CN116405031A - Analog-to-digital converters and chips - Google Patents
Analog-to-digital converters and chips Download PDFInfo
- Publication number
- CN116405031A CN116405031A CN202310226260.XA CN202310226260A CN116405031A CN 116405031 A CN116405031 A CN 116405031A CN 202310226260 A CN202310226260 A CN 202310226260A CN 116405031 A CN116405031 A CN 116405031A
- Authority
- CN
- China
- Prior art keywords
- analog
- preset period
- digital conversion
- capacitors
- capacitive
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M1/00—Analogue/digital conversion; Digital/analogue conversion
- H03M1/002—Provisions or arrangements for saving power, e.g. by allowing a sleep mode, using lower supply voltage for downstream stages, using multiple clock domains or by selectively turning on stages when needed
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M1/00—Analogue/digital conversion; Digital/analogue conversion
- H03M1/12—Analogue/digital converters
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02D—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
- Y02D10/00—Energy efficient computing, e.g. low power processors, power management or thermal management
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Analogue/Digital Conversion (AREA)
Abstract
本发明涉及集成电路技术领域,公开一种模数转换器及芯片,所述模数转换器包括:第一、第二无源开关电容积分器;两个电容性模数转换阵列;控制逻辑电路,用于在所述阵列中的电容复位时,闭合第一无源开关电容积分器中的第一、第二开关组以输出第一残差电压,以及闭合第二无源开关电容积分器中的第三、第四开关组以使输出第二残差电压;以及双差分输入比较器,用于接收第一残差电压与当前预设周期的输入电压之和作为第一差分输入信号,接收第二残差电压作为第二差分输入信号,以及输出比较结果,所述控制逻辑电路还用于根据比较结果,输出多个开关控制信号至电容性模数转换阵列,以输出当前预设周期的数字数据,由此可有效抑制信号带内的量化噪声。
The invention relates to the technical field of integrated circuits, and discloses an analog-to-digital converter and a chip. The analog-to-digital converter includes: first and second passive switched capacitor integrators; two capacitive analog-to-digital conversion arrays; and a control logic circuit , used to close the first and second switch groups in the first passive switched capacitor integrator to output the first residual voltage when the capacitor in the array is reset, and close the second passive switched capacitor integrator The third and fourth switch groups are used to output the second residual voltage; and the double differential input comparator is used to receive the sum of the first residual voltage and the input voltage of the current preset period as the first differential input signal, and receive The second residual voltage is used as the second differential input signal, and the comparison result is output, and the control logic circuit is also used to output a plurality of switch control signals to the capacitive analog-to-digital conversion array according to the comparison result, so as to output the current preset cycle digital data, thereby effectively suppressing quantization noise within the signal band.
Description
技术领域technical field
本发明涉及集成电路技术领域,具体地涉及一种模数转换器及芯片。The invention relates to the technical field of integrated circuits, in particular to an analog-to-digital converter and a chip.
背景技术Background technique
逐次逼近型模数转换器因其低功耗且高能效特性而被广泛应用于多种场景,但其内部各类非理想因素与各类噪声限制了其所能达到的信噪比,其中量化噪声最为突出。过采样与噪声整形技术可以通过构造相应的高通或带通噪声传递函数对量化噪声与比较器噪声进行噪声整形,从而有效提高模数转换器的带内信噪比。但为了实现对信号带内噪声的良好抑制,往往需要在噪声整形环路中使用功耗较大的有源电路模块进行电路的搭建,不利于低功耗系统的实现。Successive approximation analog-to-digital converters are widely used in many scenarios due to their low power consumption and high energy efficiency. However, various internal non-ideal factors and various noises limit the signal-to-noise ratio it can achieve. Noise is the most prominent. Oversampling and noise shaping techniques can shape quantization noise and comparator noise by constructing corresponding high-pass or band-pass noise transfer functions, thereby effectively improving the in-band signal-to-noise ratio of the analog-to-digital converter. However, in order to achieve a good suppression of the noise in the signal band, it is often necessary to use active circuit modules with high power consumption in the noise shaping loop to build the circuit, which is not conducive to the realization of a low-power system.
发明内容Contents of the invention
本发明的目的是提供一种模数转换器及芯片,其采用二阶无源混合型噪声整形技术通过两组无源开关电容积分器分别对于上一预设周期的残差电压进行采样与积分,并分别以误差反馈和前向相加的方式将两积分器输出馈入当前周期的输入采样信号一并进行转换,从而将模数转换器的带内量化噪声与比较器噪声调制到高频段,实现二阶高通噪声整形效果而抑制信号带内的相关噪声。The purpose of the present invention is to provide an analog-to-digital converter and chip, which adopts the second-order passive hybrid noise shaping technology to respectively sample and integrate the residual voltage of the previous preset period through two sets of passive switched capacitor integrators , and the output of the two integrators is fed into the input sampling signal of the current cycle in the way of error feedback and forward addition, respectively, and converted together, so as to modulate the in-band quantization noise and comparator noise of the analog-to-digital converter to the high frequency band , to achieve the second-order high-pass noise shaping effect and suppress the correlated noise in the signal band.
为了实现上述目的,本发明第一方面提供一种模数转换器,所述模数转换器包括:第一无源开关电容积分器,其包括:2Q个第一电容以及串联连接所述2Q个第一电容中的Q个电容的第一开关组以及串联连接所述2Q个第一电容中的另外的Q个电容的第二开关组;第二无源开关电容积分器,其包括:2Q个第二电容以及串联连接所述2Q个第二电容中的Q个电容的第三开关组以及串联连接所述2Q个第二电容中的另外的Q个电容的第四开关组;两个电容性模数转换阵列;控制逻辑电路,用于在所述两个电容性模数转换阵列中的电容复位到初始状态的情况下,闭合所述第一开关组与所述第二开关组,以使所述第一无源开关电容积分器输出第一残差电压,以及闭合所述第三开关组与所述第四开关组,以使所述第二无源开关电容积分器输出第二残差电压,其中,所述第一残差电压为所述2Q个第一电容在上一预设周期的第一子残差电压之和,以及所述第二残差电压为所述2Q个第二电容在所述上一预设周期的第二子残差电压之和;以及双差分输入比较器,用于接收所述第一残差电压与当前预设周期的输入电压之和作为第一差分输入信号,接收所述第二残差电压作为第二差分输入信号,以及输出比较结果,所述控制逻辑电路还用于,根据所述比较结果,输出多个开关控制信号至所述两个电容性模数转换阵列,以输出与所述当前预设周期的输入电压相对应的当前预设周期的数字数据。In order to achieve the above object, the first aspect of the present invention provides an analog-to-digital converter, the analog-to-digital converter includes: a first passive switched capacitor integrator, which includes: 2Q first capacitors and the 2Q capacitors connected in series The first switch group of Q capacitors in the first capacitor and the second switch group of other Q capacitors in the 2Q first capacitors connected in series; the second passive switched capacitor integrator, which includes: 2Q The second capacitor and the third switch group connected in series to the Q capacitors in the 2Q second capacitors and the fourth switch group connected in series to the other Q capacitors in the 2Q second capacitors; two capacitive An analog-to-digital conversion array; a control logic circuit, configured to close the first switch group and the second switch group when the capacitors in the two capacitive analog-to-digital conversion arrays are reset to an initial state, so that The first passive switched capacitor integrator outputs a first residual voltage, and closes the third switch group and the fourth switch group, so that the second passive switched capacitor integrator outputs a second residual voltage voltage, wherein the first residual voltage is the sum of the first sub-residual voltages of the 2Q first capacitors in the last preset period, and the second residual voltage is the sum of the 2Q second sub-residual voltages The sum of the second sub-residual voltages of the capacitor in the last preset period; and a dual differential input comparator, configured to receive the sum of the first residual voltage and the input voltage of the current preset period as a first difference input signal, receiving the second residual voltage as a second differential input signal, and outputting a comparison result, and the control logic circuit is further configured to output a plurality of switch control signals to the two capacitors according to the comparison result The analog-to-digital conversion array is used to output the digital data of the current preset period corresponding to the input voltage of the current preset period.
优选地,所述第一无源开关电容积分器还包括:并联连接所述2Q个第一电容的第五开关组,相应地,在输出与所述上一预设周期的输入电压相对应的所述上一预设周期的数字数据之后,所述控制逻辑电路还用于,通过闭合所述第五开关组来将所述两个电容性模数转换阵列的上极板的残差电压分配至所述2Q个第一电容,以使所述第一电容的电压为所述第一子残差电压。Preferably, the first passive switched capacitor integrator further includes: a fifth switch group connected in parallel to the 2Q first capacitors, correspondingly, the output voltage corresponding to the input voltage of the last preset period After the digital data of the last preset period, the control logic circuit is also used to divide the residual voltage of the upper plates of the two capacitive analog-to-digital conversion arrays by closing the fifth switch group to the 2Q first capacitors, so that the voltage of the first capacitors is the first sub-residual voltage.
优选地,所述第二无源开关电容积分器还包括:并联连接所述2Q个第二电容的第六开关组,相应地,在执行所述通过闭合所述第五开关组来将所述两个电容性模数转换阵列的上极板的残差电压分配至所述2Q个第一电容的步骤之后,所述控制逻辑电路还用于断开所述第五开关组,并通过闭合所述第六开关组来将所述两个电容性模数转换阵列的上极板的更新的残差电压分配至所述2Q个第二电容,以使所述第二电容的电压为所述第二子残差电压。Preferably, the second passive switched capacitor integrator further includes: a sixth switch group connected in parallel to the 2Q second capacitors, correspondingly, when performing the step of closing the fifth switch group to convert the After the step of distributing the residual voltages of the upper plates of the two capacitive analog-to-digital conversion arrays to the 2Q first capacitors, the control logic circuit is also used to disconnect the fifth switch group, and by closing the The sixth switch group is used to distribute the updated residual voltages of the upper plates of the two capacitive analog-to-digital conversion arrays to the 2Q second capacitors, so that the voltage of the second capacitors is equal to the first Secondary residual voltage.
优选地,所述数字数据为N位数据,以及所述模数转换器还包括:采样开关电路,在所述两个电容性模数转换阵列中的电容复位到初始状态之前,所述控制逻辑电路还用于执行以下操作:根据关于所述当前预设周期的预测值,将所述两个电容性模数转换阵列中的正极侧与负极侧的最高位电容的下极板连接至不同的参考电压;导通所述采样开关电路,以将所述当前预设周期的输入电压采样至所述电容性模数转换阵列;以及断开所述采样开关电路,并将所述电容性模数转换阵列中的各个电容复位至初始状态,以馈入与所述参考电压相应的预偏移补偿量及所述上一预设周期输出的N位数据中的低N-1位数据。Preferably, the digital data is N-bit data, and the analog-to-digital converter further includes: a sampling switch circuit, before the capacitance in the two capacitive analog-to-digital conversion arrays is reset to an initial state, the control logic The circuit is further configured to perform the following operation: according to the predicted value of the current preset period, connect the lower plates of the highest capacitors on the positive side and the negative side of the two capacitive analog-to-digital conversion arrays to different Reference voltage; turn on the sampling switch circuit to sample the input voltage of the current preset period to the capacitive analog-to-digital conversion array; and disconnect the sampling switch circuit, and switch the capacitive analog to digital Each capacitor in the conversion array is reset to an initial state, so as to feed in the pre-offset compensation amount corresponding to the reference voltage and the lower N−1 bits of the N-bit data output in the last preset period.
优选地,在执行所述输出与所述当前预设周期的输入电压相对应的当前预设周期的数字数据的步骤之后,所述控制逻辑电路还用于执行以下操作:将所述当前预设周期输出的N位数据减去所述上一预设周期输出的N位数据中的低N-1位数据,以获取N位差值;以及将所述N位差值减去与所述预偏移补偿量相对应的数值,以输出与所述当前预设周期的输入电压对应的所述当前预设周期的补偿后的N位数据。Preferably, after performing the step of outputting the digital data of the current preset period corresponding to the input voltage of the current preset period, the control logic circuit is further configured to perform the following operation: the current preset subtracting the lower N-1 bit data of the N-bit data output in the previous preset cycle from the N-bit data output periodically to obtain an N-bit difference; and subtracting the N-bit difference from the preset offsetting a value corresponding to the compensation amount, so as to output the compensated N-bit data of the current preset period corresponding to the input voltage of the current preset period.
优选地,所述控制逻辑电路还用于,将所述当前预设周期的补偿后的N位数据与所述当前预设周期输出的N位数据中的低N-1位数据相加,以获取关于下一预设周期的预测值。Preferably, the control logic circuit is further configured to add the compensated N-bit data of the current preset period to the lower N-1 bit data of the N-bit data output in the current preset period, so as to Get the predicted value for the next preset period.
优选地,所述控制逻辑电路用于将所述两个电容性模数转换阵列中的正极侧与负极侧的最高位电容的下极板连接至不同的参考电压包括:在关于所述当前预设周期的预测值为1的情况下,将位于输入正端的所述电容性模数转换阵列中的正极侧与负极侧的最高位电容的下极板连接至正参考电压,以及将位于输入负端的所述电容性模数转换阵列中的正极侧与负极侧的最高位电容的下极板连接至负参考电压;或者在关于所述当前预设周期的预测值为0的情况下,将位于输入正端的所述电容性模数转换阵列中的正极侧与负极侧的最高位电容的下极板连接至负参考电压,以及将位于输入负端的所述电容性模数转换阵列中的正极侧与负极侧的最高位电容的下极板连接至正参考电压。Preferably, the control logic circuit is used to connect the lower plates of the highest capacitors on the positive side and the negative side of the two capacitive analog-to-digital conversion arrays to different reference voltages, including: When the predicted value of the cycle is set to 1, connect the lower plate of the highest capacitor on the positive side and the negative side of the capacitive analog-to-digital conversion array located at the input positive terminal to the positive reference voltage, and connect the lower plate located at the input negative The lower plates of the highest bit capacitors on the positive side and the negative side of the capacitive analog-to-digital conversion array at the terminal are connected to a negative reference voltage; or in the case of a predicted value of 0 for the current preset period, will be located The positive side of the capacitive analog-to-digital conversion array at the input positive terminal and the lower plate of the highest capacitor on the negative side are connected to a negative reference voltage, and the positive side of the capacitive analog-to-digital conversion array at the input negative terminal is connected Connect the lower plate of the highest capacitor on the negative side to the positive reference voltage.
优选地,所述控制逻辑电路用于将所述电容性模数转换阵列中的各个电容复位至初始状态包括:将所述电容性模数转换阵列中的正极侧的电容的下极板连接至正参考电压,以及将所述电容性模数转换阵列中的负极侧的电容的下极板接地。Preferably, the control logic circuit is used to reset each capacitor in the capacitive analog-to-digital conversion array to an initial state comprising: connecting the lower plate of the positive side capacitor in the capacitive analog-to-digital conversion array to a positive reference voltage, and ground the lower plate of the capacitor on the negative side of the capacitive analog-to-digital conversion array.
优选地,所述第一无源开关电容积分器包括4个第一电容;以及所述第二无源开关电容积分器包括4个第二电容,其中,所述第一电容与所述第二电容的电容值等于所述电容性模数转换阵列的总电容值的1/2倍。Preferably, the first passive switched capacitor integrator includes 4 first capacitors; and the second passive switched capacitor integrator includes 4 second capacitors, wherein the first capacitor and the second The capacitance of the capacitor is equal to 1/2 times the total capacitance of the capacitive analog-to-digital conversion array.
通过上述技术方案,本发明创造性地在所述两个电容性模数转换阵列中的电容复位到初始状态的情况下,通过控制逻辑电路闭合所述第一开关组与所述第二开关组,以使所述第一无源开关电容积分器输出第一残差电压,以及通过控制逻辑电路闭合所述第三开关组与所述第四开关组,以使所述第二无源开关电容积分器输出第二残差电压;通过双差分输入比较器接收所述第一残差电压与当前预设周期的输入电压之和作为第一差分输入信号,接收所述第二残差电压作为第二差分输入信号,以及输出比较结果;然后通过所述控制逻辑电路根据所述比较结果,输出多个开关控制信号至所述两个电容性模数转换阵列,以输出与所述当前预设周期的输入电压相对应的当前预设周期的数字数据。由此,本发明采用二阶无源混合型噪声整形技术通过两组无源开关电容积分器分别对于上一预设周期的残差电压进行采样与积分,并分别以误差反馈和前向相加的方式将两积分器输出馈入当前周期的输入采样信号一并进行转换,从而将模数转换器的带内量化噪声与比较器噪声调制到高频段,实现二阶高通噪声整形效果而抑制信号带内的相关噪声。Through the above technical solution, the present invention creatively closes the first switch group and the second switch group through the control logic circuit when the capacitors in the two capacitive analog-to-digital conversion arrays are reset to the initial state, making the first passive switched capacitor integrator output a first residual voltage, and closing the third switch group and the fourth switch group through a control logic circuit, so that the second passive switched capacitor integrator output the second residual voltage; the sum of the first residual voltage and the input voltage of the current preset period is received as the first differential input signal through a dual differential input comparator, and the second residual voltage is received as the second Differential input signals, and output comparison results; then output a plurality of switch control signals to the two capacitive analog-to-digital conversion arrays according to the comparison results through the control logic circuit, so as to output the current preset cycle The digital data of the current preset cycle corresponding to the input voltage. Therefore, the present invention adopts the second-order passive hybrid noise shaping technology to sample and integrate the residual voltage of the previous preset period through two sets of passive switched capacitor integrators, and respectively use error feedback and forward addition In this way, the output of the two integrators is fed into the input sampling signal of the current period and converted together, thereby modulating the in-band quantization noise and comparator noise of the analog-to-digital converter to the high frequency band, realizing the second-order high-pass noise shaping effect and suppressing the signal In-band correlated noise.
本发明第二方面提供一种芯片,所述芯片包括所述的模数转换器The second aspect of the present invention provides a chip, the chip includes the analog-to-digital converter
有关本发明实施例提供的芯片的具体细节及益处可参阅上述针对模数转换器的描述,于此不再赘述。For the specific details and benefits of the chip provided by the embodiment of the present invention, please refer to the above-mentioned description of the analog-to-digital converter, which will not be repeated here.
本发明的其它特征和优点将在随后的具体实施方式部分予以详细说明。Other features and advantages of the present invention will be described in detail in the detailed description that follows.
附图说明Description of drawings
附图是用来提供对本发明实施例的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本发明实施例,但并不构成对本发明实施例的限制。在附图中:The accompanying drawings are used to provide a further understanding of the embodiments of the present invention, and constitute a part of the specification, and are used together with the following specific embodiments to explain the embodiments of the present invention, but do not constitute limitations to the embodiments of the present invention. In the attached picture:
图1是本发明一实施例提供的逐次逼近型模数转换器的结构图;FIG. 1 is a structural diagram of a successive approximation analog-to-digital converter provided by an embodiment of the present invention;
图2是本发明一实施例提供的第一无源开关电容积分器的结构图;Fig. 2 is a structural diagram of a first passive switched capacitor integrator provided by an embodiment of the present invention;
图3是本发明一实施例提供的第二无源开关电容积分器的结构图;Fig. 3 is a structural diagram of a second passive switched capacitor integrator provided by an embodiment of the present invention;
图4是本发明一实施例提供的第一无源开关电容积分器与第二无源开关电容积分器在不同时刻的两种构型图;Fig. 4 is two configuration diagrams at different times of the first passive switched capacitor integrator and the second passive switched capacitor integrator provided by an embodiment of the present invention;
图5是本发明一实施例提供的逐次逼近型模数转换器工作时序图;以及FIG. 5 is a working sequence diagram of the successive approximation analog-to-digital converter provided by an embodiment of the present invention; and
图6是本发明一实施例提供的模数转换器的工作机制流程图。FIG. 6 is a flow chart of the working mechanism of the analog-to-digital converter provided by an embodiment of the present invention.
具体实施方式Detailed ways
以下结合附图对本发明的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本发明,并不用于限制本发明。Specific embodiments of the present invention will be described in detail below in conjunction with the accompanying drawings. It should be understood that the specific embodiments described here are only used to illustrate and explain the present invention, and are not intended to limit the present invention.
图1是本发明一实施例提供一种模数转换器的结构图,所述模数转换器可包括:第一无源开关电容积分器10;第二无源开关电容积分器20;两个电容性模数转换阵列(即CDAC)30;控制逻辑电路40以及双差分输入比较器50,如图1所示。Fig. 1 is a structural diagram of an analog-to-digital converter provided by an embodiment of the present invention, and the analog-to-digital converter may include: a first passive switched
其中,所述第一无源开关电容积分器10可包括:2Q个第一电容以及串联连接所述2Q个第一电容中的Q个电容的第一开关组以及串联连接所述2Q个第一电容中的另外的Q个电容的第二开关组。Wherein, the first passive switched
其中,Q为正整数。例如,所述第一无源开关电容积分器可包括4个第一电容(即,CA1-CA4);第一开关组SA9、SA10;以及第二开关组SA11、SA12,如图2所示。其中,所述第一电容的电容值(例如,1/2CDAC)等于所述电容性模数转换阵列30的总电容值(例如,CDAC)的1/2倍。Wherein, Q is a positive integer. For example, the first passive switched capacitor integrator may include four first capacitors (ie, C A1 -C A4 ); a first switch group S A9 , S A10 ; and a second switch group S A11 , S A12 , as shown in
其中,所述第二无源开关电容积分器20可包括:2Q个第二电容以及串联连接所述2Q个第二电容中的Q个电容的第三开关组以及串联连接所述2Q个第二电容中的另外的Q个电容的第四开关组。Wherein, the second passive switched
例如,所述第二无源开关电容积分器可包括4个第二电容(即,CB1–CB4);第三开关组SB9、SB10;以及第四开关组SB11、SB12,如图3所示。其中,所述第二电容的电容值(例如,1/2CDAC)等于所述电容性模数转换阵列30的总电容值(例如,CDAC)的1/2倍。For example, the second passive switched capacitor integrator may include four second capacitors (ie, C B1 -C B4 ); a third switch group S B9 , S B10 ; and a fourth switch group S B11 , S B12 , As shown in Figure 3. Wherein, the capacitance of the second capacitor (for example, 1/2C DAC ) is equal to 1/2 times the total capacitance of the capacitive analog-to-digital conversion array 30 (for example, C DAC ).
其中,所述控制逻辑电路40用于在所述电容性模数转换阵列30中的电容复位到初始状态的情况下,闭合所述第一开关组与所述第二开关组,以使所述第一无源开关电容积分器输出第一残差电压,以及闭合所述第三开关组与所述第四开关组,以使所述第二无源开关电容积分器输出第二残差电压。Wherein, the
具体地,所述第一残差电压为所述2Q个第一电容在上一预设周期的第一子残差电压之和,以及所述第二残差电压为所述2Q个第二电容在所述上一预设周期的第二子残差电压之和。Specifically, the first residual voltage is the sum of the first sub-residual voltages of the 2Q first capacitors in the last preset period, and the second residual voltage is the sum of the first sub-residual voltages of the 2Q second capacitors The sum of the second sub-residual voltages in the last preset period.
例如,在启动信号(ΦRST信号)恢复为高(即,所述电容性模数转换阵列30中的电容复位到初始状态)并且转换控制信号(ΦCNV信号)拉高(如图5所示)之后,将无源开关电容积分器10中的第一开关组和第二开关组(即开关SA9-SA12)与无源开关电容积分器20中的第三开关组和第四开关组开关(即开关SB9-SB12)闭合,此时,无源开关电容积分器10与无源开关电容积分器20的构型如图4的右侧内容所示。将无源开关电容积分器10中经过无源积分的上一预设周期的子残差电压VEF进行2倍无源倍增后(即,第一残差电压为2VEF)与输入电压串接,并加在双差分输入比较器50的第一差分输入端;同时,将无源开关电容积分器20中经过无源积分的上一预设周期的子残差电压VCIFF进行2倍无源倍增后(即,第二残差电压为2VCIFF)加在第二差分输入端,如图1所示。For example, after the start signal (ΦRST signal) returns to high (that is, the capacitance in the capacitive analog-to-
其中,所述双差分输入比较器50用于接收所述第一残差电压与当前预设周期的输入电压之和作为第一差分输入信号,接收所述第二残差电压作为第二差分输入信号,以及输出比较结果。Wherein, the dual
例如,所述双差分输入比较器的第一差分输入端的放大倍数为1;以及所述双差分输入比较器的第二差分输入端的放大倍数为5。For example, the amplification factor of the first differential input terminal of the dual differential input comparator is 1; and the amplification factor of the second differential input terminal of the dual differential input comparator is 5.
具体地,在信号ΦCNV为高的时间内,当比较器控制信号ΦCLKC为高时,所述双差分输入比较器50将无源开关电容积分器10输出的2VEF与输入电压之和作为第一差分输入信号;同时,将无源开关电容积分器10输出的2VCIFF作为第二差分输入信号,然后,根据上式表示的信号输出相应的比较结果:当比较器的两正差分端所接收信号之和大于比较器两负差分端所接收信号之和时,比较结果为正,反之则为负。Specifically, when the signal ΦCNV is high, when the comparator control signal ΦCLKC is high, the double
在所述双差分输入比较器输出比较结果的情况下,所述控制逻辑电路40还用于,根据所述比较结果,输出多个开关控制信号至所述两个电容性模数转换阵列,以输出与所述当前预设周期的输入电压相对应的当前预设周期的数字数据。In the case where the dual differential input comparator outputs a comparison result, the
具体地,所述控制逻辑电路40可根据双差分输入比较器50输出的比较结果,按照拆分开关电容阵列的开关切换方案对两个电容性模数转换阵列30中对应位上的电容进行开关切换。Specifically, the
例如,当比较结果为正时,第k位的比较(转换)结果为1,通过控制逻辑电路40中的逐次逼近控制电路41控制相应开关来将位于输入正端的电容性模数转换阵列30中的第k位对应的P侧电容的下极板由正参考电压VREFP改接为负参考电压VREFN,使得输入正端的电容性模数转换阵列30中的电容的上极板上的电压值VDACP降低(1/4)k(VREFP-VREFN);而通过所述逐次逼近控制电路41控制相应开关来将位于输入负端的电容性模数转换阵列30中的N侧电容的下极板由负参考电压VREFN改接为正参考电压VREFP,使得输入负端的电容性模数转换阵列30中的电容的上极板上的电压值VDACN升高(1/4)k(VREFP-VREFN)。反之,当比较结果为负时,第k位的比较(转换)结果为0,将位于输入正端的电容性模数转换阵列30中的第k位对应的N侧电容的下极板由负参考电压VREFN改接为正参考电压VREFP,使得输入正端的电容性模数转换阵列30中的电容的上极板上的的电压值VDACP升高(1/4)k(VREFP-VREFN),而位于输入负端的电容性模数转换阵列30中的P侧电容的下极板由正参考电压VREFP改接为负参考电压VREFN,使得输入负端的电容性模数转换阵列30中的电容的上极板上的电压值VDACN降低(1/4)k(VREFP-VREFN),以实现共模电平保持不变的二进制逐次逼近。For example, when the comparison result is positive, the comparison (conversion) result of the kth bit is 1, and the corresponding switch is controlled by the successive
整个逐次逼近过程如下式所示,其中,N为模数转换器的位/比特数,Dk表示第k位的转换结果,VIP与VIN分别表示采样阶段采样至位于输入正端的电容性模数转换阵列(即CDAC)30的电压值与位于输入负端的电容性模数转换阵列30的电压值,VREFP、VREFN分别表示正参考电压/电平、负参考电压/电平,VDACP、VDACN分别表示位于输入正端的电容性模数转换阵列(即CDAC)30的电压值与位于输入负端的电容性模数转换阵列30的电压值:The entire successive approximation process is shown in the following formula, where N is the number of bits/bits of the analog-to-digital converter, D k represents the conversion result of the k-th bit, V IP and V IN represent the capacitive capacitor sampled to the positive input terminal in the sampling stage, respectively. The voltage value of the analog-to-digital conversion array (that is, CDAC) 30 and the voltage value of the capacitive analog-to-
当比较进行至最后一位时,若比较结果为正,则将位于输入正端的电容性模数转换阵列(即CDAC)30中的最低位的正极(P)侧电容的下极板由正参考电压改接为负参考电压,以在差分的电容性模数转换阵列(即CDAC)30的电容的上极板上产生正确的余差电压(VRES),完成逐次逼近转换;反之,则将位于输入负端的电容性模数转换阵列(即CDAC)30的最低位的正极(P)侧电容的下极板由正参考电压改接为负参考电压,并完成逐次逼近转换。When comparing to the last bit, if the comparison result is positive, then the lower plate of the positive pole (P) side capacitance of the lowest position in the capacitive analog-to-digital conversion array (i.e. CDAC) 30 at the input positive end is referenced by the positive The voltage is reconnected to a negative reference voltage to generate a correct residual voltage (V RES ) on the upper plate of the capacitor of the differential capacitive analog-to-digital conversion array (ie CDAC) 30 to complete the successive approximation conversion; otherwise, the The lower plate of the lowest positive (P) side capacitor of the capacitive analog-to-digital conversion array (namely CDAC) 30 located at the input negative terminal is changed from a positive reference voltage to a negative reference voltage, and the successive approximation conversion is completed.
下面分别对上述实施例中的第一电容在所述上一预设周期的第一子残差电压以及第二电容在所述上一预设周期的第二子残差电压进行介绍。The first sub-residual voltage of the first capacitor in the last preset period and the second sub-residual voltage of the second capacitor in the last preset period in the above embodiment are respectively introduced below.
所述第一无源开关电容积分器10还可包括:并联连接所述2Q个第一电容的第五开关组,相应地,在输出与所述上一预设周期的输入电压相对应的所述上一预设周期的数字数据之后,所述控制逻辑电路还用于,通过闭合所述第五开关组来将所述两个电容性模数转换阵列的上极板的残差电压分配至所述2Q个第一电容,以使所述第一电容的电压为所述第一子残差电压。The first passive switched
例如,所述第一无源开关电容积分器10还可包括:并联连接4个第一电容的第五开关组(例如,图2所示的开关SA1-SA8)。For example, the first passive switched
所述第二无源开关电容积分器20还可包括:并联连接所述2Q个第二电容的第六开关组,相应地,在执行所述通过闭合所述第五开关组来将所述两个电容性模数转换阵列的上极板的残差电压分配至所述2Q个第一电容的步骤之后,所述控制逻辑电路还用于断开所述第五开关组,并通过闭合所述第六开关组来将所述两个电容性模数转换阵列的上极板的更新的残差电压分配至所述2Q个第二电容,以使所述第二电容的电压为所述第二子残差电压。The second passive switched
例如,所述第二无源开关电容积分器20还可包括:并联连接4个第二电容的第六开关组(例如,图2所示的开关SB1-SB8)。For example, the second passive switched
具体地,在所述上一预设周期转换得到相应的数字数据之后,在模拟域上,控制逻辑电路40控制信号ΦEF拉高以导通无源开关电容积分器10中的第五开关组(即,开关SA1-SA8,此时无源开关电容积分器10的构型如图4的左侧内容所示),从而可将所述电容性模数转换阵列30的所有电容的上极板上的残差电压以差分方式通过电容间的电荷重分配采样至积分电容CA1-CA4上,以实现一阶无源积分。这一过程满足下式,其中VEF为第一电容在上一预设周期的第一子残差电压:Specifically, after the corresponding digital data is converted in the last preset period, in the analog domain, the
在ΦEF恢复为低(断开开关SA1-SA8)后,控制逻辑电路40控制信号ΦCIFF拉高以导通无源开关电容积分器20中的第六开关组(即,开关SB1-SB8,此时无源开关电容积分器20的构型如图4的左侧内容所示)将所述电容性模数转换阵列30的所有电容的上极板上的更新的残差电压(即电容性模数转换阵列30经过无源开关电容积分器10采样后的残差电压,其数值等于电容CA1-CA4中的各个电容上的电压VEF)以差分方式利用电荷重分配采样至积分电容CB1-CB4上,实现二阶无源积分。这一过程满足下式,其中VCIFF为第二电容在上一预设周期的第二子残差电压:After ΦEF returns to low (turn off the switches S A1 -S A8 ), the
将无源开关电容积分器10输出的2VEF与输入电压之和作为所述双差分输入比较器50的第一差分输入信号;同时,将无源开关电容积分器10输出的2VCIFF作为第二差分输入信号,因此,逐次逼近控制电路41输出下式表示的信号(离散域的系统信号传递函数):The sum of the 2V EF output by the passive switched
DOUT(z)=VINPUT(z)+4VEF(z)+5×4VCIFF(z)=VINPUT(z)+(1-0.8z-1)2Q(z),D OUT (z)=V INPUT (z)+4V EF (z)+5×4V CIFF (z)=V INPUT (z)+(1-0.8z -1 ) 2 Q(z),
其中,z为离散域的变量,VCIFF所对应的5倍额外增益通过比较器的第二差分输入端的晶体管的尺寸与第一差分输入端的晶体管的尺寸成相应的倍数实现。Wherein, z is a variable in the discrete domain, and the additional gain of 5 times corresponding to V CIFF is realized by the corresponding multiple of the size of the transistor at the second differential input end of the comparator and the size of the transistor at the first differential input end.
上述二阶无源混合型噪声整形技术通过两组无源开关电容积分器分别对于转换后的残差电压进行采样与积分,而后分别以误差反馈和前向相加的方式将两积分器输出馈入下一周期的输入采样信号一并进行转换,从而将模数转换器的带内量化噪声与比较器噪声调制到高频段,实现二阶高通噪声整形效果。这一方案能够更有效地降低信号带宽内的量化噪声与比较器噪声,能够在进一步提高模数转换器带内信噪比的同时维持较小的芯片面积。The above second-order passive hybrid noise shaping technology samples and integrates the converted residual voltage through two sets of passive switched capacitor integrators, and then feeds the output of the two integrators to the The input sampling signal of the next cycle is converted together, so that the in-band quantization noise and comparator noise of the analog-to-digital converter are modulated to the high frequency band, and the second-order high-pass noise shaping effect is realized. This scheme can more effectively reduce quantization noise and comparator noise within the signal bandwidth, and can further improve the in-band signal-to-noise ratio of the analog-to-digital converter while maintaining a smaller chip area.
对于电容性模数转换阵列(即CDAC)30,其包括:N对电容及相应的N对开关。其中,每对电容与一个数据位相对应,具体地,所述N对电容包括一对最高位电容(包括正极侧的最高位电容与负极侧的最高位电容)和N-1对其他低位电容(包括正极侧的N-2个中间低位电容、负极侧的N-2个中间低位电容、及正极侧的1个最低位电容与1个补位电容),其依次对应最高位数据及低N-1位数据。For the capacitive analog-to-digital conversion array (ie CDAC) 30, it includes: N pairs of capacitors and corresponding N pairs of switches. Wherein, each pair of capacitances corresponds to one data bit, specifically, the N pairs of capacitances include a pair of highest-level capacitances (including the highest-level capacitance on the positive side and the highest-level capacitance on the negative side) and N-1 pairs of other low-level capacitances ( Including N-2 middle low capacitors on the positive side, N-2 middle low capacitors on the negative side, and 1 lowest capacitor and 1 supplementary capacitor on the positive side), which in turn correspond to the highest data and low N- 1 bit of data.
尽管过采样与噪声整形技术可以有效提高模数转换器的带内信噪比,但无法降低电容阵列失配所引入的谐波失真对模数转换器的影响,而后者往往对高分辨率模数转换器的信噪比具有更大的影响。Although oversampling and noise shaping techniques can effectively improve the in-band signal-to-noise ratio of the ADC, they cannot reduce the impact of the harmonic distortion introduced by the capacitor array mismatch on the ADC, and the latter often affects high-resolution analog converters. The signal-to-noise ratio of the digital converter has a greater impact.
针对上述技术问题,在本实施例中,基于预测的输入信号预偏移技术针对于误差反馈式失配误差整形需要将上一预设周期低位转换结果馈入当次转换的机制,利用过采样的特点,根据上一预设周期的转换结果对下一周期馈入低位结果后的“待转换电压值”所处区间进行预测;并据此利用电容阵列的高位电容进行预切换而实现输入预偏移,从而使得待转换电压不超过输入信号范围的满摆幅,保证了输入的动态范围不受影响。需要注意的是,由于本方案采用的是两点预测技术,故其能够有效地避免引入新的谐波。In view of the above technical problems, in this embodiment, the input signal pre-skew technology based on prediction is aimed at the mechanism of feeding the low-bit conversion result of the previous preset cycle into the current conversion for the error feedback mismatch error shaping, using oversampling According to the characteristics of the conversion result of the previous preset cycle, the range of the "voltage value to be converted" after the low-order result is fed into the next cycle is predicted; Offset, so that the voltage to be converted does not exceed the full swing of the input signal range, ensuring that the dynamic range of the input is not affected. It should be noted that since this scheme uses a two-point prediction technique, it can effectively avoid introducing new harmonics.
在一实施例中,所述数字数据可为N位数据,以及所述模数转换器还可包括:采样开关电路60,如图1所示。In an embodiment, the digital data may be N-bit data, and the analog-to-digital converter may further include: a
在所述两个电容性模数转换阵列中的电容复位到初始状态之前,所述控制逻辑电路40还用于执行以下操作:根据关于所述当前预设周期的预测值,将所述两个电容性模数转换阵列中的正极侧与负极侧的最高位电容的下极板连接至不同的参考电压;导通所述采样开关电路,以将所述当前预设周期的输入电压采样至所述电容性模数转换阵列;以及断开所述采样开关电路,并将所述电容性模数转换阵列中的各个电容复位至初始状态,以馈入与所述参考电压相应的预偏移补偿量及所述上一预设周期输出的N位数据中的低N-1位数据。Before the capacitances in the two capacitive analog-to-digital conversion arrays are reset to the initial state, the
其中,所述控制逻辑电路40用于将所述两个电容性模数转换阵列中的正极侧与负极侧的最高位电容的下极板连接至不同的参考电压可包括:在关于所述当前预设周期的预测值为1的情况下,将位于输入正端的所述电容性模数转换阵列中的正极侧与负极侧的最高位电容的下极板连接至正参考电压,以及将位于输入负端的所述电容性模数转换阵列中的正极侧与负极侧的最高位电容的下极板连接至负参考电压;或者在关于所述当前预设周期的预测值为0的情况下,将位于输入正端的所述电容性模数转换阵列中的正极侧与负极侧的最高位电容的下极板连接至负参考电压,以及将位于输入负端的所述电容性模数转换阵列中的正极侧与负极侧的最高位电容的下极板连接至正参考电压。Wherein, the
其中,所述控制逻辑电路40用于将所述电容性模数转换阵列中的各个电容复位至初始状态可包括:将所述电容性模数转换阵列中的正极侧的电容的下极板连接至正参考电压,以及将所述电容性模数转换阵列中的负极侧的电容的下极板接地。Wherein, the
具体地,在获取关于所述当前预设周期的预测值之后,根据相应的预测结果控制两个所述电容性模数转换阵列30的最高位电容的下极板一并改接到正参考电压(预测结果为正)或负参考电压(结果为负)输入预偏移,以为输入预偏移做准备:结果为正时,正极(P)侧的最高位电容的下极板均改接到正参考电压,负极(N)侧的最高位电容的下极板均改接到负参考电压;而预测结果为负时,反之。Specifically, after obtaining the predicted value of the current preset period, control the lower plates of the highest capacitors of the two capacitive analog-to-
在一预设周期开始时,控制逻辑电路40将采样控制信号ΦCLKS拉高并保持4个时钟周期,以导通采样开关,从而可将输入信号差分采样至正负两端的所述电容性模数转换阵列30上;其余的低位电容的下极板所连接的开关维持上一预设周期的连接不变,将上一预设周期的低位转换结果保持在对应位上,以实现(低位电容相较最高位电容的)失配误差整形。At the beginning of a preset cycle, the
采用控制信号ΦCLKS变为低(即断开采样开关电路60)后,经过一个短的延时,启动信号ΦRST拉低一个时钟周期以将所述电容性模数转换阵列30中的所有电容复位到初始状态:将P侧的所有电容的下极板改接正参考电压,而N侧的所有电容的下极板改接到地。复位时,同时完成失配误差整形所需的上一预设周期的低位转换结果的馈入以及消除失配误差整形影响所需的输入预偏移补偿量±1/2(VREFP-VREFN)(在关于所述当前预设周期的预测值为1的情况下,将位于输入正端的所述电容性模数转换阵列中的正极侧与负极侧的最高位电容的下极板连接至正参考电压,以及将位于输入负端的所述电容性模数转换阵列中的正极侧与负极侧的最高位电容的下极板连接至负参考电压,在此情况下,复位阶段引入的补偿量为负值,即,-1/2(VREFP-VREFN);反之,复位阶段引入的补偿量为正值,即,+1/2(VREFP-VREFN))的引入两个操作。预偏移操作可以将前次低位转换结果馈入所带来的输入信号过载抵消,使得馈入后的待转换信号仍然处于模数转换器的正常输入范围内,从而避免了采用失配误差整形所引起的输入动态范围损失。由于本方案仅需增加数组加法器,不需要额外的动态元件匹配电路,同时消除了原有失配误差整形方案对于输入动态范围的影响,实现简单且具有良好的鲁棒性。After the control signal ΦCLKS becomes low (that is, the
由于在转换之前(即模拟域上)引入了上一预设周期输出的低N-1位数据DACLSB(n-1)和预偏移补偿量DACPRE(n),如图6所示,故可针对转换后的当前预设周期的N位数据进行相应的修正。Since the low N-1 bit data DAC LSB (n-1) and the pre-offset compensation amount DAC PRE (n) output in the previous preset period are introduced before conversion (that is, on the analog domain), as shown in Figure 6, Therefore, corresponding corrections can be made for the converted N-bit data of the current preset period.
在执行所述输出与所述当前预设周期的输入电压相对应的当前预设周期的数字数据的步骤之后,所述控制逻辑电路40还用于执行以下操作:将所述当前预设周期输出的N位数据减去所述上一预设周期输出的N位数据中的低N-1位数据,以获取N位差值;以及将所述N位差值减去与所述预偏移补偿量相对应的数值,以输出与所述当前预设周期的输入电压对应的所述当前预设周期的补偿后的N位数据。After performing the step of outputting the digital data of the current preset period corresponding to the input voltage of the current preset period, the
具体地,由于在模拟域上向输入信号中加入了上一预设周期的低位信号,故转换完成后,在数字域上,模数转换器输出的10位数据D<1:10>(当前预设周期n的低9位数据DLSB(n)与当前预设周期n的最高位数据DMSB(n)之和)进入减法器,用D<1:10>减去对应寄存器中所存储的上一预设周期n-1的低9位转换结果(即,DLSB(n-1)),如图6所示,从而对低位电容相较最高位的失配E(n)构造相应的高通整形传递函数(1-z-1),实现一阶高通失配误差整形。Specifically, since the low-bit signal of the previous preset period is added to the input signal in the analog domain, after the conversion is completed, in the digital domain, the 10-bit data D<1:10> (current The sum of the lower 9-bit data D LSB (n) of the preset cycle n and the highest bit data D MSB (n) of the current preset cycle n) enters the subtracter, and subtracts the value stored in the corresponding register with D<1:10> The lower 9-bit conversion result (that is, D LSB (n-1)) of the last preset cycle n-1 of , as shown in Figure 6, so as to construct a corresponding The high-pass shaping transfer function (1-z -1 ) of (1-z -1 ) implements first-order high-pass mismatch error shaping.
理由如下:由于实际低位电容相较于最高位电容存在失配,模式转换器(DAC)的低位转换结果将携带着相应的失配误差E(n)(其中DACLSB(n)表示留在CDAC相应电容下极板上的低位转换结果,DLSB(n)表示输出的数字码中除最高位之外的低9位结果),The reason is as follows: Due to the mismatch of the actual low-side capacitance compared to the highest-side capacitance, the low-side conversion result of the mode converter (DAC) will carry a corresponding mismatch error E(n) (where DAC LSB (n) represents the value left in CDAC The low-order conversion result on the lower plate of the corresponding capacitor, D LSB (n) represents the result of the lower 9 bits in the output digital code except for the highest bit),
DACLSB(n)=DLSB(n)+E(n);DAC LSB (n)=D LSB (n)+E(n);
失配整形(MES)技术依靠将携带着失配误差E(n)的上一周期的转换结果低位返回到当前周期,对E(n)构造一个高通整形函数而实现。在模拟域上,只需要在采样期间仍将上一次转换的低位(LSB)结果保留在相应的电容下极板上,待采样完成后再进行复位即可实现输入信号与DACLSB(n)的相加:The Mismatch Shaping (MES) technology relies on returning the lower bits of the conversion result of the previous cycle carrying the mismatch error E(n) to the current cycle, and constructing a high-pass shaping function for E(n). In the analog domain, it is only necessary to keep the low-order (LSB) result of the last conversion on the corresponding lower plate of the capacitor during the sampling period, and then reset the input signal and the DAC LSB (n) after the sampling is completed. add up:
VINPUT(n)+DACLSB(n-1)-DACMSB(n)-DACLSB(n)=0;V INPUT (n)+DAC LSB (n-1)-DAC MSB (n)-DAC LSB (n)=0;
由于在模拟域上向输入信号中加入了上一周期的低位信号,因此,转换完成后,在数字域上,模数转换器的10位输出D<1:10>进入减法器,减去对应寄存器中所存储的上一周期的低9位转换结果,以将所馈入的上一周期低位结果减去,对低位电容相较最高位的失配E(n)构造相应的高通整形传递函数(1-z-1),实现一阶高通失配误差整形:Since the low-bit signal of the previous cycle is added to the input signal in the analog domain, after the conversion is completed, in the digital domain, the 10-bit output D<1:10> of the analog-to-digital converter enters the subtractor, and subtracts the corresponding The lower 9-bit conversion result of the previous cycle stored in the register is used to subtract the fed-in low-bit result of the previous cycle, and construct a corresponding high-pass shaping transfer function for the mismatch E(n) between the low-bit capacitance and the highest bit (1-z -1 ), implementing first-order high-pass mismatch error shaping:
DOUT(n)=DMSB(n)+DLSB(n)-DLSB(n-1)。D OUT (n)=D MSB (n)+D LSB (n)−D LSB (n−1).
将上述前两个公式代入第三个公式中,整理得到Substituting the first two formulas above into the third formula, we can get
DOUT(n)=VINPUT(n)+E(n-1)-E(n),D OUT (n)=V INPUT (n)+E(n-1)-E(n),
也即:That is:
DOUT(z)=VINPUT(z)+(1-z-1)E(z),D OUT (z)=V INPUT (z)+(1-z -1 )E(z),
其等效于对输出结果中所带的失配误差进行了一阶高通整形。It is equivalent to performing first-order high-pass shaping on the mismatch error carried in the output result.
而后,将上述减法结果送入加减法器,以减去与所述预偏移补偿量相对应的数值(即,图6所示的DPRE(n)),将输出结果作为与当前预设周期的补偿后的输出数字量S<1:10>。具体地,根据关于所述当前预设周期的预测值,在关于所述当前预设周期的预测值为1的情况下,复位阶段引入的补偿量为负值(即,-1/2(VREFP-VREFN)),则将上述减法结果加上1/2(VREFP-VREFN);反之,在关于所述预设周期的预测值为0的情况下,复位阶段引入的补偿量为正值(即,+1/2(VREFP-VREFN)),则将上述减法结果减去1/2(VREFP-VREFN)。Then, the above-mentioned subtraction result is sent to the adder-subtractor to subtract the value corresponding to the pre-offset compensation amount (that is, D PRE (n) shown in FIG. 6 ), and the output result is used as the current preset Set the output digital quantity S<1:10> after period compensation. Specifically, according to the predicted value about the current preset period, in the case that the predicted value about the current preset period is 1, the compensation amount introduced in the reset phase is a negative value (that is, -1/2(V REFP -V REFN )), then add 1/2(V REFP -V REFN ) to the result of the above subtraction; on the contrary, when the predicted value of the preset period is 0, the compensation amount introduced in the reset phase is If it is a positive value (ie, +1/2(V REFP −V REFN )), then subtract 1/2(V REFP −V REFN ) from the result of the above subtraction.
在获取当前预设周期的补偿后的N位数据之后,所述控制逻辑电路40还用于,将所述当前预设周期的补偿后的N位数据与所述当前预设周期输出的N位数据中的低N-1位数据相加,以获取关于下一预设周期的预测值。After acquiring the compensated N-bit data of the current preset period, the
具体地,所述控制逻辑电路40中的输出处理与预测电路42将所述当前预设周期的补偿后的N位数据S<1:10>与所述当前预设周期输出的N位数据中的低N-1位数据DLSB(n)相加,以获取关于下一预设周期的预测值。Specifically, the output processing and
根据关于所述下一预设周期的预测值的正负,所述输出处理与预测电路42进而将相应的控制位设为0(预测值为正)或1(预测值为负),而后在当前预设周期的最后一个时钟上升沿且ΦSET信号为高时,将控制位的值送入最高位电容的控制开关,通过改接最高位电容的下极板来实现基于输入信号范围预测的输入信号预偏移。According to whether the predicted value of the next preset period is positive or negative, the output processing and
由于模数转换过程需要用到上一预设周期的相应结果,故在上述实施例中限定了相应的预设周期,但需要注意的是,上述各个实施例中的模数转换过程中的各个步骤不限于相应的预设周期(例如,当前预设周期),其可类似地适用于各个预设周期(例如,上一预设周期或下一预设周期)。Since the analog-to-digital conversion process needs to use the corresponding result of the previous preset cycle, the corresponding preset cycle is defined in the above-mentioned embodiments, but it should be noted that each of the analog-to-digital conversion processes in the above-mentioned embodiments The steps are not limited to the corresponding preset period (eg, the current preset period), which can be similarly applied to each preset period (eg, the previous preset period or the next preset period).
下面对当前预设周期中的模数转换过程进行描述,其主要包括以下步骤S1-S8。The analog-to-digital conversion process in the current preset period is described below, which mainly includes the following steps S1-S8.
S1:在上一预设周期的最后一个时钟上升沿,ΦSET信号为高,根据上一预设周期对当前预设周期的相应预测结果,可控制电容性模数转换阵列30中的正极侧与负极侧的最高位电容的下极板一并改接到正参考电压(预测结果为正)或负参考电压(结果为负),以为输入预偏移做好准备。S1: On the rising edge of the last clock in the last preset cycle, the ΦSET signal is high, and according to the corresponding prediction result of the previous preset cycle to the current preset cycle, the positive side and the The lower plate of the highest capacitor on the negative side is connected to the positive reference voltage (the prediction result is positive) or the negative reference voltage (the result is negative) to prepare for the input pre-offset.
S2:当前预设周期开始时,采样控制信号ΦCLKS拉高并保持4个时钟周期,以导通采样开关,从而将输入信号差分采样至两个电容性模数转换阵列30上;其余的低位电容的下极板所连接的开关维持上一预设周期的连接不变,以将上一预设周期的低位转换结果保持在对应位上,从而实现(低位电容相较最高位电容的)失配误差整形。S2: When the current preset cycle starts, the sampling control signal ΦCLKS is pulled high and kept for 4 clock cycles to turn on the sampling switch, thereby differentially sampling the input signal to two capacitive analog-to-
S3:控制信号ΦCLKS变为低后,经过一个短的延时,启动信号ΦRST拉低一个时钟周期,将两个电容性模数转换阵列30中的所有电容复位到初始状态。S3: After the control signal ΦCLKS goes low, after a short delay, the start signal ΦRST is pulled low for one clock cycle, and all the capacitors in the two capacitive analog-to-
S4:ΦRST信号恢复为高后,ΦCNV信号拉高以将无源开关电容积分器10中的开关SA9-SA12与无源开关电容积分器20中的开关SB9-SB12闭合,将无源开关电容积分器10中经过无源积分的上一预设周期的子残差电压VEF进行2倍无源倍增后(即,第一残差电压为2VEF)与输入电压串接,并加在双差分输入比较器50的第一差分输入端;同时,将无源开关电容积分器20中经过无源积分的上一预设周期的子残差电压VCIFF进行2倍无源倍增后(即,第二残差电压为2VCIFF)加在第二差分输入端。S4: After the ΦRST signal returns to high, the ΦCNV signal is pulled high to close the switches S A9 -S A12 in the passive switched
S5:在控制信号ΦCNV为高的时间内,当比较器控制信号ΦCLKC为高时,双差分输入比较器50将无源开关电容积分器10输出的2VEF与输入电压之和作为第一差分输入信号;同时,将无源开关电容积分器10输出的2VCIFF作为第二差分输入信号,并输出比较结果。根据比较器的输出,按照拆分开关电容阵列的开关切换方案对两个电容性模数转换阵列30中对应位上的电容进行开关切换。S5: When the control signal ΦCNV is high, when the comparator control signal ΦCLKC is high, the double
S6:转换完成后,在模拟域上,控制信号ΦEF拉高以导通无源开关电容积分器10中的开关SA1-SA8,将电容性模数转换阵列30的上极板上的残差电压以差分方式通过电容间的电荷重分配采样至积分电容CA1-CA4上,以实现一阶无源积分。ΦEF恢复为低后,控制信号ΦCIFF拉高以导通无源开关电容积分器20中的开关SB1-SB8,将电容性模数转换阵列30的上极板上的残差电压以差分方式利用电荷重分配采样至积分电容CB1-CB4上,实现二阶无源积分。S6: After the conversion is completed, in the analog domain, the control signal ΦEF is pulled high to turn on the switches S A1 -S A8 in the passive switched
S7:由于在模拟域上向输入信号中加入了上一预设周期的低位信号,因此转换完成后,在数字域上,模数转换器输出的10位数据D<1:10>进入减法器,用D<1:10>减去对应寄存器中所存储的DLSB(n-1),如图6所示,实现一阶高通失配误差整形。而后,将上述减法结果送入加减法器,根据所述当前预设周期的预测值减去与所述预偏移补偿量相对应的数值DPRE(n),将输出结果作为与当前预设周期的补偿后的输出数字量S<1:10>。S7: Since the low-bit signal of the previous preset period is added to the input signal in the analog domain, after the conversion is completed, in the digital domain, the 10-bit data D<1:10> output by the analog-to-digital converter enters the subtractor , subtract D LSB (n-1) stored in the corresponding register from D<1:10>, as shown in Figure 6, to implement first-order high-pass mismatch error shaping. Then, the above-mentioned subtraction result is sent to the adder and subtractor, and the numerical value D PRE (n) corresponding to the pre-offset compensation amount is subtracted from the predicted value of the current preset period, and the output result is used as the current preset period. Set the output digital quantity S<1:10> after period compensation.
S8:输出处理与预测电路42将所述当前预设周期的补偿后的N位数据S<1:10>与所述当前预设周期输出的N位数据中的低N-1位数据DLSB(n)相加,以获取关于下一预设周期的预测值。根据关于所述下一预设周期的预测值的正负,所述输出处理与预测电路42进而将相应的控制位设为0(预测值为正)或1(预测值为负),而后在当前预设周期的最后一个时钟上升沿且ΦSET信号为高时,将控制位的值送入最高位电容的控制开关,通过改接最高位电容的下极板来实现基于输入信号范围预测的输入信号预偏移。S8: The output processing and
上述实施例主要采用无源混合型噪声整形技术与基于预测的输入信号预偏移技术两种技术以进一步提高模数转换器的信号带内信噪比,在较低的系统复杂度、较小的芯片面积与较低的功耗下实现较高的信噪比与无杂散动态范围(SFDR)。上述方案可被应用于低功耗传感器系统中,能够有效降低信号带宽内的量化噪声,提高模数转换器的带内信噪比,并可在具备良好的失配误差整形(消除)效果的同时消除失配误差整形技术对于模数转换器输入动态范围的影响,有效地提高系统中模数转换器的分辨率与线性度。The above-mentioned embodiment mainly adopts passive hybrid noise shaping technology and prediction-based input signal pre-skew technology to further improve the signal-to-noise ratio of the analog-to-digital converter. Higher signal-to-noise ratio and spurious-free dynamic range (SFDR) are achieved with a smaller chip area and lower power consumption. The above scheme can be applied to low-power sensor systems, which can effectively reduce the quantization noise within the signal bandwidth, improve the in-band signal-to-noise ratio of the analog-to-digital converter, and can be used in an environment with good mismatch error shaping (elimination) effect At the same time, the influence of the mismatch error shaping technology on the input dynamic range of the analog-to-digital converter is eliminated, and the resolution and linearity of the analog-to-digital converter in the system are effectively improved.
综上所述,本发明创造性地在所述两个电容性模数转换阵列中的电容复位到初始状态的情况下,通过控制逻辑电路闭合所述第一开关组与所述第二开关组,以使所述第一无源开关电容积分器输出第一残差电压,以及通过控制逻辑电路闭合所述第三开关组与所述第四开关组,以使所述第二无源开关电容积分器输出第二残差电压;通过双差分输入比较器接收所述第一残差电压与当前预设周期的输入电压之和作为第一差分输入信号,接收所述第二残差电压作为第二差分输入信号,以及输出比较结果;然后通过所述控制逻辑电路根据所述比较结果,输出多个开关控制信号至所述两个电容性模数转换阵列,以输出与所述当前预设周期的输入电压相对应的当前预设周期的数字数据。由此,本发明采用二阶无源混合型噪声整形技术通过两组无源开关电容积分器分别对于上一预设周期的残差电压进行采样与积分,并分别以误差反馈和前向相加的方式将两积分器输出馈入当前周期的输入采样信号一并进行转换,从而将模数转换器的带内量化噪声与比较器噪声调制到高频段,实现二阶高通噪声整形效果而抑制信号带内的相关噪声。In summary, the present invention creatively closes the first switch group and the second switch group by controlling the logic circuit when the capacitors in the two capacitive analog-to-digital conversion arrays are reset to the initial state, making the first passive switched capacitor integrator output a first residual voltage, and closing the third switch group and the fourth switch group through a control logic circuit, so that the second passive switched capacitor integrator output the second residual voltage; the sum of the first residual voltage and the input voltage of the current preset period is received as the first differential input signal through a dual differential input comparator, and the second residual voltage is received as the second Differential input signals, and output comparison results; then output a plurality of switch control signals to the two capacitive analog-to-digital conversion arrays according to the comparison results through the control logic circuit, so as to output the current preset cycle The digital data of the current preset cycle corresponding to the input voltage. Therefore, the present invention adopts the second-order passive hybrid noise shaping technology to sample and integrate the residual voltage of the previous preset period through two sets of passive switched capacitor integrators, and respectively use error feedback and forward addition In this way, the output of the two integrators is fed into the input sampling signal of the current period and converted together, thereby modulating the in-band quantization noise and comparator noise of the analog-to-digital converter to the high frequency band, realizing the second-order high-pass noise shaping effect and suppressing the signal In-band correlated noise.
本发明一实施例还提供一种芯片,所述芯片包括所述的模数转换器。An embodiment of the present invention also provides a chip, which includes the analog-to-digital converter.
有关本发明实施例提供的芯片的具体细节及益处可参阅上述针对模数转换器的描述,于此不再赘述。For the specific details and benefits of the chip provided by the embodiment of the present invention, please refer to the above-mentioned description of the analog-to-digital converter, which will not be repeated here.
以上结合附图详细描述了本发明的优选实施方式,但是,本发明并不限于上述实施方式中的具体细节,在本发明的技术构思范围内,可以对本发明的技术方案进行多种简单变型,这些简单变型均属于本发明的保护范围。The preferred embodiment of the present invention has been described in detail above in conjunction with the accompanying drawings, but the present invention is not limited to the specific details of the above embodiment, within the scope of the technical concept of the present invention, various simple modifications can be made to the technical solution of the present invention, These simple modifications all belong to the protection scope of the present invention.
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,为了避免不必要的重复,本发明对各种可能的组合方式不再另行说明。In addition, it should be noted that the various specific technical features described in the above specific embodiments can be combined in any suitable way if there is no contradiction. The combination method will not be described separately.
本领域技术人员可以理解实现上述实施例方法中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,该程序存储在一个存储介质中,包括若干指令用以使得单片机、芯片或处理器(processor)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。Those skilled in the art can understand that all or part of the steps in the method of the above-mentioned embodiments can be completed by instructing the relevant hardware through a program. (processor) executes all or part of the steps of the methods described in the various embodiments of the present application. The aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disk or optical disk and other media that can store program codes. .
此外,本发明的各种不同的实施方式之间也可以进行任意组合,只要其不违背本发明的思想,其同样应当视为本发明所公开的内容。In addition, various combinations of different embodiments of the present invention can also be combined arbitrarily, as long as they do not violate the idea of the present invention, they should also be regarded as the disclosed content of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310226260.XA CN116405031A (en) | 2023-03-03 | 2023-03-03 | Analog-to-digital converters and chips |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310226260.XA CN116405031A (en) | 2023-03-03 | 2023-03-03 | Analog-to-digital converters and chips |
Publications (1)
Publication Number | Publication Date |
---|---|
CN116405031A true CN116405031A (en) | 2023-07-07 |
Family
ID=87013232
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202310226260.XA Pending CN116405031A (en) | 2023-03-03 | 2023-03-03 | Analog-to-digital converters and chips |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN116405031A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117749187A (en) * | 2024-02-20 | 2024-03-22 | 北京智芯微电子科技有限公司 | Analog-to-digital converter, processor and electronic equipment |
CN118920818A (en) * | 2024-07-30 | 2024-11-08 | 成都智融微电子有限公司 | Control method and device of switching power supply system and switching power supply system |
-
2023
- 2023-03-03 CN CN202310226260.XA patent/CN116405031A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117749187A (en) * | 2024-02-20 | 2024-03-22 | 北京智芯微电子科技有限公司 | Analog-to-digital converter, processor and electronic equipment |
CN118920818A (en) * | 2024-07-30 | 2024-11-08 | 成都智融微电子有限公司 | Control method and device of switching power supply system and switching power supply system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9385740B2 (en) | SAR ADC and method thereof | |
US9954549B2 (en) | Charge-sharing and charge-redistribution DAC and method for successive approximation analog-to-digital converters | |
US6271782B1 (en) | Delta-sigma A/D converter | |
US9871534B2 (en) | Analog-to-digital converter with embedded noise-shaped truncation, embedded noise-shaped segmentation and/or embedded excess loop delay compensation | |
TWI389462B (en) | Multi-channel singapore-daidai tower conversion circuit with shared operational amplifier and auxiliary method thereof | |
US4704600A (en) | Oversampling converter | |
US5257026A (en) | Method and apparatus for calibrating a multi-bit delta-sigma modular | |
CN107395206A (en) | Band feedback shifts to an earlier date set successive approximation digital analog converter and corresponding Delta SigmaADC frameworks | |
CN116405031A (en) | Analog-to-digital converters and chips | |
JPH1155121A (en) | D/a converter and delta sigma type d/a converter | |
CN111988037B (en) | Sigma-Delta modulator with capacitor sharing structure | |
CN112865798A (en) | Noise shaping successive approximation analog-to-digital converter and noise shaping method | |
US8624767B2 (en) | Electronic device and method for analog to digital conversion according to delta-sigma modulation using double sampling | |
KR20190109283A (en) | Audio analog-to-digital converter systems and methods | |
US9859916B1 (en) | Multistage noise shaping sigma-delta modulator | |
JP4454498B2 (en) | Switched capacitor systems, methods and uses | |
US6927720B2 (en) | Analog signal outputting circuit and multi-level delta-sigma modulator employing the analog signal outputting circuit | |
EP0190694B1 (en) | Oversampling converter | |
CN109039338B (en) | Differential capacitor array and switching method thereof | |
US11509320B2 (en) | Signal converting apparatus and related method | |
US20200169228A1 (en) | A multi-level capacitive digital-to-analog converter for use in a sigma-delta modulator | |
US6628217B1 (en) | Signal scaling scheme for a delta sigma modulator | |
US20240356560A1 (en) | Analog-to-digital converter and operating method thereof | |
CN118631256A (en) | Analog-to-digital conversion circuit, control method, chip and electronic device | |
CN114614824A (en) | A kind of analog-to-digital converter based on time interleaved noise and its application method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |