CN116449629A - Pixel structure and display driving method thereof - Google Patents
Pixel structure and display driving method thereof Download PDFInfo
- Publication number
- CN116449629A CN116449629A CN202310440275.6A CN202310440275A CN116449629A CN 116449629 A CN116449629 A CN 116449629A CN 202310440275 A CN202310440275 A CN 202310440275A CN 116449629 A CN116449629 A CN 116449629A
- Authority
- CN
- China
- Prior art keywords
- layer
- change material
- phase
- pixel structure
- material layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 9
- 239000012782 phase change material Substances 0.000 claims abstract description 96
- 229910052751 metal Inorganic materials 0.000 claims abstract description 46
- 239000002184 metal Substances 0.000 claims abstract description 46
- 239000003086 colorant Substances 0.000 claims abstract description 16
- 239000003989 dielectric material Substances 0.000 claims abstract description 5
- 239000000463 material Substances 0.000 claims description 16
- 229910005900 GeTe Inorganic materials 0.000 claims description 8
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims description 8
- 238000002425 crystallisation Methods 0.000 claims description 8
- 230000008025 crystallization Effects 0.000 claims description 8
- 150000004770 chalcogenides Chemical class 0.000 claims description 7
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 claims description 4
- 239000011787 zinc oxide Substances 0.000 claims description 4
- 238000011065 in-situ storage Methods 0.000 abstract description 17
- 230000003287 optical effect Effects 0.000 description 9
- 238000010586 diagram Methods 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 4
- 239000000470 constituent Substances 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 229910000618 GeSbTe Inorganic materials 0.000 description 2
- 229910001370 Se alloy Inorganic materials 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 230000008033 biological extinction Effects 0.000 description 2
- VDDXNVZUVZULMR-UHFFFAOYSA-N germanium tellurium Chemical compound [Ge].[Te] VDDXNVZUVZULMR-UHFFFAOYSA-N 0.000 description 2
- 230000008676 import Effects 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- OQRNKLRIQBVZHK-UHFFFAOYSA-N selanylideneantimony Chemical compound [Sb]=[Se] OQRNKLRIQBVZHK-UHFFFAOYSA-N 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- 230000000638 stimulation Effects 0.000 description 2
- YPMOSINXXHVZIL-UHFFFAOYSA-N sulfanylideneantimony Chemical compound [Sb]=S YPMOSINXXHVZIL-UHFFFAOYSA-N 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 239000010937 tungsten Substances 0.000 description 2
- 238000009941 weaving Methods 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- SCZZGVQQIXBCTC-UHFFFAOYSA-N [Sb].[Se].[Ge] Chemical compound [Sb].[Se].[Ge] SCZZGVQQIXBCTC-UHFFFAOYSA-N 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005485 electric heating Methods 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000000985 reflectance spectrum Methods 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 229910052959 stibnite Inorganic materials 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- DDJAGKOCVFYQOV-UHFFFAOYSA-N tellanylideneantimony Chemical compound [Te]=[Sb] DDJAGKOCVFYQOV-UHFFFAOYSA-N 0.000 description 1
- 229910052714 tellurium Inorganic materials 0.000 description 1
- PORWMNRCUJJQNO-UHFFFAOYSA-N tellurium atom Chemical compound [Te] PORWMNRCUJJQNO-UHFFFAOYSA-N 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/21—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour by interference
- G02F1/213—Fabry-Perot type
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/0121—Operation of devices; Circuit arrangements, not otherwise provided for in this subclass
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/23—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour for the control of the colour
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G3/00—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
- G09G3/20—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
- G09G3/34—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
- G09G3/3433—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using light modulating elements actuated by an electric field and being other than liquid crystal devices and electrochromic devices
- G09G3/3466—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using light modulating elements actuated by an electric field and being other than liquid crystal devices and electrochromic devices based on interferometric effect
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/14—Thermal energy storage
Landscapes
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Theoretical Computer Science (AREA)
- Electroluminescent Light Sources (AREA)
Abstract
Description
技术领域technical field
本发明属于显示技术领域,更具体地,涉及一种像素结构及其显示驱动方法。The invention belongs to the field of display technology, and more specifically relates to a pixel structure and a display driving method thereof.
背景技术Background technique
随着科技的发展,显示技术已经成为了人们日常生活中不可缺少的一环,在智能手机、平板电脑、电视等方面得到了广泛的应用。显示技术普及的同时也让人们对各种显示器的使用性能提出了越来越高的要求。目前,人们普遍关注显示器件的分辨率、刷新率、色域以及护眼等功能。With the development of science and technology, display technology has become an indispensable part of people's daily life, and has been widely used in smart phones, tablet computers, TVs, etc. The popularization of display technology also makes people put forward higher and higher requirements for the performance of various displays. At present, people generally pay attention to the resolution, refresh rate, color gamut and eye protection functions of display devices.
当前常见的彩色显示器基于具有红、绿、蓝三原色的子像素来组成一个显示像素来实现彩色图像的重现,但这种像素排列方式不利于像素密度的增加,也大大限制了显示器中图像分辨率的提升。The current common color display is based on sub-pixels with three primary colors of red, green and blue to form a display pixel to reproduce color images, but this pixel arrangement is not conducive to the increase of pixel density, and also greatly limits the image resolution in the display. rate increase.
发明内容Contents of the invention
针对现有技术的缺陷,本发明的目的在于提供一种显示结构及其显示驱动方法,旨在解决现有显示像素基于多个子像素组成,不利于像素密度增加,限制显示器图像分辨率提升的问题。In view of the defects of the prior art, the purpose of the present invention is to provide a display structure and a display driving method thereof, aiming to solve the problem that the existing display pixels are composed of multiple sub-pixels, which is not conducive to the increase of pixel density and limits the improvement of display image resolution. .
为实现上述目的,第一方面,本发明提供了一种像素结构,从下至上依次包括:第一金属层、第一透明导电介质层、第一相变材料层、第二透明导电介质层、第二相变材料层、第三透明导电介质层、第二金属层以及第四透明导电介质层;In order to achieve the above object, in the first aspect, the present invention provides a pixel structure, which includes from bottom to top: a first metal layer, a first transparent conductive medium layer, a first phase change material layer, a second transparent conductive medium layer, The second phase change material layer, the third transparent conductive medium layer, the second metal layer and the fourth transparent conductive medium layer;
所述第一金属层的厚度在第一预设厚度范围内,使得第一金属层为全反射层;The thickness of the first metal layer is within a first preset thickness range, so that the first metal layer is a total reflection layer;
所述第二金属层的厚度在第二预设厚度范围内,使得第二金属层为半透明反射层;The thickness of the second metal layer is within a second preset thickness range, so that the second metal layer is a translucent reflection layer;
所述第一透明导电介质层、第一相变材料层、第二透明导电介质层、第二相变材料层、第三透明导电介质层以及第四透明导电介质层作为介质材料,与第一金属层和第二金属层构成Fabry-Perot共振腔;The first transparent conductive medium layer, the first phase change material layer, the second transparent conductive medium layer, the second phase change material layer, the third transparent conductive medium layer and the fourth transparent conductive medium layer are used as dielectric materials, and the first The metal layer and the second metal layer form a Fabry-Perot resonant cavity;
当所述Fabry-Perot共振腔的物理厚度在第三预设厚度时,所述第一相变材料层和第二相变材料层中任一层的结晶状态改变时,所述像素结构能够选择性反射不同颜色的光。When the physical thickness of the Fabry-Perot resonant cavity is at the third preset thickness, when the crystallization state of any layer in the first phase-change material layer and the second phase-change material layer changes, the pixel structure can be selected Sex reflects light of different colors.
在一个可选的示例中,所述第三预设厚度乘以像素结构的折射率等于所述像素结构所要选择性反射光波长的整数倍;其中,所述像素结构的折射率随第一相变材料层和第二相变材料层结晶状态的变化而变化。In an optional example, the third preset thickness multiplied by the refractive index of the pixel structure is equal to an integer multiple of the wavelength of light to be selectively reflected by the pixel structure; wherein, the refractive index of the pixel structure varies with the first phase The crystallization state of the phase change material layer and the second phase change material layer changes.
在一个可选的示例中,所述第一预设厚度范围为100nm-150nm;In an optional example, the first preset thickness range is 100nm-150nm;
所述第二预设厚度范围为5nm-20nm。The second preset thickness range is 5nm-20nm.
在一个可选的示例中,上述两个相变材料层的厚度均在70nm-120nm内;In an optional example, the thicknesses of the above two phase-change material layers are both within 70nm-120nm;
上述四个透明导电介质层的厚度均在50nm-200nm内。The thicknesses of the above four transparent conductive medium layers are all within 50nm-200nm.
在一个可选的示例中,上述两个相变材料层采用硫系相变材料制成。In an optional example, the above two phase change material layers are made of chalcogenide phase change materials.
在一个可选的示例中,上述四个透明导电介质层采用氧化铟锡或者铝掺杂的氧化锌材料制成。In an optional example, the above four transparent conductive medium layers are made of indium tin oxide or aluminum-doped zinc oxide.
在一个可选的示例中,当Fabry-Perot共振腔的物理厚度在第三预设厚度,且所述第一相变材料层为GeTe材料,第二相变材料层为Sb2S3材料时,若第一相变材料层和第二相变材料层均处于非晶态,则所述像素结构能够选择性反射蓝色光,若第一相变材料层和第二相变材料层均处于晶态,则所述像素结构能够选择性反射绿色光,若第一相变材料层处于晶态,第二相变材料层处于非晶态,则所述像素结构能够选择性反射红色光。In an optional example, when the physical thickness of the Fabry-Perot resonant cavity is at the third preset thickness, and the first phase-change material layer is GeTe material, and the second phase-change material layer is Sb 2 S 3 material , if both the first phase-change material layer and the second phase-change material layer are in the amorphous state, the pixel structure can selectively reflect blue light, and if the first phase-change material layer and the second phase-change material layer are both in the crystal state state, the pixel structure can selectively reflect green light; if the first phase-change material layer is in a crystalline state and the second phase-change material layer is in an amorphous state, the pixel structure can selectively reflect red light.
第二方面,本发明提供了一种对上述第一方面提供的像素结构的显示驱动方法,包括以下步骤:In a second aspect, the present invention provides a display driving method for the pixel structure provided in the first aspect, comprising the following steps:
对所述像素结构施加不同强度的电脉冲,让第一相变材料层和第二相变材料层分别结晶,以控制所述像素结构内两层相变材料层的结晶状态,使得像素结构选择性反射不同颜色的光。Applying electric pulses of different intensities to the pixel structure allows the first phase-change material layer and the second phase-change material layer to crystallize respectively, so as to control the crystallization state of the two phase-change material layers in the pixel structure, so that the pixel structure can be selected Sex reflects light of different colors.
总体而言,通过本发明所构思的以上技术方案与现有技术相比,具有以下有益效果:Generally speaking, compared with the prior art, the above technical solution conceived by the present invention has the following beneficial effects:
本发明提供一种像素结构及其显示驱动方法,像素结构为多层膜结构,由下至上依次为衬底层、第一金属层、第一透明导电介质层、第一相变材料层、第二透明导电介质层、第二相变材料层、第三透明导电介质层、第二金属层、第四透明导电介质层,构成了典型的Fabry-Perot共振腔。借助底部金属电极层和顶部透明导电介质层,能够通过电加热的方式使两层相变材料先后结晶,得到非晶-非晶,非晶-结晶及结晶-结晶等多种状态,并具有不同的光学厚度,从而在钨丝白织灯光源下分别选择性反射不同颜色的光。本发明在单个显示像素上实现了至少三种反射颜色的原位切换,具有高像素密度的特点,能够有效提高反射式显示器件的图像分辨率。The present invention provides a pixel structure and a display driving method thereof. The pixel structure is a multi-layer film structure, which includes a substrate layer, a first metal layer, a first transparent conductive medium layer, a first phase-change material layer, and a second phase-change material layer from bottom to top. The transparent conductive medium layer, the second phase change material layer, the third transparent conductive medium layer, the second metal layer, and the fourth transparent conductive medium layer constitute a typical Fabry-Perot resonant cavity. With the help of the bottom metal electrode layer and the top transparent conductive medium layer, the two layers of phase change materials can be crystallized successively by means of electric heating, and various states such as amorphous-amorphous, amorphous-crystalline and crystal-crystalline can be obtained, and have different Optical thickness, so as to selectively reflect different colors of light under the tungsten filament white woven light source. The invention realizes in-situ switching of at least three reflective colors on a single display pixel, has the characteristics of high pixel density, and can effectively improve the image resolution of reflective display devices.
附图说明Description of drawings
图1是本发明一实施例提供的电控可原位切换的反射式彩色显示像素的像素排列方式示意图;Fig. 1 is a schematic diagram of pixel arrangement of an electrically controlled in-situ switchable reflective color display pixel provided by an embodiment of the present invention;
图2是本发明一实施例提供的电控可原位切换的反射式彩色显示像素的膜系结构示意图;Fig. 2 is a schematic diagram of the film structure of an electrically controlled in-situ switchable reflective color display pixel provided by an embodiment of the present invention;
图3是本发明实施例1仿真得到的彩色显示像素的反射谱;Fig. 3 is the reflectance spectrum of the color display pixel simulated by Embodiment 1 of the present invention;
图4是本发明实施例1仿真得到的彩色显示像素的色度图;Fig. 4 is the chromaticity diagram of the color display pixel simulated by Embodiment 1 of the present invention;
图5是本发明提供的各材料的折射率n和消光系数k的色散曲线。Fig. 5 is a dispersion curve of the refractive index n and the extinction coefficient k of each material provided by the present invention.
具体实施方式Detailed ways
为方便理解,下面先对本申请实施例所涉及的英文简写和有关技术术语进行解释和描述。For the convenience of understanding, the English abbreviations and related technical terms involved in the embodiments of the present application are firstly explained and described below.
下面结合本申请实施例中的附图对本申请实施例进行描述。Embodiments of the present application are described below with reference to the drawings in the embodiments of the present application.
为解决传统彩色显示器在高分辨率显示方面的问题,本发明提供了一种基于相变材料的电控可原位切换的反射式彩色显示像素,可以应用于超高分辨率的被动式显示器件中。In order to solve the problems of traditional color displays in high-resolution display, the present invention provides an electrically controlled in-situ switchable reflective color display pixel based on phase change materials, which can be applied to ultra-high-resolution passive display devices .
需要说明的是,基于Fabry-Perot共振腔的原理,其只允许波长整数倍等于共振腔光学厚度(薄膜折射率和物理厚度的乘积)的特定波长的光通过,从而具有颜色选择性,本发明的提供的像素结构从原理上来讲随着两层相变材料层晶态变化至少能选择性反射四种不同颜色的光(晶态-晶态、晶态-非晶态、非晶态-晶态及非晶态-非晶态),在此前提下,首先需要在合适的晶态组合下控制各膜层的厚度来构建Fabry-Perot共振腔并能够具有一种颜色选择性,且该结构能够在剩余三种晶态组合下分别具有三种颜色选择性。It should be noted that, based on the principle of the Fabry-Perot resonant cavity, it only allows the light of a specific wavelength whose wavelength integer multiple is equal to the optical thickness of the resonant cavity (the product of the film refractive index and the physical thickness) to pass through, thereby having color selectivity, the present invention In principle, the provided pixel structure can selectively reflect light of at least four different colors (crystalline state-crystalline state, crystalline state-amorphous state, amorphous state-crystalline state) as the crystal state of the two phase change material layers changes. state and amorphous state-amorphous state), under this premise, it is first necessary to control the thickness of each film layer under a suitable crystalline state combination to construct a Fabry-Perot resonant cavity and have a color selectivity, and the structure It is possible to have three color selectivity under the combination of the remaining three crystal states.
可以理解的是,根据上述原理的分析,本发明理论上可以实现多种颜色的选择性反射,且可以通过不同相变材料的选择及每层薄膜厚度的调控,采用不同的手段实现相同光的选择,在上述原理的作用下,本发明想要实现对某种光的选择性反射并不仅限于一种实现方式。It can be understood that, based on the analysis of the above principles, the present invention can theoretically realize the selective reflection of multiple colors, and can realize the reflection of the same light by different means through the selection of different phase change materials and the regulation of the thickness of each layer of film. Optionally, under the effect of the above principles, the present invention intends to achieve selective reflection of a certain light and is not limited to one implementation.
因此,对于本领域技术人员而言,在本发明技术原理的加持下所采用的具体技术手段实现的多种颜色光的选择性反射的方案均应涵盖在本发明的保护范围内。Therefore, for those skilled in the art, the schemes of selective reflection of multiple colors of light realized by the specific technical means adopted under the technical principles of the present invention should be covered within the protection scope of the present invention.
具体地,为形象生动说明本发明,本发明以红、绿、蓝三种颜色的选择性反射为例进行举例说明,上述举例说明并不应被看做对本发明保护技术方案的任何实质限定。Specifically, in order to vividly illustrate the present invention, the present invention is illustrated by taking the selective reflection of three colors of red, green, and blue as examples, and the above illustrations should not be regarded as any substantial limitation on the protection technical solution of the present invention.
本发明的目的在于提供一种基于相变材料的电控可原位切换的反射式彩色显示像素,该显示像素可在电脉冲的刺激下在三种不同状态间切换,并分别对应在白织灯光源下选择性反射红、绿、蓝三种颜色,从而能够在光照下显示出高分辨率的彩色图像。The object of the present invention is to provide an electrically controlled and in-situ switchable reflective color display pixel based on a phase change material, which can switch between three different states under the stimulation of electric pulses, and respectively correspond to Under the light source, three colors of red, green and blue are selectively reflected, so that high-resolution color images can be displayed under light.
为了实现上述目的,本发明提供了一种基于相变材料的电控可原位切换的反射式彩色显示像素,该显示像素能够在电脉冲的刺激下自由选择反射红、绿或蓝色光的一种。该显示像素为多层膜结构,从下至上依次为第一金属反射层、第一透明导电介质层、第一相变材料层、第二透明导电介质层、第二相变材料层、第三透明导电介质层、第二金属层、第四透明导电介质层。In order to achieve the above object, the present invention provides an electrically controlled in-situ switchable reflective color display pixel based on a phase change material, which can freely select a color that reflects red, green or blue light under the stimulation of an electric pulse. kind. The display pixel is a multi-layer film structure, and from bottom to top are the first metal reflective layer, the first transparent conductive medium layer, the first phase change material layer, the second transparent conductive medium layer, the second phase change material layer, the third A transparent conductive medium layer, a second metal layer, and a fourth transparent conductive medium layer.
本发明提供了一种基于相变材料的电控可原位切换的反射式彩色显示像素,之所以具有颜色选择性,是通过底部金属电极构成了反射层,顶部金属电极构成半透明反射镜,中间的透明导电层和相变材料层作为介质材料,构成了典型的Fabry-Perot共振腔。在光经过顶部金属电极层入射到Fabry-Perot共振腔后,会在底部金属反射层和顶部半透明反射层间来回反射,而Fabry-Perot共振腔只能允许波长整数倍等于共振腔光学厚度的特定波长的光通过,从而具有颜色选择性。进一步的,通过使相变材料层在结晶和非晶状态间切换所带来的光学参数的变化,来改变Fabry-Perot共振腔的光学厚度,以此来在选择性反射红、绿或蓝光三种状态间切换。The present invention provides an electrically controlled and in-situ switchable reflective color display pixel based on phase change materials. The reason why it has color selectivity is that the reflective layer is formed by the bottom metal electrode, and the top metal electrode forms a semi-transparent reflector. The middle transparent conductive layer and phase-change material layer are used as dielectric materials to form a typical Fabry-Perot resonant cavity. After the light enters the Fabry-Perot resonant cavity through the top metal electrode layer, it will be reflected back and forth between the bottom metal reflective layer and the top semi-transparent reflective layer, and the Fabry-Perot resonant cavity can only allow integer multiples of the wavelength equal to the optical thickness of the resonant cavity. Specific wavelengths of light pass through, making them color selective. Further, the optical thickness of the Fabry-Perot resonant cavity is changed by changing the optical parameters brought about by switching the phase-change material layer between crystalline and amorphous states, so as to selectively reflect red, green or blue light three times switch between states.
上述电控可原位切换的反射式彩色显示像素均为同质像素,为正方形并按照行列规则排布。其中底部金属反射层均与一位线BL相连,顶部的透明导电层均与一字线WL相连。当在像素上施加电脉冲时会加热像素中的相变材料层,通过施加不同强度的电脉冲,能够让两层相变材料层先后结晶,从而呈现非晶-非晶,非晶-结晶,结晶-结晶三种状态。The above-mentioned electronically controlled and in-situ switchable reflective color display pixels are all homogeneous pixels, which are square and arranged according to the rules of rows and columns. The metal reflective layers at the bottom are all connected to a bit line BL, and the transparent conductive layers at the top are all connected to a word line WL. When an electric pulse is applied to the pixel, the phase-change material layer in the pixel will be heated. By applying electric pulses of different intensities, the two phase-change material layers can be crystallized successively, thus presenting amorphous-amorphous, amorphous-crystalline, Crystallization - three states of crystallization.
在实施例中,所述硫系相变材料采用锗碲、锑碲、锗锑碲、锗锑硒碲、锑硫或锑硒合金材料制成,所述硫系相变材料层的厚度为50nm-120nm。In an embodiment, the chalcogenide phase change material is made of germanium tellurium, antimony tellurium, germanium antimony tellurium, germanium antimony selenium tellurium, antimony sulfur or antimony selenium alloy material, and the thickness of the chalcogenide phase change material layer is 50nm -120nm.
在实施例中,所述透明导电介质材料采用氧化铟锡或者铝掺杂的氧化锌材料制成,所述透明导电介质层的厚度为20nm-200nm。In an embodiment, the transparent conductive medium material is made of indium tin oxide or aluminum-doped zinc oxide material, and the thickness of the transparent conductive medium layer is 20nm-200nm.
在实施例中,所述金属电极材料采用银、铂或钛材料制成,所述金属电极层的厚度为5nm-150nm。In an embodiment, the metal electrode material is made of silver, platinum or titanium, and the thickness of the metal electrode layer is 5nm-150nm.
如图1所示,本发明所提供的一种基于相变材料的电控可原位切换的反射式彩色显示像素的像素排列方式可按照标准红绿蓝排列方式,但不同于传统显示器件由三个红、绿、蓝的子像素构成一个显示像素,本发明不存在子像素,而是每个显示像素都能选择性显示红、绿、蓝色光的一种。As shown in Figure 1, the pixel arrangement of an electrically controlled in-situ switchable reflective color display pixel based on phase change materials provided by the present invention can follow the standard red, green and blue arrangement, but it is different from the traditional display device by Three red, green, and blue sub-pixels constitute a display pixel. The present invention does not have sub-pixels, but each display pixel can selectively display red, green, and blue light.
在本实施例中,如图2所示,所有显示像素均为同质像素,均为多层膜结构。从下到上,依次为衬底层、第一金属电极、第一透明导电介质层、第一硫系相变材料层、第二透明导电介质层、第二硫系相变材料层、第三透明导电介质层、第二金属电极、第四透明导电介质层,共同构成Fabry-Perot共振腔,能够在电脉冲下具有非晶-非晶,非晶-结晶,结晶-结晶三种不同的状态。如图3和图4所示,分别对应在白织灯光源下选择性反射蓝光、红光、绿光。其中,a表示非结晶态,c表示结晶态,本发明给出的像素结构能够在同一个像素中实现传统显示器件中需要多个像素才能实现的彩色显示功能。In this embodiment, as shown in FIG. 2 , all display pixels are homogeneous pixels with a multi-layer film structure. From bottom to top, they are the substrate layer, the first metal electrode, the first transparent conductive medium layer, the first chalcogenide phase change material layer, the second transparent conductive medium layer, the second chalcogenide phase change material layer, the third transparent The conductive medium layer, the second metal electrode, and the fourth transparent conductive medium layer together constitute the Fabry-Perot resonant cavity, which can have three different states of amorphous-amorphous, amorphous-crystalline, and crystallized under electric pulses. As shown in Figure 3 and Figure 4, they respectively correspond to the selective reflection of blue light, red light, and green light under the white weaving light source. Wherein, a represents an amorphous state, and c represents a crystalline state. The pixel structure provided by the present invention can realize the color display function that requires multiple pixels in a traditional display device in the same pixel.
优选的,本实施例中金属电极可选材料为铂、钛或银,透明导电介质层可选材料为氧化铟锡或者铝掺杂的氧化锌,硫系相变材料层可选材料为锗碲、锗锑碲、锑硫或锑硒合金。Preferably, in this embodiment, the optional material of the metal electrode is platinum, titanium or silver, the optional material of the transparent conductive medium layer is indium tin oxide or aluminum-doped zinc oxide, and the optional material of the chalcogenide phase change material layer is germanium tellurium , germanium antimony tellurium, antimony sulfur or antimony selenium alloy.
具体的,本实施例一种基于相变材料的电控可原位切换的反射式彩色显示像素的工作原理为:通过底部金属电极构成了反射层,顶部金属电极构成半透明反射镜,中间的透明导电层和相变材料层作为介质材料,构成了典型的Fabry-Perot共振腔。在光经过顶部金属电极层入射到Fabry-Perot共振腔后,会在底部金属反射层和顶部半透明反射层间来回反射,而Fabry-Perot共振腔只能允许波长整数倍等于共振腔光学厚度(薄膜折射率和物理厚度的乘积)的特定波长的光通过,从而具有颜色选择性。因此,可以通过调整Fabry-Perot共振腔的光学厚度来使其具有想要的颜色选择性。在这里,我们利用相变材料在相变前后具有不同的折射率,即能够在膜厚不发生变化的前提下使光学厚度发生改变的特性,设计了具有双层相变材料的Fabry-Perot共振腔。Specifically, the working principle of an electrically controlled and in-situ switchable reflective color display pixel based on phase change materials in this embodiment is as follows: the bottom metal electrode forms a reflective layer, the top metal electrode forms a semi-transparent mirror, and the middle A transparent conductive layer and a phase-change material layer are used as dielectric materials to form a typical Fabry-Perot resonant cavity. After the light enters the Fabry-Perot resonant cavity through the top metal electrode layer, it will be reflected back and forth between the bottom metal reflective layer and the top semi-transparent reflective layer, and the Fabry-Perot resonant cavity can only allow integer multiples of the wavelength equal to the optical thickness of the resonant cavity ( The product of the film's refractive index and physical thickness) passes light of a specific wavelength, thereby having color selectivity. Therefore, the optical thickness of the Fabry-Perot resonator can be tuned to have the desired color selectivity. Here, we design a Fabry-Perot resonance with a double-layer phase change material by taking advantage of the fact that the phase change material has different refractive indices before and after the phase change, that is, the optical thickness can be changed without changing the film thickness. cavity.
优选的,选择第一相变材料层为GeTe材料,第二相变材料层为Sb2S3材料。当两层相变材料均为非晶态时,该多层膜能够选择性反射蓝色光;当GeTe为结晶态,Sb2S3为非晶态时,该多层膜能够选择性反射红色光;当GeTe和Sb2S3均为晶态时,该多层膜能够选择性反射绿色光。Preferably, the first phase-change material layer is selected to be GeTe material, and the second phase-change material layer is selected to be Sb 2 S 3 material. When the two layers of phase change materials are both amorphous, the multilayer film can selectively reflect blue light; when GeTe is crystalline and Sb2S3 is amorphous, the multilayer film can selectively reflect red light ; When both GeTe and Sb 2 S 3 are crystalline, the multilayer film can selectively reflect green light.
需要说明的是,本领域技术人员还可根据现有技术选择其他配方和配比的相变材料实现相变材料层,以实现对不同颜色光的选择性反射,上述示例并不做对本发明保护范围的具体限定。It should be noted that those skilled in the art can also choose other formulations and ratios of phase change materials to realize the phase change material layer according to the existing technology, so as to realize the selective reflection of different colors of light. The above examples do not protect the present invention. Specific limitations of the scope.
优选的,本实施例一种基于相变材料的电控可原位切换的反射式彩色显示像素的底层金属电极的厚度在100nm-150nm,透明导电介质层的厚度在50nm-200nm,相变材料层的厚度在70nm-120nm,顶部金属电极的厚度在5nm-20nm。Preferably, in this embodiment, an electrically controlled in-situ switchable reflective color display pixel based on a phase change material has a thickness of the bottom metal electrode of 100nm-150nm, a thickness of the transparent conductive medium layer of 50nm-200nm, and the phase change material The thickness of the layer is 70nm-120nm, and the thickness of the top metal electrode is 5nm-20nm.
本实施例提供的一种基于相变材料的电控可原位切换的反射式彩色显示像素能够在单个像素中实现红、绿、蓝任意颜色的选择性反射,能够在光线充足的条件下显示出具有较高分辨率的清晰图像,并具有护眼等特点。The electronically controlled in-situ switchable reflective color display pixel based on phase change material provided in this embodiment can realize selective reflection of any color of red, green, and blue in a single pixel, and can display It produces clear images with higher resolution and has features such as eye protection.
以下结合具体实施例,对本发明提供的一种基于相变材料的电控可原位切换的反射式彩色显示像素进行详细说明。An electrically controlled in-situ switchable reflective color display pixel based on a phase change material provided by the present invention will be described in detail below in conjunction with specific embodiments.
实施例1Example 1
本实施例1提供的一种基于相变材料的电控可原位切换的反射式彩色显示像素中各像素均为同质像素,膜层结构由下至上依次为Ag/ITO/GeTe/ITO/Sb2S3/ITO/Ag/ITO,其中ITO的厚度在20nm-200nm,相变材料层的厚度在70-120nm。Each pixel in an electrically controlled in-situ switchable reflective color display pixel based on phase change material provided in Example 1 is a homogeneous pixel, and the film layer structure from bottom to top is Ag/ITO/GeTe/ITO/ Sb 2 S 3 /ITO/Ag/ITO, wherein the thickness of the ITO is 20nm-200nm, and the thickness of the phase change material layer is 70-120nm.
本实施例1一种基于相变材料的电控可原位切换的反射式彩色显示像素的具体设计如下:(1)金属反射层选择为Ag材料,透明导电介质材料选择为ITO,第一层相变材料选择为GeTe,第二层相变材料选择为Sb2S3;(2)该多层膜的底部金属反射层厚度为135nm,底部ITO层为75nm,第一相变材料层为96nm,中间ITO层为163nm,第二相变材料层为92nm,上部ITO层为76nm,顶层金属层为8nm,顶层ITO层为39nm;(3)当两层相变材料均为非晶态时,此时反射颜色为蓝色。当第一层相变材料为晶态,第二层相变材料为非晶态时对应颜色为红色。当两层相变材料层均为结晶态时,对应颜色为绿色。可通过施加电脉冲实现上述相转变。如图所示,仿真结果说明本实施例所提供的一种基于相变材料的电控可原位切换的反射式彩色显示像素能够在选择性反射红、绿、蓝三种颜色间自由切换。In Embodiment 1, the specific design of an electrically controlled in-situ switchable reflective color display pixel based on phase change materials is as follows: (1) the metal reflective layer is selected as Ag material, the transparent conductive medium material is selected as ITO, and the first layer The phase-change material is selected as GeTe, and the phase-change material of the second layer is selected as Sb 2 S 3 ; (2) the thickness of the metal reflection layer at the bottom of the multilayer film is 135nm, the bottom ITO layer is 75nm, and the first phase-change material layer is 96nm , the middle ITO layer is 163nm, the second phase change material layer is 92nm, the upper ITO layer is 76nm, the top metal layer is 8nm, and the top ITO layer is 39nm; (3) When the two layers of phase change materials are both amorphous, The reflection color is now blue. When the first layer of phase change material is in crystalline state and the second layer of phase change material is in amorphous state, the corresponding color is red. When the two phase-change material layers are both in a crystalline state, the corresponding color is green. The phase transition described above can be achieved by applying electrical pulses. As shown in the figure, the simulation results show that an electrically controlled in-situ switchable reflective color display pixel based on a phase change material provided in this embodiment can freely switch between selectively reflecting red, green and blue colors.
本实施例中的反射率数据通过仿真软件计算获得。如图5所示,为材料Ag,ITO,GeTe和Sb2S3在400nm-700nm可见光波段的折射率n和消光系数k,再将上述材料的光学参数导入仿真软件后即可构建多层膜结构,本实施例在仿真时选择SiO2作为衬底层。在获得仿真得到的反射率数据后,将数据导入OriginLab软件中的Chromaticity Diagram处理为CIE色度图,其中Spectral Power Distribution of Illuminant选择为A,即选择光源为钨丝白织灯光源。The reflectance data in this embodiment are obtained through calculation by simulation software. As shown in Figure 5, it is the refractive index n and extinction coefficient k of the materials Ag, ITO, GeTe and Sb 2 S 3 in the 400nm-700nm visible light band, and then import the optical parameters of the above materials into the simulation software to build a multilayer film structure, this embodiment selects SiO 2 as the substrate layer during simulation. After obtaining the simulated reflectance data, import the data into the Chromaticity Diagram in the OriginLab software and process it into a CIE chromaticity diagram, where Spectral Power Distribution of Illuminant is selected as A, that is, the light source is tungsten white weaving light.
应当理解的是,可以在本申请中使用的诸如“包括”以及“可以包括”之类的表述表示所公开的功能、操作或构成要素的存在性,并且并不限制一个或多个附加功能、操作和构成要素。在本申请中,诸如“包括”和/或“具有”之类的术语可解释为表示特定特性、数目、操作、构成要素、组件或它们的组合,但是不可解释为将一个或多个其它特性、数目、操作、构成要素、组件或它们的组合的存在性或添加可能性排除在外。It should be understood that expressions such as "comprising" and "may include" that may be used in this application indicate the existence of disclosed functions, operations or constituent elements, and do not limit one or more additional functions, operation and components. In the present application, terms such as "comprising" and/or "having" may be interpreted as indicating specific characteristics, numbers, operations, constituent elements, components or combinations thereof, but shall not be interpreted as referring to one or more other characteristics. , number, operation, constituent elements, components or the existence or addition possibility of their combination are excluded.
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。The above is only a specific implementation of the application, but the scope of protection of the application is not limited thereto. Anyone familiar with the technical field can easily think of changes or substitutions within the technical scope disclosed in the application. Should be covered within the protection scope of this application. Therefore, the protection scope of the present application should be determined by the protection scope of the claims.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310440275.6A CN116449629A (en) | 2023-04-21 | 2023-04-21 | Pixel structure and display driving method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310440275.6A CN116449629A (en) | 2023-04-21 | 2023-04-21 | Pixel structure and display driving method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN116449629A true CN116449629A (en) | 2023-07-18 |
Family
ID=87135486
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202310440275.6A Pending CN116449629A (en) | 2023-04-21 | 2023-04-21 | Pixel structure and display driving method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN116449629A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118466052A (en) * | 2024-05-23 | 2024-08-09 | 华中科技大学 | Single-pixel full-color display device based on phase change materials |
CN118759740A (en) * | 2024-07-17 | 2024-10-11 | 华中科技大学 | A display structure |
CN118837982A (en) * | 2024-09-05 | 2024-10-25 | 华中科技大学 | Adjustable absorber |
-
2023
- 2023-04-21 CN CN202310440275.6A patent/CN116449629A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118466052A (en) * | 2024-05-23 | 2024-08-09 | 华中科技大学 | Single-pixel full-color display device based on phase change materials |
CN118759740A (en) * | 2024-07-17 | 2024-10-11 | 华中科技大学 | A display structure |
CN118837982A (en) * | 2024-09-05 | 2024-10-25 | 华中科技大学 | Adjustable absorber |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN116449629A (en) | Pixel structure and display driving method thereof | |
EP3087430B1 (en) | Display device based on phase-change materials | |
CN110568692B (en) | Display device based on phase-change material and quantum dots | |
JP7104436B2 (en) | Multicolor electrochromic structure, its manufacturing method and application | |
CN105938261A (en) | Display device based on phase-change material | |
TW201741730A (en) | Optical device with heat-converting phase change material | |
CN104730796B (en) | A kind of non-volatile display unit and array of display designed using phase-change material | |
EP3333618B1 (en) | Transflective, pcm-based display device | |
CN116577943A (en) | A color filter structure and its pixel array switching control method | |
CN110568636A (en) | A display device based on phase change material | |
US11567389B2 (en) | Display | |
JP3049996B2 (en) | Reflective liquid crystal display device and method of manufacturing the same | |
CN110291447A (en) | Show equipment | |
CN205899180U (en) | A display device based on phase change material | |
CN115729007A (en) | Display panel and display device | |
CN117784450B (en) | Virtual reality display device based on phase change material | |
CN117742011A (en) | A pixel grayscale modulation structure based on phase change materials | |
CN114167656A (en) | Inorganic electrochromic device and display apparatus | |
JP2000162590A (en) | Liquid crystal display device | |
CN118502161B (en) | Phase change display device based on cut-off type phase change light filtering structure | |
CN118466067B (en) | Ultra-high resolution phase change display device based on linear backlight | |
KR20030024596A (en) | Liquid crystal device and electronic apparatus | |
CN118466052A (en) | Single-pixel full-color display device based on phase change materials | |
CN119024612A (en) | An electrically reconfigurable reflective metasurface switching device | |
WO2024087244A1 (en) | Electrically-controllable color filter array based on phase-change material, and artificial vision system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |