CN116412083A - A control method, device, equipment and medium for a wind power generating set - Google Patents
A control method, device, equipment and medium for a wind power generating set Download PDFInfo
- Publication number
- CN116412083A CN116412083A CN202111639989.7A CN202111639989A CN116412083A CN 116412083 A CN116412083 A CN 116412083A CN 202111639989 A CN202111639989 A CN 202111639989A CN 116412083 A CN116412083 A CN 116412083A
- Authority
- CN
- China
- Prior art keywords
- main shaft
- wind
- shaft bearing
- generating set
- control
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D17/00—Monitoring or testing of wind motors, e.g. diagnostics
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D7/00—Controlling wind motors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D7/00—Controlling wind motors
- F03D7/02—Controlling wind motors the wind motors having rotation axis substantially parallel to the air flow entering the rotor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D80/00—Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
- F03D80/70—Bearing or lubricating arrangements
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/70—Wind energy
- Y02E10/72—Wind turbines with rotation axis in wind direction
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Wind Motors (AREA)
Abstract
本申请公开了一种风力发电机组的控制方法、装置、设备及介质,该方法包括:首先基于风力发电机组的风参数据、机组运行数据以及主轴轴承的关键载荷分量,确定主轴轴承的已消耗寿命;然后根据主轴轴承的设计寿命年限以及已消耗寿命,确定主轴轴承的剩余寿命;基于主轴轴承的设计寿命年限、剩余寿命以及主轴轴承实际消耗的时间,确定风力发电机组的控制参数;基于风力发电机组的控制参数以及预设参数,确定风力发电机组的控制方法。本申请实施例所提供的风力发电机组的控制方法,充分考虑主轴轴承的寿命对风力发电机组性能的影响,基于主轴轴承的寿命评估确定对风力发电机组不同的控制方法,提高对风力发电机组控制的准确性。
The present application discloses a control method, device, equipment, and medium for a wind power generating set. The method includes: firstly, based on the wind parameter data of the wind generating set, the operating data of the unit, and the key load component of the main shaft bearing, the consumed main shaft bearing is determined. life; then determine the remaining life of the main shaft bearing according to the design life of the main shaft bearing and the consumed life; determine the control parameters of the wind turbine based on the design life of the main shaft bearing, the remaining life and the actual consumption time of the main shaft bearing; The control parameters and preset parameters of the generating set determine the control method of the wind generating set. The control method of the wind power generation set provided by the embodiment of the present application fully considers the influence of the life of the main shaft bearing on the performance of the wind power generation set, and determines different control methods for the wind power generation set based on the life evaluation of the main shaft bearing, so as to improve the control of the wind power generation set accuracy.
Description
技术领域technical field
本申请涉及控制技术领域,尤其涉及一种风力发电机组的控制方法、装置、设备及介质。The present application relates to the field of control technology, and in particular to a control method, device, equipment and medium for a wind power generating set.
背景技术Background technique
风力发电机组主轴轴承是风力发电机组的主要部件,主轴承受的载荷非常大,而且轴很长,容易变形,其所在的主传动系统是风力发电机组重要的安全系统,如果主轴发生故障,会给风电场带来巨大的经济损失。因此在风力发电机组的运行过程中,对主轴轴承的寿命评估尤为重要。The main shaft bearing of the wind turbine is the main part of the wind turbine. The main shaft bears a very large load, and the shaft is very long and easy to deform. The main drive system where it is located is an important safety system of the wind turbine. If the main shaft fails, it will give Wind farms cause huge economic losses. Therefore, during the operation of the wind turbine, it is particularly important to evaluate the life of the main shaft bearing.
目前在风力发电机组的控制方法中,没有充分考虑主轴轴承的性能对整个机组的影响,导致风电场对风力发电机组的控制准确性较低。At present, in the control method of the wind power generating set, the influence of the performance of the main shaft bearing on the whole generating set is not fully considered, resulting in low control accuracy of the wind farm for the wind generating set.
发明内容Contents of the invention
本申请实施例提供了一种风力发电机组的控制方法、装置及设备,以便提高对风力发电机组控制的准确性。Embodiments of the present application provide a control method, device and equipment for a wind power generating set, so as to improve the accuracy of controlling the wind generating set.
第一方面,本申请实施例提供了一种风力发电机组的控制方法,所述方法包括:In a first aspect, an embodiment of the present application provides a method for controlling a wind power generating set, the method comprising:
基于风力发电机组的风参数据、机组运行数据以及主轴轴承的关键载荷分量,确定所述主轴轴承的已消耗寿命;Determining the consumed life of the main shaft bearing based on the wind parameter data of the wind power generating set, the operating data of the unit, and the key load components of the main shaft bearing;
基于所述主轴轴承的设计寿命年限以及所述已消耗寿命,确定所述主轴轴承的剩余寿命;determining the remaining life of the main shaft bearing based on the design life of the main shaft bearing and the consumed life;
基于所述主轴轴承的设计寿命年限、所述剩余寿命以及实际消耗时间,确定风力发电机组的控制参数;Based on the design life of the main shaft bearing, the remaining life and the actual consumption time, determine the control parameters of the wind power generating set;
基于所述控制参数以及预设参数,确定所述风力发电机组的控制方法。Based on the control parameters and preset parameters, a control method for the wind power generating set is determined.
在一种可能的实施方式中,所述基于所述控制参数以及预设参数,确定所述风力发电机组的控制方法,包括:In a possible implementation manner, the determining the control method of the wind power generating set based on the control parameter and the preset parameter includes:
当所述控制参数小于所述预设参数时,在预设转速集合中确定第一目标转速,控制所述风力发电机组在预设周期内以所述第一目标转速运行,其中,所述第一目标转速小于所述风力发电机组的当前转速,在所述第一目标转速下所述风力发电机组的控制参数大于所述预设参数。When the control parameter is smaller than the preset parameter, determine a first target speed in a set of preset speeds, and control the wind generating set to run at the first target speed within a preset period, wherein the first A target speed is less than the current speed of the wind power generating set, and the control parameter of the wind power generating set is greater than the preset parameter under the first target speed.
在一种可能的实施方式中,所述基于所述控制参数以及预设参数,确定所述风力发电机组的控制方法,包括:In a possible implementation manner, the determining the control method of the wind power generating set based on the control parameter and the preset parameter includes:
当所述控制参数大于所述预设参数时,在所述预设转速集合中确定第二目标转速,控制所述风力发电机组在所述预设周期内以所述第二目标转速运行,其中,所述第二目标转速大于所述风力发电机组的当前转速,在所述第二目标转速下所述风力发电机组的控制参数大于所述预设参数。When the control parameter is greater than the preset parameter, determine a second target speed in the set of preset speeds, and control the wind generating set to run at the second target speed within the preset period, wherein , the second target speed is greater than the current speed of the wind power generating set, and at the second target speed the control parameter of the wind power generating set is greater than the preset parameter.
在一种可能的实施方式中,所述基于所述控制参数以及预设参数,确定所述风力发电机组的控制方法,包括:In a possible implementation manner, the determining the control method of the wind power generating set based on the control parameter and the preset parameter includes:
当所述控制参数等于所述预设参数时,控制所述风力发电机组在所述预设周期内以所述当前转速运行。When the control parameter is equal to the preset parameter, the wind power generating set is controlled to run at the current rotational speed within the preset period.
在一种可能的实施方式中,所述在所述预设转速集合中确定第一目标转速,包括:In a possible implementation manner, the determining the first target speed in the set of preset speeds includes:
在所述预设转速集合中,利用二分法确定所述第一目标转速。In the set of preset rotational speeds, the first target rotational speed is determined by using a dichotomy method.
在一种可能的实施方式中,所述基于风力发电机组的风参数据、机组运行数据以及主轴轴承的关键载荷分量,确定所述主轴轴承的已消耗寿命包括:In a possible implementation manner, the determining the consumed life of the main shaft bearing based on the wind parameter data of the wind power generating set, the operating data of the unit, and the key load component of the main shaft bearing includes:
基于所述风力发电机组的风参数据、机组运行数据以及所述主轴轴承的关键载荷分量,确定所述主轴轴承的关键载荷分量所对应的传递函数;determining a transfer function corresponding to the key load component of the main shaft bearing based on the wind parameter data of the wind power generating set, the operating data of the unit, and the key load component of the main shaft bearing;
基于所述传递函数,确定所述主轴轴承的已消耗寿命。Based on the transfer function, the spent life of the spindle bearing is determined.
在一种可能的实施方式中,所述基于所述风力发电机组的风参数据、机组运行数据以及所述主轴轴承的关键载荷分量,确定所述主轴轴承的关键载荷分量所对应的传递函数,还包括:In a possible implementation manner, the transfer function corresponding to the key load component of the main shaft bearing is determined based on the wind parameter data of the wind power generator set, the unit operation data and the key load component of the main shaft bearing, Also includes:
基于所述传递函数确定所述传递函数的拟合优度;determining a goodness of fit for the transfer function based on the transfer function;
判断所述拟合优度是否大于预设值;如果否,则基于所述风力发电机组在所述预设周期内的风参数据、机组运行数据以及所述主轴轴承的关键载荷分量,确定所述主轴轴承的关键载荷分量所对应的传递函数。judging whether the goodness-of-fit is greater than a preset value; if not, then determine the The transfer function corresponding to the critical load component of the spindle bearing described above.
第二方面,本申请实施例提供了一种风力发电机组的控制装置,所述装置包括:第一处理模块、第二处理模块、第三处理模块以及控制模块;In a second aspect, an embodiment of the present application provides a control device for a wind power generating set, the device comprising: a first processing module, a second processing module, a third processing module, and a control module;
所述第一处理模块,用于基于风力发电机组的风参数据、机组运行数据以及主轴轴承的关键载荷分量,确定所述主轴轴承的已消耗寿命;The first processing module is configured to determine the consumed life of the main shaft bearing based on the wind parameter data of the wind power generating set, the operating data of the unit, and the key load component of the main shaft bearing;
所述第二处理模块,用于基于所述主轴轴承的设计寿命年限以及所述已消耗寿命,确定所述主轴轴承的剩余寿命;The second processing module is configured to determine the remaining life of the main shaft bearing based on the design life of the main shaft bearing and the consumed life;
所述第三处理模块,用于基于所述主轴轴承的设计寿命年限、所述剩余寿命以及实际消耗时间,确定风力发电机组的控制参数;The third processing module is used to determine the control parameters of the wind power generating set based on the design life of the main shaft bearing, the remaining life and the actual consumption time;
所述控制模块,用于基于所述控制参数以及预设参数,确定所述风力发电机组的控制方法。The control module is configured to determine a control method for the wind power generating set based on the control parameters and preset parameters.
第三方面,本申请实施例提供了一种风力发电机组的控制设备,所述设备包括:存储器以及处理器;In a third aspect, the embodiment of the present application provides a control device for a wind power generating set, and the device includes: a memory and a processor;
所述存储器用于存储相关的程序代码;The memory is used to store related program codes;
所述处理器用于调用所述程序代码,执行上述第一方面任意一种实施方式所述的风力发电机组的控制方法。The processor is configured to call the program code to execute the control method for the wind power generating set described in any one implementation manner of the first aspect above.
第四方面,本申请实施例还提供了一种计算机可读存储介质,所述计算机可读存储介质用于存储计算机程序,所述计算机程序用于执行上述第一方面任意一种实施方式所述的风力发电机组的控制方法。In the fourth aspect, the embodiment of the present application also provides a computer-readable storage medium, the computer-readable storage medium is used to store a computer program, and the computer program is used to execute any one of the implementation manners of the above-mentioned first aspect. control method for wind turbines.
由此可见,本申请实施例具有如下有益效果:It can be seen that the embodiment of the present application has the following beneficial effects:
在本申请实施例的上述实现方式中,首先基于风力发电机组的风参数据、机组运行数据以及主轴轴承的关键载荷分量,确定主轴轴承的已消耗寿命;然后根据主轴轴承的设计寿命年限以及已消耗寿命,确定主轴轴承的剩余寿命;基于主轴轴承的设计寿命年限、剩余寿命以及主轴轴承实际消耗的时间,确定风力发电机组的控制参数;基于风力发电机组的控制参数以及预设参数,确定风力发电机组的控制方法。本申请实施例所提供的风力发电机组的控制方法,充分考虑主轴轴承的寿命对风力发电机组性能的影响,基于主轴轴承的寿命确定对风力发电机组不同的控制方法,提高对风力发电机组控制的准确性。In the above implementation of the embodiment of the present application, firstly, based on the wind parameter data of the wind power generating set, the operating data of the unit, and the key load components of the main shaft bearing, the consumed life of the main shaft bearing is determined; then, according to the design life of the main shaft bearing and the Consumption life, determine the remaining life of the main shaft bearing; determine the control parameters of the wind turbine based on the design life of the main shaft bearing, remaining life and the actual consumption time of the main shaft bearing; determine the wind power based on the control parameters and preset parameters of the wind turbine Control methods for generator sets. The control method of the wind power generation set provided by the embodiment of the present application fully considers the influence of the life of the main shaft bearing on the performance of the wind power generation set, determines different control methods for the wind power generation set based on the life of the main shaft bearing, and improves the control efficiency of the wind power generation set accuracy.
附图说明Description of drawings
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见,下面描述中的附图仅仅是本申请中提供的一些实施例,对于本领域普通技术人员来讲,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the technical solutions in the embodiments of the present application, the accompanying drawings that need to be used in the description of the embodiments will be briefly introduced below. Obviously, the accompanying drawings in the following description are only some embodiments provided in the present application , for those skilled in the art, other drawings can also be obtained according to these drawings.
图1为本申请实施例中一种风力发电机组的控制方法的流程图;FIG. 1 is a flow chart of a control method for a wind power generating set in an embodiment of the present application;
图2为本申请实施例中一种风力发电机组的控制系统的示意图;FIG. 2 is a schematic diagram of a control system of a wind power generating set in an embodiment of the present application;
图3为本申请实施例中一种风力发电机组的控制装置的示意图;FIG. 3 is a schematic diagram of a control device for a wind power generating set in an embodiment of the present application;
图4为本申请实施例中一种风力发电机组的控制设备的示意图。Fig. 4 is a schematic diagram of a control device of a wind power generating set in an embodiment of the present application.
具体实施方式Detailed ways
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整的描述,所描述的实施例仅为本申请示例性的实施方式,并非全部实现方式。本领域技术人员可以结合本申请的实施例,在不进行创造性劳动的情况下,获得其他的实施例,而这些实施例也在本申请的保护范围之内。The technical solutions in the embodiments of the present application will be clearly and completely described below in conjunction with the drawings in the embodiments of the present application. The described embodiments are only exemplary implementations of the present application, not all implementations. Those skilled in the art may combine the embodiments of the present application to obtain other embodiments without performing creative work, and these embodiments are also within the protection scope of the present application.
主轴轴承是风力发电机组的主要部件,主轴承受的载荷非常大,其所在的主传动系统是风力发电机组重要的安全系统,如果主轴发生故障,会给风电场带来巨大的经济损失。目前在风力发电机组的控制方法中,没有充分考虑主轴轴承的性能对整个机组的影响,导致风电场对风力发电机组的控制准确性较低。The main shaft bearing is the main part of the wind turbine. The main shaft bears a very heavy load. The main drive system where it is located is an important safety system of the wind turbine. If the main shaft fails, it will bring huge economic losses to the wind farm. At present, in the control method of the wind power generating set, the influence of the performance of the main shaft bearing on the whole generating set is not fully considered, resulting in low control accuracy of the wind farm for the wind generating set.
基于此,本申请实施例提供了一种风力发电机组的控制方法,以便提高对风力发电机组控制的准确性。具体实现时,首先基于风力发电机组的风参数据、机组运行数据以及主轴轴承的关键载荷分量,确定主轴轴承的已消耗寿命;然后根据主轴轴承的设计寿命年限以及已消耗寿命,确定主轴轴承的剩余寿命;基于主轴轴承的设计寿命年限、剩余寿命以及主轴轴承实际消耗的时间,确定风力发电机组的控制参数;基于风力发电机组的控制参数以及预设参数,确定风力发电机组的控制方法。本申请实施例所提供的风力发电机组的控制方法,充分考虑主轴轴承的寿命对风力发电机组性能的影响,基于主轴轴承的寿命评估确定对风力发电机组不同的控制方法,提高对风力发电机组控制的准确性。Based on this, an embodiment of the present application provides a method for controlling a wind power generating set, so as to improve the control accuracy of the wind generating set. In the specific implementation, firstly, based on the wind parameter data of the wind turbine, the operating data of the unit and the key load components of the main shaft bearing, the consumed life of the main shaft bearing is determined; then, according to the design life and the consumed life of the main shaft bearing, the Remaining life: Determine the control parameters of the wind turbine based on the design life, remaining life, and actual consumption time of the spindle bearing; determine the control method of the wind turbine based on the control parameters and preset parameters of the wind turbine. The control method of the wind power generation set provided by the embodiment of the present application fully considers the influence of the life of the main shaft bearing on the performance of the wind power generation set, and determines different control methods for the wind power generation set based on the life evaluation of the main shaft bearing, so as to improve the control of the wind power generation set accuracy.
下面将结合附图对本申请实施例所提供的风力发电机组的控制方法进行说明。The method for controlling a wind power generating set provided by the embodiment of the present application will be described below with reference to the accompanying drawings.
参见图1,该图为本申请实施例提供的一种风力发电机组的控制方法的流程图。Referring to FIG. 1 , this figure is a flow chart of a control method for a wind power generating set provided in an embodiment of the present application.
该方法具体包括以下步骤:The method specifically includes the following steps:
S101:基于风力发电机组的风参数据、机组运行数据以及主轴轴承的关键载荷分量,确定主轴轴承的已消耗寿命。S101: Based on the wind parameter data of the wind power generating set, the operating data of the generating set, and the key load component of the main shaft bearing, determine the consumed life of the main shaft bearing.
确定主轴轴承的已消耗寿命时,一种可能的实现方式为,首先基于风力发电机组的风参数据、机组运行数据以及主轴轴承的关键载荷分量,确定主轴轴承的传递函数;然后利用该传递函数,计算主轴轴承在每个周期内的已消耗寿命;累计主轴轴承在经历过的所有周期内的已消耗寿命,即可确定主轴轴承的已消耗寿命。When determining the consumed life of the main shaft bearing, one possible implementation is to first determine the transfer function of the main shaft bearing based on the wind parameter data of the wind turbine, the operating data of the unit and the key load components of the main shaft bearing; then use the transfer function , to calculate the consumed life of the main shaft bearing in each cycle; the consumed life of the main shaft bearing can be determined by accumulating the consumed life of the main shaft bearing in all cycles experienced.
其中,风参数据包括:空气密度、风速、入流角、风切变、湍流强度以及时间等,机组运行数据包括:转速、发电机扭矩以及发电量等,载荷也称为荷载,是指使结构或构件产生内力和变形的外力及其它因素,或习惯上指施加在工程结构上使工程结构或构件产生效应的各种直接作用。Among them, the wind parameter data includes: air density, wind speed, inflow angle, wind shear, turbulence intensity and time, etc., the unit operation data includes: speed, generator torque, and power generation, etc. The load is also called load, which refers to the structure or External forces and other factors that produce internal forces and deformations of components, or customarily refer to various direct actions exerted on engineering structures to make engineering structures or components produce effects.
风力发电机组的数据采集单元按照时间周期T,采集风力发电机组的风参数据以及机组运行数据等,其中,在周期T内,风力发电机组运行的转速按照预设转速集合R={r1,r2,…,rn}运行。在一种可能的实现方式中,预设转速集合R的最小值可以取值为风力发电机组额定转速r的0.7倍,预设转速集合R的最大值可以取值为额定转速r的1.3倍,即预设转速集合R的取值范围可以表示为[0.7r,1.3r],并且预设转速集合R中不包括风力发电机组的共振转速。The data acquisition unit of the wind power generating set collects the wind parameter data and unit operation data of the wind generating set according to the time period T, wherein, within the period T, the operating speed of the wind generating set is set according to the preset speed R={r 1 , r 2 ,…,r n } run. In a possible implementation, the minimum value of the preset speed set R may be 0.7 times the rated speed r of the wind turbine, and the maximum value of the preset speed set R may be 1.3 times the rated speed r, That is, the value range of the preset rotational speed set R can be expressed as [0.7r, 1.3r], and the preset rotational speed set R does not include the resonance rotational speed of the wind power generating set.
需要说明的是,风力发电机组的数据可以以分钟或者秒为单位进行采集,均不影响本申请实施例技术方案的实现。在本实施例中,以数据采集单元按照时间周期T采集风力发电机组的实时运行秒级数据为例进行说明。It should be noted that the data of the wind power generating set can be collected in minutes or seconds, which does not affect the realization of the technical solutions of the embodiments of the present application. In this embodiment, the data collection unit collects the second-level real-time operation data of the wind power generating set according to the time period T as an example for illustration.
通常情况下,风力发电机组的转速逐渐提升至额定转速时,即以额定转速运行,如果转速集合R中存在大于风力发电机组额定转速r的转速rm,那么超过额定转速时的机组运行数据需要通过调整风力发电机组的运行转速获得,即当风力发电机组的运行转速达到额定转速r后,继续将运行转速提升至rm,才可以得到转速大于额定转速时的运行数据。当风力发电机组以转速rm运行三十分钟后,调整回原额定转速r,即可获得大于额定转速r时的机组运行数据。Usually, when the speed of the wind turbine is gradually increased to the rated speed, that is, it runs at the rated speed. If there is a speed r m in the speed set R that is greater than the rated speed r of the wind turbine, the operating data of the wind turbine when it exceeds the rated speed needs It is obtained by adjusting the operating speed of the wind turbine, that is, when the operating speed of the wind turbine reaches the rated speed r, continue to increase the operating speed to r m to obtain the operating data when the speed is greater than the rated speed. After the wind turbine has been running at the speed r m for 30 minutes, adjust it back to the original rated speed r, and the unit operation data when it is greater than the rated speed r can be obtained.
在风力发电机组运行过程中,可以利用主轴轴承载荷传感器采集载荷数据,获得主轴轴承的关键载荷分量,即主要影响主轴轴承寿命的载荷分量。在本实施例中,以My、Mz、Fx、Fy和Fz表示主轴轴承的关键载荷分量。During the operation of the wind turbine, the main shaft bearing load sensor can be used to collect load data to obtain the key load component of the main shaft bearing, that is, the load component that mainly affects the life of the main shaft bearing. In this embodiment, My, Mz, Fx, Fy and Fz represent the key load components of the main shaft bearing.
根据载荷传感器所采集的关键载荷分量的载荷取值数据,针对任一关键载荷分量的载荷取值数据,以关键载荷分量My为例,利用数据分析单元分析数据,判断载荷取值数据符合哪些概率分布,如正态分布,从而得到关键载荷分量My所对应的载荷分布函数,并通过载荷分布函数计算出关键载荷分量My的载荷取值范围,即最大值Max和最小值Min,关键载荷取值My的载荷取值范围可以表示为My[Min,Max]。在载荷取值范围内,按照固定步长进行载荷取值,划分多个载荷区间,根据载荷分布函数以及载荷取值,即可确定该载荷取值对应的概率,得到关键载荷分量My在各个区间上的概率分布。According to the load value data of the key load components collected by the load sensor, for the load value data of any key load component, take the key load component My as an example, use the data analysis unit to analyze the data, and determine which probabilities the load value data conforms to Distribution, such as normal distribution, so as to obtain the load distribution function corresponding to the key load component My, and calculate the load value range of the key load component My through the load distribution function, that is, the maximum value Max and the minimum value Min, the key load value The load value range of My can be expressed as My[Min, Max]. Within the range of load values, the load values are selected according to a fixed step size, and multiple load intervals are divided. According to the load distribution function and the load value, the probability corresponding to the load value can be determined, and the key load component My in each interval can be obtained. probability distribution on .
以此类推,可以得到各个关键载荷分量My、Mz、Fx、Fy和Fz的概率分布,如表1所示,以ss(step size)表示固定步长,f表示概率。By analogy, the probability distribution of each key load component My, Mz, Fx, Fy and Fz can be obtained, as shown in Table 1, where ss (step size) represents the fixed step size, and f represents the probability.
表1主轴轴承周期T内各关键载荷分量的概率分布Table 1 Probability distribution of each key load component in the spindle bearing period T
在一种可能的实现方式中,风力发电机组的风速数据服从韦布尔分布,例如,韦布尔分布的概率分密度函数为:其中,x表示风速,λ表示比例参数,k表示形状参数。In a possible implementation, the wind speed data of the wind power generating set obeys the Weibull distribution, for example, the probability distribution density function of the Weibull distribution is: Among them, x represents the wind speed, λ represents the scale parameter, and k represents the shape parameter.
根据表1中各关键载荷分量的概率分布,可以得到在不同风速下,各关键载荷分量在各个区间的时间分布。具体地,针对任一风速取值,首先确定风力发电机组在该风速下的概率,然后统计在该风速下任一关键载荷分量的所有取值,确定该关键载荷分量在该风速以及对应载荷区间下的概率,即得到关键载荷分量在不同风速不同区间的概率分布,然后利用区间概率乘以8760即可得到关键载荷分量在不同区间的时间分布,其中,8760为按一年由365天计算,一年所包含的小时数。According to the probability distribution of each key load component in Table 1, the time distribution of each key load component in each interval under different wind speeds can be obtained. Specifically, for any value of wind speed, first determine the probability of the wind turbine at the wind speed, and then count all the values of any key load component at the wind speed, and determine the critical load component in the wind speed and the corresponding load interval The following probability is to obtain the probability distribution of key load components in different intervals of different wind speeds, and then multiply the interval probability by 8760 to obtain the time distribution of key load components in different intervals, where 8760 is calculated by 365 days in a year, The number of hours in a year.
如表2所示,表2提供了一种在不同风速下,各关键载荷分量在不同区间的时间分布示例,t表示时间。As shown in Table 2, Table 2 provides an example of the time distribution of each key load component in different intervals under different wind speeds, and t represents time.
表2主轴轴承周期T内各关键载荷分量的时间分布Table 2 Time distribution of each key load component in the spindle bearing cycle T
基于表2得到的各关键载荷分量在各个区间的时间分布,以风力发电机组的风参数据和预设转速集合R作为输入数据,以各关键载荷分量的时间分布作为输出数据,训练得到主轴轴承各个关键载荷分量所对应的传递函数Fd,其中,d∈[My,Mz,Fx,Fy,Fz],即任意一个关键载荷分量对应一个传递函数。Based on the time distribution of each key load component in each interval obtained in Table 2, the wind parameter data of the wind turbine and the preset speed set R are used as input data, and the time distribution of each key load component is used as output data to train the main shaft bearing The transfer function Fd corresponding to each key load component, where d∈[My, Mz, Fx, Fy, Fz], that is, any key load component corresponds to a transfer function.
在一种优选的实现方式中,对训练得到的传递函数进行优化,以传递函数的拟合优度作为优化标准,当拟合优度大于预设值时,传递函数即不再需要优化。需要说明的是,预设值可以根据实际应用具体确定,本申请实施例不做限定,例如,预设值可以设定为98%,即当拟合优度大于98%时,传递函数满足要求。In a preferred implementation manner, the transfer function obtained through training is optimized, and the goodness of fit of the transfer function is used as an optimization criterion. When the goodness of fit is greater than a preset value, the transfer function does not need to be optimized. It should be noted that the preset value can be specifically determined according to the actual application, and is not limited in the embodiment of the present application. For example, the preset value can be set to 98%, that is, when the goodness of fit is greater than 98%, the transfer function meets the requirements .
具体实现时,根据风力发电机组在下一周期T’内的风参数据、机组运行数据以及主轴轴承的关键载荷分量等,确定主轴轴承的各关键载荷分量在周期T’内的时间分布,计算方法参见上述周期T内的计算方法,在此不再赘述。In the specific implementation, according to the wind parameter data of the wind turbine in the next period T', the operating data of the unit and the key load components of the main shaft bearing, etc., the time distribution of each key load component of the main shaft bearing in the period T' is determined, and the calculation method Refer to the calculation method in the period T above, which will not be repeated here.
根据周期Y’内的时间分布,计算等效载荷LT-eq,等效载荷LT-eq的计算公式为:其中,i表示载荷的区间个数,Li为载荷区间,ni为转速,ti为各载荷区间对应的时间。Calculate the equivalent load L T-eq according to the time distribution in the period Y', the calculation formula of the equivalent load L T-eq is: Wherein, i represents the number of load intervals, L i is the load interval, n i is the rotational speed, and t i is the time corresponding to each load interval.
根据等效载荷LT-eq以及主轴轴承的设计参数信息,计算得到主轴轴承在周期T’内的已消耗寿命LT’。According to the equivalent load L T-eq and the design parameter information of the main shaft bearing, the consumed life L T' of the main shaft bearing in the period T' is calculated.
基于周期T内主轴轴承各关键载荷分量的传递函数Fd,以风力发电机组在周期T’内的风参数据和预设转速集合作为输入数据,得到各关键载荷分量在不同区间的预测时间分布,从而得到预测等效载荷LT-eq’,根据预测等效载荷LT-eq’以及主轴轴承的设计参数信息,计算得到主轴轴承在周期T’内的预测已消耗寿命preLT’。Based on the transfer function Fd of each key load component of the main shaft bearing in the period T, the wind parameter data and the preset speed set of the wind turbine in the period T' are used as input data to obtain the predicted time distribution of each key load component in different intervals, According to the predicted equivalent load L T- eq ' and the design parameter information of the main shaft bearing, the predicted consumed life preL T' of the main shaft bearing in the period T' is calculated.
拟合优度RT’的计算公式为:RT’=preLT’/LT’,当拟合优度RT’大于预设值98%时,则传递函数Fd满足要求,在后续周期内可以直接利用传递函数预测主轴轴承的已消耗寿命。如果拟合优度RT’不满足要求,小于或等于预设值98%,则结合周期T和周期T’内的风参数据以及预设转速集合作为一个新周期内的训练数据,计算得到新周期的已消耗寿命,根据上述步骤重新训练传递函数Fd,利用新传递函数Fd计算新的预测已消耗寿命,根据新周期的已消耗寿命和预测已消耗寿命重新计算拟合优度RT’,如果拟合优度不满足要求,则增加一个周期内的风参数据作为样本,即结合前三个周期内的风参数据继续重新优化拟合优度RT’,如果拟合优度不满足要求,则继续增加一个周期的风参数据作为样本,以此类推,直至拟合优度RT’满足要求。The calculation formula of the goodness of fit R T' is: R T' = preL T' /L T' , when the goodness of fit R T' is greater than 98% of the preset value, the transfer function Fd meets the requirements, and in the subsequent cycle The spent life of spindle bearings can be predicted directly from the transfer function. If the goodness-of-fit R T' does not meet the requirements and is less than or equal to the preset value of 98%, then the wind parameter data in the cycle T and the cycle T' and the preset rotational speed set are used as the training data in a new cycle to calculate The consumed life of the new cycle, retrain the transfer function Fd according to the above steps, use the new transfer function Fd to calculate the new predicted consumed life, and recalculate the goodness of fit R T' according to the consumed life of the new cycle and the predicted consumed life , if the goodness of fit does not meet the requirements, add the wind parameter data in one cycle as a sample, that is, combine the wind parameter data in the first three cycles to continue to re-optimize the goodness of fit R T' , if the goodness of fit is not If the requirements are met, continue to add a period of wind parameter data as a sample, and so on, until the goodness-of-fit R T' meets the requirements.
当拟合优度满足要求时,表明传递函数对已消耗寿命的预测准确性较高,所以在后续周期可以直接利用传递函数预测主轴轴承的已消耗寿命。When the goodness of fit meets the requirements, it indicates that the prediction accuracy of the transfer function for the consumed life is high, so the transfer function can be directly used to predict the consumed life of the spindle bearing in subsequent cycles.
利用传递函数计算主轴轴承在各个周期内的已消耗寿命,从而得到主轴轴承在经历过的所有周期内的已消耗寿命。Use the transfer function to calculate the consumed life of the main shaft bearing in each cycle, so as to obtain the consumed life of the main shaft bearing in all cycles experienced.
S102:根据主轴轴承的设计寿命年限以及已消耗寿命,确定主轴轴承的剩余寿命。S102: Determine the remaining life of the main shaft bearing according to the design life and the consumed life of the main shaft bearing.
根据主轴轴承的设计寿命年限Life以及已消耗寿命Lifeconsume,计算主轴轴承的剩余寿命Liferemain,即Liferemain=Life-Lifeconsume。在实际应用中,主轴轴承的设计寿命年限一般为20年。According to the design life of the main shaft bearing Life and the consumed life Life consume , calculate the remaining life of the main shaft bearing Life remain , that is, Life remain = Life-Life consume . In practical applications, the design life of the main shaft bearing is generally 20 years.
S103:基于主轴轴承的设计寿命年限、剩余寿命以及实际消耗时间,确定风力发电机组的控制参数。S103: Determine the control parameters of the wind power generating set based on the design life, remaining life and actual consumption time of the main shaft bearing.
实际消耗时间即为实际过去了多长时间,可以用Lifereal表示,风力发电机组的控制参数用Δl表示,则控制参数Δl的计算公式为:The actual consumption time is how long has actually passed, which can be represented by Life real . The control parameter of the wind turbine is represented by Δl, and the calculation formula of the control parameter Δl is:
Δl=Liferemain-(Life-Lifereal)。Δl=Life remain- (Life-Life real ).
以主轴轴承的设计寿命年限为20年为例,假设计算确定主轴轴承的已消耗寿命为2年,即Lifeconsume为2年,而实际过去的时间为3年,即Lifereal为3年,那么可以确定主轴轴承的剩余寿命为18年,即Liferemain为18年,由此确定风力发电机组的控制参数Δl=18-(20-3)=1。Taking the design life of the main shaft bearing as an example of 20 years, assuming that the calculation determines that the consumed life of the main shaft bearing is 2 years, that is, the life consume is 2 years, and the actual past time is 3 years, that is, the life real is 3 years, then It can be determined that the remaining life of the main shaft bearing is 18 years, that is, Life remain is 18 years, and thus the control parameter Δl=18-(20-3)=1 of the wind power generating set is determined.
S104:基于控制参数以及预设参数,确定风力发电机组的控制方法。S104: Based on the control parameter and the preset parameter, determine a control method for the wind power generating set.
根据控制参数和预设参数的大小,可以确定风力发电机组不同的控制方法。一种可能的实现方式,预设参数可以为0。According to the size of the control parameter and the preset parameter, different control methods of the wind turbine can be determined. In a possible implementation manner, the preset parameter may be 0.
具体实现时,当风力发电机组的控制参数小于预设参数时,即主轴轴承的已消耗寿命大于实际消耗时间,说明风力发电机组在运行过程中造成主轴轴承的损耗超过预期,所以在后续周期运行中需要保护主轴轴承,延长主轴轴承的寿命。In actual implementation, when the control parameter of the wind turbine is less than the preset parameter, that is, the consumed life of the main shaft bearing is greater than the actual consumption time, it means that the loss of the main shaft bearing during the operation of the wind turbine exceeds the expectation, so in the subsequent period of operation It is necessary to protect the main shaft bearing and prolong the life of the main shaft bearing.
一种可能的实现方式为,在风力发电机组的预设转速集合中,确定第一目标转速,控制风力发电机组在预设周期内以第一目标转速运行,并且保证当风力发电机组以第一目标转速运行时,风力发电机组的控制参数大于预设参数,其中,第一目标转速小于风力发电机组当前运行的转速,预设周期即为风力发电机组当前运行周期的下一周期。A possible implementation method is to determine the first target speed in the preset speed set of the wind power generating set, control the wind power generating set to run at the first target speed within a preset period, and ensure that when the wind power generating set When the target speed is running, the control parameters of the wind power generating set are greater than the preset parameters, wherein the first target speed is lower than the current running speed of the wind power generating set, and the preset cycle is the next cycle of the current running cycle of the wind power generating set.
假设风力发电机组在预设周期以第一目标转速运行,计算预设周期内风力发电机组的控制参数时,利用之前经历所有周期的风参数据的平均值作为预设周期的风参数据,然后根据传递函数预测主轴轴承的已消耗寿命,从而得到预设周期的控制参数,最终确定使控制参数大于预设参数的第一目标转速。Assuming that the wind power generating set operates at the first target speed in the preset period, when calculating the control parameters of the wind generating set in the preset period, the average value of the wind parameter data of all previous cycles is used as the wind parameter data of the preset period, and then The consumed life of the main shaft bearing is predicted according to the transfer function, so as to obtain the control parameter of the preset period, and finally determine the first target speed at which the control parameter is greater than the preset parameter.
本申请实施例中确定第一目标转速时,可以利用二分法进行查找,即不断地将预设转速集合一分为二,从而确定符合条件的第一目标转速。In the embodiment of the present application, when determining the first target rotational speed, a dichotomy method can be used to search, that is, to continuously divide the set of preset rotational speeds into two, so as to determine the first target rotational speed that meets the conditions.
一种可能的实现方式为,设置预设转速集合R={r1,r2,r3…,r7},利用二分法进行查找时,首先找到集合R中的中间值作为第一目标转速,即r4为第一目标转速,是否满足控制参数大于预设参数,如果不满足,此时将集合R中剩余的值平均分为两个集合R1={r1,r2,r3}以及R2={r5,r6,r7}可以先将集合R1中的中间值r2作为第一目标转速进行判断,也可以先将集合R2中的中间值r6作为第一目标转速进行判断。One possible implementation is to set the preset rotational speed set R={r 1 ,r 2 ,r 3 ...,r 7 }, when using the dichotomy method to search, first find the middle value in the set R as the first target rotational speed , that is, r 4 is the first target speed, whether the control parameter is greater than the preset parameter, if not, divide the remaining values in the set R into two sets R1={r 1 ,r 2 ,r 3 } And R2={r 5 , r 6 , r 7 } can first judge the intermediate value r 2 in the set R1 as the first target speed, or first use the intermediate value r 6 in the set R2 as the first target speed judge.
由于第一目标转速小于风力发电机组的当前转速,当第一目标转速小于额定转速时,根据转速与扭矩预先确定的对应关系,通过查表可以确定当前转速所对应的扭矩,控制风力发电机组以该转速和扭矩运行,从而使风力发电机组具有较高的发电量。风力发电机组在第一目标转速所对应的扭矩、发电量均会减小,保证风力发电机组处于限功率运行状态。所以当风力发电机组在预设周期内以第一目标转速运行时,可以减少主轴轴承的损耗,提高对风力发电机组控制的准确性。Since the first target rotational speed is less than the current rotational speed of the wind turbine, when the first target rotational speed is less than the rated rotational speed, according to the predetermined correspondence between rotational speed and torque, the torque corresponding to the current rotational speed can be determined by looking up the table, and the wind turbine can be controlled to This speed and torque run, so that the wind turbine has a high energy production. The torque and power generation corresponding to the first target rotational speed of the wind power generating set will be reduced, so as to ensure that the wind power generating set is in a power-limited operating state. Therefore, when the wind power generating set runs at the first target speed within the preset period, the loss of the main shaft bearing can be reduced, and the control accuracy of the wind power generating set can be improved.
当风力发电机组的控制参数大于预设参数时,即主轴轴承的已消耗寿命小于实际消耗时间,说明风力发电机组在运行过程中造成主轴轴承的损耗较小,因此在后续周期运行时,可以在保证主轴轴承的损耗不超过范围时,适当提升风力发电机组的运行转速,从而提高风力发电机组的发电性能。When the control parameter of the wind turbine is greater than the preset parameter, that is, the consumed life of the main shaft bearing is less than the actual consumption time, it means that the loss of the main shaft bearing caused by the wind turbine during operation is small, so in the subsequent period of operation, it can be When it is ensured that the loss of the main shaft bearing does not exceed the range, the operating speed of the wind turbine is appropriately increased, thereby improving the power generation performance of the wind turbine.
一种可能的实现方式为,在风力发电机组的预设转速集合中,确定第二目标转速,控制风力发电机组在预设周期内以第二目标转速运行,其中,第二目标转速大于风力发电机组的当前转速,并且保证当风力发电机组以第二目标转速运行时,风力发电机组的控制参数大于预设参数。A possible implementation method is to determine the second target speed in the preset speed set of the wind power generating set, and control the wind power generating set to run at the second target speed within a preset period, wherein the second target speed is greater than the wind power generation The current rotating speed of the wind generating set, and ensure that when the wind generating set is running at the second target rotating speed, the control parameter of the wind generating set is greater than the preset parameter.
确定第二目标转速时,同样可以利用二分法进行查找,不断地将预设转速集合一分为二,确定符合条件的第二目标转速。确定使预设周期内的控制参数大于预设参数的第二目标转速的原理同上述实施例,在此不再赘述。When determining the second target rotational speed, the dichotomy method can also be used to search, continuously divide the set of preset rotational speeds into two, and determine the second target rotational speed that meets the conditions. The principle of determining the second target rotational speed at which the control parameter within the preset period is greater than the preset parameter is the same as that of the above-mentioned embodiment, and will not be repeated here.
当风力发电机组在预设周期内以第二目标转速运行时,如果第二目标转速大于额定转速,由于第二目标转速大于风力发电机组的当前转速,在扭矩不变的情况下风力发电机组的发电量也会提升,,提高了对风力发电机组的控制性能。When the wind power generating set is running at the second target speed within the preset period, if the second target speed is greater than the rated speed, since the second target speed is greater than the current speed of the wind power generating set, the torque of the wind power generating set remains unchanged. The power generation will also increase, which improves the control performance of the wind turbine.
当风力发电机组的控制参数等于预设参数时,在预设周期内使主轴轴承的寿命保持稳定即可,无需改变风力发电机组的转速,即控制风力发电机组在预设周期内以当前转速运行,保证其正常发电。When the control parameters of the wind turbine are equal to the preset parameters, it is enough to keep the life of the main shaft bearing stable within the preset period, without changing the speed of the wind turbine, that is, to control the wind turbine to run at the current speed within the preset period , to ensure its normal power generation.
需要说明的是,上述实施例中确定目标转速的方式仅为示例性的说明,并非对本申请做任何形式上的限定,其他可能的方式也在本申请的保护范围内。It should be noted that the manner of determining the target rotational speed in the above embodiment is only an exemplary description, and does not limit the application in any form, and other possible manners are also within the scope of protection of the present application.
本申请实施例所提供的风力发电机组的控制方法,基于对主轴轴承的寿命评估确定对风力发电机组不同的控制方法,从而提高对风力发电机组控制的准确性。The control method of the wind power generation set provided by the embodiment of the present application determines different control methods for the wind power generation set based on the life evaluation of the main shaft bearing, thereby improving the accuracy of the control of the wind power generation set.
基于上述方法实施例,下面将结合一种具体应用场景,介绍风力发电机组的控制系统。Based on the foregoing method embodiments, the following will introduce a control system of a wind power generating set in combination with a specific application scenario.
参见图2,该图为本申请实施例提供的一种风力发电机组的控制系统的示意图。Referring to FIG. 2 , this figure is a schematic diagram of a control system of a wind power generating set provided by an embodiment of the present application.
在该应用场景中,该控制系统200包括:主轴轴承载荷传感器201、数据采集单元202、数据分析单元203、传递函数计算单元204以及控制单元205;In this application scenario, the
主轴轴承载荷传感器201用于采集主轴轴承各关键载荷分量的载荷取值数据,数据采集单元202用于采集风力发电机组的风参数据以及机组运行数据,其中,风参数据包括:空气密度、风速、入流角、风切变、湍流强度以及时间等,机组运行数据包括:风速、转速、发电机扭矩以及发电量等。The main shaft bearing
主轴轴承传感器和数据采集单元均将所采集的数据发送给数据分析单元203,数据分析单元203根据各关键载荷分量的载荷取值数据,确定各关键载荷分量所对应的载荷分布函数。针对任一关键载荷分量,通过载荷分布函数计算该关键载荷分量的载荷最大值和最小值,并按照固定步长进行载荷取值,从而得到该关键载荷分量在不同载荷区间的概率分布。结合风参数据以及转速数据,得到主轴轴承各关键载荷分量在不同风速下各载荷区间的时间分布。Both the spindle bearing sensor and the data acquisition unit send the collected data to the
传递函数计算单元204根据主轴轴承各关键载荷分量的概率分布和时间分布,计算得到主轴轴承的传递函数。The transfer
控制单元205根据传递函数计算得到主轴轴承的已消耗寿命,根据主轴轴承的设计寿命年限等参数,计算得到风力发电机组的控制参数。根据控制参数确定对风力发电机组不同的控制方法,控制风力发电机组运行,从而提高对风力发电机组控制的准确性。The
需要说明的是,本申请虽然采用特定次序描绘了各操作,但是这不应当理解为要求这些操作以所示出的特定次序或以顺序次序执行来执行。在一定环境下,多任务和并行处理可能是有利的。应当理解,本申请的方法实施方式中记载的各个步骤可以按照不同的顺序执行,和/或并行执行。此外,方法实施方式可以包括附加的步骤和/或省略执行示出的步骤。本申请的范围在此方面不受限制。It should be noted that although the present application depicts operations in a particular order, this should not be construed as requiring that the operations be performed in the particular order shown or performed in a sequential order. Under certain circumstances, multitasking and parallel processing may be advantageous. It should be understood that the various steps described in the method implementations of the present application may be executed in different orders, and/or executed in parallel. Additionally, method embodiments may include additional steps and/or omit performing illustrated steps. The scope of the application is not limited in this respect.
基于上述方法实施例,本申请实施例还提供一种风力发电机组的控制装置,参见图3,该图为本申请实施例提供的一种风力发电机组的控制装置的示意图。Based on the above method embodiment, the embodiment of the present application further provides a control device for a wind power generating set, see FIG. 3 , which is a schematic diagram of a control device for a wind generating set provided in the embodiment of the present application.
该装置300包括:第一处理模块301、第二处理模块302、第三处理模块303以及控制模块304;The device 300 includes: a first processing module 301, a second processing module 302, a third processing module 303 and a control module 304;
第一处理模块301,用于基于风力发电机组的风参数据、机组运行数据以及主轴轴承的关键载荷分量,确定主轴轴承的已消耗寿命;The first processing module 301 is used to determine the consumed life of the main shaft bearing based on the wind parameter data of the wind power generating set, the operating data of the unit and the key load component of the main shaft bearing;
第二处理模块302,用于基于主轴轴承的设计寿命年限以及已消耗寿命,确定主轴轴承的剩余寿命;The second processing module 302 is configured to determine the remaining life of the main shaft bearing based on the design life and the consumed life of the main shaft bearing;
第三处理模块303,用于基于主轴轴承的设计寿命年限、剩余寿命以及实际消耗时间,确定风力发电机组的控制参数;The third processing module 303 is used to determine the control parameters of the wind power generating set based on the design life, remaining life and actual consumption time of the main shaft bearing;
控制模块304,用于基于控制参数以及预设参数,确定风力发电机组的控制方法。The control module 304 is configured to determine a control method of the wind power generating set based on the control parameters and preset parameters.
第一处理模块301,具体用于基于风力发电机组的风参数据、机组运行数据以及主轴轴承的关键载荷分量,确定主轴轴承的关键载荷分量所对应的传递函数;基于各个传递函数,确定主轴轴承的已消耗寿命。The first processing module 301 is specifically used to determine the transfer function corresponding to the key load component of the main shaft bearing based on the wind parameter data of the wind power generating set, the operating data of the unit, and the key load component of the main shaft bearing; based on each transfer function, determine the main shaft bearing of spent life.
第一处理模块301,还用于基于传递函数确定该传递函数的拟合优度;判断该拟合优度是否大于预设值;如果否,则基于风力发电机组在预设周期内的风参数据、机组运行数据以及主轴轴承的关键载荷分量,重新确定主轴轴承的关键载荷分量所对应的传递函数,直至传递函数所对应的拟合优度大于预设值。The first processing module 301 is also used to determine the goodness of fit of the transfer function based on the transfer function; judge whether the goodness of fit is greater than a preset value; data, unit operating data and the key load component of the main shaft bearing, and re-determine the transfer function corresponding to the key load component of the main shaft bearing until the goodness of fit corresponding to the transfer function is greater than the preset value.
控制模块304,具体用于当控制参数小于预设参数时,在预设转速集合中确定第一目标转速,控制风力发电机组在预设周期内以第一目标转速运行,其中,第一目标转速小于风力发电机组的当前转速,在第一目标转速下风力发电机组的控制参数大于预设参数。The control module 304 is specifically used to determine the first target speed in the set of preset speeds when the control parameter is smaller than the preset parameter, and control the wind turbine to run at the first target speed within a preset period, wherein the first target speed is less than the current speed of the wind power generating set, and the control parameter of the wind power generating set is greater than the preset parameter at the first target speed.
当控制模块304确定第一目标转速时,可以利用二分法在预设转速集合中确定第一目标转速。When the control module 304 determines the first target rotational speed, the first target rotational speed can be determined in the preset rotational speed set by using a dichotomy method.
控制模块304,具体用于当控制参数大于预设参数时,在预设转速集合中确定第二目标转速,控制风力发电机组在预设周期内以第二目标转速运行,其中,第二目标转速大于风力发电机组的当前转速,在第二目标转速下风力发电机组的控制参数大于预设参数。The control module 304 is specifically used to determine the second target speed in the preset speed set when the control parameter is greater than the preset parameter, and control the wind turbine to run at the second target speed within a preset period, wherein the second target speed is greater than the current speed of the wind power generating set, and the control parameter of the wind power generating set is greater than the preset parameter at the second target speed.
同样地,当控制模块304确定第二目标转速时,可以利用二分法在预设转速集合中确定第二目标转速。Likewise, when the control module 304 determines the second target speed, the second target speed can be determined from the set of preset speeds by using a dichotomy method.
控制模块304,具体用于当控制参数等于预设参数时,控制风力发电机组在预设周期内以当前转速运行。The control module 304 is specifically configured to control the wind power generating set to run at the current rotational speed within a preset period when the control parameter is equal to the preset parameter.
本申请实施例所提供的装置实施例具有的有益效果参见上述方法实施例,在此不再赘述。For the beneficial effects of the device embodiments provided by the embodiments of the present application, refer to the above method embodiments, and details are not repeated here.
基于上述方法实施例和装置实施例,本申请实施例还提供一种风力发电机组的控制设备,参见图4,该图为本申请实施例提供的一种风力发电机组的控制设备的示意图。Based on the above method embodiment and device embodiment, the embodiment of the present application also provides a control device for a wind power generating set, see FIG. 4 , which is a schematic diagram of a control device for a wind generating set provided in the embodiment of the present application.
该设备400包括:存储器401以及处理器402;The device 400 includes: a memory 401 and a processor 402;
存储器401用于存储相关的程序代码;The memory 401 is used to store related program codes;
处理器402用于调用所述程序代码,执行上述方法实施例所述的风力发电机组的控制方法。The processor 402 is configured to call the program code to execute the method for controlling the wind power generating set described in the method embodiment above.
此外,本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质用于存储计算机程序,所述计算机程序用于执行上述方法实施例所述的风力发电机组的控制方法。In addition, an embodiment of the present application further provides a computer-readable storage medium, the computer-readable storage medium is used to store a computer program, and the computer program is used to execute the method for controlling a wind power generating set described in the method embodiment above.
本文中以上描述的功能可以至少部分地由一个或多个硬件逻辑部件来执行。例如,非限制性地,可以使用的示范类型的硬件逻辑部件包括:现场可编程门阵列(FPGA)、专用集成电路(ASIC)、专用标准产品(ASSP)、片上系统(SOC)、复杂可编程逻辑设备(CPLD)等等。The functions described herein above may be performed at least in part by one or more hardware logic components. For example, without limitation, exemplary types of hardware logic components that may be used include: Field Programmable Gate Arrays (FPGAs), Application Specific Integrated Circuits (ASICs), Application Specific Standard Products (ASSPs), System on Chips (SOCs), Complex Programmable Logical device (CPLD) and so on.
可以以一种或多种程序设计语言或其组合来编写用于执行本申请的操作的计算机程序代码,上述程序设计语言包括但不限于面向对象的程序设计语言—诸如Java、Smalltalk、C++,还包括常规的过程式程序设计语言—诸如“C”语言或类似的程序设计语言。程序代码可以完全地在用户计算机上执行、部分地在用户计算机上执行、作为一个独立的软件包执行、部分在用户计算机上部分在远程计算机上执行、或者完全在远程计算机或服务器上执行。在涉及远程计算机的情形中,远程计算机可以通过任意种类的网络——包括局域网(LAN)或广域网(WAN)—连接到用户计算机,或者,可以连接到外部计算机(例如利用因特网服务提供商来通过因特网连接)。Computer program code for carrying out the operations of this application may be written in one or more programming languages, or combinations thereof, including but not limited to object-oriented programming languages—such as Java, Smalltalk, C++, and Includes conventional procedural programming languages - such as the "C" language or similar programming languages. The program code may execute entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer or entirely on the remote computer or server. In cases involving a remote computer, the remote computer can be connected to the user computer through any kind of network, including a local area network (LAN) or a wide area network (WAN), or it can be connected to an external computer (such as through an Internet service provider). Internet connection).
需要说明的是,本申请中使用的术语“第一”和“第二”是用于区别类似的对象,而不用于描述特定顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,这仅仅是描述本申请的实施例中对相同属性的对象在描述时所采用的区分方式。It should be noted that the terms "first" and "second" used in this application are used to distinguish similar objects, and are not used to describe a specific order or sequence. It should be understood that the terms used in this way can be interchanged under appropriate circumstances, and this is merely a description of the manner in which objects with the same attribute are described in the embodiments of the present application.
本说明书中的各个实施例均采用递进的方式描述,各个实施例之间相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。尤其,对于装置实施例而言,由于其基本类似于方法实施例,所以描述得比较简单,相关部分参见方法实施例的部分说明即可。以上所描述的装置实施例仅仅是示意性的,其中作为分离部件说明的单元或模块可以是或者也可以不是物理上分开的,作为单元或模块显示的部件可以是或者也可以不是物理模块,即可以位于一个地方,或者也可以分布到多个网络单元上,可以根据实际需要选择其中的部分或者全部单元或模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性劳动的情况下,即可以理解并实施。Each embodiment in this specification is described in a progressive manner, and the similar parts of each embodiment can be referred to each other, and each embodiment focuses on the differences from other embodiments. In particular, as for the device embodiment, since it is basically similar to the method embodiment, the description is relatively simple, and the relevant parts may refer to the part description of the method embodiment. The device embodiments described above are only illustrative, where the units or modules described as separate components may or may not be physically separated, and the components shown as units or modules may or may not be physical modules, that is It may be located in one place, or may be distributed to multiple network units, and some or all of the units or modules may be selected according to actual needs to achieve the purpose of the solution of this embodiment. It can be understood and implemented by those skilled in the art without creative effort.
以上所述仅是本申请示例性的实施方式,并非对本申请做任何形式上的限制。对以上实施例所做的等同变化或修改,均属于本申请的保护范围。The above descriptions are only exemplary implementations of the present application, and do not limit the present application in any form. Equivalent changes or modifications made to the above embodiments all belong to the protection scope of the present application.
Claims (10)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111639989.7A CN116412083A (en) | 2021-12-29 | 2021-12-29 | A control method, device, equipment and medium for a wind power generating set |
PCT/CN2022/081099 WO2023123689A1 (en) | 2021-12-29 | 2022-03-16 | Wind turbine control method, apparatus and device, and medium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111639989.7A CN116412083A (en) | 2021-12-29 | 2021-12-29 | A control method, device, equipment and medium for a wind power generating set |
Publications (1)
Publication Number | Publication Date |
---|---|
CN116412083A true CN116412083A (en) | 2023-07-11 |
Family
ID=86997315
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111639989.7A Pending CN116412083A (en) | 2021-12-29 | 2021-12-29 | A control method, device, equipment and medium for a wind power generating set |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN116412083A (en) |
WO (1) | WO2023123689A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114692369A (en) * | 2020-12-30 | 2022-07-01 | 新疆金风科技股份有限公司 | Wind turbine operation control method, device, controller and storage medium |
Family Cites Families (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5244502B2 (en) * | 2008-08-25 | 2013-07-24 | 三菱重工業株式会社 | Wind turbine operation restriction adjusting apparatus and method, and program |
EP2302208A1 (en) * | 2009-09-23 | 2011-03-30 | Siemens Aktiengesellschaft | Dynamic adaptation of a set point for a fatigue life of a structural component of a power generating machine |
EP2302207A1 (en) * | 2009-09-23 | 2011-03-30 | Siemens Aktiengesellschaft | Power generating machine load control based on consumed fatigue life time and real-time of operation of a structural component |
DK201170539A (en) * | 2011-09-30 | 2013-03-31 | Vestas Wind Sys As | Control of wind turbines |
ES2751687T3 (en) * | 2013-10-07 | 2020-04-01 | Vestas Wind Sys As | Methods and apparatus for controlling wind turbines |
US9822762B2 (en) * | 2013-12-12 | 2017-11-21 | General Electric Company | System and method for operating a wind turbine |
ES2813376T3 (en) * | 2014-03-13 | 2021-03-23 | Vestas Wind Sys As | Control of a group of wind turbines |
US20160010628A1 (en) * | 2014-07-10 | 2016-01-14 | General Electric Company | System and method for determining life of a wind turbine |
US10830213B2 (en) * | 2014-11-24 | 2020-11-10 | Vestas Wind Systems A/S | Determination of wind turbine configuration |
CN107810324B (en) * | 2015-06-30 | 2019-12-24 | 维斯塔斯风力系统集团公司 | Method and system for generating a wind turbine control schedule |
WO2017000959A1 (en) * | 2015-06-30 | 2017-01-05 | Vestas Wind Systems A/S | Wind turbine control over-ride |
WO2017000957A1 (en) * | 2015-06-30 | 2017-01-05 | Vestas Wind Systems A/S | Control method and system for wind turbines |
CN107850044B (en) * | 2015-06-30 | 2020-02-07 | 维斯塔斯风力系统集团公司 | Control method and system for protection of a wind turbine |
US10578080B2 (en) * | 2015-06-30 | 2020-03-03 | Vestas Wind Systems A/S | Initialisation of wind turbine control functions |
WO2017137050A1 (en) * | 2016-02-12 | 2017-08-17 | Vestas Wind Systems A/S | Improvements relating to controlling bearing wear |
CN108150360A (en) * | 2016-12-05 | 2018-06-12 | 北京金风科创风电设备有限公司 | Method and device for detecting equivalent load of wind turbine generator |
CN108869173B (en) * | 2018-01-31 | 2019-08-16 | 北京金风科创风电设备有限公司 | Power control method and equipment for wind turbine generator |
WO2019185560A1 (en) * | 2018-03-29 | 2019-10-03 | Mhi Vestas Offshore Wind A/S | Wind turbine generator and method of controlling wind turbine generator |
CN111120219B (en) * | 2018-10-31 | 2021-02-26 | 北京金风科创风电设备有限公司 | Method and device for determining fatigue load of wind generating set |
CN111441917B (en) * | 2019-01-16 | 2024-05-10 | 北京金风科创风电设备有限公司 | Load estimation method and device for preset component of sector-based wind turbine |
AU2019438487B2 (en) * | 2019-04-01 | 2025-01-23 | Acciona Generación Renovable, S.A. | A method for estimating remaining useful life of components of an operational wind turbine |
CN113374652A (en) * | 2021-06-10 | 2021-09-10 | 中国三峡建工(集团)有限公司 | Method for evaluating service life of wind generating set |
-
2021
- 2021-12-29 CN CN202111639989.7A patent/CN116412083A/en active Pending
-
2022
- 2022-03-16 WO PCT/CN2022/081099 patent/WO2023123689A1/en active Application Filing
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114692369A (en) * | 2020-12-30 | 2022-07-01 | 新疆金风科技股份有限公司 | Wind turbine operation control method, device, controller and storage medium |
Also Published As
Publication number | Publication date |
---|---|
WO2023123689A1 (en) | 2023-07-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Duquette et al. | Numerical implications of solidity and blade number on rotor performance of horizontal-axis wind turbines | |
CN106774276A (en) | Wind power plant automatic electricity generation control system test platform | |
CN113190580B (en) | A method and system for operating data cache of a hydroelectric power station | |
CN113988421B (en) | Intelligent prediction method of wind turbine power based on deep learning | |
CN110874665B (en) | Control device and method for wind generating set | |
AU2018334593A1 (en) | Method and system for controlling wind turbine based on sectors | |
CN106529706A (en) | Support-vector-machine-regression-based method for predicting wind speed of wind power plant | |
CN103955521A (en) | Cluster classification method for wind power plant | |
CN115660232A (en) | Ultra-short-term prediction method, device and system for wind power | |
CN116412083A (en) | A control method, device, equipment and medium for a wind power generating set | |
CN115021247B (en) | A static voltage stability zoning assessment method for large-scale photovoltaic power generation grid-connected systems | |
Liu et al. | An electric power sensor data oriented data cleaning solution | |
CN108460228A (en) | A method of it is equivalent that wind power plant being carried out based on multi-objective optimization algorithm | |
CN118350528A (en) | Energy optimization method, device and equipment based on large model | |
CN103473618A (en) | System and method for predicting short-term wind power of wind power plant | |
CN118336708A (en) | A hybrid deep learning photovoltaic power prediction method, system, device and storage medium thereof | |
CN117421990A (en) | Method for reducing misoperation of wind farm unit based on short-term wind speed prediction | |
Shan et al. | [Retracted] Modeling and Control of Wind Speed in Renewable Energy Power Generation and Wind Power Generation Systems | |
Xu et al. | NWP feature selection and GCN-based ultra-short-term wind farm cluster power forecasting method | |
Lv et al. | Application of knowledge graph technology in unified management platform for wind power data | |
CN116993315A (en) | Operation and maintenance method and device of cold source equipment, computing equipment and storage medium | |
Li et al. | Multi-source heterogeneous log fusion technology of power information system based on big data and imprecise reasoning theory | |
CN110985286B (en) | A kind of wind turbine pitch angle control method based on ELM | |
Sun et al. | The cloud computing load forecasting algorithm based on Kalman filter and ANFIS | |
Li et al. | Instability Fault Knowledge Acquisition and Management of Pumped Storage Unit Based on FTA/FMEA and Ontology Theory |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
CB02 | Change of applicant information |
Address after: 830026 No. 107, Shanghai Road, Urumqi economic and Technological Development Zone, the Xinjiang Uygur Autonomous Region Applicant after: Jinfeng Technology Co.,Ltd. Address before: 830026 No. 107, Shanghai Road, Urumqi economic and Technological Development Zone, the Xinjiang Uygur Autonomous Region Applicant before: XINJIANG GOLDWIND SCIENCE & TECHNOLOGY Co.,Ltd. |
|
CB02 | Change of applicant information |