[go: up one dir, main page]

CN116419099A - A point-to-multipoint optical communication method, device and system - Google Patents

A point-to-multipoint optical communication method, device and system Download PDF

Info

Publication number
CN116419099A
CN116419099A CN202111655971.6A CN202111655971A CN116419099A CN 116419099 A CN116419099 A CN 116419099A CN 202111655971 A CN202111655971 A CN 202111655971A CN 116419099 A CN116419099 A CN 116419099A
Authority
CN
China
Prior art keywords
downlink
optical signal
leaf node
downlink data
rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111655971.6A
Other languages
Chinese (zh)
Inventor
张阔
陈曦
黄远达
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huawei Technologies Co Ltd
Original Assignee
Huawei Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Technologies Co Ltd filed Critical Huawei Technologies Co Ltd
Priority to CN202111655971.6A priority Critical patent/CN116419099A/en
Priority to PCT/CN2022/125613 priority patent/WO2023124402A1/en
Publication of CN116419099A publication Critical patent/CN116419099A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q11/0067Provisions for optical access or distribution networks, e.g. Gigabit Ethernet Passive Optical Network (GE-PON), ATM-based Passive Optical Network (A-PON), PON-Ring
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation
    • H04B10/548Phase or frequency modulation
    • H04B10/556Digital modulation, e.g. differential phase shift keying [DPSK] or frequency shift keying [FSK]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation
    • H04B10/548Phase or frequency modulation
    • H04B10/556Digital modulation, e.g. differential phase shift keying [DPSK] or frequency shift keying [FSK]
    • H04B10/5563Digital frequency modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Abstract

本申请提供了一种点到多点通信方法、装置和系统。该光通信方法,应用于点到多点通信系统,该点到多点通信系统包括中心节点和多个叶子节点。从中心节点的角度来说,该方法包括:生成第一下行数据和第二下行数据;根据第一下行数据和第二下行数据对光信号进行相干调制,生成下行光信号,下行光信号的第一子载波携带第一下行数据,下行光信号的第二子载波携带第二下行数据;发送下行光信号,第一下行数据的目的节点为第一叶子节点,第二下行数据的目的节点为第二叶子节点。基于该方法,在一个多速率共存的P2MP光通信系统中,中心节点可以与不同速率的各叶子节点进行通信。

Figure 202111655971

The present application provides a point-to-multipoint communication method, device and system. The optical communication method is applied to a point-to-multipoint communication system, and the point-to-multipoint communication system includes a central node and multiple leaf nodes. From the perspective of the central node, the method includes: generating first downlink data and second downlink data; coherently modulating the optical signal according to the first downlink data and the second downlink data to generate a downlink optical signal, the downlink optical signal The first subcarrier of the downlink optical signal carries the first downlink data, and the second subcarrier of the downlink optical signal carries the second downlink data; when the downlink optical signal is sent, the destination node of the first downlink data is the first leaf node, and the destination node of the second downlink data The destination node is the second leaf node. Based on this method, in a multi-rate coexisting P2MP optical communication system, the central node can communicate with leaf nodes of different rates.

Figure 202111655971

Description

一种点到多点光通信方法、装置和系统A point-to-multipoint optical communication method, device and system

技术领域technical field

本申请涉及光通信领域,尤其涉及一种点到多点光通信方法、装置和系统。The present application relates to the field of optical communication, in particular to a point-to-multipoint optical communication method, device and system.

背景技术Background technique

在万物互联需求的驱动下,光通信系统中的节点数目不断增多,点到多点(pointto multipoint,P2MP)光通信技术,将取代传统点到点(point-to-point,P2P)光通信技术,在未来“光连万物”的场景下扮演重要角色。采用P2MP光通信技术的光通信系统,称之为P2MP光通信系统或P2MP光通信网络。P2MP光通信系统通常包括一个中心节点和多个叶子节点。例如,无源光网络(PON,passive optical network)就是一种典型的P2MP光通信系统,PON系统包括一个光线路终端(optical line termination,OLT)OLT,至少一个光网络单元(optical network unit,ONU)或光网络终端(optical network terminal,ONT),其中OLT为中心节点,ONU或ONT为叶子节点。Driven by the demand for the Internet of Everything, the number of nodes in the optical communication system continues to increase, and the point-to-multipoint (P2MP) optical communication technology will replace the traditional point-to-point (P2P) optical communication technology , will play an important role in the future scenario of "connecting everything with light". An optical communication system using P2MP optical communication technology is called a P2MP optical communication system or a P2MP optical communication network. A P2MP optical communication system usually includes a central node and multiple leaf nodes. For example, a passive optical network (PON, passive optical network) is a typical P2MP optical communication system. The PON system includes an optical line terminal (optical line termination, OLT) OLT, at least one optical network unit (optical network unit, ONU ) or an optical network terminal (optical network terminal, ONT), wherein the OLT is a central node, and the ONU or ONT is a leaf node.

随着新兴业务的不断涌现,人们对业务多样性和业务实时性的需求越来越高,网络带宽和通信速率也随之逐步升级。在一个P2MP光通信系统中,各叶子节点支持的光通信速率可能的相同的,也可能是不同的。在一个多速率共存的P2MP光通信系统中,中心节点如何与支持不同速率的各叶子节点进行通信,成为目前业界的一个研究热点。With the continuous emergence of emerging services, people have higher and higher requirements for service diversity and real-time service, and the network bandwidth and communication rate are also gradually upgraded. In a P2MP optical communication system, the optical communication rates supported by each leaf node may be the same or different. In a multi-rate coexisting P2MP optical communication system, how the central node communicates with each leaf node supporting different rates has become a research hotspot in the industry at present.

发明内容Contents of the invention

本申请实施例提供一种点到多点通信方法、装置及系统。基于该方法,在一个多速率共存的P2MP光通信系统中,中心节点可以与不同速率的各叶子节点进行通信。Embodiments of the present application provide a point-to-multipoint communication method, device, and system. Based on this method, in a multi-rate coexisting P2MP optical communication system, the central node can communicate with leaf nodes of different rates.

第一方面,本申请实施例提供一种光通信方法,应用于点到多点通信系统,该点到多点通信系统包括中心节点和多个叶子节点。从中心节点的角度来说,该方法包括:生成第一下行数据和第二下行数据;根据第一下行数据和第二下行数据对光信号进行相干调制,生成下行光信号,下行光信号的第一子载波携带第一下行数据,下行光信号的第二子载波携带第二下行数据;发送下行光信号,第一下行数据的目的节点为第一叶子节点,第二下行数据的目的节点为第二叶子节点。In a first aspect, an embodiment of the present application provides an optical communication method, which is applied to a point-to-multipoint communication system, and the point-to-multipoint communication system includes a central node and multiple leaf nodes. From the perspective of the central node, the method includes: generating first downlink data and second downlink data; coherently modulating the optical signal according to the first downlink data and the second downlink data to generate a downlink optical signal, the downlink optical signal The first subcarrier of the downlink optical signal carries the first downlink data, and the second subcarrier of the downlink optical signal carries the second downlink data; when sending the downlink optical signal, the destination node of the first downlink data is the first leaf node, and the destination node of the second downlink data The destination node is the second leaf node.

基于第一方面所述的方法,P2MP系统中的中心节点可以基于相同下行波长的不同子载波,与多个不同速率的叶子节点通信;中心节点不需要集成多种波长的多个光模块,也不需要进行波分复用处理,降低了中心节点的工程成本;而且中心节点在不增加波长资源的情况下,通过频分复用的方式,与多个不同代际或不同速率的叶子节点通信,提升了系统带宽。Based on the method described in the first aspect, the central node in the P2MP system can communicate with multiple leaf nodes with different rates based on different subcarriers of the same downlink wavelength; the central node does not need to integrate multiple optical modules with multiple wavelengths, and also There is no need for wavelength division multiplexing processing, which reduces the engineering cost of the central node; and the central node communicates with multiple leaf nodes of different generations or different rates through frequency division multiplexing without increasing wavelength resources , which increases the system bandwidth.

在一些实施方式中,第一子载波宽度和第二子载波宽度相同。即,无论第一叶子节点和第二叶子节点支持的下行速率如何,第一叶子节点和第二叶子节点对应的下行调制速率相同。不同代际或不同能力的叶子节点可以在同一个点到多点通信系统中共存,提升了系统对多样化设备的兼容性。In some embodiments, the first subcarrier width and the second subcarrier width are the same. That is, regardless of the downlink rates supported by the first leaf node and the second leaf node, the downlink modulation rates corresponding to the first leaf node and the second leaf node are the same. Leaf nodes of different generations or different capabilities can coexist in the same point-to-multipoint communication system, which improves the system's compatibility with diverse devices.

在一些实施方式中,第一叶子节点支持的下行速率与所述下行光信号的速率属于相同的速率等级,所述中心节点根据第一下行数据和第二下行数据对光信号进行相干调制,包括所述中心节点将所述第一下行数据调制在所述下行光信号的四个维度,X偏振I路,X偏振Q路,Y偏振I路和Y偏振Q路。In some implementations, the downlink rate supported by the first leaf node belongs to the same rate level as the rate of the downlink optical signal, and the central node performs coherent modulation on the optical signal according to the first downlink data and the second downlink data, Including that the central node modulates the first downlink data in four dimensions of the downlink optical signal, X polarization I path, X polarization Q path, Y polarization I path and Y polarization Q path.

在一些实施方式中,第一下行数据对应的调制方式为双偏振正交相移键控DP-QPSK,或双偏振正交振幅调制DP-QAM。In some implementation manners, the modulation scheme corresponding to the first downlink data is dual polarization quadrature phase shift keying DP-QPSK, or dual polarization quadrature amplitude modulation DP-QAM.

在一些实施方式中,第二叶子节点支持的下行速率小于下行光信号的速率,中心节点根据第一下行数据和第二下行数据对光信号进行相干调制,具体包括:对所述第二下行数据进行冗余编码,冗余编码后的第二下行数据的速率与下行光信号的速率属于相同的速率等级,冗余编码后的第二下行数据包括第二下行数据和冗余数据;将冗余编码后的第二下行数据调制在下行光信号的四个维度。基于冗余编码的机制,中心节点可以以相同的调制速率,将不同代际或支持不同下行速率的叶子节点对应的下行数据,调制在同一个波长的下行光信号中。中心节点在不增加波长资源的情况下,与多个不同代际或不同速率的叶子节点通信,提升了系统兼容性和带宽。In some implementations, the downlink rate supported by the second leaf node is lower than the rate of the downlink optical signal, and the central node performs coherent modulation on the optical signal according to the first downlink data and the second downlink data, specifically including: the second downlink The data is redundantly encoded, and the rate of the redundantly encoded second downlink data and the rate of the downlink optical signal belong to the same rate level, and the redundantly encoded second downlink data includes the second downlink data and redundant data; The encoded second downlink data is modulated in four dimensions of the downlink optical signal. Based on the mechanism of redundant coding, the central node can modulate the downlink data corresponding to different generations or leaf nodes supporting different downlink rates into the downlink optical signal of the same wavelength at the same modulation rate. The central node communicates with multiple leaf nodes of different generations or different rates without increasing wavelength resources, which improves system compatibility and bandwidth.

在一些实施方式中,第二叶子节点支持的下行速率等于下行光信号速率的四分之一,第二下行数据对应的调制方式为幅移键控ASK,或二进制相移键控BPSK。In some implementations, the downlink rate supported by the second leaf node is equal to a quarter of the downlink optical signal rate, and the modulation mode corresponding to the second downlink data is amplitude shift keying ASK or binary phase shift keying BPSK.

在一些实施方式中,第二叶子节点支持的下行速率等于下行光信号速率的二分之一,第二下行数据对应的调制方式为正交相移键控QPSK,或正交振幅调制QAM。In some implementations, the downlink rate supported by the second leaf node is equal to half of the downlink optical signal rate, and the modulation mode corresponding to the second downlink data is quadrature phase shift keying (QPSK) or quadrature amplitude modulation (QAM).

根据叶子节点支持的下行速率,选择对应的调制方式,提升了系统的兼容性和灵活性。According to the downlink rate supported by the leaf node, the corresponding modulation mode is selected, which improves the compatibility and flexibility of the system.

在一些实施方式中,本申请实施例所提供的方法还包括:中心节点获取第一叶子节点和第二叶子节点的能力信息,能力信息包括,叶子节点支持的速率和/或叶子节点支持的调制方式;中心节点分别向第一叶子节点和第二叶子节点发送各第一叶子节点对应的通信参数,通信参数包括调制方式,子载波频率和子载波频宽中的一种或多种参数。通过能力协商机制,中心节点能够获知各叶子节点的能力信息,并为各叶子节点分配对应的通信参数,提升了系统的兼容性和灵活性。In some implementations, the method provided by the embodiment of the present application further includes: the central node obtains the capability information of the first leaf node and the second leaf node, and the capability information includes the rate supported by the leaf node and/or the modulation supported by the leaf node Mode: the central node sends communication parameters corresponding to each first leaf node to the first leaf node and the second leaf node respectively, and the communication parameters include one or more parameters of modulation mode, subcarrier frequency and subcarrier bandwidth. Through the capability negotiation mechanism, the central node can obtain the capability information of each leaf node, and assign corresponding communication parameters to each leaf node, which improves the compatibility and flexibility of the system.

在一些实施方式中,中心节点和任一叶子节点通信过程中,中心节点还可以发起或接收通信参数的重协商请求。In some implementation manners, during the communication process between the central node and any leaf node, the central node may also initiate or receive a request for renegotiation of communication parameters.

在一些实施方式中,第一方面所述的点到多点通信系统为无源光网络PON,中心节点为光线路终端OLT,叶子节点为光网络单元ONU或光网络终端ONT。In some embodiments, the point-to-multipoint communication system described in the first aspect is a passive optical network PON, the central node is an optical line terminal OLT, and the leaf nodes are optical network units ONU or optical network terminals ONT.

第二方面,本申请实施例提供一种光通信方法,应用于点到多点通信系统,点到多点通信系统包括中心节点,第一叶子节点和第二叶子节点,从第一叶子点的角度来说,该方法包括:接收下行光信号,该下行光信号包括多个子载波;对该下行光信号的第一子载波进行相干解调,获得第一下行数据。由于下行光信号,以频分复用的方式被分为多个子载波,每个叶子节点对应其中一个子载波,提升了系统带宽。In the second aspect, the embodiment of the present application provides an optical communication method, which is applied to a point-to-multipoint communication system. The point-to-multipoint communication system includes a central node, a first leaf node, and a second leaf node. From a perspective, the method includes: receiving a downlink optical signal, the downlink optical signal including a plurality of subcarriers; performing coherent demodulation on the first subcarrier of the downlink optical signal to obtain first downlink data. Because the downlink optical signal is divided into multiple subcarriers in the way of frequency division multiplexing, each leaf node corresponds to one of the subcarriers, which improves the system bandwidth.

在一些实施方式中,该下行光信号包括四个维度:X偏振I路,X偏振Q路,Y偏振I路和Y偏振Q路。In some implementation manners, the downlink optical signal includes four dimensions: an X-polarized I path, an X-polarized Q path, a Y-polarized I path, and a Y-polarized Q path.

在一些实施方式中,第一叶子节点支持的下行速率与下行光信号的速率属于相同的速率等级,第一下行数据被调制在下行光信号的如上四个维度。In some implementations, the downlink rate supported by the first leaf node belongs to the same rate class as the rate of the downlink optical signal, and the first downlink data is modulated in the above four dimensions of the downlink optical signal.

在一些实施方式中,第一下行数据对应的调制方式为双偏振正交相移键控DP-QPSK,或双偏振正交振幅调制DP-QAM。In some implementation manners, the modulation scheme corresponding to the first downlink data is dual polarization quadrature phase shift keying DP-QPSK, or dual polarization quadrature amplitude modulation DP-QAM.

在一些实施方式中,第一叶子节点支持的下行速率小于下行光信号的速率,第一下行数据被调制在下行光信号的其中1-3个维度。In some implementations, the downlink rate supported by the first leaf node is lower than the rate of the downlink optical signal, and the first downlink data is modulated in 1-3 dimensions of the downlink optical signal.

在一些实施方式中,第一叶子节点支持的下行速率等于下行光信号速率的四分之一,第一下行数据对应的调制方式为幅移键控ASK,或二进制相移键控BPSK。In some implementations, the downlink rate supported by the first leaf node is equal to a quarter of the downlink optical signal rate, and the modulation mode corresponding to the first downlink data is ASK or BPSK.

在一些实施方式中,第一叶子节点支持的下行速率等于下行光信号速率的二分之一,第一下行数据对应的调制方式为正交相移键控QPSK,或正交振幅调制QAM。In some implementations, the downlink rate supported by the first leaf node is equal to half of the downlink optical signal rate, and the modulation mode corresponding to the first downlink data is quadrature phase shift keying (QPSK) or quadrature amplitude modulation (QAM).

在一些实施方式中,第二方面所述的方法还包括:第一叶子节点向中心节点发送第一叶子节点的能力信息,能力信息包括,叶子节点支持的速率和/或叶子节点支持的调制方式;第一叶子节点接收中心节点为第一叶子节点分配的通信参数,通信参数包括调制方式,子载波频率和子载波频宽中的一种或多种参数。In some implementations, the method described in the second aspect further includes: the first leaf node sends capability information of the first leaf node to the central node, where the capability information includes the rate supported by the leaf node and/or the modulation mode supported by the leaf node ; The first leaf node receives the communication parameters assigned by the central node to the first leaf node, and the communication parameters include one or more parameters of modulation mode, sub-carrier frequency and sub-carrier bandwidth.

在一些实施方式中,中心节点和第一叶子节点通信过程中,第一叶子节点还可以发起或接收通信参数的重协商请求。In some implementation manners, during the communication process between the central node and the first leaf node, the first leaf node may also initiate or receive a communication parameter renegotiation request.

在一些实施方式中,点到多点通信系统为无源光网络PON,中心节点为光线路终端OLT,第一叶子节点为光网络单元ONU或光网络终端ONT。In some embodiments, the point-to-multipoint communication system is a passive optical network PON, the central node is an optical line terminal OLT, and the first leaf node is an optical network unit ONU or an optical network terminal ONT.

第三方面,本申请实施例提供一种光通信装置,包括信号处理器,光源和调制器。该光通信装置具体可以用于实现如第一方面所述中心节点执行的各种方法流程。处理器用于生成第一下行数据和第二下行数据,调制器用于根据第一下行数据和第二下行数据对光源输出的光信号进行相干调制,生成下行光信号,下行光信号的第一子载波携带第一下行数据,下行光信号的第二子载波携带第二下行数据;调制器还用于发送下行光信号,第一下行数据的目的节点为第一叶子节点,第二下行数据的目的节点为第二叶子节点。In a third aspect, the embodiment of the present application provides an optical communication device, including a signal processor, a light source, and a modulator. The optical communication device may specifically be used to implement various method procedures executed by the central node as described in the first aspect. The processor is used to generate the first downlink data and the second downlink data, and the modulator is used to coherently modulate the optical signal output by the light source according to the first downlink data and the second downlink data to generate the downlink optical signal, and the first downlink optical signal The subcarrier carries the first downlink data, the second subcarrier of the downlink optical signal carries the second downlink data; the modulator is also used to send the downlink optical signal, the destination node of the first downlink data is the first leaf node, and the second downlink The destination node of the data is the second leaf node.

在一些实施方式中,第一子载波宽度和第二子载波宽度相同。In some embodiments, the first subcarrier width and the second subcarrier width are the same.

在一些实施方式中,第一叶子节点支持的下行速率与下行光信号的速率属于相同的速率等级,调制器用于将第一下行数据调制在下行光信号的四个维度,X偏振I路,X偏振Q路,Y偏振I路和Y偏振Q路。In some implementations, the downlink rate supported by the first leaf node belongs to the same rate class as the rate of the downlink optical signal, and the modulator is used to modulate the first downlink data in four dimensions of the downlink optical signal, X polarization I path, X polarization Q channel, Y polarization I channel and Y polarization Q channel.

在一些实施方式中,第一下行数据对应的调制方式为双偏振正交相移键控DP-QPSK,或双偏振正交振幅调制DP-QAM。In some implementation manners, the modulation scheme corresponding to the first downlink data is dual polarization quadrature phase shift keying DP-QPSK, or dual polarization quadrature amplitude modulation DP-QAM.

在一些实施方式中,该处理器包括协议编码模块和适配处理模块,协议编码模块用于生成所述第一下行数据和所述第二下行数据;当第二叶子节点支持的下行速率小于下行光信号的速率时,适配处理模块用于对第二下行数据进行冗余编码,冗余编码后的第二下行数据的速率与下行光信号的速率属于相同的速率等级,冗余编码后的第二下行数据包括第二下行数据和冗余数据;调制器用于将冗余编码后的第二下行数据调制在下行光信号的四个维度,X偏振I路,X偏振Q路,Y偏振I路和Y偏振Q路。In some implementations, the processor includes a protocol encoding module and an adaptation processing module, the protocol encoding module is used to generate the first downlink data and the second downlink data; when the downlink rate supported by the second leaf node is less than When the rate of the downlink optical signal is determined, the adaptation processing module is used to perform redundant encoding on the second downlink data. The rate of the second downlink data after redundant encoding and the rate of the downlink optical signal belong to the same rate level. The second downlink data includes second downlink data and redundant data; the modulator is used to modulate the redundantly encoded second downlink data in the four dimensions of the downlink optical signal, X polarization I path, X polarization Q path, Y polarization I channel and Y polarization Q channel.

在一些实施方式中,第二叶子节点支持的下行速率等于下行光信号速率的四分之一,第二下行数据对应的调制方式为幅移键控ASK,或二进制相移键控BPSK。In some implementations, the downlink rate supported by the second leaf node is equal to a quarter of the downlink optical signal rate, and the modulation mode corresponding to the second downlink data is amplitude shift keying ASK or binary phase shift keying BPSK.

在一些实施方式中,第二叶子节点支持的下行速率等于下行光信号速率的二分之一,第二下行数据对应的调制方式为正交相移键控QPSK,或正交振幅调制QAM。In some implementations, the downlink rate supported by the second leaf node is equal to half of the downlink optical signal rate, and the modulation mode corresponding to the second downlink data is quadrature phase shift keying (QPSK) or quadrature amplitude modulation (QAM).

在一些实施方式中,处理器,还用于获取第一叶子节点和所述第二叶子节点的能力信息,能力信息包括,叶子节点支持的速率和/或叶子节点支持的调制方式;处理器,还用于确定第一叶子节点和第二叶子节点的通信参数,通信参数包括调制方式,子载波频率和子载波频宽中的一种或多种参数。In some implementations, the processor is further configured to obtain capability information of the first leaf node and the second leaf node, where the capability information includes the rate supported by the leaf node and/or the modulation mode supported by the leaf node; the processor, It is also used to determine the communication parameters of the first leaf node and the second leaf node, where the communication parameters include one or more parameters of modulation mode, sub-carrier frequency and sub-carrier bandwidth.

在一些实施方式中,处理器,还用于发起或接收通信参数的重协商请求。In some implementations, the processor is further configured to initiate or receive a communication parameter renegotiation request.

在一些实施方式中,光通信装置为光线路终端OLT,所述调制器为双偏振同相正交调制器。In some implementation manners, the optical communication device is an optical line terminal (OLT), and the modulator is a dual-polarization in-phase and quadrature modulator.

第四方面,本申请实施例提供一种光通信终端装置,包括光源,解调器和处理器。该光通信终端装置具体可以用于实现如第二方面所述叶子节点执行的各种方法流程。解调器,用于接收下行光信号,下行光信号包括多个子载波;光源,用于发射相干本振光;解调器,还用于基于相干本振光对下行光信号的第一子载波进行相干解调,获得第一下行数据;处理器,用于对所述第一下行数据进行处理。In a fourth aspect, the embodiment of the present application provides an optical communication terminal device, including a light source, a demodulator, and a processor. The optical communication terminal device may specifically be used to implement various method procedures performed by the leaf node as described in the second aspect. The demodulator is used to receive the downlink optical signal, and the downlink optical signal includes multiple subcarriers; the light source is used to emit coherent local oscillator light; the demodulator is also used to pair the first subcarrier of the downlink optical signal based on the coherent local oscillator light performing coherent demodulation to obtain first downlink data; a processor configured to process the first downlink data.

在一些实施方式中,下行光信号包括四个维度:X偏振I路,X偏振Q路,Y偏振I路和Y偏振Q路。In some implementations, the downlink optical signal includes four dimensions: X polarization I path, X polarization Q path, Y polarization I path and Y polarization Q path.

在一些实施方式中,光通信终端装置支持的下行速率与下行光信号的速率属于相同的速率等级,解调器为四维信号解调器,解调器用于分别从下行光信号的四个维度获得第一下行数据。In some embodiments, the downlink rate supported by the optical communication terminal device belongs to the same rate class as the rate of the downlink optical signal, and the demodulator is a four-dimensional signal demodulator, and the demodulator is used to obtain The first downlink data.

在一些实施方式中,光通信终端装置支持的下行速率等于下行光信号速率的四分之一,解调器为一维信号解调器,解调器用于从下行光信号的一个维度获得第一下行数据。In some embodiments, the downlink rate supported by the optical communication terminal device is equal to a quarter of the downlink optical signal rate, and the demodulator is a one-dimensional signal demodulator, and the demodulator is used to obtain the first downlink data.

在一些实施方式中,光通信终端装置支持的下行速率等于下行光信号速率的二分之一,解调器为二维信号解调器,解调器用于从下行光信号的两个维度获得所述第一下行数据。In some embodiments, the downlink rate supported by the optical communication terminal device is equal to half of the downlink optical signal rate, and the demodulator is a two-dimensional signal demodulator, and the demodulator is used to obtain the Describe the first downlink data.

在一些实施方式中,处理器,还用于接收光通信终端装置对应的通信参数,通信参数包括调制方式,子载波频率和子载波频宽中的一种或多种参数。In some implementations, the processor is further configured to receive communication parameters corresponding to the optical communication terminal device, where the communication parameters include one or more parameters of modulation mode, subcarrier frequency and subcarrier bandwidth.

在一些实施方式中,处理器,还用于发起或接收通信参数的重协商请求。In some implementations, the processor is further configured to initiate or receive a communication parameter renegotiation request.

在一些实施方式中,光通信终端装置为光网络单元ONU或光网络终端ONT。In some embodiments, the optical communication terminal device is an optical network unit ONU or an optical network terminal ONT.

第五方面,本申请实施例提供一种芯片,包括通信接口和处理器,处理器用于执行指令,使得芯片实现如第一方面或第二方面所述的方法。In the fifth aspect, the embodiment of the present application provides a chip, including a communication interface and a processor, and the processor is configured to execute instructions, so that the chip implements the method described in the first aspect or the second aspect.

第六方面,本申请实施例提供一种点到多点通信系统,该点到多点通信系统包括如第三方面所述的光通信装置和第四方面所述的光通信终端装置。In a sixth aspect, an embodiment of the present application provides a point-to-multipoint communication system, and the point-to-multipoint communication system includes the optical communication device described in the third aspect and the optical communication terminal device described in the fourth aspect.

第七方面,提供一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被装置执行时,使得该装置实现如第一方面或第二方面所述的方法。In a seventh aspect, a computer-readable storage medium is provided, on which a computer program is stored, and when the computer program is executed by a device, the device implements the method as described in the first aspect or the second aspect.

第八方面,提供一种包含指令的计算机程序产品,该指令被计算机执行时使得装置实现如第一方面或第二方面所述的方法。In an eighth aspect, a computer program product including instructions is provided, and when the instructions are executed by a computer, the device implements the method as described in the first aspect or the second aspect.

附图说明Description of drawings

图1为本申请实施例所适用的一种点到多点的通信系统架构示意图;FIG. 1 is a schematic diagram of a point-to-multipoint communication system architecture applicable to an embodiment of the present application;

图2为一种PON系统演进示意图;FIG. 2 is a schematic diagram of evolution of a PON system;

图3为本申请实施例提供的一种点到多点的通信方案示意图;FIG. 3 is a schematic diagram of a point-to-multipoint communication solution provided by an embodiment of the present application;

图4为本申请实施例提供的一种中心节点结构示意图;FIG. 4 is a schematic structural diagram of a central node provided by an embodiment of the present application;

图4a为一种双偏振同相正交调制器结构示意图;Figure 4a is a schematic structural diagram of a dual-polarization in-phase quadrature modulator;

图5为本申请实施例提供的一种叶子节点的结构示意图;FIG. 5 is a schematic structural diagram of a leaf node provided by an embodiment of the present application;

图6为本申请实施例提供的一种叶子节点一维信号解调器结构示意图;FIG. 6 is a schematic structural diagram of a leaf node one-dimensional signal demodulator provided in an embodiment of the present application;

图7a为本申请实施例提供的一种叶子节点二维信号解调器结构示意图;FIG. 7a is a schematic structural diagram of a leaf node two-dimensional signal demodulator provided in an embodiment of the present application;

图7b为本申请实施例提供的又一种叶子节点二维信号解调器结构示意图;Fig. 7b is a schematic structural diagram of another leaf node two-dimensional signal demodulator provided in the embodiment of the present application;

图8为本申请实施例提供的一种叶子节点四维信号解调器结构示意图;FIG. 8 is a schematic structural diagram of a leaf node four-dimensional signal demodulator provided in an embodiment of the present application;

图9为本申请实施例提供的又一种点到多点的通信方案示意图;FIG. 9 is a schematic diagram of another point-to-multipoint communication solution provided by the embodiment of the present application;

图10为本申请实施例提供的另一种点到多点的通信方案示意图;FIG. 10 is a schematic diagram of another point-to-multipoint communication solution provided by the embodiment of the present application;

图11为本申请实施例提供的一种通信参数协商方法流程示意图;FIG. 11 is a schematic flowchart of a communication parameter negotiation method provided in an embodiment of the present application;

图12为本申请实施例提供的一种通信参数重协商方法流程示意图;FIG. 12 is a schematic flowchart of a communication parameter renegotiation method provided by an embodiment of the present application;

图13为本申请实施例提供的另一种通信参数重协商方法流程示意图;FIG. 13 is a schematic flowchart of another communication parameter renegotiation method provided by the embodiment of the present application;

图14为本申请实施例使用的一种城域环网示意图。FIG. 14 is a schematic diagram of a metropolitan ring network used in the embodiment of the present application.

图15为本申请实施例提供的一种芯片的示意图。FIG. 15 is a schematic diagram of a chip provided by an embodiment of the present application.

具体实施方式Detailed ways

本申请实施例涉及P2MP网络或P2MP系统,即一种点到多点的通信网络或通信系统。如图1所示,该网络或系统中包括一个中心节点110和多个叶子节点131-133。需要说明的是,图1所示的中心节点110和叶子节点131-133的连接为一种逻辑示意,中心节点110可以通过多种物理连接方式或组网方式和叶子节点131-133连接;如中心节点110可以通过多个本地端口与各叶子节点连接,也可以通过一个本地端口连接一个分光设备,再由该分光设备连接多个叶子节点131-133。The embodiment of the present application relates to a P2MP network or a P2MP system, that is, a point-to-multipoint communication network or communication system. As shown in FIG. 1 , the network or system includes a central node 110 and multiple leaf nodes 131-133. It should be noted that the connection between the central node 110 and the leaf nodes 131-133 shown in FIG. 1 is a logical illustration, and the central node 110 can be connected to the leaf nodes 131-133 through various physical connection methods or networking methods; The central node 110 can be connected to each leaf node through a plurality of local ports, or can be connected to an optical splitting device through a local port, and then the optical splitting device is connected to a plurality of leaf nodes 131-133.

下面将结合附图对本申请实施方式作进一步的详细描述。The embodiments of the present application will be further described in detail below in conjunction with the accompanying drawings.

随着光通信技术的不断演进,出现了多种代际的光通信技术。不同代际的光通信技术所能够达到的通信速率不同,通信所选的波长或波段往往也不相同。当一个P2MP系统中的多个叶子节点所支持的光通信技术不同时,为了保证系统对新老技术的兼容性,中心节点往往需要集成多种光收发器件,以支持不同波长和速率的接收和发射。如国际电信联盟(International Telecommunication Union,ITU)制定的多种PON通信技术标准中,千兆比特PON(gigabit-capable PON,GPON)技术,下行速率大致为2.5Gbps,下行通信波长为1480-1500nm;10吉比特每秒PON(10gigabit per second PON,XG-PON)技术,下行速率大致为10Gbps,下行通信波长为1575-1580nm;50吉比特每秒PON(50gigabit per second PON,50G-PON)技术,下行速率大致为50Gbps,下行通信波长为1340–1344nm。需要说明的是,本申请中所述的下行,指从中心节点110到叶子节点131-133方向的通信;上行,指从叶子节点131-133到中心节点110方向的通信。With the continuous evolution of optical communication technology, various intergenerational optical communication technologies have emerged. Different generations of optical communication technologies can achieve different communication rates, and the wavelengths or bands selected for communication are often different. When the optical communication technologies supported by multiple leaf nodes in a P2MP system are different, in order to ensure the compatibility of the system with old and new technologies, the central node often needs to integrate a variety of optical transceiver devices to support receiving and receiving at different wavelengths and rates. emission. For example, among various PON communication technical standards formulated by the International Telecommunication Union (ITU), Gigabit PON (gigabit-capable PON, GPON) technology has a downlink rate of approximately 2.5Gbps and a downlink communication wavelength of 1480-1500nm; 10 gigabit per second PON (10gigabit per second PON, XG-PON) technology, the downlink rate is roughly 10Gbps, downlink communication wavelength is 1575-1580nm; 50 gigabit per second PON (50gigabit per second PON, 50G-PON) technology, The downlink rate is roughly 50Gbps, and the downlink communication wavelength is 1340–1344nm. It should be noted that the downlink mentioned in this application refers to the communication from the central node 110 to the leaf nodes 131-133; the uplink refers to the communication from the leaf nodes 131-133 to the central node 110.

如图2所示的PON系统中,OLT 210为中心节点,ONU 231,232,233为叶子节点,OLT210通过光分配网络220与多个叶子节点通信。假设在网络部署初期,ONU 231,232,233为支持GPON的设备,中心节点OLT 210的光模块只需要包含1490nm的发射机。随着技术的演进和网络的升级,开始部署支持XG-PON的设备,假设将ONU 233升级为支持XG-PON的ONU 234,即网络中同时存在支持GPON的设备ONU 231,232和支持XG-PON的设备ONU 234;与ONU侧的升级对应的,OLT 210也需要进行升级,升级后的OLT 211的光模块包含两个发射机,两个发射机对应的波长分别是1490nm(GPON)和1577nm(XG-PON),OLT 211发射的两种波长的光通过波长复用器输出至外部光纤;在ONU侧,GPON光模块通过滤波片选择1490nm波长进行接收,XG-PON光模块选择1577nm波长进行接收。In the PON system shown in FIG. 2 , OLT 210 is a central node, ONUs 231 , 232 , and 233 are leaf nodes, and OLT 210 communicates with multiple leaf nodes through an optical distribution network 220 . Assuming that in the initial stage of network deployment, ONUs 231, 232, and 233 are devices supporting GPON, the optical module of the central node OLT 210 only needs to include a 1490nm transmitter. With the evolution of technology and the upgrade of the network, the equipment supporting XG-PON is deployed. Assuming that ONU 233 is upgraded to ONU 234 supporting XG-PON, that is, there are equipment ONU 231 and 232 supporting GPON and ONU 232 supporting XG-PON in the network. Equipment ONU 234; Corresponding to the upgrade of the ONU side, the OLT 210 also needs to be upgraded. The optical module of the upgraded OLT 211 includes two transmitters, and the corresponding wavelengths of the two transmitters are 1490nm (GPON) and 1577nm (XG -PON), the two wavelengths of light emitted by the OLT 211 are output to the external optical fiber through the wavelength multiplexer; on the ONU side, the GPON optical module selects the 1490nm wavelength for reception through the filter, and the XG-PON optical module selects the 1577nm wavelength for reception.

随着通信技术代际的不断演进,可能会出现多代技术共存的场景,中心节点需要集成更多的光收发器件。因此,在基于波长扩展或波长复用的技术演进模式下,随着技术的不断更新演进,P2MP系统的设备成本,兼容成本,升级成本和维护成本会逐步提高。With the continuous evolution of communication technology generations, there may be a scenario where multiple generations of technologies coexist, and the central node needs to integrate more optical transceiver devices. Therefore, in the technology evolution mode based on wavelength extension or wavelength multiplexing, with the continuous update and evolution of technology, the equipment cost, compatibility cost, upgrade cost and maintenance cost of the P2MP system will gradually increase.

本申请提出一种新的光通信技术演进模式,和一种新的多代际光通信技术共存机制,以实现同一个传输波长下,不同代际或支持不同速率的叶子节点的共存。This application proposes a new optical communication technology evolution model and a new multi-generational optical communication technology coexistence mechanism to achieve the coexistence of different generations or leaf nodes supporting different rates under the same transmission wavelength.

如图3所示,假设一个P2MP系统中包括中心节点OLT和多个叶子节点ONU1,ONU2和ONU3;其中ONU1支持的速率为1Gb/s,ONU2支持的速率为2Gb/s,ONU3支持的速率为4Gb/s。下行通信方向,OLT在同一个波长的光信号中,以相同的下行传输速率,基于频分复用的方式,分别向ONU1,ONU2和ONU3发送数据,为描述方便,本申请实施例中将OLT向ONU发送的数据简称为下行ONU数据;假设OLT下行传输速率为4Gb/s,即OLT到ONU的光纤线路上传输的下行ONU1数据的速率、下行ONU2数据的速率和下行ONU3数据的速率均为4Gb/s。时域上,OLT以相干调制的方式,将各下行ONU数据承载在同一波长的下行光信号中;频域上,OLT将各下行ONU数据承载在不同的子载波上,下行ONU1数据占用子载波1,下行ONU2数据占用子载波2,下行ONU3数据占用子载波3,各子载波的频谱宽度相同,即下行ONU1数据的速率、下行ONU2数据的速率和下行ONU3数据的速率相同。需要说明的是,本申请实施例中所述的速率相同,包括速率大致相同或属于相同的速率等级。As shown in Figure 3, it is assumed that a P2MP system includes a central node OLT and multiple leaf nodes ONU1, ONU2 and ONU3; wherein the rate supported by ONU1 is 1Gb/s, the rate supported by ONU2 is 2Gb/s, and the rate supported by ONU3 is 4Gb/s. In the downlink communication direction, the OLT transmits data to ONU1, ONU2, and ONU3 respectively at the same downlink transmission rate in optical signals of the same wavelength and based on frequency division multiplexing. For the convenience of description, OLT The data sent to the ONU is referred to as downlink ONU data; assuming that the OLT downlink transmission rate is 4Gb/s, that is, the downlink ONU1 data rate, downlink ONU2 data rate and downlink ONU3 data rate transmitted on the optical fiber line from OLT to ONU are all 4Gb/s. In the time domain, the OLT uses coherent modulation to carry the data of each downlink ONU in the downlink optical signal of the same wavelength; in the frequency domain, the OLT carries the data of each downlink ONU on different subcarriers, and the downlink ONU1 data occupies a subcarrier 1. Downlink ONU2 data occupies subcarrier 2, and downlink ONU3 data occupies subcarrier 3. The spectrum width of each subcarrier is the same, that is, the rate of downlink ONU1 data, the rate of downlink ONU2 data and the rate of downlink ONU3 data are the same. It should be noted that the rates described in the embodiments of the present application are the same, including that the rates are substantially the same or belong to the same rate level.

图4为本申请实施例提供的一种可能的中心节点结构示意图。图3中的OLT可以采用如图4的结构,对下行光信号进行相干调制。中心节点包括信号处理器410,调制器420和光源430。示例性的,光源430可以为激光器;调制器420可以包括偏振分波器,偏振合波器,马赫增德尔调制器(Mach-Zehnder modulator,MZM),如图4a中所示的双偏振同相正交调制器;信号处理器410可以包括如图4中的协议编码模块和适配处理模块。信号处理器410和调制器420之间还可以设置数模转换器DAC。下行传输方向,信号处理器410用于产生业务数据的电信号,光源430用于产生光信号,调制器420将信号处理器410产生的电信号承载到光源430产生的光信号中,通过光纤将光信号发送给一个或多个叶子节点。信号处理器410中的协议编码模块,用于将要发送给各叶子节点的数据按照通信协议定义的帧格式进行编码,如协议编码模块可以是目的媒体访问控制(Media Access Control,MAC)芯片。结合图3所示实施例,协议编码模块分别输出要发送给ONU1的1Gb/s的数据,要发送给ONU2的2Gb/s的数据,和要发送给ONU3的4Gb/s的数据。信号处理器410中的适配处理模块,用于进行适配编码,以适配ONU支持的速率和下行传输速率,如适配处理模块可以是光数字信号处理器(optical digital signal processor,oDSP)。本领域技术人员可以理解的是,协议编码模块和适配处理模块所对应的功能还可以集成在一个芯片内部。由于OLT内部协议编码模块输出的要发送给ONU1的数据速率为1Gb/s,因此,适配处理模块需要对协议编码模块输出的1Gb/s的数据进行4倍冗余编码,以匹配OLT的下行传输速率。为方便描述,本申请实施例中将冗余编码前的数据称之为有效下行ONU数据。1Gb/s的有效下行ONU1数据,经过4倍冗余编码后,变为速率为4Gb/s的下行ONU1数据。需要说明的是,本申请不限定冗余编码的编码算法,如可以填充无效数据,也可以复制有效下行ONU数据。类似的,速率为2Gb/s的有效下行ONU2数据,也需要经过适配处理模块的冗余编码,才能转变为速率为4Gb/s的下行ONU2数据;而由于有效下行ONU3数据的速率已经和OLT的下行传输速率相同,均为4Gb/s,因此有效下行ONU3数据不再需要冗余编码处理。需要说明的是,图4中,分别呈现了适配处理模块1和适配处理模块2,但本领域技术人员应该理解的是,适配处理模块1和适配处理模块2可能是独立的模块,也可能是合一模块,也可能是集成在协议编码模块内部的子模块。还需要说明的是,图4中有效下行ONU3数据的分支没有体现适配处理模块,但本领域技术人员应该理解的是,有效下行ONU3数据虽然不需要进行额外的冗余编码,但出于方案实现的一致性,一种可能的实现方式中,有效下行ONU3数据和有效下行ONU1数据、有效下行ONU2数据,均作为适配处理模块的输入,不同的是,适配处理模块对有效下行ONU3数据做透传处理,即适配处理模块对有效下行ONU3数据不进行冗余编码。下行ONU1数据,下行ONU2数据和下行ONU3数据合并后的下行数据,包括X-1,X-Q,Y-I,Y-Q四个部分,其中每个部分的速率为下行数据速率(4Gb/s)的四分之一(1Gb/s)。双偏振同相正交调制器用于将下行光信号进行多传输维度或多维度的调制;具体的,将下行数据的X-1,X-Q,Y-I,Y-Q四个部分分别调制在下行光波信号的四个维度(X偏振I路,X偏振Q路,Y偏振I路和Y偏振Q路),每个维度的速率均为1Gb/s。需要说明的是,由于有效下行ONU1数据为1Gb/s,因此,有效下行ONU1数据只需要调制在下行光波的一个维度上,或者说,下行光波的一个维度的传输速率就可以满足有效下行ONU1数据速率的要求;类似的,下行光波的两个维度的传输速率就可以满足有效下行ONU2数据速率的要求。因此,根据有效下行数据的速率,图3中,下行ONU1数据也被称之为一维信号,下行ONU2数据也被称之为二维信号,下行ONU3数据也被称之为四维信号。FIG. 4 is a schematic diagram of a possible central node structure provided by the embodiment of the present application. The OLT in FIG. 3 can adopt the structure in FIG. 4 to perform coherent modulation on the downlink optical signal. The central node includes a signal processor 410 , a modulator 420 and a light source 430 . Exemplarily, the light source 430 can be a laser; the modulator 420 can include a polarization splitter, a polarization combiner, and a Mach-Zehnder modulator (Mach-Zehnder modulator, MZM), as shown in Figure 4a. Intermodulator; signal processor 410 may include a protocol encoding module and an adaptation processing module as shown in FIG. 4 . A digital-to-analog converter DAC may also be provided between the signal processor 410 and the modulator 420 . In the downlink transmission direction, the signal processor 410 is used to generate electrical signals of service data, the light source 430 is used to generate optical signals, the modulator 420 carries the electrical signals generated by the signal processor 410 into the optical signals generated by the light source 430, and transmits Optical signals are sent to one or more leaf nodes. The protocol encoding module in the signal processor 410 is used to encode the data to be sent to each leaf node according to the frame format defined by the communication protocol. For example, the protocol encoding module may be a target Media Access Control (MAC) chip. In conjunction with the embodiment shown in Figure 3, the protocol encoding module outputs 1Gb/s data to be sent to ONU1, 2Gb/s data to be sent to ONU2, and 4Gb/s data to be sent to ONU3. The adaptation processing module in the signal processor 410 is used for carrying out adaptive coding, to adapt the rate and the downlink transmission rate supported by the ONU, such as the adaptation processing module can be an optical digital signal processor (optical digital signal processor, oDSP) . Those skilled in the art can understand that the functions corresponding to the protocol encoding module and the adaptation processing module can also be integrated in one chip. Since the data rate output by the OLT internal protocol encoding module to be sent to ONU1 is 1Gb/s, the adaptation processing module needs to perform 4 times redundant encoding on the 1Gb/s data output by the protocol encoding module to match the downlink of the OLT Transmission rate. For convenience of description, in the embodiment of the present application, the data before redundant encoding is referred to as effective downlink ONU data. Effective downlink ONU1 data of 1Gb/s, after 4 times redundant coding, becomes downlink ONU1 data with a rate of 4Gb/s. It should be noted that this application does not limit the encoding algorithm of redundant encoding, for example, invalid data can be filled, and valid downlink ONU data can also be copied. Similarly, the effective downlink ONU2 data with a rate of 2Gb/s also needs to be converted into downlink ONU2 data with a rate of 4Gb/s after the redundant coding of the adaptive processing module; and because the rate of the effective downlink ONU3 data has been compared with that of the OLT The downlink transmission rate is the same, both are 4Gb/s, so the effective downlink ONU3 data no longer needs redundant coding processing. It should be noted that in FIG. 4 , the adaptation processing module 1 and the adaptation processing module 2 are shown respectively, but those skilled in the art should understand that the adaptation processing module 1 and the adaptation processing module 2 may be independent modules , may also be an unification module, or a sub-module integrated in the protocol encoding module. It should also be noted that the branch of effective downlink ONU3 data in Figure 4 does not reflect the adaptation processing module, but those skilled in the art should understand that although the effective downlink ONU3 data does not require additional redundant coding, due to the scheme Consistency of implementation, in a possible implementation mode, valid downlink ONU3 data, valid downlink ONU1 data, and valid downlink ONU2 data are all used as the input of the adaptation processing module. Perform transparent transmission processing, that is, the adaptation processing module does not perform redundant coding on valid downlink ONU3 data. Downstream ONU1 data, downlink ONU2 data and downlink ONU3 data combined downlink data, including X-1, X-Q, Y-I, Y-Q four parts, the rate of each part is 1/4 of the downlink data rate (4Gb/s) One (1Gb/s). The dual-polarization in-phase quadrature modulator is used to modulate the downlink optical signal with multiple transmission dimensions or multi-dimensionality; specifically, the four parts X-1, X-Q, Y-I, and Y-Q of the downlink data are respectively modulated on the four parts of the downlink optical wave signal. Dimensions (X polarization I channel, X polarization Q channel, Y polarization I channel and Y polarization Q channel), the rate of each dimension is 1Gb/s. It should be noted that since the effective downlink ONU1 data is 1Gb/s, the effective downlink ONU1 data only needs to be modulated in one dimension of the downlink light wave, or in other words, the transmission rate of one dimension of the downlink light wave can meet the requirements of the effective downlink ONU1 data. rate requirements; similarly, the transmission rate of the two dimensions of the downlink optical wave can meet the requirements of the effective downlink ONU2 data rate. Therefore, according to the effective downstream data rate, in FIG. 3 , the downstream ONU1 data is also called a one-dimensional signal, the downstream ONU2 data is also called a two-dimensional signal, and the downstream ONU3 data is also called a four-dimensional signal.

图4a为本申请实施例提供的一种双偏振同相正交调制器结构示意图。图4中的双偏振同相正交调制器可以采用如图4a所示的结构。图4a所示的双偏振同相正交调制器包括偏振分波器,马赫曾德尔调制器(Mach Zehnder Modulator,MZM)和偏振合波器。光源(如激光器)发射的光波经偏振分波器被分为X偏振波和Y偏振波。下行数据的X-1部分,经数模转换器(digital-to-analog converter,DAC)转换为模拟信号后,经MZM1调制后,被调制在下行光波的X偏振I路;下行数据的X-Q部分经DAC转换为模拟信号后,经MZM2调制并做90度相移后,被调制在下行光波的X偏振Q路;下行数据的Y-1部分经DAC转换为模拟信号后,经MZM3调制后,被调制在下行光波的Y偏振I路;下行数据的Y-Q部分经DAC转换为模拟信号后,经MZM4调制并做90度相移后,被调制在下行光波的Y偏振Q路。Fig. 4a is a schematic structural diagram of a dual-polarization in-phase quadrature modulator provided by an embodiment of the present application. The dual-polarization in-phase quadrature modulator in Fig. 4 can adopt the structure shown in Fig. 4a. The dual-polarization in-phase quadrature modulator shown in Fig. 4a includes a polarization splitter, a Mach Zehnder Modulator (MZM) and a polarization combiner. Light waves emitted by a light source (such as a laser) are divided into X-polarized waves and Y-polarized waves by a polarization splitter. The X-1 part of the downlink data is converted into an analog signal by a digital-to-analog converter (DAC), modulated by MZM1, and modulated on the X polarization I channel of the downlink light wave; the X-Q part of the downlink data After being converted into an analog signal by DAC, modulated by MZM2 and subjected to a 90-degree phase shift, it is modulated on the X polarization Q path of the downlink light wave; the Y-1 part of the downlink data is converted into an analog signal by DAC, and modulated by MZM3. It is modulated on the Y polarization I path of the downlink light wave; the Y-Q part of the downlink data is converted into an analog signal by DAC, modulated by MZM4 and phase-shifted by 90 degrees, and then modulated on the Y polarization Q path of the downlink light wave.

图3中所示的OLT将下行数据调制在下行光波的四个维度上,接收端的ONU根据自身的能力,选择接收下行光波中调制的部分或全部四个维度的数据。The OLT shown in Figure 3 modulates the downlink data in the four dimensions of the downlink light wave, and the ONU at the receiving end chooses to receive part or all of the four-dimensional data modulated in the downlink light wave according to its own capabilities.

图5为本申请实施例提供的一种叶子节点的结构示意图。如图5所示,叶子节点500包括解调器510,光源520和信号处理器530。叶子节点采用相干解调的方式,光源520发射的光作为本振光,解调器510对接收到的下行光信号进行相干解调,解调后的信号由信号处理器处理。解调器510具体可以是如图6所示的一维信号解调器,或者如图7所示的二维信号解调器,或者如图8所示的四维信号解调器,或者其它结构的解调器。一个叶子节点中还可以包括多种类型的解调器。图3中的ONU1可以采用如6所示一维信号解调器的结构,采用相干检测的方式,接收并解调下行光信号ONU1对应子载波中任一维度的数据。图6中,平衡光电探测器(balanced photodetector,BPD)输出的信号对应下行光信号中一个维度的数据。图3中的ONU2可以采用如图7a或图7b所示的二维信号解调器的结构,采用相干检测的方式,接收并解调下行光信号ONU2对应子载波中任两个正交维度的数据。图7a或图7b中,两个BPD输出的信号,分别对应下行光信号中两个正交维度的数据,如X偏振I路和X偏振Q路,或者Y偏振I路和Y偏振Q路,或者X偏振I路和Y偏振I路,或者X偏振Q路和Y偏振Q路。图3中的ONU3可以采用如图8所示的四维信号解调器的结构,接收并解调下行光信号ONU3对应子载波中四个维度的数据。FIG. 5 is a schematic structural diagram of a leaf node provided by an embodiment of the present application. As shown in FIG. 5 , a leaf node 500 includes a demodulator 510 , a light source 520 and a signal processor 530 . The leaf node adopts the mode of coherent demodulation, the light emitted by the light source 520 is used as the local oscillator light, the demodulator 510 performs coherent demodulation on the received downlink optical signal, and the demodulated signal is processed by the signal processor. The demodulator 510 may specifically be a one-dimensional signal demodulator as shown in FIG. 6, or a two-dimensional signal demodulator as shown in FIG. 7, or a four-dimensional signal demodulator as shown in FIG. 8, or other structures the demodulator. A leaf node may also include multiple types of demodulators. The ONU1 in FIG. 3 can adopt the structure of a one-dimensional signal demodulator as shown in 6, and adopt coherent detection to receive and demodulate the data of any dimension in the subcarrier corresponding to the downlink optical signal ONU1. In FIG. 6 , a signal output by a balanced photodetector (balanced photodetector, BPD) corresponds to data of one dimension in a downlink optical signal. The ONU2 in Figure 3 can adopt the structure of a two-dimensional signal demodulator as shown in Figure 7a or Figure 7b, and adopt a coherent detection method to receive and demodulate any two orthogonal dimensions of the downlink optical signal ONU2 corresponding to the subcarrier data. In Figure 7a or Figure 7b, the signals output by the two BPDs correspond to the data of two orthogonal dimensions in the downlink optical signal, such as X polarization I path and X polarization Q path, or Y polarization I path and Y polarization Q path, Either X polarization I path and Y polarization I path, or X polarization Q path and Y polarization Q path. The ONU3 in FIG. 3 can adopt the structure of the four-dimensional signal demodulator shown in FIG. 8 to receive and demodulate the four-dimensional data in the subcarrier corresponding to the downlink optical signal ONU3.

需要说明的是,如上实施例并不限定光信号调制的具体调制方式,具体可以对光的振幅、频率、相位、偏振态等一种或多种属性进行调制。常见的调制方式有,振幅调制,利用一个载波不同的幅度,表示不同的数字符号,来传输一组码流;频率调制,利用不同频率的载波,表示不同的数字符号,来传输一组码流;相位调制,通过改变一个载波的相位值,表示不同的数字符号,来传输一组码流;偏振调制,在光波的某一个偏振方向上调制并传输一组码流。在如上所述的实施例中,对于下行ONU1数据,可以采用幅移键控(amplitude shiftkeying,ASK),或二进制相移键控(binary phase shift keying,BPSK)等调制方式,将有效下行ONU1数据调制在下行光波的各传输维度上;对于下行ONU2数据,可以采用正交相移键控(quadrature phase shift keying,QPSK),或正交振幅调制(quadrature amplitudemodulation,QAM)等调制方式,将有效下行ONU2数据调制在下行光波的至少2个传输维度上;对于下行ONU3数据,可以采用双偏振正交相移键控(dual-polarization QPSK,DP-QPSK),或双偏振正交振幅调制(dual-polarization QAM,DP-QAM)等调制方式,将下行ONU3数据调制在下行光波的4个传输维度上。It should be noted that, the above embodiment does not limit the specific modulation mode of optical signal modulation, and specifically, one or more attributes such as amplitude, frequency, phase, and polarization state of light may be modulated. Common modulation methods include amplitude modulation, which uses different amplitudes of a carrier to represent different digital symbols to transmit a set of code streams; frequency modulation, which uses carriers of different frequencies to represent different digital symbols to transmit a set of code streams ; Phase modulation, by changing the phase value of a carrier to represent different digital symbols, to transmit a set of code streams; polarization modulation, modulate and transmit a set of code streams in a certain polarization direction of the light wave. In the embodiment described above, for the downlink ONU1 data, modulation methods such as amplitude shift keying (amplitude shiftkeying, ASK) or binary phase shift keying (binary phase shift keying, BPSK) can be used, and the effective downlink ONU1 data The modulation is on each transmission dimension of the downlink optical wave; for the downlink ONU2 data, you can use quadrature phase shift keying (quadrature phase shift keying, QPSK), or quadrature amplitude modulation (quadrature amplitude modulation, QAM) and other modulation methods, which will effectively downlink ONU2 data is modulated on at least two transmission dimensions of downlink light waves; for downlink ONU3 data, dual-polarization quadrature phase-shift keying (dual-polarization QPSK, DP-QPSK) or dual-polarization quadrature amplitude modulation (dual- Polarization QAM, DP-QAM) and other modulation methods, modulate the downlink ONU3 data on the four transmission dimensions of the downlink optical wave.

根据图3-图8所示的方案,OLT可以基于相同下行波长的不同子载波,与多个不同速率的ONU通信;OLT不需要集成多种波长的多个光模块,也不需要进行波分复用处理,降低了OLT的工程成本;而且OLT在不增加波长资源的情况下,通过频分复用的方式,与多个不同代际或不同速率的ONU通信,提升了系统带宽;不同代际或不同能力的ONU可以在同一个PON系统中共存,提升了系统对多样化设备的兼容性。According to the solution shown in Figure 3-Figure 8, the OLT can communicate with multiple ONUs with different rates based on different subcarriers of the same downlink wavelength; the OLT does not need to integrate multiple optical modules with multiple wavelengths, nor does it need to perform wavelength division The multiplexing processing reduces the engineering cost of the OLT; and the OLT communicates with multiple ONUs of different generations or different rates through frequency division multiplexing without increasing wavelength resources, which improves the system bandwidth; ONUs with actual or different capabilities can coexist in the same PON system, which improves the system's compatibility with diverse devices.

本领域技术人员应该理解的是,如上实施例中的网元类型,下行传输速率,调制方式,ONU数量和ONU能力等信息仅仅是一种示例,不对本申请的保护范围构成任何限定。Those skilled in the art should understand that the network element type, downlink transmission rate, modulation mode, ONU quantity and ONU capability and other information in the above embodiments are just examples and do not constitute any limitation to the protection scope of the present application.

在一种可能的实施例中,本申请所提出的方案同样适用于如图9所示的P2MP系统。该系统中,叶子节点(ONU1 931,ONU2 932和ONU3 933)所支持的速率相同,均为1Gb/s,这种情况下,OLT 910对每个叶子节点的有效下行数据进行适配编码后(如进行4倍冗余编码),将适配编码后速率为4Gb/s的下行数据调制在下行光波的4个传输维度上。各ONU可以采用如6所示的解调器,接收下行光波对应子载波上任一个维度的数据。In a possible embodiment, the solution proposed in this application is also applicable to the P2MP system shown in FIG. 9 . In this system, the rates supported by the leaf nodes (ONU1 931, ONU2 932 and ONU3 933) are the same, all of which are 1Gb/s. In this case, after the OLT 910 performs adaptive coding on the effective downlink data of each leaf node ( For example, 4-fold redundant coding is performed), and the downlink data with a rate of 4Gb/s after adaptive coding is modulated on the four transmission dimensions of the downlink light wave. Each ONU can use the demodulator shown in 6 to receive data of any dimension on the subcarrier corresponding to the downlink optical wave.

在另一种可能的实施例中,本申请所提出的方案还适用于如图10所示的P2MP2系统。该系统中,ONU1支持的速率为2Gb/s,ONU2支持的速率为4Gb/s,ONU3支持的速率为8Gb/s,中心节点和叶子节点间的下行传输速率为8Gb/s。In another possible embodiment, the solution proposed in this application is also applicable to the P2MP2 system shown in FIG. 10 . In this system, the rate supported by ONU1 is 2Gb/s, the rate supported by ONU2 is 4Gb/s, the rate supported by ONU3 is 8Gb/s, and the downlink transmission rate between the central node and leaf nodes is 8Gb/s.

在本申请实施例所提供的P2MP系统中,多代际或多种能力的叶子节点共存,中心节点需要根据各叶子节点的能力进行数据编码和调制,叶子节点也需要根据其所对应的子载波进行数据接收和解调。因此,为了能够实现单一波长下,中心节点与多代际叶子节点基于频分复用的通信,中心节点与叶子节点间需要进行通信参数的协商。In the P2MP system provided by the embodiment of this application, leaf nodes with multiple generations or multiple capabilities coexist, the central node needs to perform data encoding and modulation according to the capabilities of each leaf node, and the leaf nodes also need to perform data encoding and modulation according to their corresponding subcarriers. Perform data reception and demodulation. Therefore, in order to realize frequency-division multiplexing-based communication between the central node and multi-generational leaf nodes under a single wavelength, communication parameters need to be negotiated between the central node and the leaf nodes.

图11为本申请实施例提供的一种中心节点与叶子节点进行通信参数协商的方法流程示意图。FIG. 11 is a schematic flowchart of a method for negotiating communication parameters between a central node and a leaf node provided in an embodiment of the present application.

1101步骤:中心节点向叶子节点发送第一消息,其中携带调制方式指示信息,调制方式指示信息,用于指示叶子节点在注册阶段应该使用的调制方式。第一消息可以是中心节点发给叶子节点的注册指示信息,也可以是其它消息,本申请不进行限定。如在PON系统中,OLT可以向尚未注册的ONU广播discovery发现消息,发现消息中指示ONU使用调制方式1进行注册阶段的通信。需要说明的是,1101消息不是必须的,一个P2MP系统中的中心节点和叶子节点还可以使用默认的调制方式进行注册阶段的通信。Step 1101: the central node sends a first message to the leaf node, which carries modulation mode indication information, and the modulation mode indication information is used to indicate the modulation mode that the leaf node should use in the registration phase. The first message may be registration indication information sent by the central node to the leaf nodes, or other messages, which are not limited in this application. For example, in a PON system, the OLT can broadcast a discovery discovery message to an unregistered ONU, and the discovery message instructs the ONU to use modulation mode 1 for communication in the registration phase. It should be noted that the 1101 message is not necessary, and the central node and leaf nodes in a P2MP system can also use a default modulation mode to communicate in the registration phase.

1102步骤:叶子节点向中心节点发送注册请求消息,注册请求消息使用中心节点指示的、或约定的调制方式1进行调制和解调。另外,叶子节点还通过第二消息向中心节点发送叶子节点支持的能力集,叶子节点支持的能力集包括,叶子节点支持的协议类型,叶子节点支持的速率,叶子节点支持的调制方式等一种或多种信息;其中调制方式包括ASK,BPSK,QPSK,QAM,DP-QPSK,DP-QAM等。第二消息可以是注册请求消息,也可以是其它消息,本申请不进行限定。Step 1102: the leaf node sends a registration request message to the central node, and the registration request message is modulated and demodulated using modulation mode 1 indicated or agreed by the central node. In addition, the leaf node also sends the capability set supported by the leaf node to the central node through the second message. The capability set supported by the leaf node includes the protocol type supported by the leaf node, the rate supported by the leaf node, and the modulation mode supported by the leaf node. or a variety of information; the modulation methods include ASK, BPSK, QPSK, QAM, DP-QPSK, DP-QAM, etc. The second message may be a registration request message or other messages, which are not limited in this application.

1103步骤:中心节点通过第三消息向叶子节点发送通信参数,通信参数包括调制方式,子载波频率,子载波频宽等一种或多种参数。一种可选的实现方式中,中心节点综合考虑自身能力和系统中其它设备的情况,确定与各个注册的叶子节点对应的通信参数,以保证中心节点能够使用同一波长,基于频分复用的模式,与系统中的叶子节点进行通信。第三消息可以是注册成功指示消息,也可以是其它消息,本申请不进行限定。Step 1103: the central node sends communication parameters to the leaf nodes through the third message, and the communication parameters include one or more parameters such as modulation mode, subcarrier frequency, and subcarrier bandwidth. In an optional implementation, the central node comprehensively considers its own capabilities and the conditions of other devices in the system, and determines the communication parameters corresponding to each registered leaf node to ensure that the central node can use the same wavelength. Mode to communicate with the leaf nodes in the system. The third message may be a registration success indication message, or other messages, which are not limited in this application.

1104步骤:中心节点和叶子节点使用通信参数进行数据调制和解调。Step 1104: the central node and the leaf nodes use communication parameters to perform data modulation and demodulation.

在中心节点和叶子节点协商确定第一套通信参数后,中心节点和叶子节点还可以重新协商获得第二套通信参数,以替代第一套通信参数。通信参数重协商流程可以由中心节点发起,也可以由叶子节点发起。After the central node and the leaf nodes negotiate to determine the first set of communication parameters, the central node and the leaf nodes can further negotiate to obtain a second set of communication parameters to replace the first set of communication parameters. The communication parameter renegotiation process can be initiated by the central node or by the leaf node.

图12为本申请实施例提供的一种中心节点发起通信参数重协商的方法流程示意图。FIG. 12 is a schematic flowchart of a method for initiating communication parameter renegotiation by a central node provided in an embodiment of the present application.

1201步骤:中心节点发起通信参数重协商流程,中心节点发起重协商流程的方式可以有多种,如中心节点向叶子节点发送重协商请求消息,指示叶子节点上报叶子节点支持的某种能力或某些能力集;或者中心节点在发给叶子节点的任一个下行消息中,通过指示信元或指示信息,指示叶子节点上报叶子节点支持的某种能力或某些能力集。Step 1201: The central node initiates the communication parameter renegotiation process. There are many ways for the central node to initiate the renegotiation process. For example, the central node sends a renegotiation request message to the leaf node, instructing the leaf node to report a certain capability or certain capability supported by the leaf node. or the central node instructs the leaf node to report a certain capability or a certain capability set supported by the leaf node through an indication cell or indication information in any downlink message sent to the leaf node.

1202步骤:叶子节点根据中心节点的指示,上报叶子节点支持的某种能力或某些能力集。Step 1202: the leaf node reports a certain capability or a certain capability set supported by the leaf node according to the instruction of the central node.

1203步骤:中心节点向叶子节点发送通信参数。通信参数可能与之前的通信参数部分或全部相同,也可能完全不同。例如,假设中心节点为图9中的OLT,叶子节点为图9中的ONU3 933,则中心节点与叶子节点根据图11进行协商后,中心节点确定叶子节点ONU3 933对应的调制方式为ASK或BPSK;如果图9中的ONU3 933升级为如图3中的ONU3 333,由于ONU3速率的提升,中心节点需要将下行ONU3数据调制在下行光波的4个传输维度上,因此,中心节点与叶子节点ONU3 933根据图12进行重协商后,中心节点确定叶子节点ONU3 333对应的调制方式为DP-QAM或DP-QPSK。Step 1203: the central node sends communication parameters to the leaf nodes. The communication parameters may be partially or completely the same as the previous communication parameters, or completely different. For example, assuming that the central node is the OLT in Figure 9, and the leaf node is ONU3 933 in Figure 9, then after the central node and the leaf node negotiate according to Figure 11, the central node determines that the modulation method corresponding to the leaf node ONU3 933 is ASK or BPSK ; If the ONU3 933 in Figure 9 is upgraded to the ONU3 333 in Figure 3, due to the increase in the ONU3 rate, the central node needs to modulate the downlink ONU3 data on the 4 transmission dimensions of the downlink optical wave, therefore, the central node and the leaf node ONU3 After 933 performs renegotiation according to FIG. 12 , the central node determines that the modulation mode corresponding to the leaf node ONU3 333 is DP-QAM or DP-QPSK.

图13为本申请实施例提供的一种叶子节点发起通信参数重协商的方法流程示意图。与图12所示流程不同的是,图13所示流程中,叶子节点主动向中心节点上报其所支持的部分能力或全部能力集。1301步骤-1303步骤分别对应图12中的1202-1204步骤,此处不再赘述。FIG. 13 is a schematic flowchart of a method for initiating communication parameter renegotiation by a leaf node provided in an embodiment of the present application. Different from the flow shown in FIG. 12 , in the flow shown in FIG. 13 , the leaf node actively reports to the central node some or all of the capabilities it supports. Steps 1301 to 1303 respectively correspond to steps 1202 to 1204 in FIG. 12 , and will not be repeated here.

当P2MP系统发生变化,如新增叶子节点,或有部分叶子节点升级等情况下,中心节点或叶子节点可以根据图12或图13所示的方法发起通信参数的重协商流程,以保证中心节点能够使用同一波长,基于频分复用的模式,与系统中的叶子节点进行通信。When the P2MP system changes, such as new leaf nodes, or some leaf nodes are upgraded, the central node or leaf nodes can initiate a communication parameter renegotiation process according to the method shown in Figure 12 or Figure 13 to ensure that the central node It can use the same wavelength to communicate with the leaf nodes in the system based on the mode of frequency division multiplexing.

需要说明的是,图11-图13中所示的叶子节点仅为P2MP系统中的一个叶子节点,中心节点还需要与P2MP系统中的其它叶子节点进行通信参数的协商,协商流程或重协商流程与图11-图13所示流程类似,这里不再赘述。另外,图11-图13中所示的消息名称仅为一种示例,不对本申请保护的范围构成限定。It should be noted that the leaf node shown in Figure 11-Figure 13 is only a leaf node in the P2MP system, and the central node also needs to negotiate communication parameters with other leaf nodes in the P2MP system, the negotiation process or the re-negotiation process Similar to the processes shown in Fig. 11-Fig. 13, details are not repeated here. In addition, the message names shown in FIG. 11-FIG. 13 are only examples, and do not limit the protection scope of the present application.

本申请实施例中还提供一种芯片,如图15所示,图15是本申请提供的芯片1500的示意图。该芯片1500包括处理器1510和通信接口1530。处理器1510用于执行指令,使得上文方法实施例中中心节点或叶子节点的方法被执行。芯片1500还可以包括存储器1120,处理器1110与存储器1120耦合,存储器1120用于存储计算机程序或指令或者和/或数据。The embodiment of the present application also provides a chip, as shown in FIG. 15 , which is a schematic diagram of a chip 1500 provided in the present application. The chip 1500 includes a processor 1510 and a communication interface 1530 . The processor 1510 is configured to execute instructions, so that the method of the central node or the leaf node in the above method embodiments is executed. The chip 1500 may also include a memory 1120, the processor 1110 is coupled to the memory 1120, and the memory 1120 is used for storing computer programs or instructions or and/or data.

还需要说明的是,为方便理解,本申请部分实施例中以PON系统为例对技术方案进行描述,本领域技术人员应该理解的是,本申请所提出的技术方案同样适用与其它的P2MP网络或系统,如城域环网,无源光局域网(passive optical LAN,POL)、工业光网络、车载光网络、物联网等。如图14所示的城域环网,其中中心局(Central Office,CO)为中心节点,子中心局(Sub Central Office,SubCO)为叶子节点。工业光网场景中,中心节点和叶子节点可以位于工业制造车间中。车载光网场景中,中心节点和叶子节点可以设置在车辆中,中心节点可以为车辆接口单元(vehicle interface unit,VIU),叶子节点可以为移动数据中心(MDC)、行车动态控制(vehicle dynamic control,VDC)或座舱数据中心(cockpit datacenter,CDC)等。本申请提出的技术方案还适用于光骨干传输网络、数据中心光传输、短距离光互联和无线业务前传/回传等P2MP网络或系统。It should also be noted that, for the convenience of understanding, some embodiments of this application take the PON system as an example to describe the technical solutions. Those skilled in the art should understand that the technical solutions proposed in this application are also applicable to other P2MP networks Or systems, such as metropolitan ring network, passive optical LAN (POL), industrial optical network, vehicle optical network, Internet of Things, etc. In the metropolitan area ring network shown in FIG. 14 , a central office (Central Office, CO) is a central node, and a sub central office (Sub Central Office, SubCO) is a leaf node. In the industrial optical network scenario, the central node and leaf nodes can be located in the industrial manufacturing workshop. In the vehicle optical network scenario, the central node and the leaf nodes can be set in the vehicle, the central node can be the vehicle interface unit (vehicle interface unit, VIU), and the leaf nodes can be the mobile data center (MDC), vehicle dynamic control (vehicle dynamic control , VDC) or cockpit data center (Cockpit datacenter, CDC), etc. The technical solution proposed in this application is also applicable to P2MP networks or systems such as optical backbone transmission network, data center optical transmission, short-distance optical interconnection, and wireless service fronthaul/backhaul.

Claims (40)

1.一种光通信方法,应用于点到多点通信系统,所述点到多点通信系统包括中心节点,第一叶子节点和第二叶子节点,其特征在于,1. An optical communication method, applied to a point-to-multipoint communication system, said point-to-multipoint communication system comprising a central node, a first leaf node and a second leaf node, characterized in that, 所述中心节点生成第一下行数据和第二下行数据;The central node generates first downlink data and second downlink data; 所述中心节点根据所述第一下行数据和所述第二下行数据对光信号进行相干调制,生成下行光信号,所述下行光信号的第一子载波携带所述第一下行数据,所述下行光信号的第二子载波携带所述第二下行数据;The central node coherently modulates the optical signal according to the first downlink data and the second downlink data to generate a downlink optical signal, the first subcarrier of the downlink optical signal carries the first downlink data, The second subcarrier of the downlink optical signal carries the second downlink data; 所述中心节点发送所述下行光信号,所述第一下行数据的目的节点为第一叶子节点,所述第二下行数据的目的节点为第二叶子节点。The central node sends the downlink optical signal, the destination node of the first downlink data is a first leaf node, and the destination node of the second downlink data is a second leaf node. 2.根据权利要求1所述的方法,其特征在于,所述第一子载波宽度和所述第二子载波宽度相同。2. The method according to claim 1, wherein the first subcarrier width and the second subcarrier width are the same. 3.根据权利要求1或2所述的方法,其特征在于,所述第一叶子节点支持的下行速率与所述下行光信号的速率属于相同的速率等级,所述中心节点根据第一下行数据和第二下行数据对光信号进行相干调制,包括所述中心节点将所述第一下行数据调制在所述下行光信号的四个维度,X偏振I路,X偏振Q路,Y偏振I路和Y偏振Q路。3. The method according to claim 1 or 2, wherein the downlink rate supported by the first leaf node belongs to the same rate class as the rate of the downlink optical signal, and the central node according to the first downlink rate Data and second downlink data coherently modulate the optical signal, including the central node modulating the first downlink data in the four dimensions of the downlink optical signal, X polarization I path, X polarization Q path, Y polarization I channel and Y polarization Q channel. 4.根据权利要求3所述的方法,其特征在于,所述第一下行数据对应的调制方式为双偏振正交相移键控DP-QPSK,或双偏振正交振幅调制DP-QAM。4. The method according to claim 3, wherein the modulation scheme corresponding to the first downlink data is dual polarization quadrature phase shift keying (DP-QPSK), or dual polarization quadrature amplitude modulation (DP-QAM). 5.根据权利要求2-4任一所述的方法,其特征在于,所述第二叶子节点支持的下行速率小于所述下行光信号的速率,所述中心节点根据第一下行数据和第二下行数据对光信号进行相干调制,包括,5. The method according to any one of claims 2-4, wherein the downlink rate supported by the second leaf node is lower than the rate of the downlink optical signal, and the central node according to the first downlink data and the second 2. Downlink data coherently modulates the optical signal, including, 所述中心节点对所述第二下行数据进行冗余编码,冗余编码后的第二下行数据的速率与所述下行光信号的速率属于相同的速率等级,所述冗余编码后的第二下行数据包括所述第二下行数据和冗余数据;The central node performs redundant coding on the second downlink data, the rate of the redundantly coded second downlink data and the rate of the downlink optical signal belong to the same rate level, and the redundantly coded second The downlink data includes the second downlink data and redundant data; 所述中心节点将所述冗余编码后的第二下行数据调制在所述下行光信号的四个维度。The central node modulates the redundantly encoded second downlink data in four dimensions of the downlink optical signal. 6.根据权利要求5所述的方法,其特征在于,所述第二叶子节点支持的下行速率等于所述下行光信号速率的四分之一,所述第二下行数据对应的调制方式为幅移键控ASK,或二进制相移键控BPSK。6. The method according to claim 5, wherein the downlink rate supported by the second leaf node is equal to a quarter of the rate of the downlink optical signal, and the modulation method corresponding to the second downlink data is amplitude Shift Keying ASK, or Binary Phase Shift Keying BPSK. 7.根据权利要求5所述的方法,其特征在于,所述第二叶子节点支持的下行速率等于所述下行光信号速率的二分之一,所述第二下行数据对应的调制方式为正交相移键控QPSK,或正交振幅调制QAM。7. The method according to claim 5, wherein the downlink rate supported by the second leaf node is equal to half of the downlink optical signal rate, and the modulation mode corresponding to the second downlink data is positive Cross Phase Shift Keying QPSK, or Quadrature Amplitude Modulation QAM. 8.根据权利要求1-7任一所述的方法,其特征在于,所述方法还包括,8. The method according to any one of claims 1-7, characterized in that the method further comprises, 所述中心节点获取所述第一叶子节点和所述第二叶子节点的能力信息,所述能力信息包括,叶子节点支持的速率和/或叶子节点支持的调制方式;The central node acquires capability information of the first leaf node and the second leaf node, where the capability information includes the rate supported by the leaf node and/or the modulation mode supported by the leaf node; 所述中心节点分别向所述第一叶子节点和所述第二叶子节点发送各第一叶子节点对应的通信参数,所述通信参数包括调制方式,子载波频率和子载波频宽中的一种或多种参数。The central node sends communication parameters corresponding to each first leaf node to the first leaf node and the second leaf node respectively, and the communication parameters include modulation mode, one of subcarrier frequency and subcarrier bandwidth or Various parameters. 9.根据权利要求1-8任一所述的方法,其特征在于,所述方法还包括,所述中心节点和所述任一叶子节点通信过程中,所述中心节点发起或接收通信参数的重协商请求。9. The method according to any one of claims 1-8, characterized in that, the method further comprises, during the communication process between the central node and the any leaf node, the central node initiates or receives communication parameters Renegotiate the request. 10.根据权利要求1-9任一所述的方法,其特征在于,所述点到多点通信系统为无源光网络PON,所述中心节点为光线路终端OLT,所述任一叶子节点为光网络单元ONU或光网络终端ONT。10. The method according to any one of claims 1-9, wherein the point-to-multipoint communication system is a passive optical network (PON), the central node is an optical line terminal (OLT), and any leaf node It is an optical network unit ONU or an optical network terminal ONT. 11.一种光通信方法,应用于点到多点通信系统,所述点到多点通信系统包括中心节点,第一叶子节点和第二叶子节点,其特征在于,11. An optical communication method, applied to a point-to-multipoint communication system, the point-to-multipoint communication system comprising a central node, a first leaf node and a second leaf node, characterized in that, 所述第一叶子节点接收下行光信号,所述下行光信号包括多个子载波;The first leaf node receives a downlink optical signal, and the downlink optical signal includes a plurality of subcarriers; 所述第一叶子节点对所述下行光信号的第一子载波进行相干解调,获得第一下行数据。The first leaf node performs coherent demodulation on the first subcarrier of the downlink optical signal to obtain first downlink data. 12.根据权利要求11所述的方法,其特征在于,所述下行光信号包括四个维度:X偏振I路,X偏振Q路,Y偏振I路和Y偏振Q路。12 . The method according to claim 11 , wherein the downlink optical signal includes four dimensions: X polarization I path, X polarization Q path, Y polarization I path and Y polarization Q path. 13.根据权利要求12所述的方法,其特征在于,所述第一叶子节点支持的下行速率与所述下行光信号的速率属于相同的速率等级,所述第一下行数据被调制在所述下行光信号的四个维度。13. The method according to claim 12, wherein the downlink rate supported by the first leaf node belongs to the same rate class as the rate of the downlink optical signal, and the first downlink data is modulated at the Describe the four dimensions of the downlink optical signal. 14.根据权利要求13所述的方法,其特征在于,所述第一下行数据对应的调制方式为双偏振正交相移键控DP-QPSK,或双偏振正交振幅调制DP-QAM。14. The method according to claim 13, wherein the modulation scheme corresponding to the first downlink data is dual polarization quadrature phase shift keying (DP-QPSK) or dual polarization quadrature amplitude modulation (DP-QAM). 15.根据权利要求12所述的方法,其特征在于,所述第一叶子节点支持的下行速率小于所述下行光信号的速率,所述第一下行数据被调制在所述下行光信号的其中1-3个维度。15. The method according to claim 12, wherein the downlink rate supported by the first leaf node is lower than the rate of the downlink optical signal, and the first downlink data is modulated at the rate of the downlink optical signal 1-3 dimensions among them. 16.根据权利要求15所述的方法,其特征在于,所述第一叶子节点支持的下行速率等于所述下行光信号速率的四分之一,所述第一下行数据对应的调制方式为幅移键控ASK,或二进制相移键控BPSK。16. The method according to claim 15, wherein the downlink rate supported by the first leaf node is equal to a quarter of the downlink optical signal rate, and the modulation method corresponding to the first downlink data is Amplitude Shift Keying ASK, or Binary Phase Shift Keying BPSK. 17.根据权利要求15所述的方法,其特征在于,所述第一叶子节点支持的下行速率等于所述下行光信号速率的二分之一,所述第一下行数据对应的调制方式为正交相移键控QPSK,或正交振幅调制QAM。17. The method according to claim 15, wherein the downlink rate supported by the first leaf node is equal to half of the downlink optical signal rate, and the modulation method corresponding to the first downlink data is Quadrature Phase Shift Keying QPSK, or Quadrature Amplitude Modulation QAM. 18.根据权利要求11-17任一所述的方法,其特征在于,所述方法还包括,18. The method according to any one of claims 11-17, further comprising, 所述第一叶子节点向所述中心节点发送所述第一叶子节点的能力信息,所述能力信息包括,叶子节点支持的速率和/或叶子节点支持的调制方式;The first leaf node sends capability information of the first leaf node to the central node, where the capability information includes the rate supported by the leaf node and/or the modulation mode supported by the leaf node; 所述第一叶子节点接收所述第一叶子节点对应的通信参数,所述通信参数包括调制方式,子载波频率和子载波频宽中的一种或多种参数。The first leaf node receives communication parameters corresponding to the first leaf node, where the communication parameters include one or more parameters of modulation mode, subcarrier frequency, and subcarrier bandwidth. 19.根据权利要求11-18任一所述的方法,其特征在于,所述方法还包括,所述中心节点和所述第一叶子节点通信过程中,所述第一叶子节点发起或接收通信参数的重协商请求。19. The method according to any one of claims 11-18, further comprising, during the communication process between the central node and the first leaf node, the first leaf node initiates or receives a communication Parameter renegotiation request. 20.根据权利要求11-19任一所述的方法,其特征在于,所述点到多点通信系统为无源光网络PON,所述中心节点为光线路终端OLT,所述第一叶子节点为光网络单元ONU或光网络终端ONT。20. The method according to any one of claims 11-19, wherein the point-to-multipoint communication system is a passive optical network (PON), the central node is an optical line terminal (OLT), and the first leaf node It is an optical network unit ONU or an optical network terminal ONT. 21.一种芯片,包括通信接口和处理器,所述处理器用于执行指令,使得所述芯片实现如权利要求1-10中任一项所述的方法。21. A chip, comprising a communication interface and a processor, the processor is configured to execute instructions, so that the chip implements the method according to any one of claims 1-10. 22.一种光通信装置,其特征在于,包括信号处理器,光源和调制器,22. An optical communication device, comprising a signal processor, a light source and a modulator, 所述处理器用于生成第一下行数据和第二下行数据,The processor is configured to generate first downlink data and second downlink data, 所述调制器用于根据所述第一下行数据和所述第二下行数据对所述光源输出的光信号进行相干调制,生成下行光信号,所述下行光信号的第一子载波携带所述第一下行数据,所述下行光信号的第二子载波携带所述第二下行数据;The modulator is configured to coherently modulate the optical signal output by the light source according to the first downlink data and the second downlink data to generate a downlink optical signal, where the first subcarrier of the downlink optical signal carries the the first downlink data, the second subcarrier of the downlink optical signal carries the second downlink data; 所述调制器还用于发送所述下行光信号,所述第一下行数据的目的节点为第一叶子节点,所述第二下行数据的目的节点为第二叶子节点。The modulator is further configured to send the downlink optical signal, the destination node of the first downlink data is a first leaf node, and the destination node of the second downlink data is a second leaf node. 23.根据权利要求22所述的装置,其特征在于,所述第一子载波宽度和所述第二子载波宽度相同。23. The apparatus according to claim 22, wherein the first subcarrier width and the second subcarrier width are the same. 24.根据权利要求22-23任一所述的装置,其特征在于,所述第一叶子节点支持的下行速率与所述下行光信号的速率属于相同的速率等级,所述调制器用于将所述第一下行数据调制在所述下行光信号的四个维度,X偏振I路,X偏振Q路,Y偏振I路和Y偏振Q路。24. The device according to any one of claims 22-23, wherein the downlink rate supported by the first leaf node belongs to the same rate class as the rate of the downlink optical signal, and the modulator is used to The first downlink data is modulated in four dimensions of the downlink optical signal, X polarization I path, X polarization Q path, Y polarization I path and Y polarization Q path. 25.根据权利要求24所述的方法,其特征在于,所述第一下行数据对应的调制方式为双偏振正交相移键控DP-QPSK,或双偏振正交振幅调制DP-QAM。25. The method according to claim 24, wherein the modulation scheme corresponding to the first downlink data is dual polarization quadrature phase shift keying (DP-QPSK), or dual polarization quadrature amplitude modulation (DP-QAM). 26.根据权利要求23-25任一所述的装置,其特征在于,所述处理器包括协议编码模块和适配处理模块,26. The device according to any one of claims 23-25, wherein the processor includes a protocol encoding module and an adaptation processing module, 所述协议编码模块用于生成所述第一下行数据和所述第二下行数据;The protocol coding module is used to generate the first downlink data and the second downlink data; 当所述第二叶子节点支持的下行速率小于所述下行光信号的速率时,所述适配处理模块用于对所述第二下行数据进行冗余编码,冗余编码后的第二下行数据的速率与所述下行光信号的速率属于相同的速率等级,所述冗余编码后的第二下行数据包括所述第二下行数据和冗余数据;When the downlink rate supported by the second leaf node is less than the rate of the downlink optical signal, the adaptation processing module is configured to perform redundant encoding on the second downlink data, and the redundantly encoded second downlink data The rate of the downlink optical signal belongs to the same rate level as the rate of the downlink optical signal, and the redundantly encoded second downlink data includes the second downlink data and redundant data; 所述调制器用于将所述冗余编码后的第二下行数据调制在所述下行光信号的四个维度,X偏振I路,X偏振Q路,Y偏振I路和Y偏振Q路。The modulator is used to modulate the redundantly coded second downlink data in four dimensions of the downlink optical signal, X polarization I path, X polarization Q path, Y polarization I path and Y polarization Q path. 27.根据权利要求26所述的装置,其特征在于,所述第二叶子节点支持的下行速率等于所述下行光信号速率的四分之一,所述第二下行数据对应的调制方式为幅移键控ASK,或二进制相移键控BPSK。27. The device according to claim 26, wherein the downlink rate supported by the second leaf node is equal to a quarter of the rate of the downlink optical signal, and the modulation method corresponding to the second downlink data is amplitude Shift Keying ASK, or Binary Phase Shift Keying BPSK. 28.根据权利要求26所述的装置,其特征在于,所述第二叶子节点支持的下行速率等于所述下行光信号速率的二分之一,所述第二下行数据对应的调制方式为正交相移键控QPSK,或正交振幅调制QAM。28. The device according to claim 26, wherein the downlink rate supported by the second leaf node is equal to half of the downlink optical signal rate, and the modulation mode corresponding to the second downlink data is positive Cross Phase Shift Keying QPSK, or Quadrature Amplitude Modulation QAM. 29.根据权利要求22-28任一所述的装置,其特征在于,29. The device according to any one of claims 22-28, characterized in that, 所述处理器,还用于获取所述第一叶子节点和所述第二叶子节点的能力信息,所述能力信息包括,叶子节点支持的速率和/或叶子节点支持的调制方式;The processor is further configured to acquire capability information of the first leaf node and the second leaf node, where the capability information includes a rate supported by the leaf node and/or a modulation mode supported by the leaf node; 所述处理器,还用于确定所述第一叶子节点和所述第二叶子节点的通信参数,所述通信参数包括调制方式,子载波频率和子载波频宽中的一种或多种参数。The processor is further configured to determine communication parameters of the first leaf node and the second leaf node, where the communication parameters include one or more parameters of modulation mode, subcarrier frequency and subcarrier bandwidth. 30.根据权利要求22-29任一所述的装置,其特征在于,所述处理器,还用于发起或接收通信参数的重协商请求。30. The device according to any one of claims 22-29, wherein the processor is further configured to initiate or receive a communication parameter renegotiation request. 31.根据权利要求22-30任一所述的装置,其特征在于,所述光通信装置为光线路终端OLT,所述调制器为双偏振同相正交调制器。31. The device according to any one of claims 22-30, wherein the optical communication device is an optical line terminal (OLT), and the modulator is a dual-polarization in-phase quadrature modulator. 32.一种芯片,包括通信接口和处理器,所述处理器用于执行指令,使得所述芯片实现如权利要求11-20中任一项所述的方法。32. A chip, comprising a communication interface and a processor, the processor is configured to execute instructions, so that the chip implements the method according to any one of claims 11-20. 33.一种光通信终端装置,其特征在于,包括光源,解调器和处理器,33. An optical communication terminal device, comprising a light source, a demodulator and a processor, 所述解调器,用于接收下行光信号,所述下行光信号包括多个子载波;The demodulator is configured to receive a downlink optical signal, and the downlink optical signal includes a plurality of subcarriers; 所述光源,用于发射相干本振光;The light source is used to emit coherent local oscillator light; 所述解调器,还用于基于所述相干本振光对所述下行光信号的第一子载波进行相干解调,获得第一下行数据;The demodulator is further configured to coherently demodulate the first subcarrier of the downlink optical signal based on the coherent local oscillator light to obtain first downlink data; 所述处理器,用于对所述第一下行数据进行处理。The processor is configured to process the first downlink data. 34.根据权利要求33所述的光通信终端装置,其特征在于,所述下行光信号包括四个维度:X偏振I路,X偏振Q路,Y偏振I路和Y偏振Q路。34. The optical communication terminal device according to claim 33, wherein the downlink optical signal includes four dimensions: X polarization I path, X polarization Q path, Y polarization I path and Y polarization Q path. 35.根据权利要求34所述的光通信终端装置,其特征在于,所述光通信终端装置支持的下行速率与所述下行光信号的速率属于相同的速率等级,所述解调器为四维信号解调器,所述解调器用于分别从所述下行光信号的四个维度获得所述第一下行数据。35. The optical communication terminal device according to claim 34, wherein the downlink rate supported by the optical communication terminal device belongs to the same rate level as the rate of the downlink optical signal, and the demodulator is a four-dimensional signal A demodulator, configured to obtain the first downlink data from the four dimensions of the downlink optical signal respectively. 36.根据权利要求34所述的光通信终端装置,其特征在于,所述光通信终端装置支持的下行速率等于所述下行光信号速率的四分之一,所述解调器为一维信号解调器,所述解调器用于从所述下行光信号的一个维度获得所述第一下行数据。36. The optical communication terminal device according to claim 34, wherein the downlink rate supported by the optical communication terminal device is equal to a quarter of the rate of the downlink optical signal, and the demodulator is a one-dimensional signal A demodulator, configured to obtain the first downlink data from one dimension of the downlink optical signal. 37.根据权利要求34所述的光通信终端装置,其特征在于,所述光通信终端装置支持的下行速率等于所述下行光信号速率的二分之一,所述解调器为二维信号解调器,所述解调器用于从所述下行光信号的两个维度获得所述第一下行数据。37. The optical communication terminal device according to claim 34, wherein the downlink rate supported by the optical communication terminal device is equal to half of the rate of the downlink optical signal, and the demodulator is a two-dimensional signal A demodulator, configured to obtain the first downlink data from two dimensions of the downlink optical signal. 38.根据权利要求33-37任一所述的光通信终端装置,其特征在于,38. The optical communication terminal device according to any one of claims 33-37, characterized in that, 所述处理器,还用于接收所述光通信终端装置对应的通信参数,所述通信参数包括调制方式,子载波频率和子载波频宽中的一种或多种参数。The processor is further configured to receive communication parameters corresponding to the optical communication terminal device, where the communication parameters include one or more parameters of modulation mode, subcarrier frequency and subcarrier bandwidth. 39.根据权利要求33-38任一所述的光通信终端装置,其特征在于,所述处理器,还用于发起或接收通信参数的重协商请求。39. The optical communication terminal device according to any one of claims 33-38, wherein the processor is further configured to initiate or receive a communication parameter renegotiation request. 40.根据权利要求33-39任一所述的光通信终端装置,其特征在于,所述光通信终端装置为光网络单元ONU或光网络终端ONT。40. The optical communication terminal device according to any one of claims 33-39, wherein the optical communication terminal device is an optical network unit (ONU) or an optical network terminal (ONT).
CN202111655971.6A 2021-12-31 2021-12-31 A point-to-multipoint optical communication method, device and system Pending CN116419099A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202111655971.6A CN116419099A (en) 2021-12-31 2021-12-31 A point-to-multipoint optical communication method, device and system
PCT/CN2022/125613 WO2023124402A1 (en) 2021-12-31 2022-10-17 Point-to-multipoint optical communication method, apparatus, and system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111655971.6A CN116419099A (en) 2021-12-31 2021-12-31 A point-to-multipoint optical communication method, device and system

Publications (1)

Publication Number Publication Date
CN116419099A true CN116419099A (en) 2023-07-11

Family

ID=86997478

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111655971.6A Pending CN116419099A (en) 2021-12-31 2021-12-31 A point-to-multipoint optical communication method, device and system

Country Status (2)

Country Link
CN (1) CN116419099A (en)
WO (1) WO2023124402A1 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4067755B2 (en) * 2000-10-24 2008-03-26 三菱電機株式会社 Spread spectrum communication system receiver
CN101997769A (en) * 2010-07-20 2011-03-30 复旦大学 OFDM multi-sideband multi-subcarrier distribution technology based passive optical network system
CN105264853B (en) * 2014-03-19 2018-11-13 华为技术有限公司 A kind of method, apparatus and system applied to passive optical network PON communication
CN104038463B (en) * 2014-06-26 2017-07-18 上海交通大学 Optical access network system based on four-dimensional Dynamic Resource Allocation for Multimedia
US11258528B2 (en) * 2019-09-22 2022-02-22 Infinera Corporation Frequency division multiple access optical subcarriers

Also Published As

Publication number Publication date
WO2023124402A1 (en) 2023-07-06

Similar Documents

Publication Publication Date Title
Welch et al. Digital subcarrier multiplexing: Enabling software-configurable optical networks
US9673907B1 (en) Constellation shaping of modulation formats for optical communication systems
JP7287087B2 (en) Reach extension for optical networks through control of modulation scheme and number of subcarriers
JP7073884B2 (en) Multicarrier channel reach extension with non-uniform subcarrier spacing
US10396899B1 (en) Probabilistic constellation shaping using set-partitioned M-QAM
US20210344425A1 (en) Optical signal transmission system and optical signal transmission method
WO2014079237A1 (en) Sending/receiving/communication system and signal modulation method for optical fibre network
US10511388B1 (en) Reducing variance in reach of WDM channels in an optical network
US8687979B2 (en) Method, device and system for generating and receiving a phase polarization modulated signal
WO2017104075A1 (en) Optical communication apparatus, control-signal generation circuit, control-signal reception circuit, and optical communication system
JP2021141575A (en) Error correction in optical networks by stochastic shaping and symbol rate optimization
US20100104294A1 (en) Optical modulation device
US10511582B2 (en) Simplified encryption key generation in optical networks
CN107360479B (en) Encryption method for multiple access passive optical network
US20170214488A1 (en) Superchannels with mixed baud rate subcarriers
US10225008B1 (en) Systems and methods for reconfiguring an adaptive optical network when adding an optical path
JP2017212736A (en) Optimization of networks carrying superchannels with different modulation formats
CN100574246C (en) System based on the full optical VPN of orthogonal modulation code type
CN116419099A (en) A point-to-multipoint optical communication method, device and system
JP2016005193A (en) Optical access system, terminator, home device and optical access method
EP3016303B1 (en) Method, device, and system for sending and receiving signal
JP7200686B2 (en) Carrier-suppressed multi-level pulse amplitude modulation
CN107294601A (en) The method and device of signal transmission
Lu et al. Line-coded payload with PolSK label overlay in optical label switching
CN111769883A (en) A Passive ONU Scheme for Coherent Detection OFDM-PON Fusion TDM

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination