CN116448290A - High-frequency dynamic MEMS piezoresistive pressure sensor and preparation method thereof - Google Patents
High-frequency dynamic MEMS piezoresistive pressure sensor and preparation method thereof Download PDFInfo
- Publication number
- CN116448290A CN116448290A CN202310695679.XA CN202310695679A CN116448290A CN 116448290 A CN116448290 A CN 116448290A CN 202310695679 A CN202310695679 A CN 202310695679A CN 116448290 A CN116448290 A CN 116448290A
- Authority
- CN
- China
- Prior art keywords
- layer
- passivation layer
- substrate
- electrode layer
- thickness
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000002360 preparation method Methods 0.000 title claims abstract description 30
- 238000002161 passivation Methods 0.000 claims abstract description 145
- 239000000758 substrate Substances 0.000 claims abstract description 95
- 239000010408 film Substances 0.000 claims abstract description 18
- 239000010409 thin film Substances 0.000 claims abstract description 11
- 239000000463 material Substances 0.000 claims description 64
- 238000000206 photolithography Methods 0.000 claims description 51
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 36
- 238000004518 low pressure chemical vapour deposition Methods 0.000 claims description 29
- 229910052802 copper Inorganic materials 0.000 claims description 25
- 239000010949 copper Substances 0.000 claims description 25
- 238000000034 method Methods 0.000 claims description 24
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 21
- 239000002131 composite material Substances 0.000 claims description 21
- 238000005259 measurement Methods 0.000 claims description 20
- 238000000231 atomic layer deposition Methods 0.000 claims description 19
- 238000009616 inductively coupled plasma Methods 0.000 claims description 18
- 238000001755 magnetron sputter deposition Methods 0.000 claims description 17
- 229910052751 metal Inorganic materials 0.000 claims description 17
- 239000002184 metal Substances 0.000 claims description 17
- 238000005530 etching Methods 0.000 claims description 14
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 12
- INIGCWGJTZDVRY-UHFFFAOYSA-N hafnium zirconium Chemical compound [Zr].[Hf] INIGCWGJTZDVRY-UHFFFAOYSA-N 0.000 claims description 12
- 235000012239 silicon dioxide Nutrition 0.000 claims description 12
- 239000000377 silicon dioxide Substances 0.000 claims description 12
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 12
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 12
- 238000001514 detection method Methods 0.000 claims description 11
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 9
- 229910052710 silicon Inorganic materials 0.000 claims description 9
- 239000010703 silicon Substances 0.000 claims description 9
- 238000004544 sputter deposition Methods 0.000 claims description 9
- 239000003990 capacitor Substances 0.000 claims description 6
- 239000011521 glass Substances 0.000 claims description 6
- 238000005468 ion implantation Methods 0.000 claims description 6
- 238000001020 plasma etching Methods 0.000 claims description 6
- GNFTZDOKVXKIBK-UHFFFAOYSA-N 3-(2-methoxyethoxy)benzohydrazide Chemical compound COCCOC1=CC=CC(C(=O)NN)=C1 GNFTZDOKVXKIBK-UHFFFAOYSA-N 0.000 claims description 4
- FGUUSXIOTUKUDN-IBGZPJMESA-N C1(=CC=CC=C1)N1C2=C(NC([C@H](C1)NC=1OC(=NN=1)C1=CC=CC=C1)=O)C=CC=C2 Chemical compound C1(=CC=CC=C1)N1C2=C(NC([C@H](C1)NC=1OC(=NN=1)C1=CC=CC=C1)=O)C=CC=C2 FGUUSXIOTUKUDN-IBGZPJMESA-N 0.000 claims description 4
- YTAHJIFKAKIKAV-XNMGPUDCSA-N [(1R)-3-morpholin-4-yl-1-phenylpropyl] N-[(3S)-2-oxo-5-phenyl-1,3-dihydro-1,4-benzodiazepin-3-yl]carbamate Chemical compound O=C1[C@H](N=C(C2=C(N1)C=CC=C2)C1=CC=CC=C1)NC(O[C@H](CCN1CCOCC1)C1=CC=CC=C1)=O YTAHJIFKAKIKAV-XNMGPUDCSA-N 0.000 claims description 4
- 229910021421 monocrystalline silicon Inorganic materials 0.000 claims description 3
- 239000010410 layer Substances 0.000 description 268
- 238000010586 diagram Methods 0.000 description 21
- 230000008859 change Effects 0.000 description 8
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 6
- 229910052804 chromium Inorganic materials 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 239000010936 titanium Substances 0.000 description 4
- 229910052719 titanium Inorganic materials 0.000 description 4
- 239000002033 PVDF binder Substances 0.000 description 3
- VYBYZVVRYQDCGQ-UHFFFAOYSA-N alumane;hafnium Chemical compound [AlH3].[Hf] VYBYZVVRYQDCGQ-UHFFFAOYSA-N 0.000 description 3
- JRPBQTZRNDNNOP-UHFFFAOYSA-N barium titanate Chemical compound [Ba+2].[Ba+2].[O-][Ti]([O-])([O-])[O-] JRPBQTZRNDNNOP-UHFFFAOYSA-N 0.000 description 3
- 229910002113 barium titanate Inorganic materials 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000002955 isolation Methods 0.000 description 3
- 239000002121 nanofiber Substances 0.000 description 3
- 239000002135 nanosheet Substances 0.000 description 3
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 3
- 239000011241 protective layer Substances 0.000 description 3
- 238000011084 recovery Methods 0.000 description 3
- 239000004408 titanium dioxide Substances 0.000 description 3
- 230000001133 acceleration Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 230000035882 stress Effects 0.000 description 2
- 230000008646 thermal stress Effects 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- 229910007746 Zr—O Inorganic materials 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000013473 artificial intelligence Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000009530 blood pressure measurement Methods 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000013178 mathematical model Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 230000001502 supplementing effect Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L1/00—Measuring force or stress, in general
- G01L1/18—Measuring force or stress, in general using properties of piezo-resistive materials, i.e. materials of which the ohmic resistance varies according to changes in magnitude or direction of force applied to the material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B81—MICROSTRUCTURAL TECHNOLOGY
- B81B—MICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
- B81B3/00—Devices comprising flexible or deformable elements, e.g. comprising elastic tongues or membranes
- B81B3/0018—Structures acting upon the moving or flexible element for transforming energy into mechanical movement or vice versa, i.e. actuators, sensors, generators
- B81B3/0021—Transducers for transforming electrical into mechanical energy or vice versa
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B81—MICROSTRUCTURAL TECHNOLOGY
- B81B—MICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
- B81B7/00—Microstructural systems; Auxiliary parts of microstructural devices or systems
- B81B7/02—Microstructural systems; Auxiliary parts of microstructural devices or systems containing distinct electrical or optical devices of particular relevance for their function, e.g. microelectro-mechanical systems [MEMS]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B81—MICROSTRUCTURAL TECHNOLOGY
- B81C—PROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
- B81C1/00—Manufacture or treatment of devices or systems in or on a substrate
- B81C1/00015—Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
- B81C1/00134—Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems comprising flexible or deformable structures
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B81—MICROSTRUCTURAL TECHNOLOGY
- B81B—MICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
- B81B2201/00—Specific applications of microelectromechanical systems
- B81B2201/02—Sensors
- B81B2201/0264—Pressure sensors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Computer Hardware Design (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Pressure Sensors (AREA)
- Measuring Fluid Pressure (AREA)
Abstract
本发明涉及压力传感器技术领域,具体公开了一种高频动态MEMS压阻式压力传感器及其制备方法,高频动态MEMS压阻式压力传感器包括包括基底、第一衬底和压力敏感薄膜,压力敏感薄膜设置在第一衬底上,第一衬底设置在所述基底上;压力敏感薄膜包括压敏电阻、欧姆接触区、第一钝化层、第二钝化层、压敏电极层、第三钝化层、第一驱动电极层、第一介电层、第二驱动电极层、第四钝化层、第五钝化层、第一应变电极层和第二介电层。本发明提供的高频动态MEMS压阻式压力传感器,能够有效提高MEMS压阻式压力传感器的高频动态特性,并且可以减小甚至消弭外界环境对传感器的冲击影响,降低压力传感器的零偏和温漂,提高压力传感器的精度。
The invention relates to the technical field of pressure sensors, and specifically discloses a high-frequency dynamic MEMS piezoresistive pressure sensor and a preparation method thereof. The high-frequency dynamic MEMS piezoresistive pressure sensor includes a substrate, a first substrate and a pressure-sensitive film, and a pressure The sensitive thin film is arranged on the first substrate, and the first substrate is arranged on the base; the pressure sensitive thin film includes a piezoresistor, an ohmic contact area, a first passivation layer, a second passivation layer, a pressure sensitive electrode layer, The third passivation layer, the first driving electrode layer, the first dielectric layer, the second driving electrode layer, the fourth passivation layer, the fifth passivation layer, the first strain electrode layer and the second dielectric layer. The high-frequency dynamic MEMS piezoresistive pressure sensor provided by the present invention can effectively improve the high-frequency dynamic characteristics of the MEMS piezoresistive pressure sensor, reduce or even eliminate the impact of the external environment on the sensor, and reduce the zero bias and pressure of the pressure sensor. Temperature drift, improve the accuracy of the pressure sensor.
Description
技术领域technical field
本发明涉及压力传感器技术领域,尤其涉及一种高频动态MEMS压阻式压力传感器及其制备方法。The invention relates to the technical field of pressure sensors, in particular to a high-frequency dynamic MEMS piezoresistive pressure sensor and a preparation method thereof.
背景技术Background technique
压力是现代测控技术需要关注的重要物理参量之一,而随着现代测控技术的发展,对于高频环境下的动态测量要求也随之提高,而传统的压力传感器难以满足高频动态压力测量的要求。面对更加特定的情况,如航空航天,医疗电子,武器控制,人工智能等快速、高频环境下,所需要测试的便是变化极快的瞬变压力信号。Pressure is one of the important physical parameters that modern measurement and control technology needs to pay attention to. With the development of modern measurement and control technology, the requirements for dynamic measurement in high-frequency environments have also increased, and traditional pressure sensors are difficult to meet the requirements of high-frequency dynamic pressure measurement. Require. In the face of more specific situations, such as aerospace, medical electronics, weapon control, artificial intelligence and other fast and high-frequency environments, what needs to be tested is the extremely fast-changing transient pressure signal.
MEMS(Micro-Electro-Mechanical System,微机电系统)压阻式压力传感器是利用半导体材料的压阻效应,通过把半导体材料互联形成惠斯通电桥,将力学信号转换为电学信号,从而实现对压力的测量。相对于其它传统压力传感器,MEMS压阻式压力传感器已经具有较好的高频动态特性,但是随着后级处理电路的高速化,当下MEMS压阻式压力传感器的动态测量能力,已经逐渐成为系统中的短板,满足不了日益增长的商业需求,仍然存在建立时间和回复时间较长的问题,因此需要将高频动态特性纳入设计的考量中。MEMS (Micro-Electro-Mechanical System, Micro-Electro-Mechanical System) piezoresistive pressure sensor uses the piezoresistive effect of semiconductor materials to form a Wheatstone bridge by interconnecting semiconductor materials to convert mechanical signals into electrical signals. Measurement. Compared with other traditional pressure sensors, MEMS piezoresistive pressure sensors already have better high-frequency dynamic characteristics, but with the high-speed post-processing circuit, the dynamic measurement capability of the current MEMS piezoresistive pressure sensors has gradually become a system The short board in the middle cannot meet the growing business needs, and there are still problems of long setup time and response time. Therefore, high-frequency dynamic characteristics need to be taken into consideration in the design.
此外,不同的使用领域对压力传感器的测量精度也产生相应的影响。比如温度改变或者受到冲击等。环境中的温度改变,会因为热膨胀带来应力的改变。显著的温度变化,测量的非线性将会变得极为严重,制约了压力传感器的测量精度和使用范围。现有解决方案一般是通过额外增加温度传感装置,采用经验公式对结果进行补偿,但是相应的,这些设计对传感器尺寸提出了一些考验,同时这种分立测量,只能够通过温度值推知热应力的影响,其函数关系的非线性会随着外部压力的改变而改变,热应力和外部压力共同存在时,测量存在一定误差,从而对传感器的测量精度产生一定的影响。In addition, different fields of use also have a corresponding impact on the measurement accuracy of the pressure sensor. Such as temperature changes or shocks. Changes in temperature in the environment will cause changes in stress due to thermal expansion. With significant temperature changes, the nonlinearity of measurement will become extremely serious, which restricts the measurement accuracy and application range of the pressure sensor. Existing solutions generally add additional temperature sensing devices and use empirical formulas to compensate the results, but correspondingly, these designs pose some challenges to the size of the sensor. At the same time, this kind of discrete measurement can only infer thermal stress through temperature values. The nonlinearity of the function relationship will change with the change of the external pressure. When the thermal stress and the external pressure coexist, there will be a certain error in the measurement, which will have a certain impact on the measurement accuracy of the sensor.
发明内容Contents of the invention
本发明的目的在于克服现有技术中存在的不足,提供了一种高频动态MEMS压阻式压力传感器及高频动态MEMS压阻式压力传感器的制备方法,能够有效提高MEMS压阻式压力传感器的高频动态特性,并且可以减小甚至消弭外界环境对传感器的冲击影响,降低压力传感器的零偏和温漂,提高压力传感器的精度。The purpose of the present invention is to overcome the deficiencies in the prior art, and provide a high-frequency dynamic MEMS piezoresistive pressure sensor and a preparation method for a high-frequency dynamic MEMS piezoresistive pressure sensor, which can effectively improve the performance of the MEMS piezoresistive pressure sensor. High-frequency dynamic characteristics, and can reduce or even eliminate the impact of the external environment on the sensor, reduce the zero bias and temperature drift of the pressure sensor, and improve the accuracy of the pressure sensor.
作为本发明的一个方面,提供一种高频动态MEMS压阻式压力传感器,包括基底、第一衬底和压力敏感薄膜,所述压力敏感薄膜设置在所述第一衬底上,所述第一衬底设置在所述基底上;As one aspect of the present invention, a high-frequency dynamic MEMS piezoresistive pressure sensor is provided, including a base, a first substrate, and a pressure-sensitive film, the pressure-sensitive film is arranged on the first substrate, and the first a substrate is disposed on the base;
其中,所述压力敏感薄膜包括压敏电阻、欧姆接触区、第一钝化层、第二钝化层、压敏电极层、第三钝化层、第一驱动电极层、第一介电层、第二驱动电极层、第四钝化层、第五钝化层、第一应变电极层和第二介电层,所述第一衬底上设置有四个压敏电阻和八个欧姆接触区,所述八个欧姆接触区分别位于四个所述压敏电阻的短边两端,所述第一衬底和所述压敏电阻的上表面形成有所述第一钝化层,所述第一钝化层上表面形成有所述第二钝化层,在所述第一钝化层和第二钝化层上对应所述欧姆接触区的位置开设有孔以露出所述欧姆接触区,通过光刻和磁控溅射一层铜在所述欧姆接触区和所述第二钝化层的上表面形成所述压敏电极层,以将四个所述压敏电阻连接成惠斯通电桥,所述第二钝化层和压敏电极层的上表面形成有所述第三钝化层,所述第三钝化层的上表面形成有所述第一驱动电极层,所述第三钝化层和第一驱动电极层的上表面形成有所述第一介电层,所述第一介电层的上表面形成有所述第二驱动电极层,所述第一介电层和第二驱动电极层的上表面形成有所述第四钝化层,所述第一衬底的背面依次开设有第一凹槽和第二凹槽,所述第一凹槽的下表面依次形成有所述第五钝化层、所述第一应变电极层和所述第二介电层;Wherein, the pressure-sensitive thin film includes a piezoresistor, an ohmic contact area, a first passivation layer, a second passivation layer, a pressure-sensitive electrode layer, a third passivation layer, a first driving electrode layer, a first dielectric layer , the second driving electrode layer, the fourth passivation layer, the fifth passivation layer, the first strain electrode layer and the second dielectric layer, four piezoresistors and eight ohmic contacts are arranged on the first substrate regions, the eight ohmic contact regions are respectively located at both ends of the short sides of the four varistors, the first substrate and the upper surface of the varistors are formed with the first passivation layer, so The second passivation layer is formed on the upper surface of the first passivation layer, and a hole is opened on the first passivation layer and the second passivation layer corresponding to the ohmic contact region to expose the ohmic contact area, the pressure-sensitive electrode layer is formed on the upper surface of the ohmic contact area and the second passivation layer by photolithography and magnetron sputtering a layer of copper, so as to connect the four pressure-sensitive resistors into a benefit Stone bridge, the third passivation layer is formed on the upper surface of the second passivation layer and the pressure-sensitive electrode layer, and the first driving electrode layer is formed on the upper surface of the third passivation layer, so The first dielectric layer is formed on the upper surface of the third passivation layer and the first driving electrode layer, the second driving electrode layer is formed on the upper surface of the first dielectric layer, and the first dielectric layer is formed on the upper surface of the first dielectric layer. The fourth passivation layer is formed on the upper surface of the electrical layer and the second driving electrode layer, and the first groove and the second groove are sequentially opened on the back surface of the first substrate, and the lower surface of the first groove is The fifth passivation layer, the first strain electrode layer and the second dielectric layer are sequentially formed on the surface;
其中,所述基底包括第二衬底、第六钝化层、第二应变电极层和第三介电层,所述第二衬底中心部分的上表面形成有所述第六钝化层,所述第六钝化层的上表面形成有所述第二应变电极层,所述第六钝化层和第二应变电极层的上表面形成有所述第三介电层,所述第一衬底和所述第二衬底通过阳极键合形成连接,所述第二衬底中心部分、第六钝化层、第二应变电极层和第三介电层均位于所述第二凹槽中。Wherein, the base includes a second substrate, a sixth passivation layer, a second strained electrode layer and a third dielectric layer, and the sixth passivation layer is formed on the upper surface of the central part of the second substrate, The second strained electrode layer is formed on the upper surface of the sixth passivation layer, the third dielectric layer is formed on the upper surfaces of the sixth passivation layer and the second strained electrode layer, and the first The substrate and the second substrate are connected by anodic bonding, and the central part of the second substrate, the sixth passivation layer, the second strain electrode layer and the third dielectric layer are all located in the second groove middle.
进一步地,所述第一衬底的材料为单晶硅,厚度为50-300μm;所述压敏电阻的材料为浅掺杂B的硅;所述八个欧姆接触区的材料为重掺杂B的硅;所述第一钝化层的材料为二氧化硅,厚度为100nm-1μm;所述第二钝化层的材料为氮化硅,厚度为100nm-1um;所述压敏电极层的材料为铜,厚度为100nm-300nm;所述第三钝化层的材料为二氧化硅,厚度为1-5um;所述第一驱动电极层的材料为金属,厚度为50nm-200nm;所述第一介电层的材料为具有高介电常数的材料,厚度为50-150nm;所述第二驱动电极层的材料为金属,厚度为50nm-200nm;所述第四钝化层的材料为二氧化硅,厚度为1-5um;所述第五钝化层的材料为二氧化硅,厚度为1-6um;所述第一应变电极层的材料为金属,厚度为50-200nm;所述第二介电层的材料为具有高介电常数的材料,厚度为50-200nm。Further, the material of the first substrate is single crystal silicon with a thickness of 50-300 μm; the material of the varistor is lightly doped B silicon; the material of the eight ohmic contact regions is heavily doped Silicon of B; the material of the first passivation layer is silicon dioxide, with a thickness of 100nm-1μm; the material of the second passivation layer is silicon nitride, with a thickness of 100nm-1um; the pressure-sensitive electrode layer The material of the passivation layer is copper with a thickness of 100nm-300nm; the material of the third passivation layer is silicon dioxide with a thickness of 1-5um; the material of the first driving electrode layer is metal with a thickness of 50nm-200nm; The material of the first dielectric layer is a material with a high dielectric constant, with a thickness of 50-150nm; the material of the second driving electrode layer is metal, with a thickness of 50nm-200nm; the material of the fourth passivation layer silicon dioxide with a thickness of 1-5um; the material of the fifth passivation layer is silicon dioxide with a thickness of 1-6um; the material of the first strain electrode layer is metal with a thickness of 50-200nm; The material of the second dielectric layer is a material with a high dielectric constant, and the thickness is 50-200nm.
进一步地,所述第一驱动电极层、第一介电层和第二驱动电极层构成了驱动电容,用于提供静电力。Further, the first driving electrode layer, the first dielectric layer and the second driving electrode layer constitute a driving capacitor for providing electrostatic force.
进一步地,所述第一凹槽的深度为45um-270um,所述第二凹槽的深度为43um-258um。Further, the depth of the first groove is 45um-270um, and the depth of the second groove is 43um-258um.
进一步地,所述第二衬底的材料为玻璃,厚度为50-300μm;所述第六钝化层的材料为氮化硅,厚度为1um-6um;所述第二应变电极层的材料为金属,厚度为50-200nm;所述第三介电层的材料为具有高介电常数的材料,厚度为50-200nm。Further, the material of the second substrate is glass with a thickness of 50-300 μm; the material of the sixth passivation layer is silicon nitride with a thickness of 1 um-6 um; the material of the second strain electrode layer is The metal has a thickness of 50-200nm; the material of the third dielectric layer is a material with a high dielectric constant and the thickness is 50-200nm.
进一步地,所述第二应变电极层包括多个彼此不相连的金属块,以测定不同区域的应变。Further, the second strain electrode layer includes a plurality of metal blocks not connected to each other, so as to measure strains in different regions.
进一步地,所述第一应变电极层、第二介电层、第三介电层和第二应变电极层构成应变检测电容,其中所述第二应变电极层的位置不变,所述第一应变电极层因压力而改变位置,从而引起电容值改变,实现应变的测量。Further, the first strained electrode layer, the second dielectric layer, the third dielectric layer and the second strained electrode layer form a strain detection capacitance, wherein the position of the second strained electrode layer remains unchanged, and the first strained electrode layer The position of the strain electrode layer changes due to the pressure, which causes the capacitance value to change and realizes the measurement of strain.
作为本发明的另一个方面,提供一种高频动态MEMS压阻式压力传感器的制备方法,其中,所述高频动态MEMS压阻式压力传感器的制备方法包括:As another aspect of the present invention, a method for preparing a high-frequency dynamic MEMS piezoresistive pressure sensor is provided, wherein the method for preparing the high-frequency dynamic MEMS piezoresistive pressure sensor includes:
提供第一衬底和基底;providing a first substrate and a base;
在所述第一衬底上制备压力敏感薄膜;preparing a pressure-sensitive thin film on the first substrate;
通过阳极键合将所述基底的上表面和所述第一衬底的下表面键合。The upper surface of the base and the lower surface of the first substrate are bonded by anodic bonding.
进一步地,还包括:Further, it also includes:
还包括:Also includes:
步骤a:选用300mm厚的N型(100)硅片作为第一衬底,通过光刻和离子注入,在所述第一衬底上形成浅掺杂B的压敏电阻;Step a: select a 300mm thick N-type (100) silicon wafer as the first substrate, and form a lightly doped B varistor on the first substrate through photolithography and ion implantation;
步骤b:通过光刻和离子注入,在所述第一衬底上位于所述压敏电阻的两边形成重掺杂B的欧姆接触区;Step b: forming heavily B-doped ohmic contact regions on both sides of the varistor on the first substrate by photolithography and ion implantation;
步骤c:通过低压力化学气相沉积法LPCVD在所述第一衬底的上表面分别生长100nm的氧化硅、100nm的氮化硅以作为第一钝化层和第二钝化层;Step c: respectively growing 100 nm of silicon oxide and 100 nm of silicon nitride on the upper surface of the first substrate by low pressure chemical vapor deposition method LPCVD as the first passivation layer and the second passivation layer;
步骤d:通过光刻和反应离子刻蚀RIE刻蚀所述第一钝化层和第二钝化层,露出所述欧姆接触区,并通过光刻和磁控溅射一层厚度为100nm-300nm的铜,在所述欧姆接触区和所述第二钝化层的上表面形成压敏电极层,以将四个压敏电阻连接成惠斯通电桥;Step d: Etching the first passivation layer and the second passivation layer by photolithography and reactive ion etching RIE to expose the ohmic contact region, and by photolithography and magnetron sputtering a layer thickness of 100nm- 300nm copper, forming a pressure-sensitive electrode layer on the upper surface of the ohmic contact region and the second passivation layer, so as to connect four piezoresistors into a Wheatstone bridge;
步骤e:通过光刻和低压力化学气相沉积法LPCVD在所述第二钝化层和所述压敏电极层的上表面生长一层厚度为2um的氧化硅以作为第三钝化层;Step e: growing a layer of silicon oxide with a thickness of 2um on the upper surface of the second passivation layer and the pressure-sensitive electrode layer by photolithography and low-pressure chemical vapor deposition method LPCVD as a third passivation layer;
步骤f:通过光刻和磁控溅射在所述第三钝化层的上表面溅射一层厚度为100nm的铜,作为第一驱动电极层;Step f: sputtering a layer of copper with a thickness of 100 nm on the upper surface of the third passivation layer by photolithography and magnetron sputtering, as the first driving electrode layer;
步骤g:通过原子层沉积ALD在所述第三钝化层和第一驱动电极层的上表面生长一层厚度为50-150nm的铪锆复合氧化物,作为第一介电层;Step g: growing a layer of hafnium-zirconium composite oxide with a thickness of 50-150 nm on the upper surface of the third passivation layer and the first driving electrode layer by atomic layer deposition ALD as the first dielectric layer;
步骤h:通过光刻和磁控溅射在所述第一介电层的上表面溅射一层厚度为100nm的铜,作为第二驱动电极层;Step h: sputtering a layer of copper with a thickness of 100 nm on the upper surface of the first dielectric layer by photolithography and magnetron sputtering, as the second driving electrode layer;
步骤i:通过低压力化学气相沉积法LPCVD在所述第一介电层和第二驱动电极层的上表面生长一层厚度为2um的氧化硅,作为第四钝化层;Step i: growing a layer of silicon oxide with a thickness of 2um on the upper surfaces of the first dielectric layer and the second driving electrode layer by LPCVD as a fourth passivation layer;
步骤j:通过光刻和电感耦合等离子体刻蚀ICP,在所述第一衬底的背面刻蚀出深度为270um的第一凹槽;Step j: etching the ICP by photolithography and inductively coupled plasma, and etching a first groove with a depth of 270um on the back surface of the first substrate;
步骤k:通过光刻和低压力化学气相沉积法LPCVD在所述第一凹槽的下表面生长一层厚度为1um的氧化硅,作为第五钝化层;Step k: growing a layer of silicon oxide with a thickness of 1 μm on the lower surface of the first groove by photolithography and low-pressure chemical vapor deposition method LPCVD as the fifth passivation layer;
步骤l:通过光刻和磁控溅射在所述第五钝化层的下表面溅射一层厚度为100nm的铜,作为第一应变电极层;Step 1: sputtering a layer of copper with a thickness of 100 nm on the lower surface of the fifth passivation layer by photolithography and magnetron sputtering, as the first strained electrode layer;
步骤m:通过光刻和原子层沉积ALD在所述第一应变电极层的下表面生长一层厚度为50nm的铪锆复合氧化物,作为第二介电层;Step m: growing a layer of hafnium-zirconium composite oxide with a thickness of 50 nm on the lower surface of the first strained electrode layer by photolithography and atomic layer deposition ALD as the second dielectric layer;
步骤n:通过光刻和电感耦合等离子体刻蚀ICP,在所述第一衬底的背面刻蚀出深度为258um的第二凹槽,所述第二凹槽的横截面面积大于所述第一凹槽;Step n: etching the ICP by photolithography and inductively coupled plasma, etching a second groove with a depth of 258um on the back surface of the first substrate, the cross-sectional area of the second groove is larger than that of the first substrate a groove;
步骤o:另取一片厚度为300um的玻璃片,通过光刻和电感耦合等离子体刻蚀ICP,得到阶梯结构,作为第二衬底,其中,第二衬底的中间部分尺寸小于所述第一凹槽的尺寸,第二衬底的中间部分比边缘部分的高度高258um;Step o: Take another piece of glass sheet with a thickness of 300um, etch the ICP by photolithography and inductively coupled plasma to obtain a ladder structure as the second substrate, wherein the size of the middle part of the second substrate is smaller than that of the first substrate. The size of the groove, the middle part of the second substrate is 258um higher than the height of the edge part;
步骤p:通过光刻和低压力化学气相沉积法LPCVD,在所述第二衬底中间较厚处的上表面生长厚度为1um的一层氮化硅,作为第六钝化层;Step p: growing a layer of silicon nitride with a thickness of 1 μm on the upper surface of the middle thicker part of the second substrate by photolithography and low-pressure chemical vapor deposition method LPCVD, as the sixth passivation layer;
步骤q:通过光刻和磁控溅射,在所述第六钝化层的上表面溅射一层厚度为100nm的铜,作为第二应变电极层;Step q: Sputtering a layer of copper with a thickness of 100 nm on the upper surface of the sixth passivation layer by photolithography and magnetron sputtering as the second strained electrode layer;
步骤r:通过光刻和原子层沉积ALD在所述第六钝化层和第二应变电极层的上表面生长一层厚度为50nm-100nm的铪锆复合氧化物,作为第三介电层;Step r: growing a layer of hafnium-zirconium composite oxide with a thickness of 50nm-100nm on the upper surface of the sixth passivation layer and the second strained electrode layer by photolithography and atomic layer deposition ALD, as the third dielectric layer;
步骤s:通过阳极键合将第一衬底和第二衬底键合,完成所述高频动态MEMS压阻式压力传感器的制备。Step s: Bonding the first substrate and the second substrate by anodic bonding to complete the preparation of the high-frequency dynamic MEMS piezoresistive pressure sensor.
本发明具有以下有益效果:The present invention has the following beneficial effects:
1、本发明利用驱动电极为压力敏感薄膜提供了静电力,可以在形变产生、恢复以及振荡时施加相应方向和大小的辅助力,缩短了其运动的时间,进而提高了压力传感器的高频动态特性;1. The present invention uses the drive electrode to provide electrostatic force for the pressure-sensitive film, and can apply an auxiliary force of corresponding direction and size when the deformation is generated, restored, and oscillated, shortening the time of its movement, and further improving the high-frequency dynamics of the pressure sensor. characteristic;
2、本发明通过驱动电极和应变检测电极构建了测量-控制的反馈系统,可以实现对敏感薄膜运动和形变的检测与控制,从而可以减小不期望的薄膜形变,如零偏、温漂或冲击加速度带来的偏置,提高了器件的偏置性能;2. The present invention constructs a measurement-control feedback system through the driving electrodes and strain detection electrodes, which can realize the detection and control of the movement and deformation of the sensitive film, thereby reducing the undesired film deformation, such as zero bias, temperature drift or The bias brought by the impact acceleration improves the bias performance of the device;
3、本发明可以通过测量反馈系统,及时获得温度带来的额外应力应变情况并加以弥补,一方面相较于传统压敏器件中增加温度传感器减小了器件的尺寸,另一方面温度传感器只能测量并在后期数据中进行修正,而本发明可以通过静电力实现控制;3. The present invention can timely obtain and compensate for the additional stress and strain caused by temperature through the measurement feedback system. On the one hand, compared with traditional pressure-sensitive devices, adding a temperature sensor reduces the size of the device. On the other hand, the temperature sensor only It can be measured and corrected in the later data, and the present invention can realize control through electrostatic force;
4、本发明通过测量反馈系统,可以及时得知压力敏感薄膜的形变情况并加以反馈,避免过大的输入损坏器件,提高了器件的抗过载能力;4. Through the measurement feedback system, the present invention can know the deformation of the pressure-sensitive film in time and give feedback, avoiding damage to the device due to excessive input, and improving the anti-overload capability of the device;
5、本发明通过补充一个应变式检测电极,可以通过薄膜应变数据获取压敏电阻因几何产生的电阻变化,提高了压力传感器的精度;5. By supplementing a strain gauge detection electrode, the present invention can obtain the resistance change of the piezoresistor due to geometry through the thin film strain data, thereby improving the precision of the pressure sensor;
6、本发明采用MEMS技术制备,传感器具有尺寸小、精度高、一致性好、易于批量制造以及成本低的优点。6. The present invention is prepared by MEMS technology, and the sensor has the advantages of small size, high precision, good consistency, easy mass production and low cost.
附图说明Description of drawings
附图是用来提供对本发明的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本发明,但并不构成对本发明的限制。The accompanying drawings are used to provide a further understanding of the present invention, and constitute a part of the description, together with the following specific embodiments, are used to explain the present invention, but do not constitute a limitation to the present invention.
图1为本发明实施例中一种高频动态MEMS压阻式压力传感器的压敏电阻俯视图。FIG. 1 is a top view of a piezoresistor of a high-frequency dynamic MEMS piezoresistive pressure sensor in an embodiment of the present invention.
图2为本发明实施例中一种高频动态MEMS压阻式压力传感器的压敏电阻的惠斯通电桥连接示意图。FIG. 2 is a schematic diagram of Wheatstone bridge connection of piezoresistors of a high-frequency dynamic MEMS piezoresistive pressure sensor in an embodiment of the present invention.
图3为本发明实施例中一种高频动态MEMS压阻式压力传感器沿图1所示AA’截线的剖面图。Fig. 3 is a cross-sectional view of a high-frequency dynamic MEMS piezoresistive pressure sensor along the section line AA' shown in Fig. 1 in an embodiment of the present invention.
图4为本发明实施例中制备步骤a对应的结构示意图。Fig. 4 is a schematic structural diagram corresponding to the preparation step a in the embodiment of the present invention.
图5为本发明实施例中制备步骤b对应的结构示意图。Fig. 5 is a schematic structural diagram corresponding to the preparation step b in the embodiment of the present invention.
图6为本发明实施例中制备步骤c对应的结构示意图。Fig. 6 is a schematic structural diagram corresponding to preparation step c in the embodiment of the present invention.
图7为本发明实施例中制备步骤d对应的结构示意图。Fig. 7 is a schematic structural diagram corresponding to the preparation step d in the embodiment of the present invention.
图8为本发明实施例中制备步骤e对应的结构示意图。Fig. 8 is a schematic structural diagram corresponding to the preparation step e in the embodiment of the present invention.
图9为本发明实施例中制备步骤f对应的结构示意图。Fig. 9 is a schematic structural diagram corresponding to the preparation step f in the embodiment of the present invention.
图10为本发明实施例中制备步骤g对应的结构示意图。Fig. 10 is a schematic structural diagram corresponding to the preparation step g in the embodiment of the present invention.
图11为本发明实施例中制备步骤h对应的结构示意图。Fig. 11 is a schematic structural diagram corresponding to the preparation step h in the embodiment of the present invention.
图12为本发明实施例中制备步骤i对应的结构示意图。Fig. 12 is a schematic structural diagram corresponding to the preparation step i in the embodiment of the present invention.
图13为本发明实施例中制备步骤j对应的结构示意图。Fig. 13 is a schematic structural diagram corresponding to preparation step j in the embodiment of the present invention.
图14为本发明实施例中制备步骤k对应的结构示意图。Fig. 14 is a schematic structural diagram corresponding to the preparation step k in the embodiment of the present invention.
图15为本发明实施例中制备步骤l对应的结构示意图。Fig. 15 is a schematic structural diagram corresponding to the preparation step 1 in the embodiment of the present invention.
图16为本发明实施例中制备步骤m对应的结构示意图。Fig. 16 is a schematic structural diagram corresponding to the preparation step m in the embodiment of the present invention.
图17为本发明实施例中制备步骤n对应的结构示意图。Fig. 17 is a schematic structural diagram corresponding to preparation step n in the embodiment of the present invention.
图18为本发明实施例中制备步骤o对应的结构示意图。Fig. 18 is a schematic structural diagram corresponding to the preparation step o in the embodiment of the present invention.
图19为本发明实施例中制备步骤p对应的结构示意图。Fig. 19 is a schematic structural diagram corresponding to the preparation step p in the embodiment of the present invention.
图20为本发明实施例中制备步骤q对应的结构示意图。Fig. 20 is a schematic structural diagram corresponding to the preparation step q in the embodiment of the present invention.
图21为本发明实施例中制备步骤r对应的结构示意图。Fig. 21 is a schematic structural diagram corresponding to the preparation step r in the embodiment of the present invention.
图22为本发明实施例中制备步骤s对应的结构示意图。Fig. 22 is a schematic structural diagram corresponding to the preparation step s in the embodiment of the present invention.
附图中,各标号所代表的部件列表如下:1-第一衬底;2-压敏电阻;3-欧姆接触区;4-第一钝化层;5-第二钝化层;6-压敏电极层;7-第三钝化层;8-第一驱动电极层;9-第一介电层;10-第二驱动电极层;11-第四钝化层;12-第一凹槽;13-第五钝化层;14-第一应变电极层;15-第二介电层;16-第二凹槽;17-第二衬底;18-第六钝化层;19-第二应变电极层;20-第三介电层。In the accompanying drawings, the list of components represented by each label is as follows: 1-first substrate; 2-varistor; 3-ohmic contact area; 4-first passivation layer; 5-second passivation layer; 6- Pressure-sensitive electrode layer; 7-third passivation layer; 8-first driving electrode layer; 9-first dielectric layer; 10-second driving electrode layer; 11-fourth passivation layer; 12-first concave Groove; 13-fifth passivation layer; 14-first strain electrode layer; 15-second dielectric layer; 16-second groove; 17-second substrate; 18-sixth passivation layer; 19- The second strain electrode layer; 20 - the third dielectric layer.
具体实施方式Detailed ways
需要说明的是,在不冲突的情况下,本发明中的实施例及实施例中的特征可以相互结合。下面将参考附图并结合实施例来详细说明本发明。It should be noted that, in the case of no conflict, the embodiments of the present invention and the features in the embodiments can be combined with each other. The present invention will be described in detail below with reference to the accompanying drawings and examples.
为了使本领域技术人员更好地理解本发明方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分的实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。In order to enable those skilled in the art to better understand the solutions of the present invention, the following will clearly and completely describe the technical solutions in the embodiments of the present invention in conjunction with the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only Embodiments of some, but not all, embodiments of the present invention. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without making creative efforts shall fall within the protection scope of the present invention.
需要说明的是,本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本发明的实施例。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包括,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。It should be noted that the terms "first" and "second" in the description and claims of the present invention and the above drawings are used to distinguish similar objects, but not necessarily used to describe a specific sequence or sequence. It should be understood that the data so used may be interchanged under appropriate circumstances for the embodiments of the invention described herein. Furthermore, the terms "comprising" and "having", as well as any variations thereof, are intended to cover a non-exclusive inclusion, for example, a process, method, system, product, or device comprising a series of steps or elements that is not necessarily limited to the explicitly listed instead, may include other steps or elements not explicitly listed or inherent to the process, method, product or apparatus.
在本发明实施例中提供了一种高频动态MEMS压阻式压力传感器,如图1-3所示,所述高频动态MEMS压阻式压力传感器包括基底、第一衬底1和压力敏感薄膜,所述压力敏感薄膜设置在所述第一衬底1上,所述第一衬底1设置在所述基底上;In the embodiment of the present invention, a high-frequency dynamic MEMS piezoresistive pressure sensor is provided. As shown in Fig. 1-3, the high-frequency dynamic MEMS piezoresistive pressure sensor includes a substrate, a first substrate 1 and a pressure sensitive a thin film, the pressure-sensitive thin film is disposed on the first substrate 1, and the first substrate 1 is disposed on the base;
其中,所述压力敏感薄膜包括压敏电阻2、欧姆接触区3、第一钝化层4、第二钝化层5、压敏电极层6、第三钝化层7、第一驱动电极层8、第一介电层9、第二驱动电极层10、第四钝化层11、第五钝化层13、第一应变电极层14和第二介电层15,所述第一衬底1上设置有四个压敏电阻2和八个欧姆接触区3,所述八个欧姆接触区3分别位于四个所述压敏电阻2的短边两端,所述第一衬底1和所述压敏电阻2的上表面形成有所述第一钝化层4,所述第一钝化层4上表面形成有所述第二钝化层5,在所述第一钝化层4和第二钝化层5上对应所述欧姆接触区3的位置开设有孔以露出所述欧姆接触区3,通过光刻和磁控溅射一层铜在所述欧姆接触区3和所述第二钝化层5的上表面形成所述压敏电极层6,以将四个所述压敏电阻2连接成惠斯通电桥,所述第二钝化层5和压敏电极层6的上表面形成有所述第三钝化层7,所述第三钝化层7的上表面形成有所述第一驱动电极层8,所述第三钝化层7和第一驱动电极层8的上表面形成有所述第一介电层9,所述第一介电层9的上表面形成有所述第二驱动电极层10,所述第一介电层9和第二驱动电极层10的上表面形成有所述第四钝化层11,所述第一衬底1的背面依次开设有第一凹槽12和第二凹槽16,所述第一凹槽12的下表面依次形成有所述第五钝化层13、所述第一应变电极层14和所述第二介电层15。Wherein, the pressure-sensitive thin film includes a piezoresistor 2, an ohmic contact area 3, a first passivation layer 4, a second passivation layer 5, a pressure-sensitive electrode layer 6, a third passivation layer 7, a first driving electrode layer 8. The first dielectric layer 9, the second driving electrode layer 10, the fourth passivation layer 11, the fifth passivation layer 13, the first strain electrode layer 14 and the second dielectric layer 15, the first substrate 1 is provided with four varistors 2 and eight ohmic contact areas 3, and the eight ohmic contact areas 3 are respectively located at both ends of the short sides of the four varistors 2, and the first substrate 1 and The upper surface of the varistor 2 is formed with the first passivation layer 4, the upper surface of the first passivation layer 4 is formed with the second passivation layer 5, and the first passivation layer 4 On the second passivation layer 5 corresponding to the position of the ohmic contact area 3, a hole is opened to expose the ohmic contact area 3, and a layer of copper is formed between the ohmic contact area 3 and the ohmic contact area 3 by photolithography and magnetron sputtering. The upper surface of the second passivation layer 5 forms the pressure-sensitive electrode layer 6, so as to connect the four piezoresistors 2 into a Wheatstone bridge, the second passivation layer 5 and the pressure-sensitive electrode layer 6 The upper surface is formed with the third passivation layer 7, the upper surface of the third passivation layer 7 is formed with the first driving electrode layer 8, the third passivation layer 7 and the first driving electrode layer 8 The first dielectric layer 9 is formed on the upper surface of the first dielectric layer 9, the second driving electrode layer 10 is formed on the upper surface of the first dielectric layer 9, the first dielectric layer 9 and the second driving electrode layer The fourth passivation layer 11 is formed on the upper surface of the first substrate 1, the first groove 12 and the second groove 16 are sequentially opened on the back surface of the first substrate 1, and the lower surface of the first groove 12 is sequentially formed. The fifth passivation layer 13 , the first strain electrode layer 14 and the second dielectric layer 15 are formed.
优选地,所述基底包括第二衬底17、第六钝化层18、第二应变电极层19和第三介电层20,所述第二衬底17中心部分的上表面形成有所述第六钝化层18,所述第六钝化层18的上表面形成有所述第二应变电极层19,所述第六钝化层18和第二应变电极层19的上表面形成有所述第三介电层20,所述第一衬底1和所述第二衬底17通过阳极键合形成连接,所述第二衬底17中心部分、第六钝化层18、第二应变电极层19和第三介电层20均位于所述第二凹槽16中。Preferably, the base includes a second substrate 17, a sixth passivation layer 18, a second strain electrode layer 19 and a third dielectric layer 20, and the upper surface of the central part of the second substrate 17 is formed with the The sixth passivation layer 18, the second strain electrode layer 19 is formed on the upper surface of the sixth passivation layer 18, and the upper surface of the sixth passivation layer 18 and the second strain electrode layer 19 is formed with a The third dielectric layer 20, the first substrate 1 and the second substrate 17 are connected by anodic bonding, the central part of the second substrate 17, the sixth passivation layer 18, the second strain Both the electrode layer 19 and the third dielectric layer 20 are located in the second groove 16 .
优选地,所述第一衬底1的材料为单晶硅,厚度为50-300μm;所述压敏电阻2的平面位置位于所述第一凹槽12的边缘,材料为浅掺杂B的硅,B指硼,目的是实现较高的灵敏度;所述八个欧姆接触区3的材料为重掺杂B的硅,目的是实现所述压敏电阻2的电极引出;所述第一钝化层4的材料为二氧化硅,厚度为100nm-1μm;所述第二钝化层5的材料为氮化硅,厚度为100nm-1um;所述压敏电极层6的材料为铜,厚度为100nm-300nm,目的是形成压敏电阻的惠斯通电桥连接。Preferably, the material of the first substrate 1 is single crystal silicon with a thickness of 50-300 μm; Silicon, B refers to boron, the purpose is to achieve higher sensitivity; the material of the eight ohmic contact regions 3 is silicon heavily doped with B, the purpose is to realize the electrode extraction of the piezoresistor 2; the first passivation The material of the layer 4 is silicon dioxide with a thickness of 100nm-1μm; the material of the second passivation layer 5 is silicon nitride with a thickness of 100nm-1um; the material of the pressure-sensitive electrode layer 6 is copper with a thickness of For 100nm-300nm, the purpose is to form a Wheatstone bridge connection of the piezoresistor.
优选地,所述第三钝化层7的材料为二氧化硅,厚度为1-5um;所述第一驱动电极层8的材料为金属,优选为Cu、Ti、Ni、Cr、Au、W等的至少一种,厚度为50nm-200nm。Preferably, the material of the third passivation layer 7 is silicon dioxide with a thickness of 1-5um; the material of the first driving electrode layer 8 is metal, preferably Cu, Ti, Ni, Cr, Au, W At least one of these, the thickness is 50nm-200nm.
优选地,所述第一介电层9的材料为具有高介电常数的材料,如铪锆复合氧化物、铪铝复合氧化物、复合PVDF(掺钛酸钡或二氧化钛的纳米纤维或纳米片)等,或者为此类材料组成的多层复合结构,原因是其具有更高的介电常数和更好的力学性能,总厚度为50-150nm。Preferably, the material of the first dielectric layer 9 is a material with a high dielectric constant, such as hafnium-zirconium composite oxide, hafnium-aluminum composite oxide, composite PVDF (nanofibers or nanosheets doped with barium titanate or titanium dioxide ), etc., or a multilayer composite structure composed of such materials, because it has a higher dielectric constant and better mechanical properties, and the total thickness is 50-150nm.
优选地,所述第二驱动电极层10的材料为金属,优选为Cu、Ti、Ni、Cr、Au、W等的至少一种,厚度为50nm-200nm。Preferably, the material of the second driving electrode layer 10 is metal, preferably at least one of Cu, Ti, Ni, Cr, Au, W, etc., and the thickness is 50nm-200nm.
优选地,所述第四钝化层11的材料为二氧化硅,厚度为1-5um,目的是作为保护层;所述第五钝化层13的材料为二氧化硅,厚度为1-6um,目的是形成电气隔离和钝化保护,避免衬底漏电流;所述第一应变电极层14的材料为金属,优选为熔点高的金属,如Cu、W、Cr、Ti等,厚度为50-200nm。Preferably, the material of the fourth passivation layer 11 is silicon dioxide with a thickness of 1-5um, the purpose is to serve as a protective layer; the material of the fifth passivation layer 13 is silicon dioxide with a thickness of 1-6um , the purpose is to form electrical isolation and passivation protection, to avoid substrate leakage current; the material of the first strain electrode layer 14 is a metal, preferably a metal with a high melting point, such as Cu, W, Cr, Ti, etc., with a thickness of 50 -200nm.
优选地,所述第二介电层15的材料为具有高介电常数的材料,如铪锆复合氧化物、铪铝复合氧化物、复合PVDF(掺钛酸钡或二氧化钛的纳米纤维或纳米片)等,或者为他们的多层复合结构,原因是其具有更高的介电常数和更好的力学性能,总厚度为50-200nm。Preferably, the material of the second dielectric layer 15 is a material with a high dielectric constant, such as hafnium-zirconium composite oxide, hafnium-aluminum composite oxide, composite PVDF (nanofibers or nanosheets doped with barium titanate or titanium dioxide ), etc., or for their multilayer composite structure, because of its higher dielectric constant and better mechanical properties, with a total thickness of 50-200nm.
具体地,所述第三钝化层7的目的是形成所述压敏电极层6与第一驱动电极层8之间的电气隔离。Specifically, the purpose of the third passivation layer 7 is to form electrical isolation between the pressure-sensitive electrode layer 6 and the first driving electrode layer 8 .
优选地,所述第一驱动电极层8、第一介电层9和第二驱动电极层10构成了驱动电容,用于提供静电力。通过控制施加电压的频率和相位,可以影响、控制薄膜的运动情况,从而减小压力传感器的建立时间和回复时间,提高压力传感器的动态测量能力。Preferably, the first driving electrode layer 8 , the first dielectric layer 9 and the second driving electrode layer 10 constitute a driving capacitor for providing electrostatic force. By controlling the frequency and phase of the applied voltage, the movement of the membrane can be influenced and controlled, thereby reducing the establishment time and recovery time of the pressure sensor and improving the dynamic measurement capability of the pressure sensor.
具体地,所述第一介电层9的厚度远小于所述第三钝化层7的厚度,目的是尽可能忽略所述压敏电极层6与第一驱动电极层8之间的静电力。Specifically, the thickness of the first dielectric layer 9 is much smaller than the thickness of the third passivation layer 7, in order to ignore the electrostatic force between the pressure-sensitive electrode layer 6 and the first driving electrode layer 8 as much as possible. .
具体地,所述第一介电层9目的是形成所述第一驱动电极层8、第二驱动电极层10之间的电气隔离,并且作为驱动电容的电介质。Specifically, the purpose of the first dielectric layer 9 is to form electrical isolation between the first driving electrode layer 8 and the second driving electrode layer 10 , and to serve as a dielectric for driving capacitance.
优选地,所述第一凹槽12的深度为45um-270um,所述第二凹槽16的深度为43um-258um。Preferably, the depth of the first groove 12 is 45um-270um, and the depth of the second groove 16 is 43um-258um.
优选地,所述第二衬底17的材料为玻璃,厚度为50-300μm;所述第六钝化层18的材料为氮化硅,厚度为1um-6um,目的是作为保护层;所述第二应变电极层19的材料为金属,优选为熔点高的金属,如Cu、W、Cr、Ti等,厚度为50-200nm;所述第三介电层20的材料为具有高介电常数的材料,如铪锆复合氧化物、铪铝复合氧化物、复合PVDF(掺钛酸钡或二氧化钛的纳米纤维或纳米片)等,或者为他们的多层复合结构,原因是其具有更高的介电常数和更好的力学性能,总厚度为50-200nm。Preferably, the material of the second substrate 17 is glass, with a thickness of 50-300 μm; the material of the sixth passivation layer 18 is silicon nitride, with a thickness of 1 um-6 um, the purpose is to serve as a protective layer; The material of the second strain electrode layer 19 is a metal, preferably a metal with a high melting point, such as Cu, W, Cr, Ti, etc., with a thickness of 50-200 nm; the material of the third dielectric layer 20 is a material with a high dielectric constant materials, such as hafnium-zirconium composite oxides, hafnium-aluminum composite oxides, composite PVDF (nanofibers or nanosheets doped with barium titanate or titanium dioxide), etc., or their multilayer composite structures because of their higher Dielectric constant and better mechanical properties, the total thickness is 50-200nm.
优选地,所述第二应变电极层19包括多个彼此不相连的金属块,以测定不同区域的应变,获得更高的测量精度。Preferably, the second strain electrode layer 19 includes a plurality of metal blocks that are not connected to each other, so as to measure strain in different regions and obtain higher measurement accuracy.
进一步地,所述第一应变电极层14、第二介电层15、第三介电层20和第二应变电极层19构成应变检测电容。根据电容的理论公式,其电容值和所述第一应变电极层14、第二应变电极层19之间的距离满足一定的数学关系(电容值正比于电极间距的倒数)。其中所述第二应变电极层19位置不变,所述第一应变电极层14因压力而受迫下压,所述第一应变电极层14与第二应变电极层19之间的距离减小,从而引起应变检测电容的电容值改变,借由相关的C-V(电容转电压)转换电路可以得到电压的变化,通过数学模型解析可以实现应变的测量。Further, the first strain electrode layer 14 , the second dielectric layer 15 , the third dielectric layer 20 and the second strain electrode layer 19 form a strain detection capacitor. According to the theoretical formula of capacitance, its capacitance value and the distance between the first strained electrode layer 14 and the second strained electrode layer 19 satisfy a certain mathematical relationship (the capacitance value is proportional to the reciprocal of the electrode spacing). Wherein the position of the second strained electrode layer 19 remains unchanged, the first strained electrode layer 14 is pressed down due to pressure, and the distance between the first strained electrode layer 14 and the second strained electrode layer 19 decreases , thus causing the capacitance value of the strain detection capacitor to change, the voltage change can be obtained by the relevant C-V (capacitance-to-voltage) conversion circuit, and the strain measurement can be realized through mathematical model analysis.
进一步地,所述第二介电层15、第三介电层20的目的是作为所述第一应变电极层14、第二应变电极层19的保护层,并且作为应变检测电容的电介质。Further, the purpose of the second dielectric layer 15 and the third dielectric layer 20 is to serve as the protective layer of the first strain electrode layer 14 and the second strain electrode layer 19 and as the dielectric of the strain detection capacitance.
本发明实施例中高频动态MEMS压阻式压力传感器的工作原理如下:The working principle of the high-frequency dynamic MEMS piezoresistive pressure sensor in the embodiment of the present invention is as follows:
压力敏感薄膜在外界压力的作用下产生形变,基于压阻效应,位于压力敏感薄膜上的压敏电阻2的阻值发生相应的变化,通过惠斯通电桥将压敏电阻2的阻值变化转化为电压输出,从而实现压力信号到电学信号的转换。The pressure-sensitive film is deformed under the action of external pressure. Based on the piezoresistive effect, the resistance value of the piezoresistor 2 on the pressure-sensitive film changes accordingly, and the resistance value change of the piezoresistor 2 is converted through the Wheatstone bridge. It is a voltage output, so as to realize the conversion of pressure signal to electrical signal.
对于本发明,通过添加驱动电极第一驱动电极层8、第二驱动电极层10供给静电力,当压力敏感薄膜产生形变的时候,通过静电力施加与外界压力同向的作用力,使得其运动的加速度变大,更快地到达平衡位置;当外界压力撤去,压力敏感薄膜需要恢复的时候,改变驱动电压的方向,使其能够恢复的加速度也得到增大,从而实现了建立时间和恢复时间的减小。另一方面,根据机械振动的原理,当压力敏感薄膜运动到平衡位置,由于其仍然具有速度,会在平衡位置做不断减弱的振荡,而这也一定程度影响了传感器的精度和测试的重复性,而通过电极控制静电力的方法可以很好得削弱这种效应。For the present invention, the electrostatic force is supplied by adding the first driving electrode layer 8 and the second driving electrode layer 10 of the driving electrode. When the pressure-sensitive film is deformed, a force in the same direction as the external pressure is applied through the electrostatic force to make it move. When the external pressure is removed and the pressure-sensitive film needs to be restored, the direction of the driving voltage is changed to increase the acceleration of the recovery, thus realizing the establishment time and recovery time. decrease. On the other hand, according to the principle of mechanical vibration, when the pressure-sensitive film moves to the equilibrium position, it will continue to weaken the oscillation at the equilibrium position because it still has speed, which also affects the accuracy of the sensor and the repeatability of the test to a certain extent. , and the method of controlling the electrostatic force through electrodes can well weaken this effect.
进一步地,结合、利用应变式压力传感器的原理,在压力传感器的背部空腔增加一个应变检测电容。其作用主要有两点。其一,利用压力敏感薄膜应变带来了第一应变电极层14的应变,从而改变应变检测电容的电容值。通过该值可以得到敏感薄膜的位移数据,进而通过处理电路可以和驱动电极构成反馈电路,实现更精确的控制与测量。此外,这种位移检测-控制的反馈电路可以减少诸多不期望的膜形变情况,比如零漂、温漂和外部冲击等带来的膜变形,进一步提升了器件的抗过载能力和零偏性能。其二,可以通过设计对应于压敏电阻2位置的应变检测电极,通过相应算法计算得到压敏电阻2因形变带来的阻值变化,从而进一步提升测量的精度。Furthermore, combining and utilizing the principle of the strain gauge pressure sensor, a strain detection capacitance is added to the back cavity of the pressure sensor. Its role mainly has two points. Firstly, the strain of the pressure-sensitive film is used to bring the strain of the first strain electrode layer 14, thereby changing the capacitance value of the strain detection capacitor. Through this value, the displacement data of the sensitive film can be obtained, and then the processing circuit can form a feedback circuit with the driving electrode to achieve more precise control and measurement. In addition, this displacement detection-control feedback circuit can reduce many undesirable film deformations, such as film deformation caused by zero drift, temperature drift and external impact, which further improves the overload resistance and zero bias performance of the device. Second, the strain detection electrode corresponding to the position of the piezoresistor 2 can be designed, and the resistance value change caused by the deformation of the piezoresistor 2 can be calculated through a corresponding algorithm, thereby further improving the measurement accuracy.
在本发明实施例中还提供了一种高频动态MEMS压阻式压力传感器的制备方法,包括以下步骤:In an embodiment of the present invention, a method for preparing a high-frequency dynamic MEMS piezoresistive pressure sensor is also provided, comprising the following steps:
提供第一衬底1和基底;providing a first substrate 1 and a base;
在所述第一衬底1上制备压力敏感薄膜;preparing a pressure-sensitive thin film on the first substrate 1;
通过阳极键合将所述基底的上表面和所述第一衬底1的下表面键合。The upper surface of the base and the lower surface of the first substrate 1 are bonded by anodic bonding.
为进一步说明本发明提出的高频动态MEMS压阻式压力传感器的制作实现,图4至图22为本发明实施例中的工艺形成过程示意图,如图4-22所示,所述高频动态MEMS压阻式压力传感器的制备方法具体包括:In order to further illustrate the production and realization of the high-frequency dynamic MEMS piezoresistive pressure sensor proposed by the present invention, Fig. 4 to Fig. 22 are schematic diagrams of the process formation process in the embodiment of the present invention, as shown in Fig. 4-22, the high-frequency dynamic The preparation method of the MEMS piezoresistive pressure sensor specifically includes:
步骤a:如图4所示,选用300mm厚的N型(100)硅片作为第一衬底1,通过光刻和离子注入,在所述第一衬底1上形成浅掺杂B的压敏电阻2;Step a: As shown in Figure 4, select a 300 mm thick N-type (100) silicon wafer as the first substrate 1, and form a lightly doped B pressure layer on the first substrate 1 by photolithography and ion implantation. Sensitive resistor 2;
步骤b:如图5所示,通过光刻和离子注入,在所述第一衬底1上位于所述压敏电阻2的两边形成重掺杂B的欧姆接触区3;Step b: as shown in FIG. 5 , forming heavily B-doped ohmic contact regions 3 on both sides of the varistor 2 on the first substrate 1 through photolithography and ion implantation;
步骤c:如图6所示,通过LPCVD(Low Pressure Chemical Vapor Deposition低压力化学气相沉积法)在所述第一衬底1的上表面分别生长100nm的氧化硅、100nm的氮化硅以作为第一钝化层4和第二钝化层5;Step c: as shown in FIG. 6 , grow 100 nm of silicon oxide and 100 nm of silicon nitride on the upper surface of the first substrate 1 by LPCVD (Low Pressure Chemical Vapor Deposition) as the second a passivation layer 4 and a second passivation layer 5;
步骤d:如图7所示,通过光刻和RIE(Reactive Ion Etching 反应离子刻蚀)刻蚀所述第一钝化层4和第二钝化层5,露出所述欧姆接触区3,并通过光刻和磁控溅射一层厚度为100nm-300nm的铜,在所述欧姆接触区3和所述第二钝化层5的上表面形成压敏电极层6,以将四个压敏电阻2连接成惠斯通电桥;Step d: as shown in FIG. 7, etching the first passivation layer 4 and the second passivation layer 5 by photolithography and RIE (Reactive Ion Etching) to expose the ohmic contact region 3, and Through photolithography and magnetron sputtering a layer of copper with a thickness of 100nm-300nm, a pressure-sensitive electrode layer 6 is formed on the upper surface of the ohmic contact area 3 and the second passivation layer 5, so that the four pressure-sensitive Resistor 2 is connected to form a Wheatstone bridge;
步骤e:如图8所示,通过光刻和低压力化学气相沉积法LPCVD在所述第二钝化层5和所述压敏电极层6的上表面生长一层厚度为2um的氧化硅以作为第三钝化层7;Step e: as shown in FIG. 8 , grow a layer of silicon oxide with a thickness of 2 μm on the upper surface of the second passivation layer 5 and the pressure-sensitive electrode layer 6 by photolithography and low-pressure chemical vapor deposition method LPCVD to as the third passivation layer 7;
步骤f:如图9所示,通过光刻和磁控溅射在所述第三钝化层7的上表面溅射一层厚度为100nm的铜,作为第一驱动电极层8;Step f: as shown in FIG. 9 , sputter a layer of copper with a thickness of 100 nm on the upper surface of the third passivation layer 7 by photolithography and magnetron sputtering, as the first driving electrode layer 8;
步骤g:如图10所示,通过ALD(Atomic Layer Deposition,原子层沉积)在所述第三钝化层7和第一驱动电极层8的上表面生长一层厚度为50-150nm的铪锆复合氧化物(Hf-Zr-O),作为第一介电层9;Step g: as shown in FIG. 10 , grow a layer of hafnium-zirconium with a thickness of 50-150 nm on the upper surface of the third passivation layer 7 and the first driving electrode layer 8 by ALD (Atomic Layer Deposition, atomic layer deposition) composite oxide (Hf-Zr-O), as the first dielectric layer 9;
步骤h:如图11所示,通过光刻和磁控溅射在所述第一介电层9的上表面溅射一层厚度为100nm的铜,作为第二驱动电极层10;Step h: As shown in FIG. 11 , a layer of copper with a thickness of 100 nm is sputtered on the upper surface of the first dielectric layer 9 by photolithography and magnetron sputtering as the second driving electrode layer 10;
步骤i:如图12所示,通过低压力化学气相沉积法LPCVD在所述第一介电层9和第二驱动电极层10的上表面生长一层厚度为2um的氧化硅,作为第四钝化层11;Step i: as shown in FIG. 12 , grow a layer of silicon oxide with a thickness of 2um on the upper surfaces of the first dielectric layer 9 and the second driving electrode layer 10 by low pressure chemical vapor deposition method LPCVD as the fourth passivation layer. Layer 11;
步骤j:如图13所示,通过光刻和ICP(Inductively Couple Plasma,电感耦合等离子体刻蚀),在所述第一衬底1的背面刻蚀出深度为270um的第一凹槽12;Step j: as shown in FIG. 13 , by photolithography and ICP (Inductively Coupled Plasma, inductively coupled plasma etching), etch a first groove 12 with a depth of 270um on the back surface of the first substrate 1;
步骤k:如图14所示,通过光刻和低压力化学气相沉积法LPCVD在所述第一凹槽12的下表面生长一层厚度为1um的氧化硅,作为第五钝化层13;Step k: As shown in FIG. 14 , grow a layer of silicon oxide with a thickness of 1 μm on the lower surface of the first groove 12 by photolithography and low pressure chemical vapor deposition method LPCVD as the fifth passivation layer 13 ;
步骤l:如图15所示,通过光刻和磁控溅射在所述第五钝化层13的下表面溅射一层厚度为100nm的铜,作为第一应变电极层14;Step 1: As shown in FIG. 15, a layer of copper with a thickness of 100 nm is sputtered on the lower surface of the fifth passivation layer 13 by photolithography and magnetron sputtering as the first strained electrode layer 14;
步骤m:如图16所示,通过光刻和原子层沉积ALD在所述第一应变电极层14的下表面生长一层厚度为50nm的铪锆复合氧化物,作为第二介电层15;Step m: As shown in FIG. 16 , grow a layer of hafnium-zirconium composite oxide with a thickness of 50 nm on the lower surface of the first strained electrode layer 14 as the second dielectric layer 15 by photolithography and atomic layer deposition ALD;
步骤n:如图17所示,通过光刻和电感耦合等离子体刻蚀ICP,在所述第一衬底1的背面刻蚀出深度为258um的第二凹槽16,所述第二凹槽16的横截面面积大于所述第一凹槽12;Step n: as shown in FIG. 17 , by photolithography and inductively coupled plasma etching ICP, etch a second groove 16 with a depth of 258um on the back surface of the first substrate 1, the second groove The cross-sectional area of 16 is larger than that of the first groove 12;
步骤o:如图18所示,另取一片厚度为300um的玻璃片,通过光刻和电感耦合等离子体刻蚀ICP,得到阶梯结构,作为第二衬底17,其中,第二衬底17的中间部分尺寸略小于所述第一凹槽12的尺寸,第二衬底17的中间部分比边缘部分的高度高258um;Step o: As shown in FIG. 18, take another piece of glass sheet with a thickness of 300um, and use photolithography and inductively coupled plasma etching ICP to obtain a ladder structure as the second substrate 17, wherein the second substrate 17 The size of the middle part is slightly smaller than the size of the first groove 12, and the height of the middle part of the second substrate 17 is 258um higher than that of the edge part;
步骤p:如图19所示,通过光刻和低压力化学气相沉积法LPCVD,在所述第二衬底17中间较厚处的上表面生长厚度为1um的一层氮化硅,作为第六钝化层18;Step p: as shown in FIG. 19 , grow a layer of silicon nitride with a thickness of 1 μm on the upper surface of the thicker middle part of the second substrate 17 by photolithography and low-pressure chemical vapor deposition method LPCVD, as the sixth passivation layer 18;
步骤q:如图20所示,通过光刻和磁控溅射,在所述第六钝化层18的上表面溅射一层厚度为100nm的铜,作为第二应变电极层19;Step q: As shown in FIG. 20 , by photolithography and magnetron sputtering, a layer of copper with a thickness of 100 nm is sputtered on the upper surface of the sixth passivation layer 18 as the second strained electrode layer 19 ;
步骤r:如图21所示,通过光刻和原子层沉积ALD在所述第六钝化层18和第二应变电极层19的上表面生长一层厚度为50nm-100nm的铪锆复合氧化物,作为第三介电层20;Step r: as shown in FIG. 21 , grow a layer of hafnium-zirconium composite oxide with a thickness of 50nm-100nm on the upper surface of the sixth passivation layer 18 and the second strained electrode layer 19 by photolithography and atomic layer deposition ALD , as the third dielectric layer 20;
步骤s:如图22所示,通过阳极键合将第一衬底1和第二衬底17键合,完成所述高频动态MEMS压阻式压力传感器的制备。Step s: As shown in FIG. 22 , the first substrate 1 and the second substrate 17 are bonded by anodic bonding to complete the preparation of the high-frequency dynamic MEMS piezoresistive pressure sensor.
可以理解的是,以上实施方式仅仅是为了说明本发明的原理而采用的示例性实施方式,然而本发明并不局限于此。对于本领域内的普通技术人员而言,在不脱离本发明的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本发明的保护范围。It can be understood that, the above embodiments are only exemplary embodiments adopted for illustrating the principle of the present invention, but the present invention is not limited thereto. For those skilled in the art, various modifications and improvements can be made without departing from the spirit and essence of the present invention, and these modifications and improvements are also regarded as the protection scope of the present invention.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310695679.XA CN116448290B (en) | 2023-06-13 | 2023-06-13 | A high-frequency dynamic MEMS piezoresistive pressure sensor and its preparation method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310695679.XA CN116448290B (en) | 2023-06-13 | 2023-06-13 | A high-frequency dynamic MEMS piezoresistive pressure sensor and its preparation method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN116448290A true CN116448290A (en) | 2023-07-18 |
CN116448290B CN116448290B (en) | 2023-09-01 |
Family
ID=87132358
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202310695679.XA Active CN116448290B (en) | 2023-06-13 | 2023-06-13 | A high-frequency dynamic MEMS piezoresistive pressure sensor and its preparation method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN116448290B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117246972A (en) * | 2023-11-17 | 2023-12-19 | 苏州敏芯微电子技术股份有限公司 | Micro-electromechanical force sensor and preparation method thereof |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5417115A (en) * | 1993-07-23 | 1995-05-23 | Honeywell Inc. | Dielectrically isolated resonant microsensors |
CN1511252A (en) * | 2001-05-25 | 2004-07-07 | ÷ | Highly sensitive pressure sensor with long-term stability |
KR20050075225A (en) * | 2004-01-16 | 2005-07-20 | 삼성전자주식회사 | Mems monolithic multi-functional integrated sensor and methods for fabricating the same |
CN201653604U (en) * | 2010-04-09 | 2010-11-24 | 无锡芯感智半导体有限公司 | Pressure sensor |
US20140001584A1 (en) * | 2011-03-15 | 2014-01-02 | Memsen Electronics Inc | Mems pressure sensor and manufacturing method therefor |
CN112284578A (en) * | 2020-12-30 | 2021-01-29 | 东南大学 | A kind of MEMS pressure sensor and preparation method thereof |
-
2023
- 2023-06-13 CN CN202310695679.XA patent/CN116448290B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5417115A (en) * | 1993-07-23 | 1995-05-23 | Honeywell Inc. | Dielectrically isolated resonant microsensors |
CN1511252A (en) * | 2001-05-25 | 2004-07-07 | ÷ | Highly sensitive pressure sensor with long-term stability |
KR20050075225A (en) * | 2004-01-16 | 2005-07-20 | 삼성전자주식회사 | Mems monolithic multi-functional integrated sensor and methods for fabricating the same |
CN201653604U (en) * | 2010-04-09 | 2010-11-24 | 无锡芯感智半导体有限公司 | Pressure sensor |
US20140001584A1 (en) * | 2011-03-15 | 2014-01-02 | Memsen Electronics Inc | Mems pressure sensor and manufacturing method therefor |
CN112284578A (en) * | 2020-12-30 | 2021-01-29 | 东南大学 | A kind of MEMS pressure sensor and preparation method thereof |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117246972A (en) * | 2023-11-17 | 2023-12-19 | 苏州敏芯微电子技术股份有限公司 | Micro-electromechanical force sensor and preparation method thereof |
CN117246972B (en) * | 2023-11-17 | 2024-01-30 | 苏州敏芯微电子技术股份有限公司 | Micro-electromechanical force sensor and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN116448290B (en) | 2023-09-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108507709B (en) | Preparation method of resonant pressure sensor | |
JP3114570B2 (en) | Capacitive pressure sensor | |
KR100807193B1 (en) | Method of manufacturing capacitive pressure sensor and capacitive pressure sensor manufactured thereby | |
CN108871627B (en) | Differential double-resonator type acoustic wave pressure sensor | |
CN110389237A (en) | An in-plane biaxial acceleration sensor chip and its preparation method | |
CN110371921A (en) | Twin shaft pressure drag acceleration sensor chip and preparation method thereof in a kind of face | |
CN206164826U (en) | Sensitive membrane and MEMS microphone | |
CN116448290B (en) | A high-frequency dynamic MEMS piezoresistive pressure sensor and its preparation method | |
CN216559443U (en) | MEMS substrate and MEMS pressure sensor | |
CN105300573B (en) | A kind of beam diaphragm structure piezoelectric transducer and preparation method thereof | |
CN113465791B (en) | A kind of resonant pressure sensor and preparation method thereof | |
CN113218544B (en) | Micro pressure sensor chip with stress concentration structure and preparation method thereof | |
CN112964417A (en) | Capacitive pressure sensitive chip with double movable polar plates | |
CN108426658A (en) | Ring contacts high range condenser type micropressure sensor | |
CN110482475A (en) | A kind of capacitance pressure transducer, based on MEMS | |
CN117268600A (en) | MEMS pressure sensor chip and preparation method thereof | |
CN113758613B (en) | SOI-based resistance center placed piezoresistive pressure sensor | |
CN209131869U (en) | A Linked Membrane Capacitive Pressure Sensing Chip | |
CN103234669B (en) | Pressure sensor utilizing electrostatic negative stiffness and production method of pressure sensor | |
CN110531114A (en) | A kind of MEMS three-axis piezoresistance formula accelerometer chip of purely axial deformation and preparation method thereof | |
CN114314498A (en) | MEMS film vacuum gauge and preparation method thereof | |
CN206362469U (en) | A kind of high temperature film pressure-sensing device | |
CN208537066U (en) | Differential Dual Resonator Type Acoustic Pressure Sensor | |
CN115711692A (en) | Line contact linkage film capacitance type pressure sensitive chip and manufacturing method thereof | |
CN103964370A (en) | Method for preparing capacitive pressure transducer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CP02 | Change in the address of a patent holder |
Address after: No. 100-17 Dicui Road, Liyuan Development Zone, Wuxi City, Jiangsu Province, 214001 Patentee after: WUXI SENCOCH SEMICONDUCTOR Co.,Ltd. Address before: 214000 north side of 3 / F podium, building A10, No. 777, Jianshe West Road, Binhu District, Wuxi City, Jiangsu Province Patentee before: WUXI SENCOCH SEMICONDUCTOR Co.,Ltd. |
|
CP02 | Change in the address of a patent holder | ||
CP03 | Change of name, title or address |
Address after: No. 100-17 Dicui Road, Liyuan Development Zone, Wuxi City, Jiangsu Province, 214000 Patentee after: Wuxi Xingan Intelligent Technology Co.,Ltd. Country or region after: China Address before: No. 100-17 Dicui Road, Liyuan Development Zone, Wuxi City, Jiangsu Province, 214001 Patentee before: WUXI SENCOCH SEMICONDUCTOR Co.,Ltd. Country or region before: China |
|
CP03 | Change of name, title or address |