CN116426030B - 一种分离油包水乳液pvc气凝胶的制备方法及其应用 - Google Patents
一种分离油包水乳液pvc气凝胶的制备方法及其应用 Download PDFInfo
- Publication number
- CN116426030B CN116426030B CN202310443496.9A CN202310443496A CN116426030B CN 116426030 B CN116426030 B CN 116426030B CN 202310443496 A CN202310443496 A CN 202310443496A CN 116426030 B CN116426030 B CN 116426030B
- Authority
- CN
- China
- Prior art keywords
- pvc
- aerogel
- preparation
- water
- oil
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J13/00—Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
- B01J13/0091—Preparation of aerogels, e.g. xerogels
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/28—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2205/00—Foams characterised by their properties
- C08J2205/02—Foams characterised by their properties the finished foam itself being a gel or a gel being temporarily formed when processing the foamable composition
- C08J2205/026—Aerogel, i.e. a supercritically dried gel
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2327/00—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
- C08J2327/02—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
- C08J2327/04—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing chlorine atoms
- C08J2327/06—Homopolymers or copolymers of vinyl chloride
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
- Y02W30/62—Plastics recycling; Rubber recycling
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Dispersion Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Processes Of Treating Macromolecular Substances (AREA)
- Colloid Chemistry (AREA)
Abstract
本发明具体涉及一种分离油包水乳液PVC气凝胶的制备方法,采用气相沉积法制备PVC气凝胶,将制备的PVC气溶胶进行再环保应用。制备方法简单,无高温高压,无任何添加剂,实现PVC气凝胶的回收再生,形成了无污染、零排放、原料的闭环实验,实现了可持续发展和资源的有效利用。
Description
技术领域
本发明属于环保科技技术领域,具体涉及一种分离油包水乳液PVC气凝胶的制备方法及其应用。
背景技术
由于石油泄漏以及工业中有机污染物和石油废水的排放,使得海洋环境、生态系统以及人类健康遭到破环。因此,含油废水的处理成为了一个主要的环境问题。含油废水处理材料主要有金属网、过滤膜、泡沫、薄膜等分离材料,这些材料存在如下问题:分离材料昂贵、耗能高、不可再生、乳液分离性能差、循环使用性差等缺陷。因此,开发价格低廉、环保、可重复使用的乳液分离材料及相应技术显得尤为重要。气凝胶材料具有吸附容量大、比表面积大、密度低等、压缩性能好等优点在油水分离领域中脱颖而出。除了油或有机试剂污染的环境问题外,废弃塑料的回收和处理是另一个急需进一步解决的环境问题。聚氯乙烯(PVC)具有优异的耐水、耐酸、耐碱和耐化学腐蚀性等,被广泛应用于食品、包装和建筑等领域。但是,PVC材料对光、热的稳定性较差,其在高温加热和长时间的暴晒后,会分解并释放出氯化氢,而这种气体对人类健康有影响。同时,分解后的塑料碎片会残留在土壤和河流中,并且威胁着植物和水生动植物的生存。加之,PVC是生活中常用的一种塑料,其制品已成为生活中不可分割的一部分,因此有大量的废弃PVC塑料产生,这势必带来了严重的“白色污染”问题。相比废弃塑料的填埋和焚烧会带来二次污染,对PVC塑料的回收再利用是一种减少环境污染和资源化利用的有效途径。因此,开发出一种能够具有乳液分离的PVC气凝胶材料具有一定的应用前景和现实意义。
发明内容
为解决PVC塑料的污染与回收和现有分离材料制备技术上的不足,本发明提出了一种分离油包水乳液PVC气凝胶的制备方法,该方法以废弃PVC保鲜膜为原料,通过气相沉积法,制备的PVC气凝胶具有特殊的层状结构和较好的油包水乳液分离性能。且该方法制备简单、PVC气凝胶无任何添加剂、可以实现制备-回收-再生的闭环路线。
本发明技术方案如下:(一)一种分离油包水乳液PVC气凝胶的制备方法,该制备方法如下,
采用气相沉积法制备PVC气凝胶,将PVC保鲜膜剪碎,放入DMAC和DMF的混合溶液,DMAC(N,N-二甲基乙酰胺)/DMF(N,N-二甲基甲酰胺)体积比v/v为1/0或1/1或1/2,或1/4或0/1,搅拌至完全溶解得到浓度为5-10wt%的PVC溶液;取3-6 mlPVC溶液转移到直径为40mm的玻璃培养皿模具中;然后,将含有PVC溶液的模具放入尺寸为180mm的干燥器中气相沉积8-24h,容器中含有饱和CuSO4或饱和NaCl或饱和KCl溶液,得到PVC凝胶;最后经过水洗浸泡、冷冻干燥得到PVC气凝胶。
进一步,所述PVC浓度,优选为7wt%。
进一步,所述DMAC/DMF混合溶剂的体积比,优选为0/1。
进一步,所述饱和溶液,优选为饱和饱和硫酸铜溶液。
进一步,所述PVC溶液体积,优选为5ml。
进一步,所述PVC溶液气相沉积时间,优选为12h。
(二)将上述制备的PVC气凝胶进行分离应用,其中油包水乳液中的油为正己烷或石油醚或正庚烷或环己烷或柴油或硅油中的一种,表面活性剂为span80(司盘80)。
与现有技术相比,本发明的有益效果是:(1)仅采用PVC保鲜膜一种原料和DMF、DMAC良溶剂即可制备PVC气凝胶。原料PVC保鲜膜为PVC产品的再次利用,原料广泛,廉价易得,实现了废弃PVC资源的回收利用。(2)采用室温气相沉积法,一步制备PVC气凝胶。制备方法简单,无高温高压,无任何添加剂,仅用PVC即可实现材料制备。(3)PVC浓度和溶剂比例的调节可以得到不同尺寸的层状结构、软硬程度、力学性能、分离性能的PVC气凝胶。(4)PVC气凝胶具有特殊的层状结构和较好的疏水性能,使其能够很好的分离油包水乳液。其中PVC气凝胶的水接触角可达140o以上,且7wt%的PVC气凝胶油包水乳液分离性能最好。(5)PVC气凝胶具有快速吸油、自清洁和良好的柔性特点。可以被加工成任意的形状,且材料柔软,弹性高,可以承受800g的砝码重物。对气凝胶进行任意压缩或者折叠,其可恢复到初始状态。(6)PVC气凝胶经过使用后可以再一次的通过溶解-制备-干燥等步骤实现PVC气凝胶的回收再生,形成了无污染、零排放、原料的闭环实验,实现了可持续发展和资源的有效利用。
附图说明
图1为本发明实施例1制备的PVC气凝胶的工艺流程图;图2为本发明实施例1制备的PVC气凝胶的扫描电子显微镜图像(SEM),其中(a)为PVC材料的模型图,(b)为上表面SEM,(c)为断面SEM,(d)为下表面SEM;图3为本发明实施例1得到的PVC气凝胶的润湿性图;图4为本发明实施例1得到的PVC气凝胶对油包水乳液分离图,(a)PVC气凝胶分离油(正己烷)包水乳液前后的光学照片,(b)为分离装置图,(c)为油(正己烷)包水乳液前后的粒径分布图;图5为本发明实施例1得到的PVC气凝胶对六种油包水乳液的分离通量图;图6为本发明实施例1得到的PVC气凝胶的柔性测试图,其中(a)为压缩恢复的光学照片,(b)为拉伸的光学照片。
具体实施方式
为了更清楚地说明本发明实施例的技术方案,下面结合附图及具体实施例对本发明做进一步的说明,但不用来限制本发明的范围。
实施例1:一种分离油包水乳液PVC气凝胶的制备方法的实验流程如图1所示,取0.7g PVC保鲜膜放入含有10ml的DMAC和DMF的混合溶液(其中DMAC和DMF的体积比为0/1)的烧杯中,搅拌至PVC完全溶解,取5ml PVC溶液倒入直径为40mm的玻璃培养皿模具中;然后将其放入含有饱和硫酸铜溶液的干燥器中12h后,取出放入去离子水中浸泡1天至PVC凝胶中无有机试剂释放,冷冻干燥24h,得到PVC气凝胶。
实施例2:一种油包水乳液的配置:将100ml油正己烷,1ml去离子水和0.25g 表面活性剂(span80)放入250ml的圆底烧瓶中;用超声清洗器中超声1h后,转移到磁力搅拌器中,大力搅拌3h后得到油包水乳液。
本实施例1制备得到的PVC气凝胶的扫描电镜图如图2所示,制备的PVC气凝胶具有层状结构(图2c)。气凝胶的上表面的SEM(图2b)可以看到气凝胶是由大小不同的微球构成的具有不同孔径的多孔材料,且微球表面较为粗糙。气凝胶的下表面较为光滑平坦(图2d)。这一现象是因为其下表面与玻璃表面皿接触产生的。此外,这种表面粗糙的微球结构有助于形成疏水表面,且其特殊的层状结构可以更好的赋予气凝胶独特的压缩性和回弹性。通过调节PVC浓度与DMAC/DMF混合溶剂的体积比,可以对PVC气凝胶进行形貌、孔径调控。这种特殊的多层孔结构有利于其乳液的分离。通过控制气凝胶的孔尺寸,使水滴的尺寸大小大于孔径大小而使水滴停留在气凝胶上,油滴通过气凝胶,实现气凝胶对乳液的分离。
将本实施例1得到的PVC气凝胶用于本实施例2的油包水乳液的分离,图3显示PVC气凝胶具有较好的亲油疏水性,其油接触角为0°,水接触角为144°。将其放入分离装置(图4b)中,其能较好的分离油包水乳液,这里选用的是正己烷-水配置的乳液。分离后乳液的光学照片较为透明(图4a),粒径也明显减小,其乳液粒径约为4nm左右。除了选用正己烷,也分别对石油醚、环己烷、正庚烷、柴油、硅油与水配成的乳液进行了分离。PVC气凝胶对这六种乳液都具有一定的分离能力,其分离通量如图5所示。由于油的粘度不同,使气凝胶对这六种油的分离通量不同,这可能是较大粘度的油通过气凝胶的阻力较大,使其通过气凝胶所消耗的时间较长,所用的压力较大。因此得到的通量较小。
将本实施例1得到的PVC气凝胶进行了柔性测试,其结果如图6所示,制备的PVC气凝胶具有较好的柔性性能和弹力。将PVC气凝胶挤压变换形状后,一定时间内,其可以恢复到原有的形状(图6a)。并且,将气凝胶裁剪成长为2cm,宽为0.6cm的形状用于重物的提拉,发现PVC气凝胶可以承受800g重物的砝码,且PVC气凝胶明显被拉长(图6b),说明PVC气凝胶具有一定的强度和较好的弹性性能。该方法制备的材料可以用不同的模具制备,得到各种形状的PVC气凝胶,具有较好的灵活性,更有利于用于实际生活中。
实施例3:一种分离油包水乳液PVC气凝胶的制备方法,取0.8g PVC保鲜膜放入含有10ml的DMAC和DMF的混合溶液(其中DMAC和DMF的体积比为0/1)的烧杯中,搅拌至PVC完全溶解,取5ml PVC溶液倒入直径为40mm的玻璃培养皿模具中;然后将其放入含有饱和硫酸铜溶液的干燥器中12 h后,取出放入去离子水中浸泡1天至PVC凝胶中无有机试剂释放,冷冻干燥24 h,得到PVC气凝胶。
实施例4:一种分离油包水乳液PVC气凝胶的制备方法,取0.7g PVC保鲜膜放入含有10ml的DMAC和DMF的混合溶液(其中DMAC和DMF的体积比为1/1)的烧杯中,搅拌至PVC完全溶解,取5ml PVC溶液倒入直径为40mm的玻璃培养皿模具中。然后将其放入含有饱和硫酸铜溶液的干燥器中12h后,取出放入去离子水中浸泡1天至PVC凝胶中无有机试剂释放,冷冻干燥24 h,得到PVC气凝胶。
相关性能测试方法如下:乳液通量计算方法:首先将PVC气凝胶放入分离装置(图4b)中,然后取配置好的乳液5 mL倒入分离装置中,在外加力的作用下,通过通量公式计算PVC气凝胶分离乳液的通量(F, L·m-2·h-1·bar-1),评价PVC气凝胶对油包水乳液的分离能力。下式为通量的计算公式: 式中,V (L)、d (m)、Dt (h)、DP (bar)分别为乳液体积、气凝胶的有效直径、乳液通过的时间和附加压力。
Claims (2)
1.一种分离油包水乳液PVC气凝胶的制备方法,其特征在于:该制备方法如下:采用水蒸气诱导相转化法制备PVC气凝胶,将PVC保鲜膜剪碎,放入DMAC和DMF的混合溶液,DMAC/DMF体积比v/v为1/1或1/2或1/4,搅拌至完全溶解得到浓度为5-10wt%的PVC溶液;取3-6mlPVC溶液转移到直径为40mm的玻璃培养皿模具中;然后,将含有PVC溶液的模具放入尺寸为180mm的干燥器中沉积8-24h,容器中含有饱和CuSO4或饱和NaCl或饱和KCl溶液,得到PVC凝胶;最后经过水洗浸泡、冷冻干燥得到PVC气凝胶。
2. 根据权利要求1 所述的制备方法制备得到的分离油包水乳液PVC 气凝胶,其中油包水乳液中的油为正己烷或石油醚或正庚烷或环己烷或柴油或硅油中的一种,表面活性剂为span80。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310443496.9A CN116426030B (zh) | 2023-04-24 | 2023-04-24 | 一种分离油包水乳液pvc气凝胶的制备方法及其应用 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310443496.9A CN116426030B (zh) | 2023-04-24 | 2023-04-24 | 一种分离油包水乳液pvc气凝胶的制备方法及其应用 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN116426030A CN116426030A (zh) | 2023-07-14 |
CN116426030B true CN116426030B (zh) | 2024-01-26 |
Family
ID=87081355
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202310443496.9A Active CN116426030B (zh) | 2023-04-24 | 2023-04-24 | 一种分离油包水乳液pvc气凝胶的制备方法及其应用 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN116426030B (zh) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102068920A (zh) * | 2010-11-29 | 2011-05-25 | 天津市宝钜净化设备工程有限公司 | 非对称聚氯乙烯干湿可逆超/微滤膜及制备方法和应用 |
CN104368247A (zh) * | 2013-08-13 | 2015-02-25 | 苏州二元世纪纳米技术有限公司 | 亲水-水下疏油的高分子多孔膜、其制备方法及应用 |
CN108192129A (zh) * | 2017-11-30 | 2018-06-22 | 南京工业大学 | 一种超疏水聚偏氟乙烯气凝胶材料及其制备方法 |
CN111111625A (zh) * | 2020-02-24 | 2020-05-08 | 浙江工业大学之江学院 | 一种浸渍法制备高吸油倍率微纳米纤维气凝胶材料的方法 |
CN115282888A (zh) * | 2021-12-22 | 2022-11-04 | 青岛大学 | 一种兼具超快油液吸附能力和高压缩恢复性能的超疏水气凝胶制备方法及应用 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100166961A1 (en) * | 2004-01-20 | 2010-07-01 | Beard Kirby W | Production of high porosity open-cell membranes |
-
2023
- 2023-04-24 CN CN202310443496.9A patent/CN116426030B/zh active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102068920A (zh) * | 2010-11-29 | 2011-05-25 | 天津市宝钜净化设备工程有限公司 | 非对称聚氯乙烯干湿可逆超/微滤膜及制备方法和应用 |
CN104368247A (zh) * | 2013-08-13 | 2015-02-25 | 苏州二元世纪纳米技术有限公司 | 亲水-水下疏油的高分子多孔膜、其制备方法及应用 |
CN108192129A (zh) * | 2017-11-30 | 2018-06-22 | 南京工业大学 | 一种超疏水聚偏氟乙烯气凝胶材料及其制备方法 |
CN111111625A (zh) * | 2020-02-24 | 2020-05-08 | 浙江工业大学之江学院 | 一种浸渍法制备高吸油倍率微纳米纤维气凝胶材料的方法 |
CN115282888A (zh) * | 2021-12-22 | 2022-11-04 | 青岛大学 | 一种兼具超快油液吸附能力和高压缩恢复性能的超疏水气凝胶制备方法及应用 |
Also Published As
Publication number | Publication date |
---|---|
CN116426030A (zh) | 2023-07-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103521199B (zh) | 一种中空管状复合吸油材料的制备方法 | |
CN108654579B (zh) | 一种海藻酸钠/香蒲/氧化石墨烯复合气凝胶的制备方法 | |
Gan et al. | Aramid nanofiber aerogel membrane extract from waste plastic for efficient separation of surfactant-stabilized oil-in-water emulsions | |
CN105797431B (zh) | 一种高效疏水吸油海绵的制备方法 | |
CN104324524A (zh) | 一种超疏水超亲油超轻海绵的制备方法 | |
CN109621923A (zh) | 一种超疏水亲油海绵材料及其制备方法和油水分离应用 | |
Yang et al. | Superhydrophobic/superoleophilic modified melamine sponge for oil/water separation | |
CN102979066A (zh) | 一种吸附与分离水面溢油的装置 | |
CN108822333B (zh) | 一种疏水-超亲油海绵及其制备方法和应用 | |
CN105148562A (zh) | 一种由蜡烛灰辅助的超疏水超亲油油水分离网膜及其制备方法和应用 | |
Chen et al. | Electrochemically fast preparation of superhydrophobic copper mesh for high-efficiency oil spill adsorption and oil-water separation | |
CN111841514A (zh) | 高性能水下超疏油性回收泡沫及其制备方法 | |
Li et al. | A robust air superhydrophilic/superoleophobic diatomite porous ceramic for high-performance continuous separation of oil-in-water emulsion | |
CN103316637B (zh) | 具有选择性吸附/分离性能的三维金属网的制备方法 | |
CN110237830A (zh) | 一种疏水亲油性海绵的环保温和制备方法 | |
Zhang et al. | Fabrication of hierarchically porous superhydrophobic polystyrene foam for self-cleaning, oil absorbent, highly efficient oil–water separation | |
CN105107235B (zh) | 一种用于水包油乳液体系分离的破乳剂及其制备方法与应用 | |
Qiao et al. | Efficient removal of viscous crude oil by a super-hydrophobic polystyrene/carbon black foam with photo-thermal conversion | |
He et al. | Research progress in hydrophobic modification of melamine sponge and its application in oil-water separation field | |
Zhan et al. | Superwetting PVA/cellulose aerogel with asymmetric structure for oil/water separation and solar-driven seawater desalination | |
CN116426030B (zh) | 一种分离油包水乳液pvc气凝胶的制备方法及其应用 | |
CN108912388A (zh) | 一种超疏水海绵的制备方法及其在油包水乳液分离中的应用 | |
CN104707582A (zh) | 一种超疏水多孔Fe3O4/PS纳米复合材料及其制备方法 | |
CN110606980A (zh) | 一种超疏水ldh/三聚氰胺海绵的制备方法 | |
Ge et al. | Electrospun nanofibers for oil–water separation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |