CN116430603A - Optical waveguide display module based on one-dimensional divergent beam - Google Patents
Optical waveguide display module based on one-dimensional divergent beam Download PDFInfo
- Publication number
- CN116430603A CN116430603A CN202310201196.XA CN202310201196A CN116430603A CN 116430603 A CN116430603 A CN 116430603A CN 202310201196 A CN202310201196 A CN 202310201196A CN 116430603 A CN116430603 A CN 116430603A
- Authority
- CN
- China
- Prior art keywords
- light
- optical waveguide
- divergent
- dimensional
- light beam
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B30/00—Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
- G02B30/20—Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/01—Head-up displays
- G02B27/017—Head mounted
- G02B27/0172—Head mounted characterised by optical features
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Devices For Indicating Variable Information By Combining Individual Elements (AREA)
Abstract
Description
技术领域technical field
本发明涉及三维显示技术领域,更具体涉及一种基于一维发散光束的光波导显示模组。The present invention relates to the technical field of three-dimensional display, and more specifically relates to an optical waveguide display module based on one-dimensional diverging light beams.
背景技术Background technique
随着显示技术的发展,三维显示因其提供第三维度信息的能力,正受到越来多的关注。由于结构轻薄,光波导在三维显示中得到越来越多的应用。光波导于显示领域中的应用,一种常见情况是通过光波导可以把携带图像信息的光传递给观察者眼睛,另外一种情况是通过光波导给显示器件提供方向性背光,以沿特定方向把显示信息投射至观察者眼睛。在该两种情况,多是将来自点(例如像素、点光源)的出射光转变为小尺寸平行光后,再进行传递。显示过程中,被传递的小尺寸平行光,需要沿一个方向进行传输后,再转向第二个方向进行传输,以实现所述平行光于光波导出瞳处尺寸的二维扩展。With the development of display technology, 3D display is receiving more and more attention because of its ability to provide information in the third dimension. Due to the light and thin structure, optical waveguides are increasingly used in 3D displays. The application of optical waveguide in the field of display, one common situation is that the light carrying image information can be transmitted to the eyes of the observer through the optical waveguide, and the other situation is that the optical waveguide provides directional backlight to the display device, so as to follow a specific direction Project display information to the observer's eyes. In these two cases, the emitted light from a point (such as a pixel, a point light source) is converted into a small-sized parallel light, and then transmitted. During the display process, the transmitted small-sized parallel light needs to be transmitted in one direction, and then turned to the second direction for transmission, so as to realize the two-dimensional expansion of the size of the parallel light at the exit pupil of the light wave.
于三维显示的技术方案方面,目前市场上的三维显示系统主要是基于体视技术。体视技术的基本原理,是利用双目视差,向观察者双目分别投射各自对应的一幅二维图像,通过双目视向于现实场景处的交叉,触发大脑的深度感知,以实现三维视觉的呈现。在该过程中,各像素投射光束为发散光束,其于对应眼睛处的光分布尺寸大于瞳孔直径,观察者各眼睛为了清晰地看到各自对应二维投射图像,眼睛焦点需要对准显示面,该单目聚焦距离不同于双目视向交叉处(显示的出屏场景)所对应的双目会聚距离,即存在聚焦-会聚冲突问题。而自然环境下,观察者观察真实的空间场景时,单目聚焦距离和双目会聚距离一致于观察者所关注的空间深度。所以,传统仅基于双目视差进行三维显示的光学设备,其固有聚焦-会聚冲突有悖于人体自然进化的生理习惯,由此导致观察者的视觉不适,是目前阻碍三维显示技术推广应用的瓶颈性问题。超多视图(Super Multi-view)和麦克斯韦投射(maxwellian view,也称为视网膜投影显示)是两种可以解决聚焦-会聚冲突问题的显示方法。前者,通过向观察者各眼睛分别投射至少两个待显示场景的二维视图,以达到过各显示物点至少两条光束沿不同矢向入射观察者任一瞳孔的目的,通过该至少两条不同矢向光束于空间的叠加形成叠加光点;该叠加光点处的光强分布于,相对于各光束于二维图像显示面上各光束的光强分布具有足够的牵引优势时,即可牵引观察者眼睛自然聚焦于该叠加光点,从而克服聚焦-会聚冲突问题。后者,过任一显示物点,向观察者各目仅投射一束小发散角的光束,该小发散角光束沿传输方向上的光强梯度较小,从而于双目会聚效应对单目聚焦的耦合驱动作用下,可以牵引观察者各目焦点至空间的显示场景,从而克服聚焦-会聚冲突,实现单目聚焦深度和双目会聚深度的一致。In terms of technical solutions for 3D display, the 3D display systems currently on the market are mainly based on stereoscopic technology. The basic principle of stereoscopic technology is to use binocular parallax to project a corresponding two-dimensional image to the observer's eyes, and trigger the brain's depth perception through the intersection of the binocular vision at the real scene to achieve three-dimensional Visual presentation. In this process, the beams projected by each pixel are divergent beams, and the size of the light distribution at the corresponding eyes is larger than the diameter of the pupil. In order for the eyes of the observer to clearly see the corresponding two-dimensional projected images, the focus of the eyes needs to be aligned with the display surface. The monocular focus distance is different from the binocular convergence distance corresponding to the intersection of the binocular gaze (displayed out-screen scene), that is, there is a focus-convergence conflict problem. In a natural environment, when the observer observes a real space scene, the monocular focus distance and the binocular convergence distance are consistent with the spatial depth that the observer pays attention to. Therefore, traditional optical devices that only perform 3D display based on binocular parallax have inherent focus-convergence conflicts that are contrary to the physiological habits of the natural evolution of the human body, resulting in visual discomfort for observers, which is currently the bottleneck hindering the promotion and application of 3D display technology sexual issues. Super Multi-view and Maxwellian view (also known as retinal projection display) are two display methods that can solve the focus-convergence conflict problem. In the former, at least two two-dimensional views of the scene to be displayed are respectively projected to each eye of the observer, so as to achieve the purpose of at least two light beams incident on any pupil of the observer along different sagittal directions through each display object point. The superposition of sagittal light beams in space forms a superimposed light spot; the light intensity distribution at the superimposed light spot has sufficient traction advantages compared with the light intensity distribution of each beam on the two-dimensional image display surface, and can be drawn and observed The eye of the observer naturally focuses on the superimposed light spot, thereby overcoming the focus-convergence conflict problem. The latter, through any display object point, projects only a beam of light with a small divergence angle to each eye of the observer, and the light intensity gradient of the light beam with a small divergence angle along the transmission direction is small, so that the binocular convergence effect is more effective than the monocular Under the action of the coupling drive of focusing, it can pull the focus of each eye of the observer to the display scene in space, thereby overcoming the conflict of focus-convergence and achieving the consistency of monocular focus depth and binocular convergence depth.
发明内容Contents of the invention
本发明提出一种基于一维发散光束的光波导显示模组,以通过轻薄光学结构,实现无聚焦-会聚冲突的三维显示。该基于一维发散光束的光波导显示模组,通过发散角垂向约束器件,将入射的发散光束转化为沿一维方向保持发散状态、沿另一维方向以平行或小发散角状态出射的光束,本专利称该类光束为一维发散光束;利用光波导结构的对该类一维发散光束进行传输,并由会聚器件分别会聚至各自对应视区;通过入射各视区的光线所携带对应光信息,实现各视区对应视图的投射。并设计视区间距,以期最终实现超多视图和/或麦克斯韦投射显示。该显示模组所投射视区可以对应覆盖观察者双眼,也可以设计两个该显示模组分别对应观察者双眼。该显示模组的明显特征在于,利用仅沿一个方向具有较大发散角的一维发散光束于光波导结构内沿二维方向的光传输,无需入射光于光波导结构内的转向传输,即可实现二维视图向对应视区的投射,从而基于麦克斯韦投射或超多视图的技术路径,实现克服聚焦-会聚冲突的三维显示。The present invention proposes an optical waveguide display module based on one-dimensional diverging light beams to realize three-dimensional display without focus-convergence conflict through a light and thin optical structure. The optical waveguide display module based on a one-dimensional divergent beam converts the incident divergent beam into a divergent state along the one-dimensional direction and exits in a parallel or small divergence angle state along the other dimension through the divergence angle vertically constrained device. Beam, this patent refers to this type of beam as a one-dimensional divergent beam; use the optical waveguide structure to transmit this type of one-dimensional divergent beam, and converge to the respective corresponding viewing areas by the converging device; Corresponding to the light information, the projection of the corresponding view of each viewing area is realized. And design viewport spacing, with a view to eventually achieve super multi-view and/or Maxwell projection display. The viewing area projected by the display module can cover both eyes of the observer, or two display modules can be designed to correspond to the eyes of the observer respectively. The obvious feature of this display module is that it uses a one-dimensional divergent light beam with a large divergence angle in one direction to transmit light in two-dimensional directions in the optical waveguide structure, without the need for steering transmission of incident light in the optical waveguide structure, that is It can realize the projection of two-dimensional view to the corresponding viewing area, so as to realize the three-dimensional display that overcomes the focus-convergence conflict based on the technical path of Maxwell projection or super multi-view.
本发明提供如下方案:The present invention provides following scheme:
基于一维发散光束的光波导显示模组,包括:Optical waveguide display modules based on one-dimensional divergent beams, including:
发散光束投射单元,该发散光束投射单元投射M个发散光束,其中M≧1;A divergent beam projection unit, the divergent beam projection unit projects M divergent beams, where M≧1;
光波导结构,该光波导结构包括第一反射面和第二反射面,并利用该第一反射面和第二反射面引导来自所述发散光束的入射光线传播;An optical waveguide structure, the optical waveguide structure includes a first reflective surface and a second reflective surface, and uses the first reflective surface and the second reflective surface to guide the incident light from the divergent light beam to propagate;
发散角垂向约束器件,置于所述发散光束投射单元和光波导结构之间,调制并引导来自同一发散光束的光线,使其于任一垂向面内的光线以≦10°的发散角、于垂直于垂向面的一个面内的光线以>10°的发散角入射光波导结构,其中,垂向面是指包含所述反射面的法线的面;The divergence angle vertical confinement device is placed between the divergent beam projection unit and the optical waveguide structure, modulates and guides the light from the same divergent beam, so that the light in any vertical plane has a divergence angle of ≦10°, Light rays in a plane perpendicular to the vertical plane enter the optical waveguide structure at a divergence angle of >10°, wherein the vertical plane refers to the plane containing the normal of the reflective plane;
会聚器件,该会聚器件位于光波导结构对应的位置以调制经过光波导结构传播的来自同一发散光束的光线;a converging device, the converging device is located at a corresponding position of the optical waveguide structure to modulate the light from the same divergent light beam propagating through the optical waveguide structure;
控制器件,该控制器件与发散光束投射单元连接,该控制器件将各光线所携带光信息控制为待显示场景沿该光线入射对应视区时的传播路径的投影信息。A control device, the control device is connected to the divergent beam projection unit, and the control device controls the light information carried by each light to be the projection information of the scene to be displayed along the propagation path when the light enters the corresponding viewing area.
在一个具体的实施方案中,所述光波导结构还包括所述第一反射面和第二反射面之间的光波导体、入瞳、耦入器件、耦出器件、出瞳;In a specific embodiment, the optical waveguide structure further includes an optical waveguide between the first reflective surface and the second reflective surface, an entrance pupil, an in-coupling device, an out-coupling device, and an exit pupil;
其中,来自发散角垂向约束器件的光线经入瞳入射耦入器件后,基于第一反射面或/和第二反射面的反射于光波导体内传输至耦出器件,并由耦出器件调控,经出瞳出射。Wherein, after the light from the divergence angle vertically constrained device enters into the device through the entrance pupil, it is transmitted to the outcoupling device in the optical waveguide based on the reflection of the first reflective surface or/and the second reflective surface, and is regulated by the outcoupling device , exiting through the exit pupil.
在一个具体的实施方案中,所述会聚器件被所述耦出器件替代,耦出器件能够将传输至耦出器件的光线会聚至对应视区。在本方案中,会聚器件被所述耦出器件替代是指:所述光波导结构已经包括所述耦出器件并且所述耦出器件能够将传输至耦出器件的光线会聚至对应视区的情况下,基于一维发散光束的光波导显示模组不用设置会聚器件。在本方案中,所述耦出器件具有耦出功能,又具有会聚功能。In a specific embodiment, the converging device is replaced by the outcoupling device, and the outcoupling device is capable of converging the light transmitted to the outcoupling device to the corresponding viewing area. In this solution, the convergence device is replaced by the outcoupling device means: the optical waveguide structure already includes the outcoupling device and the outcoupling device can converge the light transmitted to the outcoupling device to the corresponding viewing area In this case, the optical waveguide display module based on one-dimensional diverging light beams does not need to be equipped with converging devices. In this solution, the outcoupling device has both outcoupling and converging functions.
在一个具体的实施方案中,所述发散角垂向约束器件为长轴为曲线的柱透镜,或二维准直透镜和一维发散透镜的组合结构,或二维微纳结构器件。In a specific embodiment, the divergence angle vertically confining device is a cylindrical lens with a curved long axis, or a combined structure of a two-dimensional collimating lens and a one-dimensional diverging lens, or a two-dimensional micro-nano structure device.
在一个具体的实施方案中,包括瞳孔追踪单元,所述瞳孔与控制器件连接,用于实时追踪定位观察者瞳孔位置;In a specific embodiment, a pupil tracking unit is included, and the pupil is connected with a control device for real-time tracking and positioning of the observer's pupil position;
该显示模组被设置为能够根据瞳孔追踪单元所确定瞳孔位置,于控制器件的控制下,仅投射对应瞳孔位置的视区。The display module is configured to project only the viewing area corresponding to the pupil position under the control of the control device according to the pupil position determined by the pupil tracking unit.
在一个具体的实施方案中,所述基于一维发散光束的光波导显示模组还包括辅助引导器件,该辅助引导器件被置于发散光束投射单元和光波导结构之间,以引导各光线经发散角垂向约束器件向光波导结构的入射。In a specific embodiment, the optical waveguide display module based on one-dimensional diverging light beams further includes an auxiliary guiding device, which is placed between the diverging beam projecting unit and the optical waveguide structure, so as to guide each light beam through diverging The angle vertically constrains the incidence of the device into the optical waveguide structure.
在一个具体的实施方案中,所述基于一维发散光束的光波导显示模组,还包括可控偏转器件,沿光传输方向,置于所述发散角垂向约束器件之后的光传播路径中;In a specific embodiment, the optical waveguide display module based on one-dimensional diverging light beams further includes a controllable deflection device placed in the light propagation path behind the divergence angle vertically confining device along the light transmission direction ;
其中,所述可控偏转器件能够于控制器件的控制下偏转入射光,引导来自同一发散光束的光线向不同位置会聚,以分别形成不同视区。Wherein, the controllable deflection device can deflect the incident light under the control of the control device, guide the light from the same divergent light beam to converge to different positions, so as to form different viewing areas respectively.
在一个具体的实施方案中,所述基于一维发散光束的光波导显示模组,还包括瞳孔追踪单元,所述瞳孔与控制器件连接,用于实时追踪定位观察者瞳孔位置;In a specific embodiment, the optical waveguide display module based on one-dimensional diverging light beams further includes a pupil tracking unit, and the pupil is connected to a control device for real-time tracking and positioning of the observer's pupil position;
该显示模组被设置为能够根据瞳孔追踪单元所确定瞳孔位置,于控制器件的控制下,仅投射和该瞳孔位置对应的视区。The display module is configured to project only the viewing area corresponding to the pupil position under the control of the control device according to the pupil position determined by the pupil tracking unit.
在一个具体的实施方案中,其特征在于,所述发散光投射单所投射各光线携带光信息。In a specific embodiment, it is characterized in that each light projected by the diverging light projection unit carries light information.
在一个具体的实施方案中,所述发散光投射单元包括和控制器件信号连接的M个激光扫描投影结构;In a specific embodiment, the divergent light projection unit includes M laser scanning projection structures that are signal-connected to the control device;
其中,所述激光扫描投影单元包括扫描器件和可调制光线生成单元,该可调制光线生成单元出射光线被扫描器件时序偏转出射形成发散光束,且,该可调制光线生成单元于控制器件驱动下调制各出射光线,进行光信息加载。Wherein, the laser scanning projection unit includes a scanning device and a modulatable light generating unit, the light emitted by the modulatable light generating unit is sequentially deflected by the scanning device to form a divergent beam, and the modulatable light generating unit is modulated under the drive of the control device Each outgoing light is loaded with light information.
在一个具体的实施方案中,所述发散光投射单元包括显示屏、包含M个孔径的孔径单元、和将显示屏出射光向孔径单元会聚的调制器件;In a specific embodiment, the divergent light projection unit includes a display screen, an aperture unit comprising M apertures, and a modulation device that converges the light emitted from the display screen to the aperture unit;
其中,所述显示屏包括多个像素或子像素,所述显示屏于控制器件的驱动下进行光信息加载。Wherein, the display screen includes a plurality of pixels or sub-pixels, and the display screen is driven by a control device to load optical information.
在一个具体的实施方案中,所述发散光投射单元包括显示屏、包含M个孔径的孔径单元、和由微纳调控单元组成的微纳调控器件;In a specific embodiment, the divergent light projection unit includes a display screen, an aperture unit comprising M apertures, and a micro-nano control device composed of a micro-nano control unit;
其中所述显示屏包括M组像素或子像素,所述微纳调控器件的各微纳调控单元和所述显示屏的各像素或各子像素一一对应,引导显示屏的M组像素或子像素出射光,分别向孔径单元的M个孔径投射,且所述显示屏于控制器件驱动下进行光信息加载。Wherein the display screen includes M groups of pixels or sub-pixels, each micro-nano control unit of the micro-nano control device corresponds to each pixel or each sub-pixel of the display screen, and guides the M groups of pixels or sub-pixels of the display screen The light emitted by the pixels is respectively projected to the M apertures of the aperture unit, and the display screen is driven by the control device to load the optical information.
在一个具体的实施方案中,所述发散光投射单元包括显示屏、包含M个光源的光源单元、对所述光源单元的M个光源进行成像的成像器件;In a specific embodiment, the divergent light projection unit includes a display screen, a light source unit comprising M light sources, and an imaging device for imaging the M light sources of the light source unit;
其中,所述显示屏包括多个像素或子像素,所述光源单元的M个光源向所述显示屏投射背光,所述显示屏于控制器件驱动下进行光信息加载。Wherein, the display screen includes a plurality of pixels or sub-pixels, the M light sources of the light source unit project backlight to the display screen, and the display screen is driven by a control device to load optical information.
在一个具体的实施方案中,所述发散光投射单元包括M个投影单元;In a specific embodiment, the divergent light projection unit includes M projection units;
其中,所述投影单元包括一个显示屏、一个滤波孔径、和将显示屏出射光向滤波孔径会聚的调制器件,其中显示屏于控制器件驱动下进行光信息加载,所述显示屏包括多个像素或子像素。Wherein, the projection unit includes a display screen, a filter aperture, and a modulation device for converging the light emitted from the display screen to the filter aperture, wherein the display screen is driven by the control device to load light information, and the display screen includes a plurality of pixels or sub-pixel.
在一个具体的实施方案中,所述基于一维发散光束的光波导显示模组还包括背光型显示器件,该背光型显示器件沿光传输方向,置于所述发散角垂向约束器件之后的光传输路径中;In a specific embodiment, the optical waveguide display module based on one-dimensional diverging light beams further includes a backlight display device, which is placed behind the divergence angle vertical confinement device along the light transmission direction In the optical transmission path;
其中,该背光型显示器件包括多个像素或子像素,并于控制器件的驱动下进行光信息加载。Wherein, the backlight display device includes a plurality of pixels or sub-pixels, and is loaded with optical information under the driving of the control device.
在一个具体的实施方案中,所述发散光投射单元包括背光板和包括M个孔径的孔径单元,其中背光板向孔径单元投射背光。In a specific embodiment, the divergent light projecting unit includes a backlight panel and an aperture unit including M apertures, wherein the backlight panel projects backlight to the aperture unit.
在一个具体的实施方案中,所述发散光投射单元为包括M个点光源的光源单元。In a specific embodiment, the divergent light projection unit is a light source unit including M point light sources.
在一个具体的实施方案中,多于一个的光波导结构堆叠置放,各光波导结构分别各自配置对应的发射光束投影单元和发散角垂向约束器件。In a specific embodiment, more than one optical waveguide structure is stacked, and each optical waveguide structure is respectively equipped with a corresponding emission beam projection unit and a divergence angle vertical confinement device.
本发明具有以下有益效果:本发明设计一维发散光束,引导其于光波导结构内直接沿二维方向进行传播,无需入射光于光波导结构内的转向传输,即可于光波导结构出瞳处,实现尺寸扩展的二维分布光线向各视区的投射,且其适用于麦克斯韦投射或超多视图显示的特征,也可以有效克服聚焦-辐辏问题,实现可自然聚焦三维显示。The present invention has the following beneficial effects: the present invention designs a one-dimensional divergent light beam, guides it to propagate directly along the two-dimensional direction in the optical waveguide structure, and can exit the pupil of the optical waveguide structure without turning and transmitting the incident light in the optical waveguide structure , to realize the projection of two-dimensional distributed light rays with expanded size to each viewing area, and it is suitable for the characteristics of Maxwell projection or super multi-view display, and it can also effectively overcome the focus-vergence problem and realize natural focus three-dimensional display.
本发明实施例的细节在附图或以下描述中进行体现。本发明的其它特性、目的和优点通过下述描述、附图而变得更为明显。Details of embodiments of the invention are presented in the drawings or in the description below. Other features, objects and advantages of the present invention will become more apparent from the following description and accompanying drawings.
附图说明Description of drawings
附图用于帮助更好地理解本发明,也是本说明书的一部分。这些对实施例进行图解的附图和描述一起用以阐述本发明的原理。The accompanying drawings are included to help you better understand the invention, and are a part of this specification. The drawings and description illustrate the embodiments and together serve to explain the principles of the invention.
图1是本发明显示模组的一种结构示意图。FIG. 1 is a schematic structural diagram of a display module of the present invention.
图2是本发明发散角垂向约束器件的一种范例及其功能示意图。Fig. 2 is an example and a functional schematic diagram of the divergence angle vertical confinement device of the present invention.
图3是垂向面内入射平行光于光波导体内的反射传输示意图。Fig. 3 is a schematic diagram of reflection and transmission of incident parallel light in a vertical plane in an optical waveguide.
图4是本发明实施例1的显示模组结构示意图。FIG. 4 is a schematic structural diagram of a display module according to Embodiment 1 of the present invention.
图5是本发明发散角垂向约束器件的一种范例结构示意图。Fig. 5 is a schematic structural diagram of an example of a divergence angle vertical confinement device of the present invention.
图6是本发明实施例1的激光扫描投影结构示意图。FIG. 6 is a schematic diagram of the laser scanning projection structure of Embodiment 1 of the present invention.
图7是本发明实施例1的发散光束投射单元范例的结构示意图。FIG. 7 is a schematic structural diagram of an example of a divergent beam projection unit according to Embodiment 1 of the present invention.
图8是本发明实施例1的另一种发散光束投射单元范例的结构示意图。FIG. 8 is a schematic structural diagram of another example of a divergent beam projection unit according to Embodiment 1 of the present invention.
图9是本发明实施例1的再一种发散光束投射单元范例的结构示意图。FIG. 9 is a schematic structural diagram of another example of a divergent beam projection unit according to Embodiment 1 of the present invention.
图10是本发明实施例1的投影单元结构示意图。FIG. 10 is a schematic structural diagram of a projection unit according to Embodiment 1 of the present invention.
图11是本发明实施例1中多于一个的光波导结构堆叠置放所构建显示模组结构示意图。11 is a schematic diagram of the structure of a display module constructed by stacking more than one optical waveguide structure in Embodiment 1 of the present invention.
图12是本发明实施例2的显示模组结构示意图。FIG. 12 is a schematic structural diagram of a display module according to Embodiment 2 of the present invention.
图13本发明实施例2的发散光束投射单元范例的结构示意图。FIG. 13 is a schematic structural diagram of an example of a divergent beam projection unit according to Embodiment 2 of the present invention.
图14本发明实施例2的另一种发散光束投射单元范例的结构示意图。FIG. 14 is a schematic structural diagram of another example of a divergent beam projection unit according to Embodiment 2 of the present invention.
图15是本发明实施例2中多于一个的光波导结构堆叠置放所构建显示模组结构示意图。15 is a schematic diagram of the structure of a display module constructed by stacking more than one optical waveguide structure in Embodiment 2 of the present invention.
图16为移除发散角垂向约束器件情况下出现的噪声光线的示意图。FIG. 16 is a schematic diagram of noise rays that appear when the divergence angle vertically constrained device is removed.
图17为形成条状平行光的一种一维扩束结构范例的结构示意图。FIG. 17 is a schematic structural diagram of an example of a one-dimensional beam expander structure for forming striped parallel light.
图18为形成条状平行光的另一种一维扩束结构范例的结构示意图。FIG. 18 is a structural schematic diagram of another example of a one-dimensional beam expander structure for forming striped parallel light.
具体实施方式Detailed ways
本发明基于一维发散光束的光波导显示模组,利用光波导结构,引导一维发散光束沿二维方向进行传输,通过其光线对光波导结构耦出器件的二维覆盖,向观察者瞳孔耦出投射二维图像,基于超多视图或/和麦克斯韦投射的技术路径,实现可自由聚焦三维场景的呈现。The present invention is based on the optical waveguide display module of the one-dimensional divergent light beam, which uses the optical waveguide structure to guide the one-dimensional divergent light beam to transmit along the two-dimensional direction, and through the two-dimensional coverage of the optical waveguide structure coupled out device by its light, to the observer's pupil Coupling and projecting two-dimensional images, based on the technical path of super multi-view or/and Maxwell projection, realizes the presentation of three-dimensional scenes that can be freely focused.
图1所示为实施基于一维发散光束的光波导显示模组的基本光学结构,包括发散光束投射单元10、发散角垂向约束器件20、光波导结构30、会聚器件40和控制单元50。发散光束投射单元10投射M≧1个发散光束,例如图1所示经M=2个点S1和S2分别出射的M=2个发散光束。此处点S1和S2被命名为发散光出射点,发散光束投射单元10所投射任一发散光束,对应一个发散光出射点。各发散光束经发散角垂向约束器件20调控后,再被光波导结构30引导出射,最后经会聚器件40会聚至各自对应视区,例如图1中的视区VZ1和VZ2。本专利中,定义过光波导结构20反射面法线的面为垂向面。图2以发散光出射点S1对应发散光束为例,于过该发散光出射点S1的两个垂向面Pθ┴和P0┴内,示出入射光经发散角垂向约束器件20的调制传输。其中垂向面P0┴作为参考垂向面,任意垂向面Pθ┴和参考垂向面P0┴夹角为θ。P∥为平行于光波导结构30反射面的参考面。于参考垂向面P0┴内,来自发散光出射点S1的、以光线和光线/>为边线的光束,经发散角垂向约束器件20转换为以光线/>和光线/>为边线的平行光,其沿方向V0传输。图2中,该传输方向V0和参考面P∥的夹角以/>表示,其于参考面P∥上的投影方向被示为R0。同理,于垂向面Pθ┴内,来自发散光出射点S1的、以光线和光线/>为边线的光束,经发散角垂向约束器件20转换为以光线/>和光线/>为边线的平行光,其沿方向Vθ传输。图2中,该传输方向Vθ和参考面P∥的夹角以/>表示,其于参考面P∥上的投影方向被示为Rθ。夹角/>也是该平行光与光波导结构30反射面的夹角。这里,发散角垂向约束器件20被举例为以曲线/>为长轴的柱透镜。来自发散光出射点S1的、于过该发散光出射点的垂向面内的光线,经发散角垂向约束器件20被调制为平行光。则,经发散光出射点S1出射的发散光束,被发散角垂向约束器件20调制,作为一维发散光束入射光波导结构30。本专利中,其光线具有如下特征的光束被称为一维发散光束:其光线来自于同一个发散光出射点,其光线于任一过该发散光出射点的垂向面内以≦10°的发散角传输,且于过该发散光出射点的、垂直于前述垂向面的一个面内以>10°的发散角传输。图2中所示一维发散光束,于过发散光出射点S1的各垂向面内,示例为沿光传输方向平行传输(发散角为零)。则,于垂向面Pθ┴内,沿矢向Vθ传输的平行光,入射光波导结构30,并经光波导结构30反射面302a和302b的反射,于光波导体301中沿方向Rθ传播,如图3所示。这里,用zθ表示该垂向面对应的法向(反射面的法向),该平行光的边界光线分别用1和2表示。如图3(a)所示,截面尺寸a的平行光,其入射光波导结构30后,沿方向Rθ于反射面302a上的覆盖面尺寸其中一条光线,于同一反射面上相邻两个反射点之间的间距其中d为光波导体301沿zθ方向的厚度,/>为该平行光于光波导结构30反射面上的反射角。图3(a)中,Dc<Ds,即光波导结构30反射面上,存在光线未发生覆盖的空白区域。调整相关参数,可以改变Dc和Ds之间的相对大小。例如图3(b)所示,增大截面尺寸a的尺寸(对应光波导的结构30的入瞳303尺寸需要对应改变),令这可实现入射光束对光波导结构30反射面的恰好全覆盖,即Dc=Ds。当然,也可以调整为Dc>Ds,此时部分光线会发生空间上的重叠。于过一个发散光束对应发散光出射点的垂向面内,来自该发散光束的光线,经发散角垂向约束器件20后,也可能以小角度(≦10°)的非平行态出射。此时,该垂向面内,来自该发射光束的光线,沿方向Rθ于反射面302a上的覆盖面尺寸,可以根据各光线的反射角具体计算(不同的光线对光波导结构30反射面的反射角不同)。FIG. 1 shows the basic optical structure of an optical waveguide display module based on a one-dimensional divergent beam, including a divergent
上述描述对下面的各实施例中适用。The above description is applicable to the following embodiments.
实施例1Example 1
于一个垂向面Pθ┴内,图4所示为一个具体的显示模组结构。其发散光投射单元10所投射各光线,于控制器件50(未示出)控制下,携带光信息出射。本专利所述光线,并不是严格几何意义上的“线”,而是可以具有一定发散角的细光束,其特性在于,该细光束在传播至观察者瞳孔所处区域时,于传播方向的垂面内,光强大于其强度极大值一半的光分布线尺寸,小于观察者瞳孔直径。发散光投射单元10投射的一个发散光束,经发散角垂向约束器件20,转化为一维发散光束。相对于图1,图4所示光波导结构30具体化为还包括入瞳303、耦入器件304、耦出器件305、出瞳306。来自发散角垂向约束器件20的光线经入瞳303入射耦入器件304后,被耦出器件305调控,以相对于反射面的夹角,沿方向Rθ于光波导体301内传输至耦出器件305,最终被耦出器件305调控,经出瞳306出射至会聚器件40。设计耦出器件305和会聚器件40的调制特性,使来自同一发散光束的光线,经耦出器件305和会聚器件40后会聚至同一对应视区。则,于该视区内,可以接收到对应发散光束各光线带来的二维图像。由于所述一维发散光束于光波导体301内,沿法向zθ的垂面,发散地沿二维方向传播,其光线将于各反射面上覆盖一个二维区域。图4例举置于反射面302a上的衍射型光学器件作为耦出器件305,其于任一垂向面Pθ┴内、沿方向Rθ的尺寸为Dθ。本实施例中,设计Dθ≦Dc,且Dθ≦Ds,以保证携带光信息的各光线仅一次地入射会聚器件。如果携带信息的光线经反射多于一次的入射会聚器件并被投射至观察者眼睛,则来自同一条光线的、经不同反射后沿不同方向传输的光线,携带相同的信息,会引入噪声,需要避免该情况的发生。该过程中,Dθ≦Dc=Ds情况下,图4中耦出器件305于在反射面302a上沿方向Rθ的位置,是不受限的,可以根据需要任意移动。对一个发散光束,其对应θ取不同值时,分别对应的Dθ拼连形成该发散光束所包含光线于反射面302a上的出射区域。为了得到规则形状的该出射区域(其作为等效显示屏所对应面积),任一垂向面Pθ┴内,各光线相对于光波导结构30的反射面的反射角及其对应Dθ值,可以根据需求计算设计为所需要的值。In a vertical plane P θ┴ , FIG. 4 shows a specific display module structure. Each light projected by the divergent
上述过程中,发射光束投射单元10所投射的一个发散光束,对应一个视区。为了实现多个视区的投射,可以采用两种设计方案。第一种方案,置可控偏转器件70于发散角垂向约束器件20之后的光路中,如图4所示。该可控偏转器件70于控制单元50驱动下,可以通过时序偏转入射光束,时序投射位置不同的视区。在各个时刻,控制单元50控制下,发射光束投射单元10投射各光线同步加载对应光信息。各光线所加载光信息,为沿该光线入射对应视区时的传播路径,待显示场景的投影信息。可控偏转器件70也可以置于其它位置,例如图4所示的位置Po1或Po2。另一种方案,设计发散光束投射单元10可以投射多个发散光束,它们所包含光线分别投射至各自对应视区。该情况下,所述不同发散光束对应的发散光出射点互不重叠。于过一个发散光束对应发散光出射点的垂向面内,来自该发散光束的光线,经发散角垂向约束器件20后,也可能以小角度(≦10°)的非平行态出射。此时,耦出器件305的设置,需要满足如下要求:来自发散光束投射单元10的各光线,经耦出器件305,在同一时间点仅能一次地入射各视区。明显地,上述两个方案也可以进一步结合到一起。所述显示模组,也可以进一步地引入瞳孔追踪单元80,如图1,实时追踪定位观察者瞳孔位置。此时,可以根据瞳孔追踪单元80所确定瞳孔位置,于控制器件50控制下,仅投射对应瞳孔位置的部分视区。进一步地,于发散光束投射单元10和光波导结构30之间,还可以引入置辅助引导器件90,如图3所示反射面型辅助引导器件90,以引导各光线经发散角垂向约束器件20向光波导结构(30)的入射。In the above process, a diverging beam projected by the emitting
在可以投射多个视区,且相邻视区间距小于观察者瞳孔直径情况下,可以实现超多视图显示,在相邻视区间距大于或等于观察者瞳孔直径情况下,且各瞳孔均有一个视图入射情况下,可以实现麦克斯韦投射显示。本专利所设计显示模组,其投射视区可以覆盖观察者双眼所处区域,以裸眼显示系统存在;也可以两个本专利所设计显示模组分别对应观察者双眼,以头戴式显示系统存在。In the case that multiple viewing zones can be projected and the distance between adjacent viewing zones is smaller than the diameter of the observer’s pupil, super multi-view display can be realized. When the distance between adjacent viewing zones is greater than or equal to the diameter of the observer’s pupil, and each pupil has a In the case of a view incident, a Maxwell projection display can be realized. The display module designed in this patent can cover the area where both eyes of the observer are located, and exist as a naked-eye display system; or two display modules designed in this patent correspond to the eyes of the observer respectively, and can be used as a head-mounted display system exist.
图4所示光波导结构30,仅是以常规光波导器件为例。实际上,本专利所述显示模组可以选用各种结构的光波导器件,例如没有耦入器件304的光波导器件(入射光如图3所示直接入射反射面上),或者采用其它各种类型的耦入器件304(例如全息光栅类型、压印微纳结构型),或者采用其它各种类型的耦出器件305(例如全息光栅类型、微纳结构类型、反射面)的光波导器件。光波导结构30反射面,也可以为曲面。同时,会聚器件50的功能,也可以被复合至光波导结构30的耦出器件305,即耦出器件305同时实施会聚器件50的会聚功能。例如,耦出器件305通过对入射光的调制,将来自一个发散光束的入射光线会聚引导至对应视区,这时会聚器件50的功能被复合至耦出器件305,而会聚器件50也不再作为一个单独器件存在。光波导结构30也可以进一步包括相位补偿单元307,以抵消光波导结构30对该入射外界环境光的影响。The
上述发散光出射点,也可以不是严格的点,而是具有一定的尺寸。图4的可控偏转器件70被示为透射型器件,其也可能是反射型器件。上述发散角垂向约束器件20也可以采用其它具体的光学器件,例如二维微纳结构器件,再例如二维准直透镜201和一维发散透镜202的组合结构,只要其可以现将入射的发散光转换为一维发散光束出射。以图5所示二维准直透镜201和一维发散透镜202的组合结构为例,发散光束经过其二维准直透镜201被调制为平行光出射;然后该出射的平行光,再被其一维发散透镜202沿一维方向调制为发散出射。该一维发散透镜202也可以是沿一维方向具有会聚功能的器件,会聚后表现为一维发散光束。The above-mentioned divergent light emission point may not be a strict point, but have a certain size. The
发散光投射单元10可以包括M个激光扫描投影结构101。如图6,该激光扫描投影结构101包括扫描器件1011和可调制光线生成单元1012。该可调制光线生成单元1012例举为包括三个分别出射R、G、B光的激光光源1012R、1012G、1012B,它们所出射光分别经一个反射镜1012MB和两个半反半透镜1012G、1012R合并为一条光线入射扫描器件1011。该扫描射描器件1011于控制单元50驱动下扫描反射入射光线,形成发散光束。其中各激光光源于控制单元50驱动下,可以同步调制出射光,以加载对应光信息。图6所示二维的扫描器件1011可以进行二维方向扫描。其也可以由两个级联的一维扫描器件代替,来实现二维扫描。The diverging
图7所例举发散光投射单元10包括显示屏1021、包含M个孔径的孔径单元1022、和将显示屏1021出射光向孔径单元1022会聚的调制器件1023。其中显示屏1021由像素或子像素组成,可以在控制单元50驱动下进行光信息加载。图7以M=2个孔径A1、A2所组成孔径单元1022为例,调制器件1023举例为具有焦距f的透镜。图7中,成孔径单元1022各孔径置于透镜型调制器件1023的焦平面上。当然,各孔径也可以不在焦平面上,只要各像素或子像素出射光可以覆盖所有孔径。如图7,孔径A1、A2可以分别作为发散光出射点,它们对应同一个显示屏1021。为了保证从孔径A1、A2出射的发散光分别携带各自对应的不同光信息,该M=2个孔径可以时序打开,此时该M=2个孔径与控制单元50信号连接,并于控制单元50驱动下时序打开。或者该M=2个孔径分别允许不同正交特性的光通过,例如分别仅允许偏振方向相互垂直的两种线偏光通过,显示屏1021的像素或子像素被分为两组,分别仅投射两个孔径分别允许通过的线偏光。明显地,如上所例举的线偏特性,也可以由其它正交特性代替,例如左旋光和右旋光对应的偏光特性,颜色不同的波长特性。图7所示显示屏1021,也可以是带有背光源的背光型显示屏。图7所示孔径之外区域,被设计为不透射来自显示器1021的光。The divergent
图8图例举发散光投射单元10包括显示屏1021、孔径单元1022和由微纳调控单元组成的微纳调控器件1031。其中所述微纳调控器件1031的各微纳调控单元和显示屏1021的各像素或各子像素一一对应,引导显示屏1021的M组像素或子像素出射光,分别向孔径单元1022的M个孔径投射。各像数组的像素(或各子像素组的子像素)遍布显示屏1021排布。显示屏1021于控制器件(50)驱动下进行光信息加载。FIG. 8 illustrates that the divergent
显示屏1021、包含M个光源的光源单元1041、对前述M个光源进行成像的成像器件1042构成另外一种发散光投射单元10,如图9所示。其中,光源单元1041的M=6个光源向显示屏1021投射背光,各光源关于成像器件1042的像作为发散光出射点。各光源像处也可以进一步置对应孔径,以约束各光源像的光斑尺寸。这些孔径组成孔径单元1022。在M>1时,由于M个光源对应同一个显示屏1021,它们应该设计为于各时间周期内被时序激活;或虽然部分或全部的被同时激活,但同时激活的光源分别出射具有互不相同正交特性的光,对应显示屏1021的像素或子像素对应分为不同组,各像素组或子像素组分别仅调制出射前述不同正交特性的入射光。具体地,图9的光源OS11、OS12、仅于时间周期t~t+Δt的时间区域t~t+Δt/3被激活,光源OS21、OS22、仅于时间周期t~t+Δt的时间区域t+Δt/3~t+2Δt/3被激活,光源OS31、OS32、仅于时间周期t~t+Δt的时间区域t+2t/3~t+Δt被激活。其它各时间周期同理。显示屏像素分为两组,分别仅允许偏振方向相互垂直的两种偏振光调制出射,同一时间打开的两个光源,也分别仅出射该两种偏振光。显示屏1021于控制器件50驱动下进行光信息加载。图9中,显示屏1021和成像器件1042的位置也可以互换。The
发散光投射单元10可以是M个投影单元105。其中一个投影单元包括一个显示屏1021、一个滤波孔径1051、和将显示屏1021出射光向滤波孔径1051会聚的调制器件1023。显示屏1021于控制器件50驱动下进行光信息加载。各投影单元105中,滤波孔径1051和调制器件1023之间也可以引入偏转光传播方向的器件,例如反射镜、棱镜等,以引导各投影单元105的显示屏1021出射光沿不同方向分别向各自对应滤波孔径1051投射。The diverging
在本实施例1中,于过一个发散光束对应发散光出射点的垂向面内,来自该发散光束的光线,经发散角垂向约束器件20后,也可能以小角度(≦10°)的非平行态出射。此时,显示模组的设置,应该保证来自发散光投射单元10的任一光线,于同一时间点最多仅一次地入射观察者瞳孔。In this embodiment 1, in the vertical plane corresponding to the divergent light exit point of a divergent beam, the light from the divergent beam may also be at a small angle (≦10°) after passing through the divergence angle
上述显示模组中,仅包含一个光波导结构30。实际上,也可以设置多于一个的光波导结构30堆叠置放,各光波导30分别各自配置对应的发射光束投影单元10和发散角垂向约束器件20。如图11,两个光波导结构30和30′堆叠置放,它们对应共用的会聚器件40,或者通用会聚器件40和可控偏转器件70。但它们分别对应各自的发散光投射单元10和10′、发散角垂向约束器件20和20′。In the above display module, only one
实施例2Example 2
上述实施例1中,于控制单元50的驱动下,发散光束投射单元10所投射光线各自携带对应光信息出射。不同地,发散光束投射单元10所投射各光线,其入射各自对应视区时所携带信息,也可以通过背光型显示器件60进行加载。本实例2中引入如图12所示的背光型显示器件60,以光波导结构30出射光作为背光,于控制单元50的驱动下进行信息加载。明显地,该背光型显示器件也可以置于图12所示位置Po1或Po3。各像素或子像素对入射光线所加载信息,为沿该光线入射对应视区时的传播路径,待显示场景的投影信息。In the first embodiment above, driven by the
图12所示为显示模组结构于一个垂向面Pθ┴内的切面图。发散光投射单元10投射的一个发散光束,经发散角垂向约束器件20,转化为一维发散光束。相对于图1,图12所示光波导结构30具体化为还包括入瞳303、耦入器件304、耦出器件305、出瞳306。来自发散角垂向约束器件20的光线经入瞳303入射耦入器件304后,被耦出器件305调控,以相对于反射面的夹角,沿方向Rθ于光波导体301内传输至耦出器件305,最终被耦出器件305调控,经出瞳306出射至会聚器件40。本专利所述光线,并不是严格几何意义上的“线”,而是可以具有一个发散角的细光束,其特性在于,该细光束在传播至观察者瞳孔所处区域时,于传播方向的垂面内,光强大于其强度极大值一半的光分布线尺寸,小于观察者瞳孔直径。设计耦出器件305和会聚器件40的调制特性,使来自同一发散光束的光线,经耦出器件305和会聚器件40后会聚至同一对应视区。则,于该视区内,可以接收到对应发散光束各光线经背光型显示器件60调制所带来的二维图像。发散光束于光波导体301内,沿法向zθ的垂面,发散地沿二维方向传播,其光线将于各反射面上覆盖一个二维区域。图12例举置于反射面302a上的衍射型光学结构作为耦出器件305,其于任一垂向面Pθ┴内、沿方向Rθ的尺寸为Dθ。在背光型显示器件60置于图12所示位置Po2时,需要设计Dθ≦Dc,且Dθ≦Ds,以保证携带光信息的各光线仅一次地入射会聚器件。在背光型显示器件60如图12所示置放,或置于图12所示位置Po1时,Dθ可以不受Dc或Ds的约束,即此时一维发散光束于光波导体301内,各光线可以沿各自传播方形进行扩瞳,以获得较大的覆盖尺寸。耦出器件305也不仅限于图12所示的衍射型结构,也可以是可以进行扩瞳的反射面阵列,例如圆锥面状的反射面所构建的反射面阵列。Fig. 12 shows a cut-away view showing the structure of the module in a vertical plane P θ┴ . A divergent light beam projected by the divergent
上述过程中,发射光束投射单元10所投射的一个发散光束,对应一个视区。为了实现多个视区的投射,可以采用两种设计方案。第一种方案,置可控偏转器件70于发散角垂向约束器件20之后的光路中,如图12所示。该可控偏转器件70于控制单元50驱动下,可以通过时序偏转入射光束,时序投射形成位置不同的视区。可控偏转器件70也可以置于其它位置,例如图12所示的位置Po1、或Po2、或Po3。另一种方案,设计发散光束投射单元10可以投射多个反射光束,它们所包含光线分别投射至各自对应视区。该情况下,所述不同发散光束对应的发散光出射点需要互不重叠。由于不同发散光束向同一个背光型显示器件60投射背光,需要该不同发散光束时序出射,或不同发散光束具有不同正交特性。在后者情况下,背光型显示器件60的像素或子像素分为不同的像数组或子像素组,各像素组或子像素组,分别仅允许不同正交特性的入射光被调制出射。明显地,上述两个方案也可以进一步结合使用。所述显示模组,也可以进一步地引入瞳孔追踪单元80,如图1,实时追踪定位观察者瞳孔位置。此时,可以根据瞳孔追踪单元80所确定瞳孔位置,于控制器件50控制下,仅投射对应瞳孔位置的部分视区。进一步地,于发散光束投射单元10和光波导结构30之间,还可以引入置辅助引导器件90,如图3所示反射面型辅助引导器件90,以引导各光线经发散角垂向约束器件20向光波导结构30的入射。In the above process, a diverging beam projected by the emitting
在可以投射多个视区的情况下,相邻视区间距小于观察者瞳孔直径情况下,可以实现超多视图显示,在相邻视区间距大于或等于观察者瞳孔直径情况下,且各瞳孔均有一个视图入射情况下,可以实现麦克斯韦投射显示。本专利所设计显示模组,其投射视区可以覆盖观察者双眼所处区域,以裸眼显示系统存在;也可以两个本专利所设计显示模组分别对应观察者双眼,以头戴式显示系统存在。In the case that multiple viewing zones can be projected, and the distance between adjacent viewing zones is smaller than the diameter of the observer’s pupil, super multi-view display can be realized. When the distance between adjacent viewing zones is greater than or equal to the diameter of the observer’s pupil, and each pupil When there is one view incidence, Maxwell projection display can be realized. The display module designed in this patent can cover the area where both eyes of the observer are located, and exist as a naked-eye display system; or two display modules designed in this patent correspond to the eyes of the observer respectively, and can be used as a head-mounted display system exist.
图4所示光波导结构30,仅是以常规光波导器件为例。实际上,本专利所述显示模组可以选用各种结构的光波导器件,例如没有耦入器件304的光波导器件(入射光如图3所示直接入射反射面上),例如耦出器件采用反射面或多个反射面的几何光波导,或者采用其它各种类型的耦入器件304(例如全息光栅类型、压印微纳结构型),或者采用其它各种类型的耦出器件305(例如全息光栅类型、微纳结构类型、半反半透面阵列)的光波导器件。或者采用其它各种类型的耦入器件304或/和耦出器件305(例如全息光栅类型、微纳结构类型、半反半透面结构、半反面结构)的光波导器件。光波导结构30反射面,也可以为非平面。同时,会聚器件50的功能,也可以被复合至光波导结构30的耦出器件305,即耦出器件305同时实施会聚器件50的会聚功能,而会聚器件50不再作为一个独立的器件出现。例如,耦出器件305通过对入射光的调制,将来自一个发散光束的入射光线会聚引导至对应视区,这时会聚器件50的功能被复合至耦出器件305。光波导结构30也可以进一步包括相位补偿单元307,以抵消光波导结构30对该入射外界环境光的影响。The
上述发散光出射点,也可以不是严格的点,而是具有一定的尺寸。图12的可控偏转器件70被示为透射型器件,其也可能是反射性器件。上述发散角垂向约束器件20也可以采用其它具体的光学器件,例如二维微纳结构器件,只要其可以将入射的发散光转换为一维发散光束出射。The above-mentioned divergent light emission point may not be a strict point, but have a certain size. The
无需对各出射光线进行信息加载的发散光束投射单元10,可以是图13所示背光板1061和孔径单元1022的组合,其中背光板1061向孔径单元1022投射背光。图14直接以M各点光源组成的光源单元1071作为发散光束投射单元10。图14中,各光源直接作为发散光出射点。在M>1时,如图14所示M=6的情况下,由于M个光源对应同一个显示屏1021,它们应该设计为不同时被激活,或虽然同时激活,但同时激活的光源出射光具有不同的正交特性,对应显示屏1021的像素或子像素对应分为不同组,各像素组或子像素组分别仅调制出射不该不同的正交特性。具体地,图9的光源OS11、OS12、仅在时间周期t~t+Δt分时间点t~t+Δt/3被激活,光源OS21、OS22、仅在时间周期t~t+Δt分时间点t+Δt/3~t+2Δt/3被激活,光源OS31、OS32、仅在时间周期t~t+Δt分时间点t+2t/3~t+Δt被激活。其它各时间周期同理。显示屏像素分为两组,分别仅允许偏振方向相互垂直的两种偏振光调制出射,同一时间打开的两个光源,也分别仅出射该两种偏振光。显示屏1021于控制器件50驱动下进行光信息加载。图12中,背光型显示器件60被示为透射型器件,其也可以选用反射型器件。The divergent
类似于图11所示,在引入背光型显示器件60的情况下,所述显示模组,也可以设置多于一个的光波导结构30堆叠置放,各光波导30分别各自配置对应的发射光束投影单元10和发散角垂向约束器件20。如图15,两个光波导结构30和30′堆叠置放,它们对应共用的会聚器件40和背光型显示器件60,或者共用会聚器件40、背光型显示器件60和可控偏转器件70。但它们分别对应各自的发散光投射单元10和10′、发散角垂向约束器件20和20′。Similar to that shown in FIG. 11 , in the case of introducing a
上述以光波导结构30引导出射的、来自于发散光束投射单元10的光作为背光的光学结构,在去除其发散角垂向约束器件20的情况下,也可以通过向其背光型显示器件60投射会聚至各自对应视区的背光,实现上述显示。例如图16所示,经发散光出射点S1出射的发散光束,于一个垂向面内,以光线1和光线2作为边线入射光波导结构30。设计光线1和光线2第一次入射耦出器件305时,被耦出并会聚至对应视区VZ1,其它光线第一次入射耦出器件305时也被耦出至该视区。图16中,会聚器件40的功能被示例为复合至耦出器件305。但于光线1和光线2对应反射角的差别,可能出现部分光线多于一次地入射耦出器件的情况,如图16所示光线1第二次入射耦出器件305所对应光线14。光线14被耦出器件305耦出,作为光线1′4出射,并入射背光型显示器件60的像素p。若像素p还有一条指向视区的入射光线3′2,该入射光线3′2对应一条第一次入射耦出器件305的、来自发散光出射点S1的光线,则像素p加载沿光线3′2方向的投影信息,过该像素的光线1′4作为噪声存在。该类噪声光线需要通过其它设计进行控制,以避免其入射观察者瞳孔,或虽然入射观察者瞳孔,但带来的噪声属于可容忍范围。进一步地,图2中的发散角垂向约束器件20,也可以取为长轴为直线的柱透镜,或具有同样功能的其它器件。此时各垂向面内光线传播发散角可能会大于10°,类似于图16所示情况。The above-mentioned optical structure that uses the
在本实施例2中,于过一个发散光束对应发散光出射点的垂向面内,来自该发散光束的光线,经发散角垂向约束器件20后,也可能以小角度(≦10°)的非平行态出射。此时,在有光线经扩瞳多次入射耦出器件305并耦出光束的情况下,显示模组的设置需要满足如下要求:发散光束投射单元10所投射的任一光线,其经耦出器件305所出射的不同光束,在携带相同光信息的前提下,在同一时间点不能多于一束地入射观察者瞳孔。In this embodiment 2, in the vertical plane corresponding to the divergent light exit point of a divergent beam, the light from the divergent beam may also be at a small angle (≦10°) after passing through the divergence angle
本发明的核心思想是利用轻薄的光波导结构,引导一维发散光述会聚至对应视区。其中各光线所携带光信息,可以由发射光束投射单元本身进行加载,也可以以一维发散光作为背光进行加载。其特点在于,一维发散光于光波导体内沿二维方向发散传输,无需传播方向的偏转,即可实现二维分布光线对对应视区的入射,基于麦克斯韦图或超多视图实现显示。对比地,公开号为CN113126315A、公开日为2021-07-16、发明名称为《光波导矢向背光的三维显示模组》和公开号CN113359312A、公开日为2021-09-07、发明名称为《基于多光源的光波导显示模组》的中国发明专利,分别利用光波导结构传播平行光束作为背光和传播携带光信息的平行光,以进行显示。其入射光波导的平行光,或者于光波导内通过转向实现二维方向的传输(需要二维光波导),或者需要在入射光波导结构之前通过一维扩束结构,进行沿一维方向的扩束,以沿一维方向具有较大尺寸的条状平行光状态入射光波导结构,以于光波导结构的出瞳面上获得合理尺寸的二维覆盖面积。该一维扩束结构,可以是各种结构,例如图17所示一个二维准直透镜201和一个条状反射镜203的组合结构,发散光束经过其二维准直透镜201被调制为平行光出射;然后该出射的平行光,再被其条状反射镜203反射为沿一个方向具有较大尺寸的条状平行光。于二维准直透镜201和条状反射镜203之间,也可设计其它引导光路的器件,例如图18所示的棱镜204。再例如,图17中的条状反射镜203也可以是条状的折射棱镜。The core idea of the present invention is to guide the one-dimensional divergent light to converge to the corresponding viewing area by using the light and thin light waveguide structure. The light information carried by each light can be loaded by the emission beam projection unit itself, or can be loaded by using one-dimensional divergent light as a backlight. Its characteristic is that the one-dimensional divergent light is transmitted along the two-dimensional direction in the optical waveguide, without the deflection of the propagation direction, the incidence of two-dimensional distributed light on the corresponding viewing area can be realized, and the display can be realized based on Maxwell diagram or super multi-view. In contrast, the publication number is CN113126315A, the publication date is 2021-07-16, the title of the invention is "Three-dimensional display module for optical waveguide sagittal backlight" and the publication number is CN113359312A, the publication date is 2021-09-07, and the title of the invention is "Based on Multi-light source optical waveguide display module" Chinese invention patent, using the optical waveguide structure to propagate parallel beams as backlight and propagating parallel light carrying optical information for display. The parallel light incident on the optical waveguide can be transmitted in a two-dimensional direction by turning in the optical waveguide (requires a two-dimensional optical waveguide), or it needs to pass through a one-dimensional beam expansion structure before entering the optical waveguide structure to perform transmission along the one-dimensional direction. The beam is expanded to enter the optical waveguide structure in a strip-shaped parallel light state with a large size along the one-dimensional direction, so as to obtain a two-dimensional coverage area of a reasonable size on the exit pupil surface of the optical waveguide structure. The one-dimensional beam expansion structure can be various structures, such as a combination structure of a two-
以上仅为本发明的优选实施例,但本发明的设计构思并不局限于此,凡利用此构思对本发明做出的非实质性修改,也均落入本发明的保护范围之内。例如,现有的各种光波导结构,均可作为本专利的光波导使用;例如也可以采用由三个单色光波导堆叠而成的、可进行彩色光信息投射的已有光波导结构,再例如,各种可以投射发散光束的光学结构,均可以取做本专利的发散光投射单元。同时,可以利用的各种正交特性,本专利也均可以使用。相应地,所有相关实施例都落入本发明的保护范围内。The above are only preferred embodiments of the present invention, but the design concept of the present invention is not limited thereto, and any insubstantial modifications made to the present invention using this concept also fall within the scope of protection of the present invention. For example, various existing optical waveguide structures can be used as the optical waveguide of this patent; for example, an existing optical waveguide structure that is formed by stacking three monochromatic optical waveguides and capable of color optical information projection can also be used. For another example, various optical structures capable of projecting divergent light beams can be used as the divergent light projection unit of this patent. At the same time, various orthogonal characteristics that can be used can also be used in this patent. Accordingly, all relevant embodiments fall within the scope of protection of the present invention.
Claims (19)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310201196.XA CN116430603A (en) | 2023-03-02 | 2023-03-02 | Optical waveguide display module based on one-dimensional divergent beam |
US18/592,550 US20240295747A1 (en) | 2023-03-02 | 2024-03-01 | Display module based on divergent beams with an asymmetrical divergence angle |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310201196.XA CN116430603A (en) | 2023-03-02 | 2023-03-02 | Optical waveguide display module based on one-dimensional divergent beam |
Publications (1)
Publication Number | Publication Date |
---|---|
CN116430603A true CN116430603A (en) | 2023-07-14 |
Family
ID=87089709
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202310201196.XA Pending CN116430603A (en) | 2023-03-02 | 2023-03-02 | Optical waveguide display module based on one-dimensional divergent beam |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN116430603A (en) |
-
2023
- 2023-03-02 CN CN202310201196.XA patent/CN116430603A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8582206B2 (en) | Laser-scanning virtual image display | |
US11480796B2 (en) | Three-dimensional display module using optical wave-guide for providing directional backlights | |
JP5060704B2 (en) | Flat projection display | |
US8698705B2 (en) | Compact near eye display with scanned image generation | |
WO2018157713A1 (en) | Information display device and information display method | |
US11231581B2 (en) | Near eye 3D display with separate phase and amplitude modulators | |
TW201835636A (en) | Augmented reality imaging system | |
US20220229308A1 (en) | Display module with the divergence angle of outgoing beam constrained again by the corresponding deflection aperture | |
CN105008983A (en) | Superlens component for directional display | |
CN112925098B (en) | Near-to-eye display module based on light-emitting limited pixel block-aperture pair | |
WO2021169065A1 (en) | Optical waveguide display module capable of aperture timing gate multiplexing | |
CN219657952U (en) | Two-dimensional pupil expansion module and optical display system | |
US20230408821A1 (en) | Near-eye display device and wearable device having the same | |
CN112925110B (en) | Three-dimensional display module based on light-emitting limited pixel block-aperture pair | |
CN112748570A (en) | Orthogonal characteristic grating-pixel array pair and near-to-eye light field display module based on same | |
WO2021175341A1 (en) | Display module having multiple backlight light sources | |
CN219871956U (en) | Light field near-to-eye display assembly and light field near-to-eye display device | |
CN116400502A (en) | Light transmission structure and head-mounted display device | |
CN117687227A (en) | Virtual viewing area display module, multi-viewing area display system and method based on virtual viewing area display module | |
CN113703164B (en) | Optical Waveguide Pointing Backlight Holographic Display Module | |
CN116430603A (en) | Optical waveguide display module based on one-dimensional divergent beam | |
US10775607B2 (en) | Backlight module, holographic display device and holographic display method thereof | |
WO2021016761A1 (en) | Light field display system based on control over splitting-combination of outcoupling light exit pupil of optical waveguide | |
CN115128811B (en) | Near-to-eye display module based on orthogonal characteristic pixel blocks | |
CN117008353A (en) | Display module based on one-dimensional parallel light beam |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20250228 Address after: Room C053, 3rd Floor, No. 18 Guangtang West Road, Tianhe District, Guangzhou City, Guangdong Province 510665 Applicant after: Park view (Guangzhou) Technology Co.,Ltd. Country or region after: China Address before: 510275 No. 135 West Xingang Road, Guangzhou, Guangdong, Haizhuqu District Applicant before: SUN YAT-SEN University Country or region before: China |
|
TA01 | Transfer of patent application right |