矩阵;uv表示自适应鲁棒控制律实际输出的控制电压,uv=kvxv,uv∈Rn,xv表示多关节液压机械臂各关节的液压控制阀的阀芯位移,kv表示转换比例系数。in, and They represent the differentials of the first state quantity s 1 , the second state quantity s 2 and the third state quantity s 3 of the intermediate conversion state quantity s respectively; θ m3 represents the third element of the connecting rod dynamics parameter θ m of the connecting rod dynamics model, θ m3 =J j -1 C j ; Δ j represents the uncertain nonlinearity and interference in the motion process of the multi-joint hydraulic manipulator; and denote the first and second elements of the hydrodynamic parameter θp of the hydrodynamic model, respectively, f3 , f4 and f5 represent the simplified third, fourth and fifth equal-quantity matrices of the intermediate conversion state quantity s respectively; uv represents the control voltage actually output by the adaptive robust control law, uv = kvxv , uv∈Rn , xv represents the valve core displacement of the hydraulic control valve of each joint of the multi-joint hydraulic mechanical arm, and kv represents the conversion proportional coefficient.

所述的中间转换状态量s的简化第一-五等量矩阵具体如下:The simplified first to fifth equal quantity matrices of the intermediate conversion state quantity s are as follows:

f1=JjPL f 1 = J j P L

所述的步骤一中,非线性状态观测器具体如下:In the step 1, the nonlinear state observer is specifically as follows:

其中,表示中间转换状态量s的观测状态,分别表示多关节液压机械臂的关节角速度的第一中间转换状态量s1、第二中间转换状态量s2和第三中间转换状态量s3的观测值;分别表示非线性状态观测器的第一观测器系数矩阵εi中第一观测器系数ε1的第二和第三个元素,分别表示非线性状态观测器的第一观测器系数矩阵εi中第二观测器系数ε2的第二和第三个元素,分别表示非线性状态观测器的第一观测器系数矩阵εi中第三观测器系数ε3的第二和第三个元素, 分别表示非线性状态观测器的第二观测器系数矩阵φi中第一观测器系数φ1的第二和第三个元素,分别表示非线性状态观测器的第二观测器系数矩阵φi中第二观测器系数φ2的第二和第三个元素,分别表示非线性状态观测器的第二观测器系数矩阵φi中第三观测器系数φ3的第二和第三个元素,第一和第二观测器系数矩阵与不确定动力学模型参数θm和θp有关;分别表示连杆动力学模型的连杆动力学参数θm的第一、第二和第三个元素的观测值;分别表示液压动力学模型的液压动力学参数θp的第一和第二个元素的观测值;v2和v3分别表示第二和第三观测器自适应表征参数;n表示多关节液压机械臂的关节数。in, represents the observed state of the intermediate conversion state quantity s, and Represent the joint angular velocity of the multi-joint hydraulic manipulator observed values of the first intermediate conversion state quantity s 1 , the second intermediate conversion state quantity s 2 and the third intermediate conversion state quantity s 3 ; and denote the second and third elements of the first observer coefficient ε 1 in the first observer coefficient matrix ε i of the nonlinear state observer, respectively, and denote the second and third elements of the second observer coefficient ε 2 in the first observer coefficient matrix ε i of the nonlinear state observer, respectively, and denote the second and third elements of the third observer coefficient ε 3 in the first observer coefficient matrix ε i of the nonlinear state observer, respectively, and denote the second and third elements of the first observer coefficient φ 1 in the second observer coefficient matrix φ i of the nonlinear state observer, respectively, and denote the second and third elements of the second observer coefficient φ 2 in the second observer coefficient matrix φ i of the nonlinear state observer, respectively, and denote the second and third elements of the third observer coefficient φ 3 in the second observer coefficient matrix φ i of the nonlinear state observer, respectively, The first and second observer coefficient matrices are related to the uncertain dynamic model parameters θ m and θ p ; and denote the observed values of the first, second and third elements of the connecting rod dynamics parameter θ m of the connecting rod dynamics model respectively; and They respectively represent the observed values of the first and second elements of the hydraulic dynamic parameter θ p of the hydraulic dynamic model; v 2 and v 3 respectively represent the second and third observer adaptive characterization parameters; n represents the number of joints of the multi-joint hydraulic manipulator.

将中间转换状态量s的观测状态中的第三观测器自适应表征参数v3作为多关节液压机械臂的关节角速度的估计值 The observed state of the intermediate conversion state quantity s The third observer adaptive characterization parameter v 3 in is used as the joint angular velocity of the multi-joint hydraulic manipulator Estimated value of

所述的步骤三中,设计的自适应鲁棒控制律具体如下:In step 3, the designed adaptive robust control law is as follows:

a)一阶自适应鲁棒控制律v3da) First-order adaptive robust control law v 3d :

v3d=v3da+v3dr+v3ds v 3d =v 3da +v 3dr +v 3ds

v3ds=v3ds1+v3ds2 v 3ds = v 3ds1 + v 3ds2

其中,v3da表示一阶自适应模型补偿控制律,v3dr表示一阶线性鲁棒控制律,v3ds表示一阶非线性鲁棒控制律;z2表示多关节液压机械臂的角度转换误差,z1分别表示多关节液压机械臂的关节角跟踪误差及其微分,z1=q-qd,qd表示多关节液压机械臂各关节角的控制目标值,即多关节液压机械臂的目标轨迹,角度转换误差z2的建立目的也是为了保证第一非线性鲁棒控制律的李雅普诺夫控制函数的微分小于等于零,从而使得整体非线性鲁棒控制器保持稳定性;k1和k2分别表示第一和第二增益正定对角矩阵,k1和k2保证非线性鲁棒控制器中一阶自适应鲁棒控制律的李雅普诺夫控制函数的微分小于等于零,从而使得整个非线性鲁棒控制器保持稳定性;分别表示多关节液压机械臂各关节角速度和加速度的控制目标值;θ1min表示多关节液压机械臂的非线性动力学模型的模型参数θ1的最小值;一阶非线性鲁棒控制律v3ds分为两部分,v3ds1和v3ds2分别表示一阶非线性鲁棒控制律v3d的一阶参数非线性鲁棒控制律和一阶观测非线性鲁棒控制律;表示连杆动力学模型的连杆动力学参数θm的第一个元素;表示第二参数回归矩阵;θm表示连杆动力学模型的连杆动力学参数θm的参数自适应误差;和∈2分别表示第一、第二和第三预设设计参数;zob表示非线性状态观测器的观测器误差, 表示中间转换状态量s的观测状态;δob表示观测器误差集成。Among them, v 3da represents the first-order adaptive model compensation control law, v 3dr represents the first-order linear robust control law, v 3ds represents the first-order nonlinear robust control law; z 2 represents the angle conversion error of the multi-joint hydraulic manipulator, z 1 and They represent the joint angle tracking error and its differential of the multi-joint hydraulic manipulator, z 1 =qq d , q d represents the control target value of each joint angle of the multi-joint hydraulic manipulator, that is, the target trajectory of the multi-joint hydraulic manipulator, and the purpose of establishing the angle conversion error z 2 is also to ensure that the differential of the Lyapunov control function of the first nonlinear robust control law is less than or equal to zero, so that the overall nonlinear robust controller maintains stability; k 1 and k 2 represent the first and second gain positive definite diagonal matrices, respectively, k 1 and k 2 ensure that the differential of the Lyapunov control function of the first-order adaptive robust control law in the nonlinear robust controller is less than or equal to zero, so that the entire nonlinear robust controller maintains stability; and They represent the control target values of the angular velocity and acceleration of each joint of the multi-joint hydraulic manipulator respectively; θ 1min represents the minimum value of the model parameter θ 1 of the nonlinear dynamic model of the multi-joint hydraulic manipulator; the first-order nonlinear robust control law v 3ds is divided into two parts, v 3ds1 and v 3ds2 represent the first-order parameter nonlinear robust control law and the first-order observation nonlinear robust control law of the first-order nonlinear robust control law v 3d respectively; The first element of the connecting rod dynamics parameter θ m representing the connecting rod dynamics model; represents the second parameter regression matrix; θ m represents the parameter adaptive error of the connecting rod dynamics parameter θ m of the connecting rod dynamics model; and ∈ 2 represent the first, second and third preset design parameters respectively; z ob represents the observer error of the nonlinear state observer, represents the observed state of the intermediate conversion state quantity s; δ ob represents the observer error integration.

考虑到连杆机械臂非线性动力学模型中还存在不确定非线性因素,需要对这部分影响因素进行补偿。作为不确定性补偿参数,一阶非线性鲁棒控制律v3ds无法写成具体的公式表达。满足条件的一阶非线性鲁棒控制律v3ds能够保证一阶自适应鲁棒控制律v3d在存在参数不确定性和不确定性非线性时能保持良好的控制性能。Considering that there are still uncertain nonlinear factors in the nonlinear dynamics model of the connecting rod manipulator, it is necessary to compensate for these influencing factors. As an uncertainty compensation parameter, the first-order nonlinear robust control law v 3ds cannot be expressed as a specific formula. The first-order nonlinear robust control law v 3ds that meets the conditions can ensure that the first-order adaptive robust control law v 3d can maintain good control performance when there are parameter uncertainties and uncertainty nonlinearities.

一阶自适应鲁棒控制律v3d的计算过程具体如下:The calculation process of the first-order adaptive robust control law v 3d is as follows:

多关节液压机械臂的关节角跟踪误差z1如下:The joint angle tracking error z1 of the multi-joint hydraulic manipulator is as follows:

z1=q-qd z 1 = qq d

其中,q表示多关节液压机械臂各关节角的实际测量值。Where q represents the actual measured value of each joint angle of the multi-joint hydraulic manipulator.

多关节液压机械臂的角度转换误差z2如下:The angle conversion error z2 of the multi-joint hydraulic manipulator is as follows:

对上式进行微分,可得到如下形式:Differentiating the above formula, we can get the following form:

其中,表示多关节液压机械臂的角度转换误差z2的微分;表示多关节液压机械臂的关节角跟踪误差z1的二阶微分。in, represents the differential of the angle conversion error z 2 of the multi-joint hydraulic manipulator; Represents the second-order differential of the joint angle tracking error z1 of the multi-joint hydraulic manipulator.

不可测速度状态与加速度状态可表示为如下形式:Unmeasured speed status With acceleration state It can be expressed as follows:

联立上述公式可获得如下方程:Combining the above formulas, we can get the following equation:

因为上式中仅有v3包含连杆机械臂非线性动力学模型高阶项QL,所以基于降阶的思想,采用反演建立法,提出一阶自适应鲁棒控制律v3d,作为多关节液压机械臂的线性鲁棒控制律,在保证系统瞬态性能的同时减小各关节角跟踪误差。Because only v 3 in the above formula contains the high-order term Q L of the nonlinear dynamic model of the connecting rod manipulator, based on the idea of order reduction, the back-stepping method is adopted to propose a first-order adaptive robust control law v 3d as the linear robust control law of the multi-joint hydraulic manipulator, which reduces the tracking error of each joint angle while ensuring the transient performance of the system.

b)基于一阶自适应鲁棒控制律v3d,使用反演建立法建立二阶自适应鲁棒控制律QLdb) Based on the first-order adaptive robust control law v 3d , the second-order adaptive robust control law Q Ld is established using the inverse establishment method:

QLd=QLda+QLdr+QLds Q Ld = Q Lda + Q Ldr + Q Lds

QLdr=-k3rz3 Q Ldr = -k 3r z 3

QLds=QLds1+QLds2 Q Lds = Q Lds1 + Q Lds2

其中,QLda表示二阶自适应模型补偿控制律,QLdr表示二阶线性鲁棒控制律,QLds表示二阶非线性鲁棒控制律;ω2和ω3分别表示一阶自适应鲁棒控制律v3d和二阶自适应鲁棒控制律QLd的预设比例平衡常数;表示多关节液压机械臂的角度转换误差z2的估计值;kob1表示一阶观测器增益;v1表示第一观测器自适应表征参数;表示一阶自适应鲁棒控制律v3d的可计算部分的微分;k3r表示第三增益正定对角矩阵,保证所设计控制器的稳定性;z3表示多关节液压机械臂等效流量跟踪误差,z3=v3-v3d;二阶非线性鲁棒控制律QLds分为两部分,QLds1和QLds2分别表示二阶非线性鲁棒控制律的QLds的二阶参数非线性鲁棒控制律和二阶观测非线性鲁棒控制律;表示第三参数回归矩阵;表示非线性动力学模型的动力学参数θ的参数自适应误差;和∈3分别表示第四、第五和第六预设设计参数。Wherein, Q Lda represents the second-order adaptive model compensation control law, Q Ldr represents the second-order linear robust control law, Q Lds represents the second-order nonlinear robust control law; ω 2 and ω 3 represent the preset proportional balance constants of the first-order adaptive robust control law v 3d and the second-order adaptive robust control law Q Ld , respectively; represents the estimated value of the angle conversion error z2 of the multi-joint hydraulic manipulator; k ob1 represents the first-order observer gain; v 1 represents the first observer adaptive characterization parameter; represents the differential of the computable part of the first-order adaptive robust control law v 3d ; k 3r represents the third gain positive definite diagonal matrix, which ensures the stability of the designed controller; z 3 represents the equivalent flow tracking error of the multi-joint hydraulic manipulator, z 3 =v 3 -v 3d ; the second-order nonlinear robust control law Q Lds is divided into two parts, Q Lds1 and Q Lds2 represent the second-order parameter nonlinear robust control law and the second-order observation nonlinear robust control law of Q Lds of the second-order nonlinear robust control law respectively; represents the third parameter regression matrix; represents the parameter adaptation error of the dynamic parameter θ of the nonlinear dynamic model; and ∈ 3 represent the fourth, fifth and sixth preset design parameters respectively.

将二阶自适应鲁棒控制律QLd作为多关节液压机械臂的非线性鲁棒控制律。二阶自适应鲁棒控制律QLd的计算过程具体如下:The second-order adaptive robust control law Q Ld is used as the nonlinear robust control law of the multi-joint hydraulic manipulator. The calculation process of the second-order adaptive robust control law Q Ld is as follows:

多关节液压机械臂等效流量跟踪误差z3如下:The equivalent flow tracking error z 3 of the multi-joint hydraulic manipulator is as follows:

z3=v3-v3d z 3 = v 3 - v 3d

对上式等号两边进行微分,可得到如下:Differentiating both sides of the above equation, we can get the following:

其中,表示多关节液压机械臂等效流量跟踪误差z3的微分,表示第三观测器自适应表征参数v3的微分;表示一阶自适应鲁棒控制律v3d的微分。in, represents the differential of the equivalent flow tracking error z 3 of the multi-joint hydraulic manipulator, represents the differential of the adaptive characterization parameter v 3 of the third observer; represents the derivative of the first-order adaptive robust control law v 3d .

根据一阶自适应鲁棒控制律v3d的设计结果与观测器性质,v3d是关于关节角度q、时间t、观测器参数η、φ1、φ2、φ3以及参数估计值的函数,所以一阶自适应鲁棒控制律v3d的微分形式如下:According to the design results of the first-order adaptive robust control law v 3d and the properties of the observer, v 3d is related to the joint angle q, time t, observer parameters η, φ 1 , φ 2 , φ 3 and parameter estimates function, so the differential form of the first-order adaptive robust control law v 3d is as follows:

其中,v3dc分别表示v3d的可计算部分及其微分,v3du分别表示v3d的不可计算部分及其微分;η和分别表示非线性状态观测器的观测器参数及其微分;分别表示非线性动力学模型的动力学参数θ的参数估计值及其微分。Among them, v 3dc and denote the computable part of v 3d and its derivative, v 3du and denote the incalculable part of v 3d and its differential respectively; η and denote the observer parameters and their derivatives of the nonlinear state observer respectively; and They represent the parameter estimate and its differential of the kinetic parameter θ of the nonlinear kinetic model respectively.

为线性回归矩阵,具体如下: is the linear regression matrix, as follows:

建立辅助半正定矩阵V为:Establish the auxiliary semi-positive definite matrix V as:

对上式等号两边进行微分,并将一阶自适应鲁棒控制律v3d代入可得到如下形式:Differentiating both sides of the above equation and substituting the first-order adaptive robust control law v 3d into it, we can get the following form:

其中,表示辅助半正定矩阵V的微分。in, represents the differential of the auxiliary positive semidefinite matrix V.

在上式的基础上,提出二阶自适应鲁棒控制律QLd,在保证系统瞬态性能的同时减小各关节角跟踪误差。Based on the above equation, a second-order adaptive robust control law Q Ld is proposed to reduce the tracking error of each joint angle while ensuring the transient performance of the system.

c)考虑到液压机械臂整体动力学模型存在模型参数不确定性,构建参数自适应律来进行补偿,参数自适应律:c) Considering the uncertainty of model parameters in the overall dynamics model of the hydraulic manipulator, a parameter adaptive law is constructed to compensate for it. The parameter adaptive law is:

其中,表示连杆动力学模型的连杆动力学参数θm的估计值的微分;τ2和τ3分别表示一阶和二阶模型参数自适应基准值;表示非线性动力学模型的动力学参数θ的估计值的微分;表示非线性动力学模型的动力学参数θ的参数估计值的自适应映射函数;Γc表示参数自适应增益系数矩阵,Γc=[Γm;Γp],Γm和Γp分别表示参数自适应增益系数矩阵Γc的第一个和第二个元素。in, represents the differential of the estimated value of the connecting rod dynamics parameter θ m of the connecting rod dynamics model; τ 2 and τ 3 represent the first-order and second-order model parameter adaptive reference values respectively; represents the differential of the estimated value of the kinetic parameter θ of the nonlinear kinetic model; Represents the parameter estimate of the kinetic parameter θ of the nonlinear kinetic model Adaptive mapping function; Γ c represents a parameter adaptive gain coefficient matrix, Γ c =[Γ m ; Γ p ], Γ m and Γ p represent the first and second elements of the parameter adaptive gain coefficient matrix Γ c, respectively.

所述的非线性动力学模型的动力学参数θ的参数估计值的自适应映射函数具体如下:The parameter estimate of the kinetic parameter θ of the nonlinear kinetic model is The adaptive mapping function is as follows:

其中,x表示自适应映射函数的输入参数。Where x represents the input parameter of the adaptive mapping function.

所述的第二参数回归矩阵具体如下:The second parameter regression matrix The details are as follows:

其中,ke表示跟踪误差增益参数。Where ke represents the tracking error gain parameter.

所述的第三参数回归矩阵具体如下:The third parameter regression matrix The details are as follows:

其中,表示多关节液压机械臂的非线性动力学模型的模型参数θ1的估计值;表示线性回归矩阵。in, represents the estimated value of the model parameter θ 1 of the nonlinear dynamic model of the multi-joint hydraulic manipulator; represents the linear regression matrix.

所述的线性回归矩阵具体如下:The linear regression matrix The details are as follows:

所述的步骤四中,非线性状态观测器进行自更新,具体为对非线性状态观测器的第一观测器系数矩阵εi、第二观测器系数矩阵φi以及观测器自适应表征参数矩阵v在各自的自更新率下进行自更新,具体如下:In the step 4, the nonlinear state observer performs self-update, specifically, the first observer coefficient matrix ε i , the second observer coefficient matrix φ i and the observer adaptive characterization parameter matrix v of the nonlinear state observer are self-updated at their respective self-update rates, as follows:

其中,v=[v1;v2;v3];分别表示非线性状态观测器的第一观测器系数矩阵εi中第一观测器系数ε1、第二观测器系数ε2和第三观测器系数ε3的自更新率;Aob和Kob分别表示非线性状态观测器的第一和第二增益系数矩阵;y和yob分别表示观测器理论与实际输出;e1、e2和e3分别表示第一、第二和第三维度表征参数,e1=[1;0;0],e2=[0;1;0],e3=[0;0;1];表示观测器自适应表征参数矩阵v的自更新率;QL表示液压缸腔室的等效流量;分别表示非线性状态观测器的第二观测器系数矩阵φi中第一观测器系数φ1、第二观测器系数φ2和第三观测器系数φ3的自更新率。Wherein, v = [v 1 ; v 2 ; v 3 ]; and denote the self-update rates of the first observer coefficient ε 1 , the second observer coefficient ε 2 and the third observer coefficient ε 3 in the first observer coefficient matrix ε i of the nonlinear state observer respectively; A ob and K ob denote the first and second gain coefficient matrices of the nonlinear state observer respectively; y and y ob denote the theoretical and actual outputs of the observer respectively; e 1 , e 2 and e 3 denote the first, second and third dimensional characterization parameters respectively, e 1 = [1; 0; 0], e 2 = [0; 1; 0], e 3 = [0; 0; 1]; represents the self-update rate of the observer adaptive characterization parameter matrix v; Q L represents the equivalent flow rate of the hydraulic cylinder chamber; and They respectively represent the self-update rates of the first observer coefficient φ 1 , the second observer coefficient φ 2 and the third observer coefficient φ 3 in the second observer coefficient matrix φ i of the nonlinear state observer.

所述的非线性状态观测器的第一增益系数矩阵Aob和第二增益系数矩阵Kob具体如下:The first gain coefficient matrix A ob and the second gain coefficient matrix K ob of the nonlinear state observer are specifically as follows:

Λ=ΛT>0Λ=Λ T >0

其中,分别表示第一增益系数矩阵Aob中的第1、2、…i…n个元素;分别表示第二增益系数矩阵Kob中的第1、2、…i…n个元素;分别表示观测器第一、第二和第三增益参数;Λ表示半正定矩阵;I表示单位矩阵。in, Respectively represent the 1st, 2nd, ...i...nth elements in the first gain coefficient matrix A ob ; Respectively represent the 1st, 2nd, ...i...nth elements in the second gain coefficient matrix K ob ; and denote the first, second and third gain parameters of the observer respectively; Λ denotes a semi-positive definite matrix; I denotes an identity matrix.

本发明的有益效果是:The beneficial effects of the present invention are:

1、本发明通过构建中间状态观测量以及设计非线性状态观测器,实现基于多关节液压机械臂模型参数不确定的不可测状态实时观测,解决了实际情况中因传感器限制所导致的反馈状态不可测的情况。1. The present invention realizes real-time observation of unmeasurable states with uncertain parameters of a multi-joint hydraulic mechanical arm model by constructing intermediate state observation quantities and designing a nonlinear state observer, thereby solving the problem of unmeasurable feedback states caused by sensor limitations in actual situations.

2、本发明提出基于不可测状态观测值的多关节液压机械臂自适应鲁棒控制方法,在保证控制系统与观测系统整体稳定性的同时,减小机械臂末端跟踪误差,提升控制性能。2. The present invention proposes an adaptive robust control method for a multi-joint hydraulic manipulator based on unmeasurable state observation values, which reduces the tracking error of the manipulator end and improves the control performance while ensuring the overall stability of the control system and the observation system.

附图说明BRIEF DESCRIPTION OF THE DRAWINGS

图1是本发明方法系统框图;Fig. 1 is a system block diagram of the method of the present invention;

图2是本发明的多关节液压机械臂液压驱动系统图;FIG2 is a diagram of a hydraulic drive system of a multi-joint hydraulic mechanical arm of the present invention;

图3是本发明的机械臂控制对象实例结构图;3 is a structural diagram of an example of a robot arm control object of the present invention;

图4是本发明所用液压机械臂关节角度传感器信号与微分滤波结果图。FIG. 4 is a diagram showing the joint angle sensor signal and differential filtering result of the hydraulic mechanical arm used in the present invention.

图5是本发明所设计的基于非线性状态观测的多关节液压机械臂自适应鲁棒控制器与传统的PID控制器的控制效果对比图。FIG5 is a comparison diagram of the control effects of the multi-joint hydraulic mechanical arm adaptive robust controller based on nonlinear state observation designed by the present invention and the traditional PID controller.

具体实施方式DETAILED DESCRIPTION

为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。In order to make the purpose, technical solutions and advantages of the present invention more clearly understood, the present invention is further described in detail below in conjunction with the accompanying drawings and embodiments. The specific embodiments described herein are only used to explain the present invention and are not intended to limit the present invention. In addition, the technical features involved in each embodiment of the present invention described below can be combined with each other as long as they do not conflict with each other.

如图1所示,本发明的液压机械臂自适应鲁棒控制方法包括如下步骤:As shown in FIG1 , the hydraulic mechanical arm adaptive robust control method of the present invention comprises the following steps:

步骤一:综合考虑液压特性与多自由度耦合特性,建立在动力学模型约束下的多关节液压机械臂的非线性动力学模型;设计多关节液压机械臂的不可测状态的中间转换状态量模型及其非线性状态空间,根据非线性状态空间使用非线性状态观测法建立非线性状态观测器。Step 1: Comprehensively consider the hydraulic characteristics and multi-degree-of-freedom coupling characteristics, and establish a nonlinear dynamic model of the multi-joint hydraulic robotic arm under the constraints of the dynamic model; design the intermediate conversion state quantity model of the unmeasurable state of the multi-joint hydraulic robotic arm and its nonlinear state space, and establish a nonlinear state observer based on the nonlinear state space using the nonlinear state observation method.

步骤一中,建立的多关节液压机械臂的非线性动力学模型具体如下:In step 1, the nonlinear dynamic model of the multi-joint hydraulic manipulator is established as follows:

a)连杆动力学模型:a) Connecting rod dynamics model:

τj=Jj(q)PL τ j =J j (q)P L

PL=AiPi-AoPo P L =A i P i -A o P o

其中,q、分别表示多关节液压机械臂的关节角、关节角速度和关节角加速度,q、n表示多关节液压机械臂的关节数;Mj()、Cj()和Gj()分别表示多关节液压机械臂的惯性动力学矩阵、科氏力矩阵和重力矩阵,Mj()、Cj()、Gj()∈Rn×n;τj表示多关节液压机械臂各关节的驱动扭矩,τj∈Rn;Jj()表示多关节液压机械臂各关节的多关节运动耦合表征矩阵;PL表示多关节液压机械臂各关节的液压缸等效推力,PL∈Rn;Ai和Ao分别表示多关节液压机械臂各关节的液压缸的进油腔和回油腔接触面积,Ai、Ao∈Rn×n;Pi和Po分别表示多关节液压机械臂各关节的液压缸的进油腔和回油腔油压,Pi、Po∈Rn;l表示多关节液压机械臂各关节的液压缸推杆伸长量,l∈Rn;动力学矩阵是斜对称的。Among them, q, and They represent the joint angle, joint angular velocity and joint angular acceleration of the multi-joint hydraulic manipulator, q, n represents the number of joints of the multi-joint hydraulic mechanical arm; M j (), C j () and G j () represent the inertial dynamics matrix, Coriolis force matrix and gravity matrix of the multi-joint hydraulic mechanical arm respectively, M j (), C j (), G j ()∈R n×n ; τ j represents the driving torque of each joint of the multi-joint hydraulic mechanical arm, τ j ∈R n ; J j () represents the multi-joint motion coupling characterization matrix of each joint of the multi-joint hydraulic mechanical arm; PL represents the equivalent thrust of the hydraulic cylinder of each joint of the multi-joint hydraulic mechanical arm, PL ∈R n ; Ai and Ao represent the contact areas of the oil inlet chamber and the oil return chamber of the hydraulic cylinder of each joint of the multi-joint hydraulic mechanical arm respectively, Ai , Ao ∈R n×n ; Pi and P o represent the oil pressures of the oil inlet chamber and the oil return chamber of the hydraulic cylinder of each joint of the multi-joint hydraulic mechanical arm respectively, Pi , P o ∈R n ; l represents the extension of the hydraulic cylinder push rod of each joint of the multi-joint hydraulic mechanical arm, l∈R n ; dynamic matrix It is obliquely symmetrical.

通过设定适当的连杆动力学模型的动力学参数θm,连杆动力学模型可线性化处理成如下形式:By setting appropriate dynamic parameters θ m of the connecting rod dynamic model, the connecting rod dynamic model can be linearized into the following form:

其中,表示连杆动力学模型的动力学参数θm的回归矩阵。in, Represents the regression matrix of the dynamic parameters θm of the connecting rod dynamic model.

b)考虑到液压驱动特性,在假定液压缸无泄漏前提下建立液压动力学模型:b) Considering the hydraulic drive characteristics, a hydraulic dynamics model is established under the assumption that the hydraulic cylinder has no leakage:

Vi=Vhi+Aidiag[l]V i = V hi + A i diag[l]

Vo=Vho-Aodiag[l]V o =V ho -A o diag[l]

Qid=kqig1(Pi,xv)xv Q id =k qi g 1 (P i ,x v )x v

其中,Vi和Vo分别表示多关节液压机械臂各关节的液压缸进油腔和回油腔容积,Vi、Vo∈Rn×n;βe表示液压油体积模量;Vhi和Vho分别表示在多关节液压机械臂各关节的液压缸推杆伸长量l=0的初始情况下的各驱动装置的各液压缸的进油腔和回油腔的容积;diag[·]表示以·为主元素的对角矩阵;Qi和Qo分别表示多关节液压机械臂各关节的液压缸进油腔和回油腔实际流量,Qid和Qod分别表示多关节液压机械臂各关节的液压缸进油腔和回油腔流量的预设理想流量,Qid、Qod∈Rn分别表示多关节液压机械臂各关节的液压缸进油腔和回油腔实际流量的可计算流量差,分别表示多关节液压机械臂各关节的液压缸进油腔和回油腔实际流量的不可计算流量差,分别表征实际流量与理想流量间的流量差;kqi和kqo分别表示多关节液压机械臂各关节的液压缸进油腔和回油腔的流量增益常数;xv表示多关节液压机械臂各关节的液压控制阀的阀芯位移;g1()表示多关节液压机械臂各关节的液压缸的进油腔油压Pi和液压控制阀的阀芯位移xv之间的非线性转换函数,g2()表示多关节液压机械臂各关节的液压缸的回油腔油压Po和液压控制阀的阀芯位移xv之间的非线性转换函数,g1()、g2()∈Rn×nWherein, Vi and Vo represent the volume of the oil inlet chamber and oil return chamber of the hydraulic cylinder of each joint of the multi-joint hydraulic mechanical arm, Vi , Vo ∈Rn ×n ; βe represents the bulk modulus of the hydraulic oil; Vhi and Vho represent the volume of the oil inlet chamber and oil return chamber of each hydraulic cylinder of each driving device under the initial condition that the extension of the hydraulic cylinder push rod of each joint of the multi-joint hydraulic mechanical arm is l=0; diag[·] represents a diagonal matrix with · as the main element; Qi and Qo represent the actual flow of the oil inlet chamber and oil return chamber of the hydraulic cylinder of each joint of the multi-joint hydraulic mechanical arm, Qid and Qod represent the preset ideal flow of the oil inlet chamber and oil return chamber of the hydraulic cylinder of each joint of the multi-joint hydraulic mechanical arm, Qid , Qod ∈Rn , and The calculable flow difference of the actual flow of the hydraulic cylinder oil inlet chamber and oil return chamber of each joint of the multi-joint hydraulic mechanical arm is respectively represented. and They represent the uncalculated flow difference of the actual flow of the oil inlet chamber and the oil return chamber of each joint of the multi-joint hydraulic mechanical arm, and They respectively represent the flow difference between the actual flow and the ideal flow; k qi and k qo respectively represent the flow gain constants of the oil inlet chamber and the oil return chamber of the hydraulic cylinder of each joint of the multi-joint hydraulic mechanical arm; x v represents the valve core displacement of the hydraulic control valve of each joint of the multi-joint hydraulic mechanical arm; g 1 () represents the nonlinear conversion function between the oil pressure Pi of the oil inlet chamber of the hydraulic cylinder of each joint of the multi-joint hydraulic mechanical arm and the valve core displacement x v of the hydraulic control valve, g 2 () represents the nonlinear conversion function between the oil pressure Po of the oil return chamber of the hydraulic cylinder of each joint of the multi-joint hydraulic mechanical arm and the valve core displacement x v of the hydraulic control valve, g 1 (), g 2 ()∈R n×n .

g1()、g2()具体如下:g 1 () and g 2 () are as follows:

其中,Ps是液压泵的供给压力,Pr是液压回油箱的参考压力。Among them, Ps is the supply pressure of the hydraulic pump and Pr is the reference pressure of the hydraulic return tank.

通过设定适当的液压动力学模型的动力学参数θp,液压动力学模型可线性化处理成如下形式:By setting appropriate dynamic parameters θ p of the hydraulic dynamic model, the hydraulic dynamic model can be linearized into the following form:

其中,表示液压动力学模型的动力学参数θp的回归矩阵。in, Represents the regression matrix of the dynamic parameters θp of the hydraulic dynamic model.

动力学模型约束具体如下:The dynamic model constraints are as follows:

j|≤δj j |≤δ j

θ∈{θ:θmin≤θ≤θmax}θ∈{θ:θ min ≤θ≤θ max }

其中,Δj表示多关节液压机械臂运动过程中的不确定非线性和干扰,Δj∈Rn;δj表示预设常量向量;θmax和θmin分别表示非线性动力学模型的动力学参数θ的上下界,θ=[θm;θp]。Among them, Δ j represents the uncertain nonlinearity and interference in the motion process of the multi-joint hydraulic manipulator, Δ j ∈R n ; δ j represents the preset constant vector; θ max and θ min represent the upper and lower bounds of the dynamic parameter θ of the nonlinear dynamic model, respectively, θ=[θ m ; θ p ].

多关节液压机械臂各关节的液压控制阀的阀芯位移xv,具体如下:The valve core displacement x v of the hydraulic control valve of each joint of the multi-joint hydraulic mechanical arm is as follows:

其中,QL表示液压缸腔室的等效流量,QL∈RnWherein, Q L represents the equivalent flow rate of the hydraulic cylinder chamber, Q L ∈R n .

步骤一中,设计的多关节液压机械臂的不可测状态的中间转换状态量模型,具体如下:In step 1, the intermediate conversion state quantity model of the unmeasurable state of the multi-joint hydraulic manipulator is designed as follows:

s=[s1;s2;s3]s=[s 1 ;s 2 ;s 3 ]

s1=qs 1 =q

其中,s表示中间转换状态量,s1、s2和s3分别表示中间转换状态量s的第一、第二和第三个状态量;q和分别表示多关节液压机械臂的关节角和关节角速度;分别表示连杆动力学模型的连杆动力学参数θm的第一和第二个元素,Mj和Cj分别表示多关节液压机械臂的惯性动力学矩阵和科氏力矩阵,I表示单位矩阵;f1和f2分别表示中间转换状态量s的简化第一和第二等量矩阵;θ表示非线性动力学模型的动力学参数,表示非线性动力学模型的动力学参数θ的参数估计值,表示非线性动力学模型的动力学参数θ的参数自适应误差。Where s represents the intermediate conversion state quantity, s1 , s2 and s3 represent the first, second and third state quantities of the intermediate conversion state quantity s respectively; q and They represent the joint angles and joint angular velocities of the multi-joint hydraulic manipulator respectively; and denote the first and second elements of the connecting rod dynamics parameter θm of the connecting rod dynamics model, respectively. Mj and Cj represent the inertial dynamic matrix and Coriolis force matrix of the multi-joint hydraulic manipulator, respectively; I represents the unit matrix; f1 and f2 represent the simplified first and second equal-quantity matrices of the intermediate conversion state quantity s, respectively; θ represents the dynamic parameter of the nonlinear dynamic model, represents the parameter estimate of the kinetic parameter θ of the nonlinear kinetic model, Represents the parameter adaptation error of the dynamic parameter θ of the nonlinear dynamic model.

多关节液压机械臂的关节角速度即为多关节液压机械臂的不可测状态。Joint angular velocity of multi-joint hydraulic manipulator That is the unpredictable state of the multi-joint hydraulic robotic arm.

步骤一中,非线性状态空间具体如下:In step 1, the nonlinear state space is as follows:

其中,分别表示中间转换状态量s的第一个状态量s1、第二个状态量s2和第三个状态量s3的微分;θm3表示连杆动力学模型的连杆动力学参数θm的第三个元素,θm3=Jj -1Cj;Δj表示多关节液压机械臂运动过程中的不确定非线性和干扰;分别表示液压动力学模型的液压动力学参数θp的第一和第二个元素,θP1=1/βe,θP2=Qie;f3、f4和f5分别表示中间转换状态量s的简化第三、第四和第五等量矩阵;uv表示自适应鲁棒控制律实际输出的控制电压,uv=kvxv,uv∈Rn,xv表示多关节液压机械臂各关节的液压控制阀的阀芯位移,kv表示转换比例系数。in, and They represent the differentials of the first state quantity s 1 , the second state quantity s 2 and the third state quantity s 3 of the intermediate conversion state quantity s respectively; θ m3 represents the third element of the connecting rod dynamics parameter θ m of the connecting rod dynamics model, θ m3 =J j -1 C j ; Δ j represents the uncertain nonlinearity and interference in the motion process of the multi-joint hydraulic manipulator; and represent the first and second elements of the hydraulic dynamic parameter θ p of the hydraulic dynamic model, θ P1 =1/β e , θ P2 =Q ie ; f 3 , f 4 and f 5 represent the simplified third, fourth and fifth equal matrices of the intermediate conversion state quantity s, respectively; uv represents the control voltage actually output by the adaptive robust control law, uv =k v x v , uv ∈R n , x v represents the valve core displacement of the hydraulic control valve of each joint of the multi-joint hydraulic mechanical arm, and k v represents the conversion proportional coefficient.

中间转换状态量s的简化第一-五等量矩阵具体如下:The simplified first-fifth equal quantity matrix of the intermediate conversion state quantity s is as follows:

f1=JjPL f 1 = J j P L

步骤一中,非线性状态观测器具体如下:In step 1, the nonlinear state observer is as follows:

其中,表示中间转换状态量s的观测状态,分别表示多关节液压机械臂的关节角速度的第一中间转换状态量s1、第二中间转换状态量s2和第三中间转换状态量s3的观测值;分别表示非线性状态观测器的第一观测器系数矩阵εi中第一观测器系数ε1的第二和第三个元素,分别表示非线性状态观测器的第一观测器系数矩阵εi中第二观测器系数ε2的第二和第三个元素,分别表示非线性状态观测器的第一观测器系数矩阵εi中第三观测器系数ε3的第二和第三个元素, 分别表示非线性状态观测器的第二观测器系数矩阵φi中第一观测器系数φ1的第二和第三个元素,φ22和φ23分别表示非线性状态观测器的第二观测器系数矩阵φi中第二观测器系数φ2的第二和第三个元素,分别表示非线性状态观测器的第二观测器系数矩阵φi中第三观测器系数φ3的第二和第三个元素,第一和第二观测器系数矩阵与不确定动力学模型参数θm和θp有关;分别表示连杆动力学模型的连杆动力学参数θm的第一、第二和第三个元素的观测值;分别表示液压动力学模型的液压动力学参数θp的第一和第二个元素的观测值;v2和v3分别表示第二和第三观测器自适应表征参数;n表示多关节液压机械臂的关节数。in, represents the observed state of the intermediate conversion state quantity s, and Represent the joint angular velocity of the multi-joint hydraulic manipulator observed values of the first intermediate conversion state quantity s 1 , the second intermediate conversion state quantity s 2 and the third intermediate conversion state quantity s 3 ; and denote the second and third elements of the first observer coefficient ε 1 in the first observer coefficient matrix ε i of the nonlinear state observer, respectively, and denote the second and third elements of the second observer coefficient ε 2 in the first observer coefficient matrix ε i of the nonlinear state observer, respectively, and denote the second and third elements of the third observer coefficient ε 3 in the first observer coefficient matrix ε i of the nonlinear state observer, respectively, and denote the second and third elements of the first observer coefficient φ 1 in the second observer coefficient matrix φ i of the nonlinear state observer, φ 22 and φ 23 denote the second and third elements of the second observer coefficient φ 2 in the second observer coefficient matrix φ i of the nonlinear state observer, and denote the second and third elements of the third observer coefficient φ 3 in the second observer coefficient matrix φ i of the nonlinear state observer, respectively, The first and second observer coefficient matrices are related to the uncertain dynamic model parameters θ m and θ p ; and denote the observed values of the first, second and third elements of the connecting rod dynamics parameter θ m of the connecting rod dynamics model respectively; and They respectively represent the observed values of the first and second elements of the hydraulic dynamic parameter θ p of the hydraulic dynamic model; v 2 and v 3 respectively represent the second and third observer adaptive characterization parameters; n represents the number of joints of the multi-joint hydraulic manipulator.

将中间转换状态量s的观测状态中的第三观测器自适应表征参数v3作为多关节液压机械臂的关节角速度的估计值 The observed state of the intermediate conversion state quantity s The third observer adaptive characterization parameter v 3 in is used as the joint angular velocity of the multi-joint hydraulic manipulator Estimated value of

步骤二:将非线性动力学模型的动力学参数的参数估计值输入中间转换状态量模型中,中间转换状态量模型输出中间转换状态量,非线性状态观测器对中间转换状态量进行观测并输出中间转换状态量的观测状态,根据中间转换状态量的观测状态获得多关节液压机械臂的关节角速度的估计值。Step 2: Input the parameter estimation values of the dynamic parameters of the nonlinear dynamic model into the intermediate conversion state quantity model, the intermediate conversion state quantity model outputs the intermediate conversion state quantity, the nonlinear state observer observes the intermediate conversion state quantity and outputs the observation state of the intermediate conversion state quantity, and obtains the estimated value of the joint angular velocity of the multi-joint hydraulic robot arm according to the observation state of the intermediate conversion state quantity.

步骤三:根据非线性动力学模型和非线性状态观测器,使用自适应鲁棒控制方法设计自适应鲁棒控制律。Step 3: Based on the nonlinear dynamic model and nonlinear state observer, use the adaptive robust control method to design the adaptive robust control law.

步骤三中,设计的自适应鲁棒控制律具体如下:In step 3, the designed adaptive robust control law is as follows:

a)一阶自适应鲁棒控制律v3da) First-order adaptive robust control law v 3d :

v3d=v3da+v3dr+v3ds v 3d =v 3da +v 3dr +v 3ds

v3ds=v3ds1+v3ds2 v 3ds = v 3ds1 + v 3ds2

其中,v3da表示一阶自适应模型补偿控制律,v3dr表示一阶线性鲁棒控制律,v3ds表示一阶非线性鲁棒控制律;z2表示多关节液压机械臂的角度转换误差,z1分别表示多关节液压机械臂的关节角跟踪误差及其微分,z1=q-qd,qd表示多关节液压机械臂各关节角的控制目标值,即多关节液压机械臂的目标轨迹,角度转换误差z2的建立目的也是为了保证第一非线性鲁棒控制律的李雅普诺夫控制函数的微分小于等于零,从而使得整体非线性鲁棒控制器保持稳定性;k1和k2分别表示第一和第二增益正定对角矩阵,k1和k2保证非线性鲁棒控制器中一阶自适应鲁棒控制律的李雅普诺夫控制函数的微分小于等于零,从而使得整个非线性鲁棒控制器保持稳定性;分别表示多关节液压机械臂各关节角速度和加速度的控制目标值;θ1min表示多关节液压机械臂的非线性动力学模型的模型参数θ1的最小值;一阶非线性鲁棒控制律v3ds分为两部分,v3ds1和v3ds2分别表示一阶非线性鲁棒控制律v3d的一阶参数非线性鲁棒控制律和一阶观测非线性鲁棒控制律;表示连杆动力学模型的连杆动力学参数θm的第一个元素;表示第二参数回归矩阵;θm表示连杆动力学模型的连杆动力学参数θm的参数自适应误差;和∈2分别表示第一、第二和第三预设设计参数;zob表示非线性状态观测器的观测器误差, 表示中间转换状态量s的观测状态;δob表示观测器误差集成。Among them, v 3da represents the first-order adaptive model compensation control law, v 3dr represents the first-order linear robust control law, v 3ds represents the first-order nonlinear robust control law; z 2 represents the angle conversion error of the multi-joint hydraulic manipulator, z 1 and They represent the joint angle tracking error and its differential of the multi-joint hydraulic manipulator, z 1 =qq d , q d represents the control target value of each joint angle of the multi-joint hydraulic manipulator, that is, the target trajectory of the multi-joint hydraulic manipulator, and the purpose of establishing the angle conversion error z 2 is also to ensure that the differential of the Lyapunov control function of the first nonlinear robust control law is less than or equal to zero, so that the overall nonlinear robust controller maintains stability; k 1 and k 2 represent the first and second gain positive definite diagonal matrices, respectively, k 1 and k 2 ensure that the differential of the Lyapunov control function of the first-order adaptive robust control law in the nonlinear robust controller is less than or equal to zero, so that the entire nonlinear robust controller maintains stability; and They represent the control target values of the angular velocity and acceleration of each joint of the multi-joint hydraulic manipulator respectively; θ 1min represents the minimum value of the model parameter θ 1 of the nonlinear dynamic model of the multi-joint hydraulic manipulator; the first-order nonlinear robust control law v 3ds is divided into two parts, v 3ds1 and v 3ds2 represent the first-order parameter nonlinear robust control law and the first-order observation nonlinear robust control law of the first-order nonlinear robust control law v 3d respectively; The first element representing the connecting rod dynamics parameter θ m of the connecting rod dynamics model; represents the second parameter regression matrix; θ m represents the parameter adaptive error of the connecting rod dynamics parameter θ m of the connecting rod dynamics model; and ∈ 2 represent the first, second and third preset design parameters respectively; z ob represents the observer error of the nonlinear state observer, represents the observed state of the intermediate conversion state quantity s; δ ob represents the observer error integration.

考虑到连杆机械臂非线性动力学模型中还存在不确定非线性因素,需要对这部分影响因素进行补偿。作为不确定性补偿参数,一阶非线性鲁棒控制律v3ds无法写成具体的公式表达。满足条件的一阶非线性鲁棒控制律v3ds能够保证一阶自适应鲁棒控制律v3d在存在参数不确定性和不确定性非线性时能保持良好的控制性能。Considering that there are still uncertain nonlinear factors in the nonlinear dynamics model of the connecting rod manipulator, it is necessary to compensate for these influencing factors. As an uncertainty compensation parameter, the first-order nonlinear robust control law v 3ds cannot be expressed as a specific formula. The first-order nonlinear robust control law v 3ds that meets the conditions can ensure that the first-order adaptive robust control law v 3d can maintain good control performance when there are parameter uncertainties and uncertainty nonlinearities.

一阶自适应鲁棒控制律v3d的计算过程具体如下:The calculation process of the first-order adaptive robust control law v 3d is as follows:

多关节液压机械臂的关节角跟踪误差z1如下:The joint angle tracking error z1 of the multi-joint hydraulic manipulator is as follows:

z1=q-qd z 1 = qq d

其中,q表示多关节液压机械臂各关节角的实际测量值。Where q represents the actual measured value of each joint angle of the multi-joint hydraulic manipulator.

多关节液压机械臂的角度转换误差z2如下:The angle conversion error z2 of the multi-joint hydraulic manipulator is as follows:

对上式进行微分,可得到如下形式:Differentiating the above formula, we can get the following form:

其中,表示多关节液压机械臂的角度转换误差z2的微分;表示多关节液压机械臂的关节角跟踪误差z1的二阶微分。in, represents the differential of the angle conversion error z 2 of the multi-joint hydraulic manipulator; Represents the second-order differential of the joint angle tracking error z1 of the multi-joint hydraulic manipulator.

不可测速度状态与加速度状态可表示为如下形式:Unmeasured speed status With acceleration state It can be expressed as follows:

联立上述公式可获得如下方程:Combining the above formulas, we can get the following equation:

因为上式中仅有v3包含连杆机械臂非线性动力学模型高阶项QL,所以基于降阶的思想,采用反演建立法,提出一阶自适应鲁棒控制律v3d,作为多关节液压机械臂的线性鲁棒控制律,在保证系统瞬态性能的同时减小各关节角跟踪误差。Because only v 3 in the above formula contains the high-order term Q L of the nonlinear dynamic model of the connecting rod manipulator, based on the idea of order reduction, the back-stepping method is adopted to propose a first-order adaptive robust control law v 3d as the linear robust control law of the multi-joint hydraulic manipulator, which reduces the tracking error of each joint angle while ensuring the transient performance of the system.

b)基于一阶自适应鲁棒控制律v3d,使用反演建立法建立二阶自适应鲁棒控制律QLdb) Based on the first-order adaptive robust control law v 3d , the second-order adaptive robust control law Q Ld is established using the inverse establishment method:

QLd=QLda+QLdr+QLds Q Ld = Q Lda + Q Ldr + Q Lds

QLdr=-k3rz3 Q Ldr = -k 3r z 3

QLds=QLds1+QLds2 Q Lds = Q Lds1 + Q Lds2

其中,QLda表示二阶自适应模型补偿控制律,QLdr表示二阶线性鲁棒控制律,QLds表示二阶非线性鲁棒控制律;ω2和ω3分别表示一阶自适应鲁棒控制律v3d和二阶自适应鲁棒控制律QLd的预设比例平衡常数;表示多关节液压机械臂的角度转换误差z2的估计值;kob1表示一阶观测器增益;v1表示第一观测器自适应表征参数;表示一阶自适应鲁棒控制律v3d的可计算部分的微分;k3r表示第三增益正定对角矩阵,保证所设计控制器的稳定性;z3表示多关节液压机械臂等效流量跟踪误差,z3=v3-v3d;二阶非线性鲁棒控制律QLds分为两部分,QLds1和QLds2分别表示二阶非线性鲁棒控制律的QLds的二阶参数非线性鲁棒控制律和二阶观测非线性鲁棒控制律;表示第三参数回归矩阵;表示非线性动力学模型的动力学参数θ的参数自适应误差;和∈3分别表示第四、第五和第六预设设计参数。Wherein, Q Lda represents the second-order adaptive model compensation control law, Q Ldr represents the second-order linear robust control law, Q Lds represents the second-order nonlinear robust control law; ω 2 and ω 3 represent the preset proportional balance constants of the first-order adaptive robust control law v 3d and the second-order adaptive robust control law Q Ld , respectively; represents the estimated value of the angle conversion error z2 of the multi-joint hydraulic manipulator; k ob1 represents the first-order observer gain; v 1 represents the first observer adaptive characterization parameter; represents the differential of the computable part of the first-order adaptive robust control law v 3d ; k 3r represents the third gain positive definite diagonal matrix, which ensures the stability of the designed controller; z 3 represents the equivalent flow tracking error of the multi-joint hydraulic manipulator, z 3 =v 3 -v 3d ; the second-order nonlinear robust control law Q Lds is divided into two parts, Q Lds1 and Q Lds2 represent the second-order parameter nonlinear robust control law and the second-order observation nonlinear robust control law of Q Lds of the second-order nonlinear robust control law respectively; represents the third parameter regression matrix; represents the parameter adaptation error of the dynamic parameter θ of the nonlinear dynamic model; and ∈ 3 represent the fourth, fifth and sixth preset design parameters respectively.

将二阶自适应鲁棒控制律QLd作为多关节液压机械臂的非线性鲁棒控制律。二阶自适应鲁棒控制律QLd的计算过程具体如下:The second-order adaptive robust control law Q Ld is used as the nonlinear robust control law of the multi-joint hydraulic manipulator. The calculation process of the second-order adaptive robust control law Q Ld is as follows:

多关节液压机械臂等效流量跟踪误差z3如下:The equivalent flow tracking error z 3 of the multi-joint hydraulic manipulator is as follows:

z3=v3-v3d z 3 = v 3 - v 3d

对上式等号两边进行微分,可得到如下:Differentiating both sides of the above equation, we can get the following:

其中,表示多关节液压机械臂等效流量跟踪误差z3的微分,表示第三观测器自适应表征参数v3的微分;表示一阶自适应鲁棒控制律v3d的微分。in, represents the differential of the equivalent flow tracking error z 3 of the multi-joint hydraulic manipulator, represents the differential of the adaptive characterization parameter v 3 of the third observer; represents the derivative of the first-order adaptive robust control law v 3d .

根据一阶自适应鲁棒控制律v3d的设计结果与观测器性质,v3d是关于关节角度q、时间t、观测器参数η、φ1、φ2、φ3以及参数估计值的函数,所以一阶自适应鲁棒控制律v3d的微分形式如下:According to the design results of the first-order adaptive robust control law v 3d and the properties of the observer, v 3d is related to the joint angle q, time t, observer parameters η, φ 1 , φ 2 , φ 3 and parameter estimates function, so the differential form of the first-order adaptive robust control law v 3d is as follows:

其中,v3dc分别表示v3d的可计算部分及其微分,v3du分别表示v3d的不可计算部分及其微分;η和分别表示非线性状态观测器的观测器参数及其微分;分别表示非线性动力学模型的动力学参数θ的参数估计值及其微分。Among them, v 3dc and denote the computable part of v 3d and its derivative, v 3du and denote the incalculable part of v 3d and its differential respectively; η and denote the observer parameters and their derivatives of the nonlinear state observer respectively; and They represent the parameter estimation value and its differential of the kinetic parameter θ of the nonlinear kinetic model respectively.

为线性回归矩阵,具体如下: is the linear regression matrix, as follows:

建立辅助半正定矩阵V为:Establish the auxiliary semi-positive definite matrix V as:

对上式等号两边进行微分,并将一阶自适应鲁棒控制律v3d代入可得到如下形式:Differentiating both sides of the above equation and substituting the first-order adaptive robust control law v 3d into it, we can get the following form:

其中,表示辅助半正定矩阵V的微分。in, represents the differential of the auxiliary positive semidefinite matrix V.

在上式的基础上,提出二阶自适应鲁棒控制律QLd,在保证系统瞬态性能的同时减小各关节角跟踪误差。Based on the above equation, a second-order adaptive robust control law Q Ld is proposed to reduce the tracking error of each joint angle while ensuring the transient performance of the system.

c)考虑到液压机械臂整体动力学模型存在模型参数不确定性,构建参数自适应律来进行补偿,参数自适应律:c) Considering the uncertainty of model parameters in the overall dynamics model of the hydraulic manipulator, a parameter adaptive law is constructed to compensate for it. The parameter adaptive law is:

其中,表示连杆动力学模型的连杆动力学参数θm的估计值的微分;τ2和τ3分别表示一阶和二阶模型参数自适应基准值;表示非线性动力学模型的动力学参数θ的估计值的微分;表示非线性动力学模型的动力学参数θ的参数估计值的自适应映射函数;Γc表示参数自适应增益系数矩阵,Γc=[Γm;Γp],Γm和Γp分别表示参数自适应增益系数矩阵Γc的第一个和第二个元素。in, represents the differential of the estimated value of the connecting rod dynamics parameter θ m of the connecting rod dynamics model; τ 2 and τ 3 represent the first-order and second-order model parameter adaptive reference values respectively; represents the differential of the estimated value of the kinetic parameter θ of the nonlinear kinetic model; Represents the parameter estimate of the kinetic parameter θ of the nonlinear kinetic model Adaptive mapping function; Γ c represents a parameter adaptive gain coefficient matrix, Γ c =[Γ m ; Γ p ], Γ m and Γ p represent the first and second elements of the parameter adaptive gain coefficient matrix Γ c, respectively.

非线性动力学模型的动力学参数θ的参数估计值的自适应映射函数具体如下:Parameter estimates of the kinetic parameters θ of the nonlinear kinetic model The adaptive mapping function is as follows:

其中,x表示自适应映射函数的输入参数。Where x represents the input parameter of the adaptive mapping function.

第二参数回归矩阵具体如下:The second parameter regression matrix The details are as follows:

其中,ke表示跟踪误差增益参数。Where ke represents the tracking error gain parameter.

第三参数回归矩阵具体如下:The third parameter regression matrix The details are as follows:

其中,表示多关节液压机械臂的非线性动力学模型的模型参数θ1的估计值;表示线性回归矩阵。in, represents the estimated value of the model parameter θ 1 of the nonlinear dynamic model of the multi-joint hydraulic manipulator; represents the linear regression matrix.

线性回归矩阵具体如下:Linear Regression Matrix The details are as follows:

步骤四:非线性状态空间将多关节液压机械臂的关节角速度的估计值输出至自适应鲁棒控制律中,同时将多关节液压机械臂的目标轨迹输入自适应鲁棒控制律,自适应鲁棒控制律输出多关节液压机械臂的阀芯位移的控制信号控制多关节液压机械臂运行,通过多关节液压机械臂的目标轨迹和运行时实际输出的关节角计算获得跟踪误差并输出至自适应鲁棒控制律中,自适应鲁棒控制律输出非线性动力学模型的动力学参数的参数估计值至中间转换状态量模型中并重复进行步骤二和步骤四,同时非线性状态观测器进行自更新,最终实现多关节液压机械臂的自适应鲁棒控制。Step 4: The nonlinear state space outputs the estimated value of the joint angular velocity of the multi-joint hydraulic mechanical arm to the adaptive robust control law, and at the same time inputs the target trajectory of the multi-joint hydraulic mechanical arm into the adaptive robust control law. The adaptive robust control law outputs the control signal of the valve core displacement of the multi-joint hydraulic mechanical arm to control the operation of the multi-joint hydraulic mechanical arm. The tracking error is obtained by calculating the target trajectory of the multi-joint hydraulic mechanical arm and the joint angle actually output during operation and output it to the adaptive robust control law. The adaptive robust control law outputs the parameter estimation value of the dynamic parameters of the nonlinear dynamic model to the intermediate conversion state quantity model and repeats steps 2 and 4. At the same time, the nonlinear state observer is self-updated to finally realize the adaptive robust control of the multi-joint hydraulic mechanical arm.

步骤四中,非线性状态观测器进行自更新,具体为对非线性状态观测器的第一观测器系数矩阵εi、第二观测器系数矩阵φi以及观测器自适应表征参数矩阵v在各自的自更新率下进行自更新,具体如下:In step 4, the nonlinear state observer performs self-update, specifically, the first observer coefficient matrix ε i , the second observer coefficient matrix φ i and the observer adaptive characterization parameter matrix v of the nonlinear state observer are self-updated at their respective self-update rates, as follows:

其中,v=[v1;v2;v3];分别表示非线性状态观测器的第一观测器系数矩阵εi中第一观测器系数ε1、第二观测器系数ε2和第三观测器系数ε3的自更新率;Aob和Kob分别表示非线性状态观测器的第一和第二增益系数矩阵;y和yob分别表示观测器理论与实际输出;e1、e2和e3分别表示第一、第二和第三维度表征参数,e1=[1;0;0],e2=[0;1;0],e3=[0;0;1];表示观测器自适应表征参数矩阵v的自更新率;QL表示液压缸腔室的等效流量;分别表示非线性状态观测器的第二观测器系数矩阵φi中第一观测器系数φ1、第二观测器系数φ2和第三观测器系数φ3的自更新率。Wherein, v = [v 1 ; v 2 ; v 3 ]; and denote the self-update rates of the first observer coefficient ε 1 , the second observer coefficient ε 2 and the third observer coefficient ε 3 in the first observer coefficient matrix ε i of the nonlinear state observer respectively; A ob and K ob denote the first and second gain coefficient matrices of the nonlinear state observer respectively; y and y ob denote the theoretical and actual outputs of the observer respectively; e 1 , e 2 and e 3 denote the first, second and third dimensional characterization parameters respectively, e 1 = [1; 0; 0], e 2 = [0; 1; 0], e 3 = [0; 0; 1]; represents the self-update rate of the observer adaptive characterization parameter matrix v; Q L represents the equivalent flow rate of the hydraulic cylinder chamber; and They respectively represent the self-update rates of the first observer coefficient φ 1 , the second observer coefficient φ 2 and the third observer coefficient φ 3 in the second observer coefficient matrix φ i of the nonlinear state observer.

非线性状态观测器的第一增益系数矩阵Aob和第二增益系数矩阵Kob具体如下:The first gain coefficient matrix A ob and the second gain coefficient matrix K ob of the nonlinear state observer are specifically as follows:

Λ=ΛT>0Λ=Λ T >0

其中,分别表示第一增益系数矩阵Aob中的第1、2、…i…n个元素;分别表示第二增益系数矩阵Kob中的第1、2、…i…n个元素;分别表示观测器第一、第二和第三增益参数;Λ表示半正定矩阵;I表示单位矩阵。in, Respectively represent the 1st, 2nd, ...i...nth elements in the first gain coefficient matrix A ob ; Respectively represent the 1st, 2nd, ...i...nth elements in the second gain coefficient matrix K ob ; and denote the first, second and third gain parameters of the observer respectively; Λ denotes a semi-positive definite matrix; I denotes an identity matrix.

如图2和图3所示,水下多自由度液压机械臂包括多自由度机械臂连杆机构和液压系统,多自由度机械臂连杆机构上共有n个自由度关节;液压系统主要包括油箱、液压泵、总供油压力传感器、总回油压力传感器和n个驱动装置,每个驱动装置铰接一个对应的多自由度机械臂连杆机构的自由度关节;油箱中的液压油流经液压泵后流入每个驱动装置中,进而驱动多自由度机械臂连杆机构的各个自由度关节运动,液压油再经每个驱动装置流回油箱中;通过总供油压力传感器检测流出油箱的总供油压力,即液压泵的供给压力;通过总回油压力传感器检测流回油箱的总回油压力,即整个液压系统的参考压力;液压系统还包括单向阀、两个过滤器和安全回路;油箱中的液压油经过总供油通道流经液压泵后经单向阀流出,并经过一个过滤器流入每个驱动装置中;供油压力传感器和油箱之间还另外设有安全回路,保证整个液压系统的安全性;各个驱动装置中的液压油均经过总回油通道流经另一个过滤器流回油箱中。总供油压力传感器设置于单向阀和一个过滤器之间的油箱的总供油通道上,总回油压力传感器设置于另一个过滤器和若干驱动装置之间的总回油通道上。每个驱动装置包括液压缸、液压阀、供油压力传感器和回油压力传感器,液压缸的推杆铰接一个对应的多自由度机械臂连杆机构的自由度关节,流入和流出每个驱动装置的液压油的供油压力和回油压力分别通过各自的供油压力传感器和回油压力传感器检测。驱动装置的液压阀设置于液压油流入液压缸的供油通道以及液压缸流出液压油的回油通道上,供油压力传感器布置于液压阀和液压缸之间的供油通道上,回油压力传感器布置于液压阀和液压缸之间的回油通道上,其中,Ai和Ao分别为各驱动装置的各液压缸的进油腔和回油腔的面积, 分别为第1个、第2个、第3个、…、第n个液压缸的进油腔的面积,分别为第1个、第2个、第3个、…、第n个液压缸的回油腔的面积; 分别为第1个、第2个、第3个、…、第n个液压阀的阀芯的位移量; 分别为流入第1个、第2个、第3个、…、第n个驱动装置的液压油的供油压力,分别为流出第1个、第2个、第3个、…、第n个驱动装置的液压油的出油压力; 分别为第1个、第2个、第3个、…、第n个液压缸进油腔实际流量,分别为第1个、第2个、第3个、…、第n个液压缸回油腔实际流量。As shown in Figures 2 and 3, the underwater multi-degree-of-freedom hydraulic manipulator includes a multi-degree-of-freedom manipulator linkage mechanism and a hydraulic system. The multi-degree-of-freedom manipulator linkage mechanism has n degrees-of-freedom joints in total; the hydraulic system mainly includes an oil tank, a hydraulic pump, a total oil supply pressure sensor, a total oil return pressure sensor and n drive devices, each drive device is hinged to a corresponding degree-of-freedom joint of the multi-degree-of-freedom manipulator linkage mechanism; the hydraulic oil in the oil tank flows through the hydraulic pump and then flows into each drive device, thereby driving the various degrees-of-freedom joints of the multi-degree-of-freedom manipulator linkage mechanism to move, and the hydraulic oil then flows back to the oil tank through each drive device; through the total The oil supply pressure sensor detects the total oil supply pressure flowing out of the oil tank, that is, the supply pressure of the hydraulic pump; the total return oil pressure flowing back to the oil tank is detected by the total return oil pressure sensor, that is, the reference pressure of the entire hydraulic system; the hydraulic system also includes a one-way valve, two filters and a safety circuit; the hydraulic oil in the oil tank flows through the total oil supply channel through the hydraulic pump and then flows out through the one-way valve, and flows into each drive device through a filter; a safety circuit is also provided between the oil supply pressure sensor and the oil tank to ensure the safety of the entire hydraulic system; the hydraulic oil in each drive device flows through the total return oil channel through another filter and returns to the oil tank. The total oil supply pressure sensor is set on the total oil supply channel of the oil tank between the one-way valve and a filter, and the total return oil pressure sensor is set on the total return oil channel between another filter and several drive devices. Each drive device includes a hydraulic cylinder, a hydraulic valve, an oil supply pressure sensor and an oil return pressure sensor. The push rod of the hydraulic cylinder is hinged to a corresponding degree of freedom joint of the multi-degree-of-freedom mechanical arm linkage mechanism. The oil supply pressure and oil return pressure of the hydraulic oil flowing into and out of each drive device are detected by respective oil supply pressure sensors and oil return pressure sensors. The hydraulic valve of the drive device is arranged on the oil supply channel for the hydraulic oil to flow into the hydraulic cylinder and the oil return channel for the hydraulic oil to flow out of the hydraulic cylinder. The oil supply pressure sensor is arranged on the oil supply channel between the hydraulic valve and the hydraulic cylinder, and the oil return pressure sensor is arranged on the oil return channel between the hydraulic valve and the hydraulic cylinder. Among them, Ai and Ao are the areas of the oil inlet chamber and the oil return chamber of each hydraulic cylinder of each drive device, respectively. are the areas of the oil inlet chambers of the first, second, third, ..., and nth hydraulic cylinders, respectively. are the areas of the oil return chambers of the first, second, third, ..., nth hydraulic cylinders respectively; are the displacements of the valve cores of the first, second, third, ..., nth hydraulic valves respectively; are the supply pressures of the hydraulic oil flowing into the first, second, third, ..., nth drive units, respectively, are respectively the outlet pressures of the hydraulic oil flowing out of the first, second, third, ..., nth driving device; are the actual flow rates of the oil inlet chambers of the first, second, third, ..., and nth hydraulic cylinders, respectively. They are the actual flow rates of the oil return chambers of the 1st, 2nd, 3rd, …, nth hydraulic cylinders respectively.

对本发明控制方法进行了基于未配置速度传感器的多自由度液压机械臂的实验,并与PID控制器进行对比,验证本发明提出控制方法的控制效果。验证时,在所设计的obARC控制器中,控制器增益参数选择如表1所示。Γ中某些自适应参数为零的原因是:在实际应用中,某些参数可以由已知参数唯一确定,其不确定性较小,因此为了提高控制器效率,只有存在较大不确定性的参数才能进行自适应调整。The control method of the present invention is experimented with a multi-degree-of-freedom hydraulic manipulator without a speed sensor, and compared with a PID controller to verify the control effect of the control method proposed by the present invention. During verification, in the designed obARC controller, the controller gain parameter selection is shown in Table 1. The reason why some adaptive parameters in Γ are zero is that in practical applications, some parameters can be uniquely determined by known parameters, and their uncertainty is small. Therefore, in order to improve the efficiency of the controller, only parameters with large uncertainty can be adaptively adjusted.

表1控制器参数选择Table 1 Controller parameter selection

多关节液压机械臂转角传感器的传感精度与微分滤波结果如图4所示,图4中原始信号和滤波后速度信号均参照左边纵坐标,滤波后角度信号参照右边纵坐标。通过图4可知,第一张子图为原始信号图,第二张子图为滤波器通带频率wc=10rad/s时的微分滤波信号结果图,第三张子图为滤波器通带频率wc=30rad/s的微分滤波信号结果图,第四张子图为滤波器通带频率wc=50rad/s的微分滤波信号结果图,说明本多关节液压机械臂转角传感器精度较低,微分滤波会引入额外的信号滞后,从而限制控制精度。The sensing accuracy and differential filtering results of the multi-joint hydraulic mechanical arm angle sensor are shown in Figure 4. In Figure 4, the original signal and the filtered speed signal are both referred to the left ordinate, and the filtered angle signal is referred to the right ordinate. It can be seen from Figure 4 that the first sub-graph is the original signal graph, the second sub-graph is the differential filtering signal result graph when the filter passband frequency w c = 10 rad/s, the third sub-graph is the differential filtering signal result graph when the filter passband frequency w c = 30 rad/s, and the fourth sub-graph is the differential filtering signal result graph when the filter passband frequency w c = 50 rad/s, indicating that the multi-joint hydraulic mechanical arm angle sensor has low accuracy, and differential filtering will introduce additional signal lag, thereby limiting the control accuracy.

多关节液压机械臂实验结果如图5所示,在图5第一张子图是obARC和PID的跟踪实验结果,第二张子图为PID控制器的控制误差,第三张子图为obARC控制器的控制误差。由控制效果子图可以看出,本发明所设计的基于非线性状态观测的多关节液压机械臂自适应鲁棒控制器能够在动力学模型参数不确定和反馈状态不可测情况下精确平滑的跟踪目标轨迹曲线,同时,控制跟踪误差曲线表明在整个运动过程中各关节的角度跟踪误差在稳态下均保持零(角速度和加速度保持不变)。The experimental results of the multi-joint hydraulic manipulator are shown in Figure 5. The first sub-graph in Figure 5 is the tracking experimental results of obARC and PID, the second sub-graph is the control error of the PID controller, and the third sub-graph is the control error of the obARC controller. It can be seen from the control effect sub-graph that the multi-joint hydraulic manipulator adaptive robust controller based on nonlinear state observation designed by the present invention can accurately and smoothly track the target trajectory curve when the dynamic model parameters are uncertain and the feedback state is unmeasurable. At the same time, the control tracking error curve shows that the angle tracking error of each joint remains zero in the steady state during the entire movement process (the angular velocity and acceleration remain unchanged).

相比于传统的PID控制器而言,关节跟踪误差大幅降低且瞬态响应时间大幅缩短,体现了本发明设计的基于非线性状态观测的多关节液压机械臂自适应鲁棒控制方法具有更优越的瞬态响应性能和更好的鲁棒性,能够有效地补偿液压机械臂动力学模型参数不确定性和部分状态不可测对机械臂末端控制精度的影响,在保证控制系统稳定性的同时,减小机械臂末端跟踪误差,提升控制性能。Compared with the traditional PID controller, the joint tracking error is greatly reduced and the transient response time is greatly shortened, which shows that the adaptive robust control method of the multi-joint hydraulic manipulator arm based on nonlinear state observation designed in the present invention has superior transient response performance and better robustness, and can effectively compensate for the influence of the uncertainty of the hydraulic manipulator arm dynamics model parameters and the unmeasurable state of some states on the control accuracy of the manipulator end. While ensuring the stability of the control system, it reduces the tracking error of the manipulator end and improves the control performance.

本发明属于多关节液压机械臂运动控制领域,具体来说是一种针对复杂作业环境中多关节液压机械臂运动速度等物理信号不可测情况下的运动控制方法,本发明综合考虑参数不确定性、多关节耦合等因素,建立了水下多关节液压机械臂非线性动力学模型。然后设计非线性观测器获得与不可测状态有关的中间状态量。然后基于中间状态量观测值,设计多关节液压机械臂自适应鲁棒控制器。所提出的基于非线性状态观测的多关节液压机械臂自适应鲁棒控制方法obARC能够有效地提升多关节液压机械臂动力学模型参数不确定和反馈状态不可测情况下的末端控制精度,并在保证控制系统和观测系统整体稳定性的同时,减小机械臂末端跟踪误差,增强控制性能,能够在运动速度等非线性状态不可测的情况下实现状态观测,并保证控制系统稳定性、降低多关节液压机械臂末端运动跟踪误差、提高机械臂末端执行器控制精度从而提升机械臂在更严苛作业环境下的工作性能。The present invention belongs to the field of multi-joint hydraulic mechanical arm motion control, specifically, a motion control method for multi-joint hydraulic mechanical arm in a complex working environment when physical signals such as motion speed are unmeasurable. The present invention comprehensively considers factors such as parameter uncertainty and multi-joint coupling, and establishes a nonlinear dynamic model of underwater multi-joint hydraulic mechanical arm. Then, a nonlinear observer is designed to obtain an intermediate state quantity related to the unmeasurable state. Then, based on the observed value of the intermediate state quantity, an adaptive robust controller of the multi-joint hydraulic mechanical arm is designed. The proposed multi-joint hydraulic mechanical arm adaptive robust control method obARC based on nonlinear state observation can effectively improve the terminal control accuracy of the multi-joint hydraulic mechanical arm under the condition of uncertain parameters of the dynamic model and unmeasurable feedback state, and reduce the tracking error of the terminal of the mechanical arm while ensuring the overall stability of the control system and the observation system, enhance the control performance, and realize state observation when nonlinear states such as motion speed are unmeasurable, and ensure the stability of the control system, reduce the motion tracking error of the terminal of the multi-joint hydraulic mechanical arm, and improve the control accuracy of the end actuator of the mechanical arm, thereby improving the working performance of the mechanical arm in a more severe working environment.

以上内容仅为本发明的技术思想,不能以此限定本发明的保护范围,凡是按照本发明提出的技术思想,在技术方案基础上所做的任何改动,均落入本发明权利要求书的保护范围之内。The above contents are only the technical ideas of the present invention and cannot be used to limit the protection scope of the present invention. Any changes made on the basis of the technical solution in accordance with the technical ideas proposed by the present invention shall fall within the protection scope of the claims of the present invention.

Claims (10)

1.一种基于非线性状态观测的液压机械臂自适应鲁棒控制方法,其特征在于:方法包括如下步骤:1. A method for adaptive robust control of a hydraulic mechanical arm based on nonlinear state observation, characterized in that the method comprises the following steps: 步骤一:建立在动力学模型约束下的多关节液压机械臂的非线性动力学模型;设计多关节液压机械臂的不可测状态的中间转换状态量模型及其非线性状态空间,根据非线性状态空间使用非线性状态观测法建立非线性状态观测器;Step 1: Establish a nonlinear dynamic model of the multi-joint hydraulic manipulator under the constraints of the dynamic model; design the intermediate conversion state quantity model of the unmeasurable state of the multi-joint hydraulic manipulator and its nonlinear state space, and establish a nonlinear state observer based on the nonlinear state space using the nonlinear state observation method; 步骤二:将非线性动力学模型的动力学参数的参数估计值输入中间转换状态量模型中,中间转换状态量模型输出中间转换状态量,非线性状态观测器对中间转换状态量进行观测并输出中间转换状态量的观测状态,根据中间转换状态量的观测状态获得多关节液压机械臂的关节角速度的估计值;Step 2: Inputting the parameter estimation value of the dynamic parameter of the nonlinear dynamic model into the intermediate conversion state quantity model, the intermediate conversion state quantity model outputs the intermediate conversion state quantity, the nonlinear state observer observes the intermediate conversion state quantity and outputs the observation state of the intermediate conversion state quantity, and obtaining the estimated value of the joint angular velocity of the multi-joint hydraulic manipulator according to the observation state of the intermediate conversion state quantity; 步骤三:根据非线性动力学模型和非线性状态观测器,使用自适应鲁棒控制方法设计自适应鲁棒控制律;Step 3: Based on the nonlinear dynamic model and nonlinear state observer, an adaptive robust control law is designed using the adaptive robust control method; 步骤四:非线性状态空间将多关节液压机械臂的关节角速度的估计值输出至自适应鲁棒控制律中,同时将多关节液压机械臂的目标轨迹输入自适应鲁棒控制律,自适应鲁棒控制律输出多关节液压机械臂的阀芯位移的控制信号控制多关节液压机械臂运行,通过多关节液压机械臂的目标轨迹和运行时实际输出的关节角计算获得跟踪误差并输出至自适应鲁棒控制律中,自适应鲁棒控制律输出非线性动力学模型的动力学参数的参数估计值至中间转换状态量模型中并重复进行步骤二和步骤四,同时非线性状态观测器进行自更新,最终实现对多关节液压机械臂的连续的自适应鲁棒控制。Step 4: The nonlinear state space outputs the estimated value of the joint angular velocity of the multi-joint hydraulic mechanical arm to the adaptive robust control law, and at the same time inputs the target trajectory of the multi-joint hydraulic mechanical arm into the adaptive robust control law. The adaptive robust control law outputs the control signal of the valve core displacement of the multi-joint hydraulic mechanical arm to control the operation of the multi-joint hydraulic mechanical arm. The tracking error is obtained by calculating the target trajectory of the multi-joint hydraulic mechanical arm and the joint angle actually output during operation and output it to the adaptive robust control law. The adaptive robust control law outputs the parameter estimation value of the dynamic parameters of the nonlinear dynamic model to the intermediate conversion state quantity model and repeats steps 2 and 4. At the same time, the nonlinear state observer is self-updated, and finally the continuous adaptive robust control of the multi-joint hydraulic mechanical arm is realized. 2.根据权利要求1所述的一种基于非线性状态观测的液压机械臂自适应鲁棒控制方法,其特征在于:所述的步骤一中,建立的多关节液压机械臂的非线性动力学模型具体如下:2. According to the method for adaptive robust control of hydraulic mechanical arm based on nonlinear state observation of claim 1, it is characterized in that: in the step 1, the nonlinear dynamic model of the multi-joint hydraulic mechanical arm established is as follows: a)连杆动力学模型:a) Connecting rod dynamics model: τj=Jj(q)PL τ j =J j (q)P L PL=AiPi-AoPo P L =A i P i -A o P o 其中,q、分别表示多关节液压机械臂的关节角、关节角速度和关节角加速度,q、n表示多关节液压机械臂的关节数;Mj()、Cj()和Gj()分别表示多关节液压机械臂的惯性动力学矩阵、科氏力矩阵和重力矩阵,Mj()、Cj()、Gj( )∈Rn×n;τj表示多关节液压机械臂各关节的驱动扭矩,τj∈Rn;Jj( )表示多关节液压机械臂各关节的多关节运动耦合表征矩阵;PL表示多关节液压机械臂各关节的液压缸等效推力,PL∈Rn;Ai和Ao分别表示多关节液压机械臂各关节的液压缸的进油腔和回油腔接触面积,Ai、Ao∈Rn×n;Pi和Po分别表示多关节液压机械臂各关节的液压缸的进油腔和回油腔油压,Pi、Po∈Rn;l表示多关节液压机械臂各关节的液压缸推杆伸长量,l∈RnAmong them, q, and They represent the joint angle, joint angular velocity and joint angular acceleration of the multi-joint hydraulic manipulator, q, n represents the number of joints of the multi-joint hydraulic mechanical arm; M j (), C j () and G j () represent the inertial dynamic matrix, Coriolis force matrix and gravity matrix of the multi-joint hydraulic mechanical arm, respectively, M j (), C j (), G j ()∈R n×n ; τ j represents the driving torque of each joint of the multi-joint hydraulic mechanical arm, τ j ∈R n ; J j () represents the multi-joint motion coupling characterization matrix of each joint of the multi-joint hydraulic mechanical arm; PL represents the equivalent thrust of the hydraulic cylinder of each joint of the multi-joint hydraulic mechanical arm, PL ∈R n ; Ai and Ao represent the contact areas of the oil inlet chamber and the oil return chamber of the hydraulic cylinder of each joint of the multi-joint hydraulic mechanical arm, Ai , Ao ∈R n×n ; Pi and P o represent the oil pressures of the oil inlet chamber and the oil return chamber of the hydraulic cylinder of each joint of the multi-joint hydraulic mechanical arm, Pi , P o ∈R n ; l represents the extension of the hydraulic cylinder push rod of each joint of the multi-joint hydraulic mechanical arm, l∈R n ; b)液压动力学模型:b) Hydrodynamic model: 其中,Vi和Vo分别表示多关节液压机械臂各关节的液压缸进油腔和回油腔容积,Vi、Vo∈Rn×n;βe表示液压油体积模量;Vhi和Vho分别表示在多关节液压机械臂各关节的液压缸推杆伸长量l=0的初始情况下的各驱动装置的各液压缸的进油腔和回油腔的容积;diag[·]表示以·为主元素的对角矩阵;Qi和Qo分别表示多关节液压机械臂各关节的液压缸进油腔和回油腔实际流量,Qid和Qod分别表示多关节液压机械臂各关节的液压缸进油腔和回油腔流量的预设理想流量,Qid、Qod∈Rn分别表示多关节液压机械臂各关节的液压缸进油腔和回油腔实际流量的可计算流量差,分别表示多关节液压机械臂各关节的液压缸进油腔和回油腔实际流量的不可计算流量差;kqi和kqo分别表示多关节液压机械臂各关节的液压缸进油腔和回油腔的流量增益常数;xv表示多关节液压机械臂各关节的液压控制阀的阀芯位移;g1()表示多关节液压机械臂各关节的液压缸的进油腔油压Pi和液压控制阀的阀芯位移xv之间的非线性转换函数,g2()表示多关节液压机械臂各关节的液压缸的回油腔油压Po和液压控制阀的阀芯位移xv之间的非线性转换函数,g1()、g2()∈Rn×nWherein, Vi and Vo represent the volume of the oil inlet chamber and oil return chamber of the hydraulic cylinder of each joint of the multi-joint hydraulic mechanical arm, Vi , Vo ∈Rn ×n ; βe represents the bulk modulus of the hydraulic oil; Vhi and Vho represent the volume of the oil inlet chamber and oil return chamber of each hydraulic cylinder of each driving device under the initial condition that the extension of the hydraulic cylinder push rod of each joint of the multi-joint hydraulic mechanical arm is l=0; diag[·] represents a diagonal matrix with · as the main element; Qi and Qo represent the actual flow of the oil inlet chamber and oil return chamber of the hydraulic cylinder of each joint of the multi-joint hydraulic mechanical arm, Qid and Qod represent the preset ideal flow of the oil inlet chamber and oil return chamber of the hydraulic cylinder of each joint of the multi-joint hydraulic mechanical arm, Qid , Qod ∈Rn , and The calculable flow difference of the actual flow of the hydraulic cylinder oil inlet chamber and oil return chamber of each joint of the multi-joint hydraulic mechanical arm is respectively represented. and Respectively represent the uncalculated flow difference of the actual flow of the hydraulic cylinder oil inlet chamber and the oil return chamber of each joint of the multi-joint hydraulic mechanical arm; k qi and k qo represent the flow gain constants of the hydraulic cylinder oil inlet chamber and the oil return chamber of each joint of the multi-joint hydraulic mechanical arm; x v represents the valve core displacement of the hydraulic control valve of each joint of the multi-joint hydraulic mechanical arm; g 1 () represents the nonlinear conversion function between the oil pressure Pi of the hydraulic cylinder oil inlet chamber of each joint of the multi-joint hydraulic mechanical arm and the valve core displacement x v of the hydraulic control valve, g 2 () represents the nonlinear conversion function between the oil pressure Po of the hydraulic cylinder oil return chamber of each joint of the multi-joint hydraulic mechanical arm and the valve core displacement x v of the hydraulic control valve, g 1 (), g 2 ()∈R n×n ; 所述的动力学模型约束具体如下:The constraints of the dynamic model are as follows: j|≤δj j |≤δ j θ∈{θ:θmin≤θ≤θmax}θ∈{θ:θ min ≤θ≤θ max } 其中,Δj表示多关节液压机械臂运动过程中的不确定非线性和干扰,Δj∈Rn;δj表示预设常量向量;θmax和θmin分别表示非线性动力学模型的动力学参数θ的上下界,θ=[θm;θp];Wherein, Δ j represents the uncertain nonlinearity and interference in the motion process of the multi-joint hydraulic manipulator, Δ j ∈ R n ; δ j represents the preset constant vector; θ max and θ min represent the upper and lower bounds of the dynamic parameter θ of the nonlinear dynamic model, respectively, θ = [θ m ; θ p ]; 所述的多关节液压机械臂各关节的液压控制阀的阀芯位移xv,具体如下:The valve core displacement x v of the hydraulic control valve of each joint of the multi-joint hydraulic mechanical arm is as follows: 其中,QL表示液压缸腔室的等效流量,QL∈RnWherein, Q L represents the equivalent flow rate of the hydraulic cylinder chamber, Q L ∈R n . 3.根据权利要求2所述的一种基于非线性状态观测的液压机械臂自适应鲁棒控制方法,其特征在于:所述的步骤一中,设计的多关节液压机械臂的不可测状态的中间转换状态量模型,具体如下:3. According to claim 2, a method for adaptive robust control of a hydraulic mechanical arm based on nonlinear state observation is characterized in that: in the step 1, the intermediate conversion state quantity model of the unmeasurable state of the multi-joint hydraulic mechanical arm is designed as follows: s=[s1;s2;s3]s=[s 1 ;s 2 ;s 3 ] s1=qs 1 =q 其中,s表示中间转换状态量,s1、s2和s3分别表示中间转换状态量s的第一、第二和第三个状态量;q和分别表示多关节液压机械臂的关节角和关节角速度;分别表示连杆动力学模型的连杆动力学参数θm的第一和第二个元素,Mj和Cj分别表示多关节液压机械臂的惯性动力学矩阵和科氏力矩阵,I表示单位矩阵;f1和f2分别表示中间转换状态量s的第一和第二等量矩阵;θ表示非线性动力学模型的动力学参数,表示非线性动力学模型的动力学参数θ的参数估计值,表示非线性动力学模型的动力学参数θ的参数自适应误差;Where s represents the intermediate conversion state quantity, s1 , s2 and s3 represent the first, second and third state quantities of the intermediate conversion state quantity s respectively; q and They represent the joint angles and joint angular velocities of the multi-joint hydraulic manipulator respectively; and denote the first and second elements of the connecting rod dynamics parameter θm of the connecting rod dynamics model, respectively. Mj and Cj represent the inertial dynamic matrix and Coriolis force matrix of the multi-joint hydraulic manipulator, respectively; I represents the unit matrix; f1 and f2 represent the first and second equal-quantity matrices of the intermediate conversion state quantity s, respectively; θ represents the dynamic parameter of the nonlinear dynamic model, represents the parameter estimate of the kinetic parameter θ of the nonlinear kinetic model, represents the parameter adaptation error of the dynamic parameter θ of the nonlinear dynamic model; 多关节液压机械臂的关节角速度即为多关节液压机械臂的不可测状态。Joint angular velocity of multi-joint hydraulic manipulator That is the unpredictable state of the multi-joint hydraulic robotic arm. 4.根据权利要求2所述的一种基于非线性状态观测的液压机械臂自适应鲁棒控制方法,其特征在于:所述的步骤一中,非线性状态空间具体如下:4. The method for adaptive robust control of a hydraulic mechanical arm based on nonlinear state observation according to claim 2 is characterized in that: in the step 1, the nonlinear state space is specifically as follows: 其中,分别表示中间转换状态量s的第一个状态量s1、第二个状态量s2和第三个状态量s3的微分;表示连杆动力学模型的连杆动力学参数θm的第三个元素,Δj表示多关节液压机械臂运动过程中的不确定非线性和干扰;分别表示液压动力学模型的液压动力学参数θp的第一和第二个元素,f3、f4和f5分别表示中间转换状态量s的第三、第四和第五等量矩阵;uv表示自适应鲁棒控制律实际输出的控制电压,uv=kvxv,uv∈Rn,xv表示多关节液压机械臂各关节的液压控制阀的阀芯位移,kv表示转换比例系数;in, and They represent the differentials of the first state quantity s 1 , the second state quantity s 2 and the third state quantity s 3 of the intermediate conversion state quantity s respectively; The third element of the connecting rod dynamics parameter θ m representing the connecting rod dynamics model, Δ j represents the uncertain nonlinearity and disturbance during the motion of the multi-joint hydraulic manipulator; and denote the first and second elements of the hydrodynamic parameter θp of the hydrodynamic model, respectively, f3 , f4 and f5 represent the third, fourth and fifth equal-quantity matrices of the intermediate conversion state quantity s, respectively; uv represents the control voltage actually output by the adaptive robust control law, uv = kvxv , uv∈Rn , xv represents the valve core displacement of the hydraulic control valve of each joint of the multi-joint hydraulic mechanical arm, and kv represents the conversion proportional coefficient ; 所述的中间转换状态量s的第一-五等量矩阵具体如下:The first to fifth equal quantity matrices of the intermediate conversion state quantity s are specifically as follows: f1=JjPL f 1 = J j P L f3=JjVi -1Ai f 3 = J j V i -1 A i 5.根据权利要求2所述的一种基于非线性状态观测的液压机械臂自适应鲁棒控制方法,其特征在于:所述的步骤一中,非线性状态观测器具体如下:5. The method for adaptive robust control of a hydraulic mechanical arm based on nonlinear state observation according to claim 2 is characterized in that: in the step 1, the nonlinear state observer is specifically as follows: 其中,表示中间转换状态量s的观测状态,分别表示多关节液压机械臂的关节角速度的第一中间转换状态量s1、第二中间转换状态量s2和第三中间转换状态量s3的观测值;分别表示非线性状态观测器的第一观测器系数矩阵εi中第一观测器系数ε1的第二和第三个元素,分别表示非线性状态观测器的第一观测器系数矩阵εi中第二观测器系数ε2的第二和第三个元素,分别表示非线性状态观测器的第一观测器系数矩阵εi中第三观测器系数ε3的第二和第三个元素, 分别表示非线性状态观测器的第二观测器系数矩阵φi中第一观测器系数φ1的第二和第三个元素,分别表示非线性状态观测器的第二观测器系数矩阵φi中第二观测器系数φ2的第二和第三个元素,分别表示非线性状态观测器的第二观测器系数矩阵φi中第三观测器系数φ3的第二和第三个元素, 分别表示连杆动力学模型的连杆动力学参数θm的第一、第二和第三个元素的观测值;分别表示液压动力学模型的液压动力学参数θp的第一和第二个元素的观测值;v2和v3分别表示第二和第三观测器自适应表征参数;n表示多关节液压机械臂的关节数;in, represents the observed state of the intermediate conversion state quantity s, and Represent the joint angular velocity of the multi-joint hydraulic manipulator observed values of the first intermediate conversion state quantity s 1 , the second intermediate conversion state quantity s 2 and the third intermediate conversion state quantity s 3 ; and denote the second and third elements of the first observer coefficient ε 1 in the first observer coefficient matrix ε i of the nonlinear state observer, respectively, and denote the second and third elements of the second observer coefficient ε 2 in the first observer coefficient matrix ε i of the nonlinear state observer, respectively, and denote the second and third elements of the third observer coefficient ε 3 in the first observer coefficient matrix ε i of the nonlinear state observer, respectively, and denote the second and third elements of the first observer coefficient φ 1 in the second observer coefficient matrix φ i of the nonlinear state observer, respectively, and denote the second and third elements of the second observer coefficient φ 2 in the second observer coefficient matrix φ i of the nonlinear state observer, respectively, and denote the second and third elements of the third observer coefficient φ 3 in the second observer coefficient matrix φ i of the nonlinear state observer, respectively, and denote the observed values of the first, second and third elements of the connecting rod dynamics parameter θ m of the connecting rod dynamics model respectively; and denote the observed values of the first and second elements of the hydraulic dynamics parameter θ p of the hydraulic dynamics model, respectively; v 2 and v 3 denote the second and third observer adaptive characterization parameters, respectively; n denotes the number of joints of the multi-joint hydraulic manipulator; 将中间转换状态量s的观测状态中的第三观测器自适应表征参数v3作为多关节液压机械臂的关节角速度的估计值 The observed state of the intermediate conversion state quantity s The third observer adaptive characterization parameter v 3 in is used as the joint angular velocity of the multi-joint hydraulic manipulator Estimated value of 6.根据权利要求4所述的一种基于非线性状态观测的液压机械臂自适应鲁棒控制方法,其特征在于:所述的步骤三中,设计的自适应鲁棒控制律具体如下:6. The method for adaptive robust control of a hydraulic mechanical arm based on nonlinear state observation according to claim 4 is characterized in that: in the step 3, the adaptive robust control law designed is as follows: a)一阶自适应鲁棒控制律v3da) First-order adaptive robust control law v 3d : v3d=v3da+v3dr+v3ds v 3d =v 3da +v 3dr +v 3ds v3ds=v3ds1+v3ds2 v 3ds = v 3ds1 + v 3ds2 其中,v3da表示一阶自适应模型补偿控制律,v3dr表示一阶线性鲁棒控制律,v3ds表示一阶非线性鲁棒控制律;z2表示多关节液压机械臂的角度转换误差,z1分别表示多关节液压机械臂的关节角跟踪误差及其微分,z1=q-qd,qd表示多关节液压机械臂各关节角的控制目标值,即多关节液压机械臂的目标轨迹;k1和k2分别表示第一和第二增益正定对角矩阵;分别表示多关节液压机械臂各关节角速度和加速度的控制目标值;θ1min表示多关节液压机械臂的非线性动力学模型的模型参数θ1的最小值;v3ds1和v3ds2分别表示一阶非线性鲁棒控制律v3d的一阶参数非线性鲁棒控制律和一阶观测非线性鲁棒控制律;θm1表示连杆动力学模型的连杆动力学参数θm的第一个元素;表示第二参数回归矩阵;表示连杆动力学模型的连杆动力学参数θm的参数自适应误差; 和∈2分别表示第一、第二和第三预设设计参数;zob表示非线性状态观测器的观测器误差, 表示中间转换状态量s的观测状态;δob表示观测器误差集成;Among them, v 3da represents the first-order adaptive model compensation control law, v 3dr represents the first-order linear robust control law, v 3ds represents the first-order nonlinear robust control law; z 2 represents the angle conversion error of the multi-joint hydraulic manipulator, z 1 and denote the joint angle tracking error and its differential of the multi-joint hydraulic mechanical arm, respectively; z 1 =qq d , q d denotes the control target value of each joint angle of the multi-joint hydraulic mechanical arm, i.e., the target trajectory of the multi-joint hydraulic mechanical arm; k 1 and k 2 denote the first and second gain positive definite diagonal matrices, respectively; and They represent the control target values of the angular velocity and acceleration of each joint of the multi-joint hydraulic manipulator respectively; θ 1min represents the minimum value of the model parameter θ 1 of the nonlinear dynamic model of the multi-joint hydraulic manipulator; v 3ds1 and v 3ds2 represent the first-order parameter nonlinear robust control law and the first-order observation nonlinear robust control law of the first-order nonlinear robust control law v 3d respectively; θ m1 represents the first element of the connecting rod dynamic parameter θ m of the connecting rod dynamic model; represents the second parameter regression matrix; represents the parameter adaptation error of the connecting rod dynamics parameter θ m of the connecting rod dynamics model; and ∈ 2 represent the first, second and third preset design parameters respectively; z ob represents the observer error of the nonlinear state observer, represents the observed state of the intermediate conversion state quantity s; δ ob represents the observer error integration; b)二阶自适应鲁棒控制律QLdb) Second-order adaptive robust control law Q Ld : QLd=QLda+QLdr+QLds Q Ld = Q Lda + Q Ldr + Q Lds QLdr=-k3rz3 Q Ldr = -k 3r z 3 QLds=QLds1+QLds2 Q Lds = Q Lds1 + Q Lds2 其中,QLda表示二阶自适应模型补偿控制律,QLdr表示二阶线性鲁棒控制律,QLds表示二阶非线性鲁棒控制律;ω2和ω3分别表示一阶自适应鲁棒控制律v3d和二阶自适应鲁棒控制律QLd的预设比例平衡常数;表示多关节液压机械臂的角度转换误差z2的估计值;kob1表示一阶观测器增益;v1表示第一观测器自适应表征参数;表示一阶自适应鲁棒控制律v3d的可计算部分的微分;k3r表示第三增益正定对角矩阵;z3表示多关节液压机械臂等效流量跟踪误差,z3=v3-v3d;QLds1和QLds2分别表示二阶非线性鲁棒控制律的QLds的二阶参数非线性鲁棒控制律和二阶观测非线性鲁棒控制律;表示第三参数回归矩阵;表示非线性动力学模型的动力学参数θ的参数自适应误差;和∈3分别表示第四、第五和第六预设设计参数;Wherein, Q Lda represents the second-order adaptive model compensation control law, Q Ldr represents the second-order linear robust control law, Q Lds represents the second-order nonlinear robust control law; ω 2 and ω 3 represent the preset proportional balance constants of the first-order adaptive robust control law v 3d and the second-order adaptive robust control law Q Ld , respectively; represents the estimated value of the angle conversion error z2 of the multi-joint hydraulic manipulator; k ob1 represents the first-order observer gain; v 1 represents the first observer adaptive characterization parameter; represents the differential of the computable part of the first-order adaptive robust control law v 3d ; k 3r represents the third gain positive definite diagonal matrix; z 3 represents the equivalent flow tracking error of the multi-joint hydraulic manipulator, z 3 =v 3 -v 3d ; Q Lds1 and Q Lds2 represent the second-order parameter nonlinear robust control law and the second-order observation nonlinear robust control law of Q Lds of the second-order nonlinear robust control law, respectively; represents the third parameter regression matrix; represents the parameter adaptation error of the dynamic parameter θ of the nonlinear dynamic model; and ∈ 3 represent the fourth, fifth and sixth preset design parameters respectively; c)参数自适应律:c) Parameter Adaptive Law: 其中,表示连杆动力学模型的连杆动力学参数θm的估计值的微分;τ2和τ3分别表示一阶和二阶模型参数自适应基准值;表示非线性动力学模型的动力学参数θ的估计值的微分;表示非线性动力学模型的动力学参数θ的参数估计值的自适应映射函数;Γc表示参数自适应增益系数矩阵,Γc=[Γm;Γp],Γm和Γp分别表示参数自适应增益系数矩阵Γc的第一个和第二个元素。in, represents the differential of the estimated value of the connecting rod dynamics parameter θ m of the connecting rod dynamics model; τ 2 and τ 3 represent the first-order and second-order model parameter adaptive reference values respectively; represents the differential of the estimated value of the kinetic parameter θ of the nonlinear kinetic model; Represents the parameter estimate of the kinetic parameter θ of the nonlinear kinetic model Adaptive mapping function; Γ c represents a parameter adaptive gain coefficient matrix, Γ c =[Γ m ; Γ p ], Γ m and Γ p represent the first and second elements of the parameter adaptive gain coefficient matrix Γ c, respectively. 7.根据权利要求6所述的一种基于非线性状态观测的液压机械臂自适应鲁棒控制方法,其特征在于:所述的非线性动力学模型的动力学参数θ的参数估计值的自适应映射函数具体如下:7. The method for adaptive robust control of a hydraulic mechanical arm based on nonlinear state observation according to claim 6 is characterized in that: the parameter estimation value of the dynamic parameter θ of the nonlinear dynamic model The adaptive mapping function is as follows: 其中,x表示自适应映射函数的输入参数。Where x represents the input parameter of the adaptive mapping function. 8.根据权利要求6所述的一种基于非线性状态观测的液压机械臂自适应鲁棒控制方法,其特征在于:所述的第二参数回归矩阵具体如下:8. The method for adaptive robust control of a hydraulic mechanical arm based on nonlinear state observation according to claim 6, characterized in that: the second parameter regression matrix The details are as follows: 其中,ke表示跟踪误差增益参数;Where, ke represents the tracking error gain parameter; 所述的第三参数回归矩阵具体如下:The third parameter regression matrix The details are as follows: 其中,表示多关节液压机械臂的非线性动力学模型的模型参数θ1的估计值;表示线性回归矩阵;in, represents the estimated value of the model parameter θ 1 of the nonlinear dynamic model of the multi-joint hydraulic manipulator; represents the linear regression matrix; 所述的线性回归矩阵具体如下:The linear regression matrix The details are as follows: 9.根据权利要求5所述的一种基于非线性状态观测的液压机械臂自适应鲁棒控制方法,其特征在于:所述的步骤四中,非线性状态观测器进行自更新,具体为对非线性状态观测器的第一观测器系数矩阵εi、第二观测器系数矩阵φi以及观测器自适应表征参数矩阵v在各自的自更新率下进行自更新,具体如下:9. The method for adaptive robust control of a hydraulic mechanical arm based on nonlinear state observation according to claim 5, characterized in that: in the step 4, the nonlinear state observer performs self-update, specifically, the first observer coefficient matrix ε i , the second observer coefficient matrix φ i and the observer adaptive characterization parameter matrix v of the nonlinear state observer are self-updated at their respective self-update rates, specifically as follows: 其中,v=[v1;v2;v3];分别表示非线性状态观测器的第一观测器系数矩阵εi中第一观测器系数ε1、第二观测器系数ε2和第三观测器系数ε3的自更新率;Aob和Kob分别表示非线性状态观测器的第一和第二增益系数矩阵;y和yob分别表示观测器理论与实际输出;e1、e2和e3分别表示第一、第二和第三维度表征参数,e1=[1;0;0],e2=[0;1;0],e3=[0;0;1];表示观测器自适应表征参数矩阵v的自更新率;QL表示液压缸腔室的等效流量;分别表示非线性状态观测器的第二观测器系数矩阵φi中第一观测器系数φ1、第二观测器系数φ2和第三观测器系数φ3的自更新率。Wherein, v = [v 1 ; v 2 ; v 3 ]; and denote the self-update rates of the first observer coefficient ε 1 , the second observer coefficient ε 2 and the third observer coefficient ε 3 in the first observer coefficient matrix ε i of the nonlinear state observer respectively; A ob and K ob denote the first and second gain coefficient matrices of the nonlinear state observer respectively; y and y ob denote the theoretical and actual outputs of the observer respectively; e 1 , e 2 and e 3 denote the first, second and third dimensional characterization parameters respectively, e 1 = [1; 0; 0], e 2 = [0; 1; 0], e 3 = [0; 0; 1]; represents the self-update rate of the observer adaptive characterization parameter matrix v; Q L represents the equivalent flow rate of the hydraulic cylinder chamber; and They respectively represent the self-update rates of the first observer coefficient φ 1 , the second observer coefficient φ 2 and the third observer coefficient φ 3 in the second observer coefficient matrix φ i of the nonlinear state observer. 10.根据权利要求9所述的一种基于非线性状态观测的液压机械臂自适应鲁棒控制方法,其特征在于:所述的非线性状态观测器的第一增益系数矩阵Aob和第二增益系数矩阵Kob具体如下:10. The method for adaptive robust control of a hydraulic mechanical arm based on nonlinear state observation according to claim 9, characterized in that: the first gain coefficient matrix A ob and the second gain coefficient matrix K ob of the nonlinear state observer are specifically as follows: Λ=ΛT>0Λ=Λ T >0 其中,分别表示第一增益系数矩阵Aob中的第1、2、…i…n个元素;分别表示第二增益系数矩阵Kob中的第1、2、…i…n个元素;分别表示观测器第一、第二和第三增益参数;Λ表示半正定矩阵;I表示单位矩阵。in, Respectively represent the 1st, 2nd, ...i...nth elements in the first gain coefficient matrix A ob ; Respectively represent the 1st, 2nd, ...i...nth elements in the second gain coefficient matrix K ob ; and denote the first, second and third gain parameters of the observer respectively; Λ denotes a semi-positive definite matrix; I denotes an identity matrix.
CN202310590367.2A 2023-05-24 2023-05-24 Hydraulic mechanical arm self-adaptive robust control method based on nonlinear state observation Active CN116460856B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310590367.2A CN116460856B (en) 2023-05-24 2023-05-24 Hydraulic mechanical arm self-adaptive robust control method based on nonlinear state observation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310590367.2A CN116460856B (en) 2023-05-24 2023-05-24 Hydraulic mechanical arm self-adaptive robust control method based on nonlinear state observation

Publications (2)

Publication Number Publication Date
CN116460856A true CN116460856A (en) 2023-07-21
CN116460856B CN116460856B (en) 2025-07-22

Family

ID=87179124

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310590367.2A Active CN116460856B (en) 2023-05-24 2023-05-24 Hydraulic mechanical arm self-adaptive robust control method based on nonlinear state observation

Country Status (1)

Country Link
CN (1) CN116460856B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118550201A (en) * 2024-07-29 2024-08-27 浙江理工大学 Disturbance observation-based adaptive sliding mode control method for deep sea hydraulic mechanical arm

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006119887A (en) * 2004-10-21 2006-05-11 Toshiba Corp Nonlinear process control device
CN111546350A (en) * 2020-04-30 2020-08-18 浙江大学 A multi-joint heavy-duty hydraulic robot system and high-precision motion control method
CN112388611A (en) * 2020-10-15 2021-02-23 南京晨光集团有限责任公司 Full hydraulic drive system for rotary motion of mechanical arm
CN112817231A (en) * 2020-12-31 2021-05-18 南京工大数控科技有限公司 High-precision tracking control method for mechanical arm with high robustness
CN113625572A (en) * 2021-09-08 2021-11-09 北京理工大学 Mechanical arm composite fault-tolerant controller system based on industrial internet
CN114721258A (en) * 2022-02-21 2022-07-08 电子科技大学 Lower limb exoskeleton backstepping control method based on nonlinear extended state observer

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006119887A (en) * 2004-10-21 2006-05-11 Toshiba Corp Nonlinear process control device
CN111546350A (en) * 2020-04-30 2020-08-18 浙江大学 A multi-joint heavy-duty hydraulic robot system and high-precision motion control method
CN112388611A (en) * 2020-10-15 2021-02-23 南京晨光集团有限责任公司 Full hydraulic drive system for rotary motion of mechanical arm
CN112817231A (en) * 2020-12-31 2021-05-18 南京工大数控科技有限公司 High-precision tracking control method for mechanical arm with high robustness
CN113625572A (en) * 2021-09-08 2021-11-09 北京理工大学 Mechanical arm composite fault-tolerant controller system based on industrial internet
CN114721258A (en) * 2022-02-21 2022-07-08 电子科技大学 Lower limb exoskeleton backstepping control method based on nonlinear extended state observer

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
郭庆;: "电液伺服非线性控制技术研究进展综述", 液压与气动, no. 03, 15 March 2018 (2018-03-15) *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118550201A (en) * 2024-07-29 2024-08-27 浙江理工大学 Disturbance observation-based adaptive sliding mode control method for deep sea hydraulic mechanical arm

Also Published As

Publication number Publication date
CN116460856B (en) 2025-07-22

Similar Documents

Publication Publication Date Title
CN111546350B (en) Multi-joint heavy-load hydraulic robot system and high-precision motion control method
CN108869420B (en) Electro-hydraulic servo system self-adaptive backstepping control method based on instruction filtering
CN108415249B (en) An adaptive robust control method for electro-hydraulic servo system based on low frequency learning
CN114800522B (en) Hydraulic mechanical arm contact operation self-adaptive impedance control system without end force sensor
CN106402089B (en) A kind of cascade electrohydraulic servo system control method and system based on coupled interference observer
CN110928182A (en) A Robust Adaptive Repetitive Control Method for Hydraulic Servo System Based on State Estimation
CN113325716B (en) Underwater hydraulic mechanical arm nonlinear robust control method based on extended observer
CN108181818B (en) Robust adaptive control method for electro-hydraulic position servo system with unmodeled friction dynamics
CN104345639A (en) Robust adaptive control (RAC) method of electro-hydraulic position servo control system
CN112925355A (en) Nonlinear flow modeling and compensating method of load port independent hydraulic system
CN113110037A (en) Intelligent self-learning PID control method of electro-hydraulic servo system
CN116460856A (en) Hydraulic mechanical arm self-adaptive robust control method based on nonlinear state observation
CN109426150A (en) Load simulator backstepping control method based on extended state observer
CN113814983A (en) Multi-single-arm manipulator system control method and system
CN117823496A (en) Robust output feedback composite control method for pilot type proportional servo valve
CN105538310B (en) A kind of electro-hydraulic servo control method and 2 DOF mechanical arms based on fading filter
CN111308889A (en) Adaptive integral robust control method of spray rod system
CN115473467B (en) Command filtering backstepping control method for flexible joint manipulator based on fuzzy observer
CN107882795B (en) A dynamic compliance compensation control method for a highly integrated valve-controlled cylinder force control system
CN118550201B (en) Disturbance observation-based adaptive sliding mode control method for deep sea hydraulic mechanical arm
CN107765548A (en) Flat pad high-precision motion control method based on double observers
CN118295241A (en) Adaptive Control Method for Electro-Hydrostatic Actuator with Inertial Load Estimation and Compensation
CN114995127B (en) An adaptive integral control method for uncertain hydraulic position servo system
CN114755921A (en) Disturbance compensation control method for underwater electro-hydrostatic actuator
CN108626206B (en) State parameter acquisition device for electro-hydraulic servo control system

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information
CB02 Change of applicant information

Country or region after: China

Address after: 316021 Zhoushan campus of Zhejiang University, No.1 Zheda Road, Dinghai District, Zhoushan City, Zhejiang Province

Applicant after: ZHEJIANG University

Address before: 310058 Yuhang Tang Road, Xihu District, Hangzhou, Zhejiang 866

Applicant before: ZHEJIANG University

Country or region before: China

CB03 Change of inventor or designer information
CB03 Change of inventor or designer information

Inventor after: Chen Zheng

Inventor after: Zhou Shizhao

Inventor after: Shen Li

Inventor after: Xia Yangxiu

Inventor after: Mei Deqing

Inventor before: Zhou Shizhao

Inventor before: Shen Li

Inventor before: Xia Yangxiu

Inventor before: Chen Zheng

Inventor before: Mei Deqing

GR01 Patent grant