CN116449256A - 一种基于声纹传感的变压器状态故障诊断系统及其方法 - Google Patents
一种基于声纹传感的变压器状态故障诊断系统及其方法 Download PDFInfo
- Publication number
- CN116449256A CN116449256A CN202310366244.0A CN202310366244A CN116449256A CN 116449256 A CN116449256 A CN 116449256A CN 202310366244 A CN202310366244 A CN 202310366244A CN 116449256 A CN116449256 A CN 116449256A
- Authority
- CN
- China
- Prior art keywords
- voiceprint
- fault
- transformer
- data
- faults
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000003745 diagnosis Methods 0.000 title claims abstract description 28
- 238000000034 method Methods 0.000 title claims abstract description 18
- 239000004215 Carbon black (E152) Substances 0.000 claims abstract description 7
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 claims abstract description 7
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 claims abstract description 7
- 229930195733 hydrocarbon Natural products 0.000 claims abstract description 7
- 150000002430 hydrocarbons Chemical class 0.000 claims abstract description 7
- 238000001514 detection method Methods 0.000 claims description 22
- 230000004807 localization Effects 0.000 claims description 17
- 238000000605 extraction Methods 0.000 claims description 16
- 238000009413 insulation Methods 0.000 claims description 13
- 239000011159 matrix material Substances 0.000 claims description 10
- 238000004587 chromatography analysis Methods 0.000 claims description 8
- 230000003595 spectral effect Effects 0.000 claims description 7
- 239000000284 extract Substances 0.000 claims description 6
- 238000010606 normalization Methods 0.000 claims description 4
- 238000012545 processing Methods 0.000 claims description 4
- 230000007246 mechanism Effects 0.000 claims description 3
- 230000008569 process Effects 0.000 claims description 3
- 238000012549 training Methods 0.000 claims description 3
- 230000000052 comparative effect Effects 0.000 claims description 2
- 238000001914 filtration Methods 0.000 claims description 2
- 230000006870 function Effects 0.000 abstract description 18
- 238000012544 monitoring process Methods 0.000 abstract description 13
- 230000002159 abnormal effect Effects 0.000 abstract description 6
- 238000007689 inspection Methods 0.000 abstract description 6
- 230000004044 response Effects 0.000 abstract description 4
- 238000007499 fusion processing Methods 0.000 abstract description 2
- 239000003921 oil Substances 0.000 description 13
- 239000007789 gas Substances 0.000 description 9
- 239000000126 substance Substances 0.000 description 7
- 238000004804 winding Methods 0.000 description 7
- 238000004458 analytical method Methods 0.000 description 5
- 230000007547 defect Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 238000001228 spectrum Methods 0.000 description 5
- 230000003862 health status Effects 0.000 description 4
- 238000013021 overheating Methods 0.000 description 4
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 239000006185 dispersion Substances 0.000 description 3
- 230000036541 health Effects 0.000 description 3
- 230000007257 malfunction Effects 0.000 description 3
- 230000005856 abnormality Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 238000011176 pooling Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 241000269350 Anura Species 0.000 description 1
- 241000271566 Aves Species 0.000 description 1
- 241000238631 Hexapoda Species 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 238000002555 auscultation Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000010721 machine oil Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 230000005236 sound signal Effects 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
- 238000001845 vibrational spectrum Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/50—Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
- G01R31/62—Testing of transformers
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01H—MEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
- G01H17/00—Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves, not provided for in the preceding groups
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y04—INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
- Y04S—SYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
- Y04S10/00—Systems supporting electrical power generation, transmission or distribution
- Y04S10/50—Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications
- Y04S10/52—Outage or fault management, e.g. fault detection or location
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Testing Relating To Insulation (AREA)
Abstract
本发明公开了一种基于声纹传感的变压器状态故障诊断系统及其方法,获取变压器的油色谱诊断数据、声纹诊断数据、工况信息记录数据、降负荷运行后总烃含量数据、降负荷运行后乙炔总量数据;构建各种故障情况下的mass函数,将各种数据代入各个故障情况下的mass函数,函数值最大者即可诊断为变压器故障;通过非接触的方式实现对变压器运行状态的实时监测;通过AI学习,针对变压器运行过程中三相不平衡、负荷特征等电气类参数以及局放、空载的异常状态信息的识别和研判,结合运行环境的振动等参量,在前端及时进行信息融合处理并预警,提高了变压器故障响应的实时性,降低了变压器故障发生的风险,提升了运检作业的效率和管控能力。
Description
技术领域
本发明涉及变压器监测技术领域,具体为一种变压器故障诊断方法。
背景技术
变压器是电力系统中传输、分配电能的重要设备,其运行的稳定性和可靠性直接决定了用户供电可靠性。目前的电力变压器运行监测工作基本由人工巡检方式来实现,存在工作量大、效率低、响应迟缓等问题。
以前,少数有经验的运检人员可以凭借设备运行时的声音判断其是否出现异常。然而,电网发展日新月异,随着电力设备不断增多,传统的“人工听诊”方式远不能满足智能管控的实际需求。并且易受外界环境干扰影响,如背景噪音,人员话语声等;变压器、断路器等电力设备在运行时产生的声学和振动信号包含大量的状态信息,且像人的指纹一样具有辨识特征。设备产生缺陷或发生故障后,其声纹会随之改变。准确识别声纹信息,有助于运维人员诊断设备缺陷,锁定故障原因。
比如CN110864801A变压器噪声与振动在线监测及故障分析系统,通过外置贴片式声波传感器预先固定在主变类设备的各个角度及位置,实时对主变声音进行收集采样,将声音信号放大、滤波并转化为数字电信号后通过无线或蓝牙等通讯模块将数据发送给邻近的汇控处理单元,再通过汇控单元通过交换机、光纤网络等将数据发送给在线监测总服务器和监控后台系统。不但可以分析各种故障类型的可能性及原因分析,且可对故障进行综合分析判断,并根据传感器的安装位置及各自的采样数据,初步判断故障点位置。
然而,通过单一传感器判断变压器的故障准确率较低,需要一种可以结合现有多种参数综合分析得到结论。
发明内容
本发明的目的在于提供一种变压器故障诊断方法,以解决上述背景技术中提出的问题。
为实现上述目的,本发明提供如下技术方案:
一种基于声纹传感的变压器状态故障诊断方法,其特征在于:包括:
获取变压器的油色谱诊断数据、声纹诊断数据、工况信息记录数据(主要是变压器的负载状况)、降负荷运行后总烃含量数据、降负荷运行后乙炔总量数据;
构建各种故障情况下的mass函数,将各种数据代入各个故障情况下的mass函数,函数值最大者即可诊断为变压器故障。
优选的,所述故障包括断路故障、绝缘故障、电路故障、磁路故障和无故障;
断路故障mass函数:
绝缘故障mass函数:
电路故障mass函数:
磁路故障mass函数:
无故障mass函数:
其中,k=1-K,K为归一化常数;
断路故障和绝缘故障中
电路故障、磁路故障和无故障中
其中,m1(e1)为油色谱诊断为e1时各故障发生的概率,m2(e2)为声纹诊断为e2时各故障发生的概率,m3(e3)为工况信息记录为e3时各故障发生的概率,m4(e4)为降负荷运行后总烃含量为e4时各故障发生的概率,m5(e5)为降负荷运行后乙炔总量为e5时各故障发生的概率,A为故障种类。
一种基于声纹传感的变压器状态故障诊断系统,包括壳体以及安装在壳体上的通道声源定位系统元件、抗干扰检测元件、声纹特征提取元件、故障声纹判断元件;
所述通道声源定位系统元件用于采集变压器的声纹数据,并将采集的声纹数据发送到抗干扰检测元件;
所述抗干扰检测元件对接收的声纹数据进行滤波处理,然后将处理后的声纹数据发送到声纹特征提取元件;
所述声纹特征提取元件用于从处理后的声纹数据中提取出多个目标对应的基频和谐波;
所述故障声纹判断元件用于将每个目标的基频和谐波与目标预设的基频和谐波进行对比计算相似度,判断变压器的故障类型,输出结果。
优选的,所述壳体呈内部中空一端开口的喇叭状结构。
优选的,所述通道声源定位系统元件设置在壳体的开口端。
优选的,所述通道声源定位系统元件为64通道声源定位系统,可覆盖可听声与超声频段。
优选的,所述故障声纹判断元件构建基于MobileNetV3的声纹检测模型,所述声纹检测模型包括声纹特征提取模块,MobileNetV3模块以及循环模块;所述声纹特征提取模块通过时域图提取特征,所述MobileNetV3模块将提取的特征进行分类,并将其接入循环模块,通过前后帧的信息进行建模,提高模型精准度。
优选的,所述故障声纹判断元件引入注意力机制构建基于MobileNetV3的声纹检测模型,对得到的特征矩阵,对每个channel进行池化处理,接下来通过两个全连接层得到输出的向量,其中第一个全连接层,它的全连接层节点数是输入特征矩阵channel的1/4,第二个全连接层的channel与特征矩阵的channel保持一致的。
优选的,在声纹检测模型训练的过程中使用损失函数进行验证;
其中,m、n分别表示样本数量及类别总数,为个样本对应的交叉熵损失,pi为样本是类别i的概率,由此可以得到变压器故障的声纹特征。
优选的,还包括有振动传感器,所述振动传感器用于采集变压器在工作时的振动信号,并通过处理器提取对应的频谱特征,将取得到的变压器各种故障工作时的频谱特征作为对比特征;
处理器对频谱特征和对比特征进行分析对比,诊断变压器的工作状态或者故障类型。
与现有技术相比,本发明的有益效果是:
在不影响变压器正常运行的前提条件下,通过非接触的方式实现对变压器运行状态的实时监测;
通过AI学习,针对变压器运行过程中三相不平衡、负荷特征等电气类参数以及局放、空载的异常状态信息的识别和研判,结合运行环境的振动等参量,在前端及时进行信息融合处理并预警,提高了变压器故障响应的实时性,降低了变压器故障发生的风险,提升了运检作业的效率和管控能力;
借助64通道声源定位系统元件,覆盖可听声与超声频段,迅速定位异常声源位置,分析缺陷类型,大幅提高设备运检效率;
声纹特征提取元件通过分析变压器声纹特征量得到不通电压等级、冷却方式主变的分散度特征参数分布基本相似,分散度特征参数分布与变压器电压等级、冷却方式无关,变压器频谱分散度特征参数近似呈现高斯正态分布特征等,通过对每个特征参数赋权,计算变压器健康状态注意、异常的阈值参数,对接收到的每组检测数据计算变压器的健康指标参数,将该参数与阈值对比,判断变压器当前健康状态;
在收集大量变压器声纹样本的基础上,借助算法提高故障诊断准确率。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例描述所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明声纹诊断器结构示意图;
图2为本发明壳体第一个方向结构示意图;
图3为本发明壳体第二个方向结构示意图;
图4为本发明通道声源定位系统元件结构示意图;
图5为本发明变压器振动来源及传播途径示意图。
1、通道声源定位系统元件;2、壳体;3、抗干扰检测元件;4、声纹特征提取元件;5、故障声纹判断元件。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
如图1-5所示:
壳体2的开口处设有组合相连使用的配接式通道声源定位系统元件1,通道声源定位系统元件1内端一线对接有抗干扰检测元件3,声纹特征提取元件4间隔一侧位置安装有故障声纹判断元件5,故障声纹判断元件5对应嵌设在壳体2表面局部凹槽点位上。
壳体2呈喇叭状/圆筒/仿耳朵状结构有利于采集声音,通道声源定位系统元件1为64通道声源定位系统,可覆盖可听声与超声频段,迅速定位异常声源位置,分析缺陷类型,大幅提高设备运检效率;
抗干扰检测元件3通过监测变压器声信号特性的得到变压器噪声为平稳信号,故障声纹判断元件5对接收到的每组检测数据计算变压器的健康指标参数;
抗干扰检测元件3工作原理:通过监测变压器声信号特性的得到变压器噪声为平稳信号,主要集中在700Hz范围内50Hz偶数倍谐频分量,冷却风机噪声为平稳信号,频谱主要位于2kHz范围内,除转动频率外其余频率分量能量分布较为均匀。而外界存在许多的干扰如虫鸣、蛙鸣、鸟鸣、车辆等,他们普遍存在突发性、间歇性且集中在一定的范围内,借助包谱法、短时窗法、滤波器法将外环境声音干扰降低。
纹特征提取元件4工作原理如下:不同的变压器、负载、冷却装置的老化、绕组变形、谐波含量的不同、直流偏磁,其他工况等从中得到多维度的变压器声纹特征量,得到频率比值特征、小波包能量、分散度特征并得到其集中趋势、离散程度、偏态与峰态。
故障声纹判断元件5工作原理:利用特征组合判断变压器故障类型,对每个特征参数赋权,计算变压器健康状态注意、异常的阈值参数,对接收到的每组检测数据计算变压器的健康指标参数,将该参数与阈值对比,判断变压器当前健康状态。
采用基于MobileNetV3的声纹检测模型,模型主要分为声纹特征提取模块,MobileNetV3模块及循环模块。声纹特征提取模块通过时域图提取特征,而MobileNetV3模块则是将特征进行分类,并将其接入循环模块,通过前后帧的信息进行建模,提高模型精准度。在训练的过程中使用损失函数进行验证m,n分别表示样本数量及类别总数,/>为个样本对应的交叉熵损失,pi为样本是类别i的概率。由此可以得到变压器故障的声纹特征,配合实时采集得到的变压器运行过程中三相不平衡、负荷特征等电气类参数以及局放、空载的异常状态信息,提高变压器的故障响应实时性。
MobileNetv3相较于以往的模型加入了注意力机制(SE),对得到的特征矩阵,对每个channel进行池化处理,接下来通过两个全连接层得到输出的向量,其中第一个全连接层,它的全连接层节点数是等于输入特征矩阵channel的1/4,第二个全连接层的channel是与我们特征矩阵的channel保持一致的。经过平均池化+两个全连接层,输出的特征向量可以理解为是对SE之前的特征矩阵的每一个channel分析出了一个权重关系,它认为比较重要的channel会赋予一个更大的权重,对于不是那么重要的channel维度上对应一个比较小的权重。因此相较于以往的模型,其分类正确率上升了3.2%,计算延时降低了20%。
还包括有振动传感器,在使用时将振动传感器通过永磁体临时吸附在待检测的变压器油箱体外表面;振动传感器用于采集变压器在工作时的振动信号,并通过处理器提取对应的频谱特征;
如图5所示,变压器油箱体的振动有多种来源,不同来源的振动频率不一样,在处理器内预存各种情况造成的变压器油箱体振动频谱特征;
处理器将现场获得的变压器频谱特征与预存的各种频谱特征进行比对,其中相似度最高的频谱特征即为现场变压器的工作状态或者振动来源。确定了现场变压器的振动来源可为后续的变压器故障提供参考。
各个传感器得到的数值所诊断的故障类型均不相同但是同时,不同的监测系统之间对故障的诊断往往又有重叠部分,可以利用不同的传感器配合性监测来缩小诊断的故障范围,比如当油中溶解气体色谱监测系统发现过热性故障时,可以结合接地电流监测系统的监测数据进行分析,来排除或者确认是否发生了铁芯多点接地故障导致绝缘过热,从而产生对应气体。通过这种方式可以进一步缩小故障的范围,某些情况下可以直接确定故障类型;
电力变压器的故障通常分为外部和内部故障。内部故障的根本原因主要有电源绕组和绝缘铁心机械松动、绕组谐振、过热、绝缘油降解、氧化、受潮、绝缘油的各种化学固体物质污染、局部放电、设计和制造缺陷。导致外部故障的原因有系统故障如短路、雷击、系统过载和系统切换误操作。通常内部故障的根本原因主要有电源绕组和绝缘铁心机械松动、绕组谐振、过热、绝缘油降解、氧化、受潮、绝缘油的各种化学固体物质污染、局部放电、设计和制造缺陷;传统的方法不能准确检测绕组、铁心、线夹等结构部件的松动故障,但利用振动可以有效、准确地监测这些故障。
e1为获取的油色谱诊断数据(采用大卫三角形法)、e2为通过本系统获取的声纹诊断数据、e3为获取的工况信息记录、e4为获取的降负荷运行后总烃含量、e5为获取的降负荷运行后乙炔总量;通过e1-e5可初步判断得到绝缘故障、短路故障、放电故障、保护及误动故障。
K为归一化常数,k=1-K;式中K为冲突因子,表示不同证据之间的冲突性,K越大,表面不同证据之间的冲突性大,1/(1-k)为归一化因子。m1、m2、m3、m4、m5分别为e1、e2、e3、e4、e5校正后的故障概率值;
数据融合的计算过程:
通过求解上述mass函数,得到各个故障的mass函数值,函数值最大者即可诊断为变压器故障。
通过振动传感器测量和分析变压器表面的振动信号来判断和预测绕组和铁心故障。配合气相色谱分析法来进行判定。通过色谱来检测到机器油中溶解气体中的各种化学物质的化学组成和其中各种气体的含量后就完全可以很好地将其判断分析出来。例如对变压器油中溶解气体所含的平均氧化氢的含气量和其他成分化学物质含量进行色谱分析时,铁心、过热等气体故障主要原因表现在这些因素分析认为变压器油中溶解气体中所含CH4及四环烯烃等其他成分的平均氧化氢浓度含量相对较高,而其中CO和以及CO2等组分气体的平均氧化氢浓度含量与以往的气体相比其变动幅度不大,而间歇性的多点连续接地的故障主要表现在色谱学分析中已经发现包括了含有如C2H2等的气体。
实施例一:
以识别电路故障,磁路故障,无故障三者为例:
m4(e4)为降负荷运行后总烃含量为e4时各故障发生的概率,m5(e5)为降负荷运行后乙炔总量为e5是各故障发生的概率;
电路故障mass函数:
磁路故障mass函数:
无故障mass函数:
计算所有公式后,电路故障数值最大,电路故障为发生的故障;
通过油色谱大卫三角诊断,声纹诊断,工况信息记录,也可判断得到绝缘故障、短路故障、放电故障、保护及误动故障。
实施例二:
以识别短路故障,绝缘故障,放电故障三者为例:
短路故障:
绝缘故障:
放电故障:
计算所有公式后,绝缘故障数值最大,绝缘故障为发生的故障。
在本说明书的描述中,参考术语“一个实施例”、“示例”、“具体示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上公开的本发明优选实施例只是用于帮助阐述本发明。优选实施例并没有详尽叙述所有的细节,也不限制该发明仅为所述的具体实施方式。显然,根据本说明书的内容,可作很多的修改和变化。本说明书选取并具体描述这些实施例,是为了更好地解释本发明的原理和实际应用,从而使所属技术领域技术人员能很好地理解和利用本发明。本发明仅受权利要求书及其全部范围和等效物的限制。
Claims (10)
1.一种基于声纹传感的变压器状态故障诊断系统,其特征在于:包括壳体(2)以及安装在壳体(2)上的通道声源定位系统元件(1)、抗干扰检测元件(3)、声纹特征提取元件(4)、故障声纹判断元件(5);
所述通道声源定位系统元件(1)用于采集变压器的声纹数据,并将采集的声纹数据发送到抗干扰检测元件(3);
所述抗干扰检测元件(3)对接收的声纹数据进行滤波处理,然后将处理后的声纹数据发送到声纹特征提取元件(4);
所述声纹特征提取元件(4)用于从处理后的声纹数据中提取出多个目标对应的基频和谐波;
所述故障声纹判断元件(5)用于将每个目标的基频和谐波与目标预设的基频和谐波进行对比计算相似度,判断变压器的故障类型,输出结果。
2.根据权利要求1所述的一种基于声纹传感的变压器状态故障诊断系统,其特征在于:所述壳体(2)呈内部中空一端开口的喇叭状结构。
3.根据权利要求2所述的一种基于声纹传感的变压器状态故障诊断系统,其特征在于:所述通道声源定位系统元件(1)设置在壳体(2)的开口端。
4.根据权利要求1所述的一种基于声纹传感的变压器状态故障诊断系统,其特征在于:所述通道声源定位系统元件(1)为64通道声源定位系统,可覆盖可听声与超声频段。
5.根据权利要求1所述的一种基于声纹传感的变压器状态故障诊断系统,其特征在于:所述故障声纹判断元件(5)构建基于MobileNetV3的声纹检测模型,所述声纹检测模型包括声纹特征提取模块,MobileNetV3模块以及循环模块;所述声纹特征提取模块通过时域图提取特征,所述MobileNetV3模块将提取的特征进行分类,并将其接入循环模块,通过前后帧的信息进行建模,提高模型精准度。
6.根据权利要求5所述的一种基于声纹传感的变压器状态故障诊断系统,其特征在于:所述故障声纹判断元件(5)引入注意力机制构建基于MobileNetV3的声纹检测模型,对得到的特征矩阵,对每个channel进行池化处理,接下来通过两个全连接层得到输出的向量,其中第一个全连接层,它的全连接层节点数是输入特征矩阵channel的1/4,第二个全连接层的channel与特征矩阵的channel保持一致的。
7.根据权利要求6所述的一种基于声纹传感的变压器状态故障诊断系统,其特征在于:在声纹检测模型训练的过程中使用损失函数进行验证;
其中,m、n分别表示样本数量及类别总数,为个样本对应的交叉熵损失,pi为样本是类别i的概率,由此可以得到变压器故障的声纹特征。
8.根据权利要求7所述的一种基于声纹传感的变压器状态故障诊断系统,其特征在于:还包括有振动传感器,所述振动传感器用于采集变压器在工作时的振动信号,并通过处理器提取对应的频谱特征,将取得到的变压器各种故障工作时的频谱特征作为对比特征;
处理器对频谱特征和对比特征进行分析对比,诊断变压器的工作状态或者故障类型。
9.一种基于声纹传感的变压器状态故障诊断方法,其特征在于:包括:
获取变压器的油色谱诊断数据、声纹诊断数据、工况信息记录数据、降负荷运行后总烃含量数据、降负荷运行后乙炔总量数据;
构建各种故障情况下的mass函数,将各种数据代入各个故障情况下的mass函数,函数值最大者即可诊断为变压器故障。
10.根据权利要求9所述的一种基于声纹传感的变压器状态故障诊断方法,其特征在于:所述故障包括断路故障、绝缘故障、电路故障、磁路故障和无故障;
断路故障mass函数:
绝缘故障mass函数:
电路故障mass函数:
磁路故障mass函数:
无故障mass函数:
其中,k=1-K,K为归一化常数;
断路故障和绝缘故障中:
电路故障、磁路故障和无故障中:
其中,m1(e1)为油色谱诊断为e1时各故障发生的概率,m2(e2)为声纹诊断为e2时各故障发生的概率,m3(e3)为工况信息记录为e3时各故障发生的概率,m4(e4)为降负荷运行后总烃含量为e4时各故障发生的概率,m5(e5)为降负荷运行后乙炔总量为e5时各故障发生的概率,A为故障种类。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310366244.0A CN116449256A (zh) | 2023-04-07 | 2023-04-07 | 一种基于声纹传感的变压器状态故障诊断系统及其方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310366244.0A CN116449256A (zh) | 2023-04-07 | 2023-04-07 | 一种基于声纹传感的变压器状态故障诊断系统及其方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN116449256A true CN116449256A (zh) | 2023-07-18 |
Family
ID=87125039
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202310366244.0A Pending CN116449256A (zh) | 2023-04-07 | 2023-04-07 | 一种基于声纹传感的变压器状态故障诊断系统及其方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN116449256A (zh) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118335108A (zh) * | 2024-06-12 | 2024-07-12 | 国网江西省电力有限公司超高压分公司 | 基于卷尾猴搜索算法的变压器异响故障识别方法 |
CN118362943A (zh) * | 2024-06-19 | 2024-07-19 | 国网山东省电力公司聊城供电公司 | 一种基于非电量综合特征信息的变压器监测装置及方法 |
CN118519070A (zh) * | 2024-07-23 | 2024-08-20 | 江西华莱电技术有限公司 | 一种变压器的检测方法及系统 |
CN118865982A (zh) * | 2024-07-18 | 2024-10-29 | 上海锐测电子科技有限公司 | 一种用于设备缺陷分析的声纹在线监测方法及其系统 |
-
2023
- 2023-04-07 CN CN202310366244.0A patent/CN116449256A/zh active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118335108A (zh) * | 2024-06-12 | 2024-07-12 | 国网江西省电力有限公司超高压分公司 | 基于卷尾猴搜索算法的变压器异响故障识别方法 |
CN118362943A (zh) * | 2024-06-19 | 2024-07-19 | 国网山东省电力公司聊城供电公司 | 一种基于非电量综合特征信息的变压器监测装置及方法 |
CN118865982A (zh) * | 2024-07-18 | 2024-10-29 | 上海锐测电子科技有限公司 | 一种用于设备缺陷分析的声纹在线监测方法及其系统 |
CN118865982B (zh) * | 2024-07-18 | 2024-12-17 | 上海锐测电子科技有限公司 | 一种用于设备缺陷分析的声纹在线监测方法及其系统 |
CN118519070A (zh) * | 2024-07-23 | 2024-08-20 | 江西华莱电技术有限公司 | 一种变压器的检测方法及系统 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN116449256A (zh) | 一种基于声纹传感的变压器状态故障诊断系统及其方法 | |
CN114793019B (zh) | 基于大数据分析的二次设备可视化监管系统 | |
CN106199305A (zh) | 煤矿井下供电系统用干式变压器绝缘健康状态评估方法 | |
CN108459295B (zh) | 基于分布式数据采集处理的cvt在线监测系统和方法 | |
CN112201260A (zh) | 一种基于声纹识别的变压器运行状态在线检测方法 | |
CN103499382B (zh) | 一种基于振动数据融合和图像识别的变压器故障诊断方法 | |
CN112880750A (zh) | 一种变压器多维度综合在线监测智能诊断系统 | |
CN110503977A (zh) | 一种变电站设备音频信号采集分析系统 | |
CN103884943A (zh) | 一种变压器绕组变形综合分析诊断方法 | |
CN115166393A (zh) | 一种变压器的智能诊断及状态评估方法 | |
CN106770652A (zh) | 基于声波特征的高压变压器健康状态监测装置及监测方法 | |
CN118503843A (zh) | 一种变电设备局放监测干扰评估方法、介质及系统 | |
CN117192310A (zh) | 一种高压套管局部放电的在线监测方法、系统及介质 | |
CN116125347B (zh) | 基于光纤传感器的油浸变压器绕组检测方法及系统 | |
CN115618205A (zh) | 一种便携式声纹故障检测系统及方法 | |
CN116184265A (zh) | 一种基于多分类svm的避雷器泄漏电流检测方法和系统 | |
CN117153193A (zh) | 融合物理特性和数据诊断的电力设备故障声纹识别方法 | |
CN118380013A (zh) | 一种基于声纹识别技术的开关柜监测与故障诊断方法 | |
CN110716133B (zh) | 一种基于物联网及大数据技术的高压断路器故障研判方法 | |
CN113267711B (zh) | 变电站高压电气设备绝缘状态在线监测系统及监测方法 | |
CN113884837A (zh) | 一种电缆局部放电在线监测分析系统及分析方法 | |
CN118782099A (zh) | 基于声音频谱分析的电力设备故障监测方法 | |
CN1225948C (zh) | 一种加速器噪声故障诊断方法 | |
CN117932358A (zh) | 一种智能远程电场故障诊断方法及系统 | |
CN116298844A (zh) | 基于半动态布置的变电站高压断路器状态监测系统及方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |