CN116387241A - Method for manufacturing semiconductor-on-insulator substrate and method for manufacturing semiconductor device - Google Patents
Method for manufacturing semiconductor-on-insulator substrate and method for manufacturing semiconductor device Download PDFInfo
- Publication number
- CN116387241A CN116387241A CN202310451008.9A CN202310451008A CN116387241A CN 116387241 A CN116387241 A CN 116387241A CN 202310451008 A CN202310451008 A CN 202310451008A CN 116387241 A CN116387241 A CN 116387241A
- Authority
- CN
- China
- Prior art keywords
- wafer
- layer
- bubble
- semiconductor
- manufacturing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000758 substrate Substances 0.000 title claims abstract description 80
- 239000012212 insulator Substances 0.000 title claims abstract description 77
- 239000004065 semiconductor Substances 0.000 title claims abstract description 70
- 238000000034 method Methods 0.000 title claims abstract description 61
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 57
- 238000005468 ion implantation Methods 0.000 claims abstract description 57
- 238000000137 annealing Methods 0.000 claims abstract description 11
- 230000005587 bubbling Effects 0.000 claims description 45
- 230000008569 process Effects 0.000 claims description 30
- 150000002500 ions Chemical class 0.000 claims description 27
- 238000007254 oxidation reaction Methods 0.000 claims description 23
- 230000003647 oxidation Effects 0.000 claims description 22
- 229920002120 photoresistant polymer Polymers 0.000 claims description 18
- 238000002513 implantation Methods 0.000 claims description 12
- 230000015572 biosynthetic process Effects 0.000 claims description 8
- 229910052739 hydrogen Inorganic materials 0.000 claims description 4
- 239000001257 hydrogen Substances 0.000 claims description 4
- -1 hydrogen ions Chemical class 0.000 claims description 4
- 238000005137 deposition process Methods 0.000 claims description 2
- 239000006260 foam Substances 0.000 claims 2
- 238000005516 engineering process Methods 0.000 abstract description 7
- 239000010410 layer Substances 0.000 description 258
- 235000012431 wafers Nutrition 0.000 description 151
- 101100269850 Caenorhabditis elegans mask-1 gene Proteins 0.000 description 14
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 11
- 239000000463 material Substances 0.000 description 11
- 229910052710 silicon Inorganic materials 0.000 description 11
- 239000010703 silicon Substances 0.000 description 11
- 239000000243 solution Substances 0.000 description 10
- 239000012535 impurity Substances 0.000 description 8
- 238000005187 foaming Methods 0.000 description 7
- 238000009826 distribution Methods 0.000 description 5
- 238000005530 etching Methods 0.000 description 4
- 238000002347 injection Methods 0.000 description 4
- 239000007924 injection Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 230000035699 permeability Effects 0.000 description 3
- 238000000206 photolithography Methods 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 230000000873 masking effect Effects 0.000 description 2
- 239000002344 surface layer Substances 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- GPRLSGONYQIRFK-UHFFFAOYSA-N hydron Chemical compound [H+] GPRLSGONYQIRFK-UHFFFAOYSA-N 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/76—Making of isolation regions between components
- H01L21/762—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
- H01L21/7624—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology
- H01L21/76251—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques
- H01L21/76254—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques with separation/delamination along an ion implanted layer, e.g. Smart-cut, Unibond
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Element Separation (AREA)
Abstract
本发明提供一种绝缘体上半导体衬底的制造方法及半导体器件的制造方法,能够在绝缘体上半导体衬底的制造阶段,改进智能剥离技术中起泡离子注入方式,在晶圆的不同深度形成起泡层,从而在经历晶圆键合、退火和剥离后能直接获得具有不同顶层半导体厚度的绝缘体上半导体衬底,简化制造工艺,提高制造效率,节约成本。
The invention provides a method for manufacturing a semiconductor-on-insulator substrate and a method for manufacturing a semiconductor device, which can improve the bubble ion implantation method in the intelligent stripping technology in the manufacturing stage of the semiconductor-on-insulator substrate, and form bubbles at different depths of the wafer. Bubble layer, so that semiconductor-on-insulator substrates with different top-layer semiconductor thicknesses can be directly obtained after wafer bonding, annealing and stripping, simplifying the manufacturing process, improving manufacturing efficiency, and saving costs.
Description
技术领域technical field
本发明涉及半导体制造技术领域,特别涉及一种绝缘体上半导体衬底的制造方法及半导体器件的制造方法。The invention relates to the technical field of semiconductor manufacturing, in particular to a method for manufacturing a semiconductor-on-insulator substrate and a method for manufacturing a semiconductor device.
背景技术Background technique
绝缘体上硅(Silicon-On-Insulator,SOI)等绝缘体上半导体技术在顶层半导体和基底之间设置一层预埋氧化层,有效降低了顶层半导体和基底之间的寄生电容,且SOI基片还具备集成密度高、短沟道效应小、衬底噪声低、集成密度高、速度快、功耗低等优点,广泛应用于集成电路、光电子和微电机(Micro-Electro-Mechanical Systems,MEMS)传感器等领域。Silicon-on-insulator (Silicon-On-Insulator, SOI) and other semiconductor-on-insulator technologies set a layer of embedded oxide layer between the top semiconductor and the substrate, which effectively reduces the parasitic capacitance between the top semiconductor and the substrate, and the SOI substrate is also It has the advantages of high integration density, small short channel effect, low substrate noise, high integration density, fast speed, and low power consumption, and is widely used in integrated circuits, optoelectronics, and micro-electro-mechanical systems (MEMS) sensors and other fields.
现有的基于绝缘体上半导体晶圆形成的芯片中,不同元器件往往对顶层半导体有不同厚度的需求,目前的方法是对绝缘体上半导体晶圆的顶层半导体进行氧化或者刻蚀,来消耗不同厚度的顶层半导体,以满足不同元器件的制造需求,这种方法步骤较为繁琐,且需要精细的调整热氧化或者刻蚀的工艺配方(recipe),效率低且成本高。In existing chips formed based on semiconductor-on-insulator wafers, different components often have different thickness requirements for the top-layer semiconductor. The current method is to oxidize or etch the top-layer semiconductor of the semiconductor-on-insulator wafer to consume different thicknesses. The top-layer semiconductors are used to meet the manufacturing requirements of different components. This method has cumbersome steps and requires fine adjustment of the thermal oxidation or etching process recipe (recipe), which is low in efficiency and high in cost.
发明内容Contents of the invention
本发明的目的在于提供一种绝缘体上半导体衬底的制造方法及半导体器件的制造方法,能够在绝缘体上半导体衬底的制造阶段就形成不同厚度的顶层半导体且简化制造工艺,提高制造效率,节约成本。The purpose of the present invention is to provide a semiconductor-on-insulator substrate manufacturing method and a semiconductor device manufacturing method, which can form top-layer semiconductors with different thicknesses in the manufacturing stage of the semiconductor-on-insulator substrate and simplify the manufacturing process, improve manufacturing efficiency, and save energy. cost.
为实现上述目的,本发明提供一种绝缘体上半导体衬底的制造方法,其包括:To achieve the above object, the present invention provides a method for manufacturing a semiconductor-on-insulator substrate, which includes:
在所述第二晶圆的表面上形成预氧化层;forming a pre-oxidized layer on the surface of the second wafer;
对第二晶圆的不同区域进行不同深度的起泡离子注入,以在所述第二晶圆中形成不同深度的起泡层;performing bubbling ion implantation with different depths on different regions of the second wafer, so as to form bubbling layers with different depths in the second wafer;
将所述第二晶圆形成有所述预氧化层的一面键合到第一晶圆上;bonding the side of the second wafer formed with the pre-oxidized layer to the first wafer;
退火使所述起泡层起泡,以使所述第二晶圆的相应部分在所述起泡层处剥离去除,进而形成绝缘体上半导体衬底,所述绝缘体上半导体衬底具有所述第一晶圆及与之键合的所述第二晶圆的剩余部分。annealing to make the bubble layer bubble, so that the corresponding part of the second wafer is peeled off at the bubble layer, thereby forming a semiconductor-on-insulator substrate, the semiconductor-on-insulator substrate having the first A wafer and the remainder of the second wafer bonded thereto.
可选地,通过热氧化工艺或者沉积工艺,在所述第二晶圆的表面上形成所述预氧化层。Optionally, the pre-oxidized layer is formed on the surface of the second wafer by a thermal oxidation process or a deposition process.
可选地,所述预氧化层至少覆盖在所述第二晶圆的正面上,在所述第二晶圆正面上进行起泡离子注入,且所述第二晶圆的正面上的所述预氧化层键合到所述第一晶圆上。Optionally, the pre-oxidized layer covers at least the front side of the second wafer, and bubble ion implantation is performed on the front side of the second wafer, and the A pre-oxidized layer is bonded to the first wafer.
可选地,对第二晶圆的不同区域进行不同深度的起泡离子注入的步骤包括:Optionally, the step of performing bubble ion implantation at different depths on different regions of the second wafer includes:
在所述预氧化层上形成第一掩膜层,并以所述第一掩膜层为掩膜,通过第一注入能量向所述第二晶圆进行起泡离子注入,以在所述第二晶圆的第一深度中形成起泡层;Form a first mask layer on the pre-oxidation layer, and use the first mask layer as a mask to perform bubble ion implantation into the second wafer with the first implantation energy, so as to forming a bubble layer in the first depth of the second wafer;
去除所述第一掩膜层,并在所述预氧化层上形成第二掩膜层,所述第二掩膜层限定的区域和所述第一掩模层限定的区域不同;removing the first mask layer, and forming a second mask layer on the pre-oxidation layer, the region defined by the second mask layer is different from the region defined by the first mask layer;
以所述第二掩膜层为掩膜,以第二注入能量向所述第二晶圆进行起泡离子注入,以在所述第二晶圆的第二深度中形成起泡层,所述第二深度不同于所述第一深度。performing bubble ion implantation into the second wafer with a second implantation energy using the second mask layer as a mask, so as to form a bubble layer in a second depth of the second wafer, the The second depth is different from the first depth.
可选地,所述第一掩模层和所述第二掩模层中的至少一者的侧壁为倾斜侧壁,使得第一深度的起泡层和第二深度的起泡层之间的相邻侧壁相接。Optionally, the sidewall of at least one of the first mask layer and the second mask layer is an inclined sidewall, so that the bubble layer of the first depth and the bubble layer of the second depth Adjacent side walls meet.
可选地,通过同一张掩膜版对先后分别涂覆在所述预氧化层上的正性光刻胶和负性光刻胶曝光,来形成所述第一掩膜层和所述第二掩膜层。Optionally, the first mask layer and the second mask layer are formed by exposing the positive photoresist and the negative photoresist respectively coated on the pre-oxidized layer successively through the same mask. mask layer.
可选地,对第二晶圆的不同区域进行不同深度的起泡离子注入的步骤包括:Optionally, the step of performing bubble ion implantation at different depths on different regions of the second wafer includes:
在所述预氧化层上形成第三掩膜层;forming a third mask layer on the pre-oxidation layer;
以所述第三掩膜层为掩膜,向所述第二晶圆进行起泡离子注入,且所述第三掩膜层对所述第二晶圆的不同区域提供不同的起泡离子注入选择比,使所述第二晶圆的不同区域中形成不同深度的起泡层。Bubble ion implantation is performed on the second wafer with the third mask layer as a mask, and the third mask layer provides different bubble ion implantation for different regions of the second wafer The selection ratio enables the formation of bubbling layers with different depths in different regions of the second wafer.
可选地,所述第三掩膜层对应不同区域交界处的侧壁为倾斜侧壁,使得相邻区域中的起泡层的相邻侧相接或交叠。Optionally, the sidewalls of the third mask layer corresponding to the junctions of different regions are sloped sidewalls, so that adjacent sides of the bubble layers in adjacent regions meet or overlap.
可选地,注入到所述第二晶圆的起泡离子包括氢离子。Optionally, the bubbling ions implanted into the second wafer include hydrogen ions.
可选地,所述起泡离子注入第一晶圆和第二晶圆均为硅晶圆,所述绝缘体上半导体衬底为绝缘体上硅衬底。Optionally, both the first wafer and the second wafer for bubbling ion implantation are silicon wafers, and the semiconductor-on-insulator substrate is a silicon-on-insulator substrate.
基于同一发明构思,本发明还提供一种半导体器件的制造方法,其包括:Based on the same inventive concept, the present invention also provides a method for manufacturing a semiconductor device, which includes:
采用如本发明所述的绝缘体上半导体衬底的制造方法,提供绝缘体上半导体衬底;Using the method for manufacturing a semiconductor-on-insulator substrate according to the present invention, a semiconductor-on-insulator substrate is provided;
基于所述绝缘体上半导体衬底的不同厚度的顶层半导体制造不同的元器件。Different components and devices are fabricated based on top layer semiconductors of different thicknesses of the semiconductor-on-insulator substrate.
与现有技术相比,本发明的技术方案,能够在绝缘体上半导体衬底的制造阶段,就实现不同区域具有不同的顶层半导体厚度,减少了后续工艺步骤,节约时间,降低成本。Compared with the prior art, the technical solution of the present invention can realize different top-layer semiconductor thicknesses in different regions during the manufacturing stage of the semiconductor-on-insulator substrate, thereby reducing subsequent process steps, saving time and reducing costs.
附图说明Description of drawings
本领域的普通技术人员将会理解,提供的附图用于更好地理解本发明,而不对本发明的范围构成任何限定。其中:Those of ordinary skill in the art will understand that the provided drawings are for better understanding of the present invention, but do not constitute any limitation to the scope of the present invention. in:
图1是现有的一种SOI衬底的制造方法中的器件剖面结构示意图。FIG. 1 is a schematic diagram of a cross-sectional structure of a device in a conventional manufacturing method of an SOI substrate.
图2是本发明第一实施例的绝缘体上半导体衬底的制造方法流程示意图。FIG. 2 is a schematic flowchart of a method for manufacturing a semiconductor-on-insulator substrate according to the first embodiment of the present invention.
图3和图4是本实施例的绝缘体上半导体衬底的制造方法中的两种示例器件剖面结构示意图。3 and 4 are schematic cross-sectional structures of two exemplary devices in the method for manufacturing a semiconductor-on-insulator substrate in this embodiment.
图5和图6是本发明第二实施例的绝缘体上半导体衬底的制造方法中的两种示例器件剖面结构示意图。5 and 6 are schematic cross-sectional structures of two exemplary devices in the method for manufacturing a semiconductor-on-insulator substrate according to the second embodiment of the present invention.
具体实施方式Detailed ways
在下文的描述中,给出了大量具体的细节以便提供对本发明更为彻底的理解。然而,对于本领域技术人员而言显而易见的是,本发明可以无需一个或多个这些细节而得以实施。在其他的例子中,为了避免与本发明发生混淆,对于本领域公知的一些技术特征未进行描述。应当理解的是,本发明能够以不同形式实施,而不应当解释为局限于这里提出的实施例。相反地,提供这些实施例将使公开彻底和完全,并且将本发明的范围完全地传递给本领域技术人员。自始至终相同附图标记表示相同的元件。应当明白,当元件被称为"连接到"、“耦接”其它元件时,其可以直接地连接其它元件,或者可以存在居间的元件。相反,当元件被称为"直接连接到"其它元件时,则不存在居间的元件。在此使用时,单数形式的"一"、"一个"和"所述/该"也意图包括复数形式,除非上下文清楚的指出另外的方式。还应明白术语“包括”用于确定可以特征、步骤、操作、元件和/或部件的存在,但不排除一个或更多其它的特征、步骤、操作、元件、部件和/或组的存在或添加。在此使用时,术语"和/或"包括相关所列项目的任何及所有组合。In the following description, numerous specific details are given in order to provide a more thorough understanding of the present invention. It will be apparent, however, to one skilled in the art that the present invention may be practiced without one or more of these details. In other examples, some technical features known in the art are not described in order to avoid confusion with the present invention. It should be understood that the invention can be embodied in different forms and should not be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. Like reference numerals refer to like elements throughout. It will be understood that when an element is referred to as being "connected to" or "coupled to" another element, it can be directly connected to the other element or intervening elements may be present. In contrast, when an element is referred to as being "directly connected to" another element, there are no intervening elements present. As used herein, the singular forms "a", "an" and "the" are intended to include the plural forms as well, unless the context clearly dictates otherwise. It should also be understood that the term "comprising" is used to determine the presence of certain features, steps, operations, elements and/or components, but does not exclude the presence or presence of one or more other features, steps, operations, elements, components and/or groups. Add to. As used herein, the term "and/or" includes any and all combinations of the associated listed items.
以下结合附图和具体实施例对本发明提出的技术方案作进一步详细说明。根据下面说明,本发明的优点和特征将更清楚。需说明的是,附图均采用非常简化的形式且均使用非精准的比例,仅用以方便、明晰地辅助说明本发明实施例的目的。The technical solutions proposed by the present invention will be described in further detail below in conjunction with the accompanying drawings and specific embodiments. The advantages and features of the present invention will become clearer from the following description. It should be noted that all the drawings are in very simplified form and use inaccurate scales, and are only used to facilitate and clearly assist the purpose of illustrating the embodiments of the present invention.
请参考图1,一种SOI衬底的制造技术是智能剥离技术(Smart-cut),其主要步骤包括:首先,通过氧化工艺将第二晶圆(可以为硅晶圆)W2的表面转化为预氧化层OX,如图1中的(A)所示;然后通过起泡离子注入工艺(注入离子可以包括氢离子等)在预氧化层OX厚度以下的第二晶圆W2中形成起泡层H+,如图1中的(B)所示;接着将具有起泡层H+和预氧化层OX的第二晶圆W2与第一晶圆(可以为硅晶圆)W1键合,如图1中的(C)所示;之后进行退火,第二晶圆W2会在起泡层H+处起泡,第二晶圆W2的背面部W2’从起泡层H+处剥离去除,由此获得了SOI晶圆,第二晶圆W2包括起泡层H+在内的剩余部分为SOI晶圆的顶层硅,第一晶圆W1为SOI晶圆的基底,第一晶圆W1和剩余的第二晶圆W2之间所夹的预氧化层OX为SOI晶圆的预埋氧化层,如图1中的(D)和(E)所示;之后,对不同区域的SOI晶圆的顶层硅(例如是起泡层H+)进行不同厚度的氧化或者刻蚀,从而获得具有不同厚度的顶层硅的SOI衬底,如图1中的(F)所示。Please refer to Fig. 1, a kind of manufacturing technology of SOI substrate is smart-cut technology (Smart-cut), and its main steps include: First, convert the surface of the second wafer (which can be a silicon wafer) W2 into Pre-oxidation layer OX, as shown in (A) among Fig. 1; Then form bubble layer in the second wafer W2 below pre-oxidation layer OX thickness by bubbling ion implantation process (implantation ion can comprise hydrogen ion etc.) H+, as shown in (B) in Fig. 1; Then the second wafer W2 with bubbling layer H+ and pre-oxidized layer OX is bonded with the first wafer (which can be a silicon wafer) W1, as shown in Fig. 1 Shown in (C) in; After annealing, the second wafer W2 will bubble at the bubble layer H+, and the back side W2' of the second wafer W2 will be peeled off from the bubble layer H+, thus obtaining SOI wafer, the remaining part of the second wafer W2 including the bubble layer H+ is the top layer silicon of the SOI wafer, the first wafer W1 is the base of the SOI wafer, the first wafer W1 and the remaining second wafer The pre-oxidized layer OX sandwiched between the circle W2 is the embedded oxide layer of the SOI wafer, as shown in (D) and (E) in Fig. 1; after that, the top layer silicon (such as The bubble layer (H+) is oxidized or etched with different thicknesses, so as to obtain SOI substrates with different thicknesses of top silicon, as shown in (F) in FIG. 1 .
上述的方法中,需要对不同区域的SOI晶圆的顶层硅进行不同厚度的氧化或者刻蚀,来获得不同厚度的顶层硅,步骤较为繁琐,且需要精细的调整热氧化或者刻蚀的工艺配方(recipe),才能控制不同区域的顶层硅的厚度不同,效率低且成本高。In the above method, it is necessary to oxidize or etch the top layer silicon of different regions of the SOI wafer with different thicknesses to obtain top layer silicon with different thicknesses. The steps are cumbersome, and fine adjustment of the thermal oxidation or etching process formula (recipe), in order to control the thickness of the top silicon in different regions is different, the efficiency is low and the cost is high.
基于此,本发明提供一种绝缘体上半导体衬底的制造方法,其对上述的智能剥离技术中起泡离子注入方式进行改进,形成不同深度的起泡层,从而在经历键合、退火和剥离后能直接获得具有不同顶层半导体厚度的绝缘体上半导体衬底,能够简化制造工艺,提高制造效率,节约成本。Based on this, the present invention provides a method for manufacturing a semiconductor-on-insulator substrate, which improves the bubble ion implantation method in the above-mentioned smart stripping technology to form bubble layers of different depths, so that after bonding, annealing and stripping Finally, semiconductor-on-insulator substrates with different top-layer semiconductor thicknesses can be directly obtained, which can simplify the manufacturing process, improve manufacturing efficiency, and save costs.
下面结合相应的具体实施例来对本发明的绝缘体上半导体衬底的制造方法进行详细说明。The method for manufacturing the semiconductor-on-insulator substrate of the present invention will be described in detail below in conjunction with corresponding specific embodiments.
第一实施例first embodiment
请参考图2,本实施例提供一种绝缘体上半导体衬底的制造方法,其包括以下步骤:Please refer to FIG. 2, the present embodiment provides a method for manufacturing a semiconductor-on-insulator substrate, which includes the following steps:
S1,在所述第二晶圆的表面上形成预氧化层;S1, forming a pre-oxidized layer on the surface of the second wafer;
S2,对第二晶圆的不同区域进行不同深度的起泡离子注入,以在所述第二晶圆中形成不同深度的起泡层;S2, performing bubbling ion implantation with different depths on different regions of the second wafer, so as to form bubbling layers with different depths in the second wafer;
S3,将所述第二晶圆形成有所述预氧化层的一面键合到第一晶圆上;S3, bonding the side of the second wafer on which the pre-oxidized layer is formed to the first wafer;
S4,退火使所述起泡层起泡,以使所述第二晶圆的相应部分在所述起泡层处剥离去除,进而形成绝缘体上半导体衬底,所述绝缘体上半导体衬底具有所述第一晶圆及与之键合的所述第二晶圆的剩余部分。S4, annealing to bubble the bubble layer, so that the corresponding part of the second wafer is peeled off at the bubble layer, thereby forming a semiconductor-on-insulator substrate, and the semiconductor-on-insulator substrate has the The remaining part of the first wafer and the second wafer bonded thereto.
应当理解的是,本实施例中的各步骤中所涉及的工艺可以采用本领域中任意合适的工艺来完成,各个结构的选材可以根据待制造的绝缘体上半导体衬底所需来进行合理选择,本实施例对此不做具体限定。It should be understood that the processes involved in each step in this embodiment can be completed by any suitable process in the art, and the selection of materials for each structure can be reasonably selected according to the requirements of the semiconductor-on-insulator substrate to be manufactured. This embodiment does not specifically limit it.
作为一种示例,请参考图3中的(A),在本实施例的步骤S1中,首先,提供第二晶圆W2,该第二晶圆的选材根据待制造的绝缘体上半导体衬底的顶层半导体材料来选取,第二晶圆可以是裸晶圆,也可以是掺杂有其他任意合适的N型杂质或P型杂质的晶圆。例如,待制造的绝缘体上半导体衬底为绝缘体上硅衬底,第二晶圆为裸硅晶圆。然后通过热氧化工艺对第二晶圆W2的正面、背面和四周侧壁表面进行预氧化,形成包裹第二晶圆W2的预氧化层OX。As an example, please refer to (A) in FIG. 3 , in step S1 of this embodiment, first, a second wafer W2 is provided, and the material of the second wafer is selected according to the semiconductor-on-insulator substrate to be manufactured. The top semiconductor material is selected, and the second wafer can be a bare wafer, or a wafer doped with any other suitable N-type impurities or P-type impurities. For example, the semiconductor-on-insulator substrate to be manufactured is a silicon-on-insulator substrate, and the second wafer is a bare silicon wafer. Then pre-oxidize the front, back and surrounding sidewall surfaces of the second wafer W2 through a thermal oxidation process to form a pre-oxidation layer OX surrounding the second wafer W2.
请参考图3中的(B)和(C),在本示例的步骤S2中,通过先后多次起泡离子注入工序,在第二晶圆W2的不同深度中形成起泡层。Please refer to (B) and (C) in FIG. 3 , in step S2 of this example, bubble layers are formed in different depths of the second wafer W2 through multiple bubble ion implantation processes.
以两次起泡离子注入工序为例,本示例的步骤S2的具体过程包括:Taking two bubble ion implantation procedures as an example, the specific process of step S2 in this example includes:
首先,请参考图3中的(B),在第二晶圆W2正面的预氧化层OX上涂覆一层光刻胶(未图示,可以是正性光刻胶,也可以是负性光刻胶),并通过一张离子注入掩膜版对该层光刻胶光刻,形成图案化的第一掩膜层Mask1,该第一掩膜层Mask1掩蔽预氧化层OX的部分区域,并定义出相应的离子注入窗口。First, please refer to (B) in Fig. 3, coat a layer of photoresist (not shown, can be positive photoresist, also can be negative photoresist) on the pre-oxidized layer OX of the second wafer W2 front. resist), and photoresist the layer of photoresist through an ion implantation mask to form a patterned first mask layer Mask1, the first mask layer Mask1 covers a part of the pre-oxidized layer OX, and The corresponding ion implantation window is defined.
然后,请继续参考图3中的(B),以第一掩膜层Mask1为掩膜,通过第一注入能量向第一掩膜层Mask1限定的离子注入窗口中的第二晶圆W2进行起泡离子注入,以在预氧化层OX下方的第二晶圆W2的第一深度中形成起泡层H1,其中第一注入能量决定了起泡离子的注入深度,即决定了形成的起泡层H1的底部深度(即第一深度),而起泡层H1的底部深度(即第一深度)进一步决定后续起泡层H1处发生剥离后剩余的半导体层(即待制造的绝缘体上半导体衬底的顶层半导体)在此区域的厚度。应当理解的是,本步骤中注入的起泡离子遵循高斯分布,其会在第一深度附近集中分布,在第二晶圆W2的表层和第一深度以下的厚度分布较少。Then, please continue to refer to (B) in FIG. 3 , using the first mask layer Mask1 as a mask, the second wafer W2 in the ion implantation window defined by the first mask layer Mask1 is started by using the first implantation energy. Bubble ion implantation, to form a bubble layer H1 in the first depth of the second wafer W2 under the pre-oxidation layer OX, wherein the first implantation energy determines the implantation depth of the bubble ions, that is, determines the formed bubble layer The depth of the bottom of H1 (i.e. the first depth), and the depth of the bottom of the bubble layer H1 (i.e. the first depth) further determines the remaining semiconductor layer after peeling off at the subsequent bubble layer H1 (i.e. the semiconductor-on-insulator substrate to be manufactured The top semiconductor) thickness in this region. It should be understood that the bubbling ions implanted in this step follow a Gaussian distribution, which will be distributed concentratedly near the first depth, and have less thickness distribution on the surface layer of the second wafer W2 and below the first depth.
接着,请参考图3中的(C),去除第一掩膜层Mask1,并在第二晶圆W2正面的预氧化层OX上再涂覆另一层光刻胶,并借助相应的掩膜版对该另一层光刻胶进行光刻,(形成图案化的第二掩膜层Mask2,该第二掩膜层Mask2掩蔽预氧化层OX的部分区域,并定义出相应的离子注入窗口(即限定的区域)。较佳地,第二掩膜层Mask2限定的离子注入窗口与第一掩膜层Mask1限定的离子注入窗口的侧壁对齐或者交叠,由此可以使得后续形成的两种深度的起泡层在相邻侧壁处相接或交叠,进而有利于后续第二晶圆上相应部分的智能剥离。Next, please refer to (C) in FIG. 3 , remove the first mask layer Mask1, and coat another layer of photoresist on the pre-oxidized layer OX on the front side of the second wafer W2, and use the corresponding mask This other layer of photoresist is carried out photolithography on the plate, (form the patterned second mask layer Mask2, this second mask layer Mask2 covers the partial area of pre-oxidation layer OX, and defines the corresponding ion implantation window ( That is, the defined area). Preferably, the ion implantation window defined by the second mask layer Mask2 is aligned with or overlaps the sidewall of the ion implantation window defined by the first mask layer Mask1, so that the two types of subsequently formed The deep bubbling layers meet or overlap at adjacent sidewalls, which is beneficial to the subsequent smart peeling of corresponding parts on the second wafer.
可选地,上述的另一层光刻胶的曝光特性与形成第一掩膜层Mask1的光刻胶相反,进而可以通过用于形成第一掩膜层Mask1的离子注入掩膜版来对该另一层光刻胶光刻,即通过同一张掩膜版对先后分别涂覆在所述预氧化层上的正性光刻胶和负性光刻胶曝光,来形成第一掩模层Mask1和第二掩膜层Mask2,此时,第一掩模层Mask1和第二掩膜层Mask2所限定的区域(即限定的离子注入窗口)不仅不同而且还是互补的,一方面保证两种深度的起泡层的相邻侧壁能够对准相接,另一方面可以相对图1所示的现有技术,仅仅在起泡离子注入阶段增加一张光罩,通过调整起泡离子注入的能量就可以得到两种不同起泡离子深度的区域,能够减少掩膜版成本。Optionally, the exposure characteristics of the above-mentioned another layer of photoresist are opposite to those of the photoresist forming the first mask layer Mask1, and then the ion implantation mask used to form the first mask layer Mask1 can be used to control the exposure characteristics of the photoresist. Another layer of photoresist photolithography, that is, through the same mask plate, the positive photoresist and the negative photoresist respectively coated on the pre-oxidized layer are exposed successively to form the first mask layer Mask1 and the second mask layer Mask2, at this time, the regions defined by the first mask layer Mask1 and the second mask layer Mask2 (that is, the defined ion implantation window) are not only different but also complementary. Adjacent side walls of the bubble layer can be aligned and connected. On the other hand, compared with the prior art shown in FIG. Two regions with different bubbling ion depths can be obtained, which can reduce mask cost.
之后,请继续参考图3中的(C),以第二掩膜层Mask2为掩膜,通过第二注入能量向第二掩膜层Mask2限定的离子注入窗口中的第二晶圆W2进行起泡离子注入,以在预氧化层OX下方的第二晶圆W2的第二深度中形成起泡层H2,其中第二注入能量决定了起泡离子的注入深度,即决定了形成的起泡层H2的底部深度(即第二深度),而起泡层H2的底部深度(即第二深度)进一步决定后续起泡层H2处发生剥离后剩余的半导体层(即待制造的绝缘体上半导体衬底的顶层半导体)在此区域的厚度。此次起泡离子注入完成后,可以通过任意合适的工艺,去除第二掩膜层Mask2,为后续的晶圆键合做准备。其中,当第二注入能量小于第一注入能量时,起泡层H2底部对应的第二深度小于起泡层H1底部对应的第一深度,当第二注入能量大于第一注入能量时,起泡层H2底部对应的第二深度大于起泡层H1底部对应的第一深度。Afterwards, please continue to refer to (C) in FIG. 3 , using the second mask layer Mask2 as a mask, start the second wafer W2 in the ion implantation window defined by the second mask layer Mask2 through the second implantation energy. Bubble ion implantation, to form a bubble layer H2 in a second depth of the second wafer W2 below the pre-oxidation layer OX, wherein the second implantation energy determines the implantation depth of the bubble ions, that is, determines the formed bubble layer The depth of the bottom of H2 (i.e. the second depth), and the depth of the bottom of the bubble layer H2 (i.e. the second depth) further determines the remaining semiconductor layer (i.e. the semiconductor-on-insulator substrate to be manufactured) after the peeling occurs at the subsequent bubble layer H2. The top semiconductor) thickness in this region. After the bubble ion implantation is completed, the second mask layer Mask2 can be removed by any suitable process to prepare for subsequent wafer bonding. Wherein, when the second injection energy is less than the first injection energy, the second depth corresponding to the bottom of the bubble layer H2 is smaller than the first depth corresponding to the bottom of the bubble layer H1; when the second injection energy is greater than the first injection energy, the bubble The second depth corresponding to the bottom of layer H2 is greater than the first depth corresponding to the bottom of blistered layer H1.
此外,各道起泡离子注入工序注入的起泡离子可以任意合适的离子,例如起泡离子包括氢离子等。各道起泡离子注入工序注入的起泡离子可以是相同的,也可以是不同的。向第二晶圆W2中注入起泡离子后,会在第二晶圆W2的注入处(即起泡层H1、H2)中形成微空腔,该微空腔经过退火工艺处理会因内部压强而发泡(或者说起泡)。In addition, the bubble ions implanted in each bubble ion implantation process can be any suitable ions, for example, the bubble ions include hydrogen ions and the like. The bubbling ions implanted in each bubbling ion implantation process may be the same or different. After the bubbling ions are implanted into the second wafer W2, a microcavity will be formed in the implanted part of the second wafer W2 (ie, the bubbling layers H1, H2). And foaming (or foaming).
应当理解的是,本步骤中注入的起泡离子也遵循高斯分布,其会在第二深度附近集中分布,在第二晶圆W2的表层和第二深度以下的厚度分布较少。第二深度的起泡层H2和第一深度的起泡层H1的相邻侧壁,不仅在横向上是相接的,而且在纵向上有交叠(或者说重叠),因此,在第二深度的起泡层H2形成以后,起泡层H1和起泡层H2相接,在第二晶圆W2形成在不同区域中深度不同且连续的起泡层,该连续的起泡层将第二晶圆W2自上而下分别被分为三层结构:正面上起泡离子掺杂浓度可以忽略不计的半导体层W22,中间的起泡层H1、H2,以及背面上起泡离子掺杂浓度可以忽略不计的半导体层W21。It should be understood that the bubbling ions implanted in this step also follow a Gaussian distribution, which will be distributed concentratedly near the second depth, and have less thickness distribution on the surface layer of the second wafer W2 and below the second depth. Adjacent sidewalls of the foamed layer H2 of the second depth and the foamed layer H1 of the first depth are not only connected in the transverse direction, but also overlapped (or overlapped) in the vertical direction. Therefore, in the second depth After the deep bubble layer H2 is formed, the bubble layer H1 and the bubble layer H2 are connected, and different and continuous bubble layers with different depths are formed in different regions on the second wafer W2, and the continuous bubble layer connects the second wafer W2. Wafer W2 is divided into three layers from top to bottom: semiconductor layer W22 with negligible doping concentration of bubbling ions on the front side, bubbling layers H1 and H2 in the middle, and bubbling ion doping concentration on the back side. negligible semiconductor layer W21.
请参考图3中的(D),在本示例的步骤S3中,首先提供第一晶圆W1,该第一晶圆W1的选材根据待制造的绝缘体上半导体衬底的底层半导体材料来选取,第一晶圆W1可以是裸晶圆,也可以是掺杂有其他任意合适的N型杂质或P型杂质的晶圆。然后,把第二晶圆W2倒置,背面朝上,正面朝下,且第二晶圆W2的正面(即正面上的半导体层W22)朝向第一晶圆W1,将第二晶圆W2正面上的预氧化层OX键合到第一晶圆W1上。Please refer to (D) in FIG. 3 , in step S3 of this example, a first wafer W1 is first provided, and the selection of the first wafer W1 is selected according to the underlying semiconductor material of the semiconductor-on-insulator substrate to be manufactured, The first wafer W1 may be a bare wafer, or a wafer doped with any other suitable N-type impurities or P-type impurities. Then, the second wafer W2 is turned upside down, the back side is up, the front side is down, and the front side of the second wafer W2 (ie, the semiconductor layer W22 on the front side) faces the first wafer W1, and the second wafer W2 is placed on the front side. The pre-oxidized layer OX is bonded to the first wafer W1.
请参考图3中的(E)和(F),在本示例的步骤S4中,对键合在一起的第一晶圆W1和第二晶圆W2进行低温退火,起泡层H1和H2因内部的微空腔中产生内部压强而发泡,最终使得第二晶圆W2的起泡层H1、H2上方的背面上半导体层W21在起泡层H1、H2处整体被智能剥离去除。然后进行高温退火,增加正面上半导体层W22与第一晶圆W1的键合强度,并恢复由于起泡离子注入在剩余的第二晶圆W2(即正面上半导体层W22)中引起的损伤,进而获得了所需的绝缘体上半导体衬底。其中,第一晶圆W1为该绝缘体上半导体衬底的底层半导体层,第一晶圆W1上方的半导体层W22(剩余的第二晶圆W2)为该绝缘体上半导体衬底的顶层半导体层,第一晶圆W1和半导体层W22(剩余的第二晶圆W2)之间所夹的预氧化层OX为该绝缘体上半导体衬底的预埋氧化层。而且由于起泡层H1、H2的深度不同,半导体层W22(剩余的第二晶圆W2)在起泡层H1区域和起泡层H2区域中剩余的厚度不同,因此获得的绝缘体上半导体衬底的顶层半导体层在不同区域具有不同的厚度。Please refer to (E) and (F) in FIG. 3 , in step S4 of this example, low-temperature annealing is performed on the first wafer W1 and the second wafer W2 bonded together, and the bubble layers H1 and H2 are due to Internal pressure is generated in the internal micro-cavity to cause foaming, and finally the semiconductor layer W21 on the back surface above the bubble layers H1 and H2 of the second wafer W2 is completely removed by intelligent peeling at the bubble layers H1 and H2. Then perform high-temperature annealing to increase the bonding strength between the semiconductor layer W22 on the front surface and the first wafer W1, and recover the damage caused by the bubble ion implantation in the remaining second wafer W2 (ie, the semiconductor layer W22 on the front surface), Then the desired semiconductor-on-insulator substrate is obtained. Wherein, the first wafer W1 is the bottom semiconductor layer of the semiconductor-on-insulator substrate, and the semiconductor layer W22 above the first wafer W1 (the remaining second wafer W2) is the top semiconductor layer of the semiconductor-on-insulator substrate, The pre-oxidation layer OX sandwiched between the first wafer W1 and the semiconductor layer W22 (the remaining second wafer W2 ) is a pre-buried oxide layer of the semiconductor-on-insulator substrate. Moreover, due to the different depths of the bubble layers H1 and H2, the remaining thicknesses of the semiconductor layer W22 (the remaining second wafer W2) in the bubble layer H1 region and the bubble layer H2 region are different, so the semiconductor-on-insulator substrate obtained The top semiconductor layer has different thicknesses in different regions.
应当理解的是,第一、上述示例的步骤S3中,将第二晶圆W2倒置后键合到第一晶圆W1上,在步骤S4中实施智能剥离后,剥除了第二晶圆W2背面上相应厚度的半导体层W21,剩余了第二晶圆W2的正面上半导体层W22作为绝缘体上半导体衬底的顶层半导体层,这种方案可以保证形成的绝缘体上半导体衬底的顶层半导体层的最大厚度较小,例如可以使得顶层半导体层的最大厚度在10μm以内。但是本发明的技术方案并不仅仅限定于此,在本发明的其他实施例中,当需要的顶层半导体层的最大厚度相对较大时,请结合图4,还可以在步骤S1中将第二晶圆W2进行背面减薄或正面减薄后,在进行表面上的预氧化处理,形成预氧化层OX,在步骤S3中,将第二晶圆W2正置地键合到第一晶圆W1上,在步骤S4中实施智能剥离后,剥除了第二晶圆W2正面上相应厚度的半导体层W22,剩余了第二晶圆W2的背面上半导体层W21作为绝缘体上半导体衬底的顶层半导体层,由此可以使得形成的绝缘体上半导体衬底的顶层半导体层相对较厚且该顶层半导体层中离子注入损伤减少,进而省略智能剥离后的高温退火工艺,降低成本。It should be understood that, first, in step S3 of the above-mentioned example, the second wafer W2 is inverted and then bonded to the first wafer W1, and after performing smart stripping in step S4, the back surface of the second wafer W2 is peeled off. The semiconductor layer W21 with a corresponding thickness on the top of the semiconductor layer W21 on the front surface of the second wafer W2 is left as the top semiconductor layer of the semiconductor-on-insulator substrate. The thickness is small, for example, the maximum thickness of the top semiconductor layer can be within 10 μm. However, the technical solution of the present invention is not limited thereto. In other embodiments of the present invention, when the required maximum thickness of the top semiconductor layer is relatively large, please refer to FIG. 4, and the second After wafer W2 is thinned on the back side or front side, pre-oxidation treatment is performed on the surface to form a pre-oxidation layer OX. In step S3, the second wafer W2 is upright bonded to the first wafer W1 , after performing smart stripping in step S4, the semiconductor layer W22 of corresponding thickness on the front side of the second wafer W2 is stripped, leaving the semiconductor layer W21 on the back side of the second wafer W2 as the top semiconductor layer of the semiconductor-on-insulator substrate, Therefore, the top semiconductor layer of the formed semiconductor-on-insulator substrate can be relatively thick and the ion implantation damage in the top semiconductor layer can be reduced, thereby omitting the high-temperature annealing process after the smart stripping and reducing the cost.
第二,上述示例中,第一掩膜层Mask1和第二掩膜层Mask2的侧壁均是竖直侧壁,第一起泡层H2和第二起泡层H2的侧壁在横向上对准相接且在纵向上交叠,但是本实施例的技术方案并不仅仅限定于此。在本实施例的另一示例中,请参考图4中的(A)和(B),步骤S1以及步骤S2中的起泡层H1的形成与图3所示的示例相同,在此不再赘述。但是请参考图4中的(C),在步骤S2中形成的第二掩膜层Mask2面向其限定的离子注入窗口的侧壁是倾斜侧壁,该倾斜侧壁的顶端与起泡层H1的侧壁对齐或者位于起泡层H1的边缘以内,由此在以第二掩膜层Mask2为掩膜进行起泡离子注入来形成起泡层H2时,利用第二掩膜层Mask2的倾斜侧壁对起泡离子的透过率渐变的特征,在起泡层H2临近起泡层H1的一侧形成过渡起泡区(未标记),该过渡起泡区的深度在起泡层H1的深度和起泡层H2的深度区间内渐变。请参考图4中的(D)至(F),经过步骤S3和步骤S4后,可以使得形成的绝缘体上半导体衬底的两种不同厚度的顶层半导体层之间的交界区域变为斜坡(未标记),而且由于起泡层H1至起泡层H2的区域内均有起泡层,因此步骤S4中的智能剥离相对容易且效果较佳,而且通过掩膜层侧壁为倾斜侧壁在起泡层H1、H2之间形成过渡起泡区的方案,相对图3所示的竖直侧壁的掩膜层方案而言,还能够有利于使得起泡层H1和起泡层H2之间形成更大的深度差(例如1μm~5μm)。另外,在本发明的其他实施例中,根据需要可以将第一掩膜层mask1和第二掩膜层mask2中的一者或两者的相应侧壁设置为倾斜侧壁,以用于形成所需的过渡起泡区。Second, in the above example, the sidewalls of the first mask layer Mask1 and the second mask layer Mask2 are vertical sidewalls, and the sidewalls of the first bubble layer H2 and the second bubble layer H2 are aligned laterally but the technical solution of this embodiment is not limited thereto. In another example of this embodiment, please refer to (A) and (B) in FIG. 4 , the formation of the bubble layer H1 in step S1 and step S2 is the same as the example shown in FIG. 3 , and will not be repeated here. repeat. But please refer to (C) in FIG. 4 , the sidewall of the second mask layer Mask2 formed in step S2 facing the ion implantation window defined by it is an inclined sidewall, and the top of the inclined sidewall is in contact with the bubble layer H1 The sidewalls are aligned or located within the edge of the bubble layer H1, so that when the bubble layer H2 is formed by performing bubble ion implantation using the second mask layer Mask2 as a mask, the inclined sidewalls of the second mask layer Mask2 are used For the characteristics of the gradual change of the permeability of the bubbling ions, a transitional bubbling zone (unmarked) is formed on the side of the bubbling layer H2 adjacent to the bubbling layer H1, and the depth of the transitional bubbling zone is between the depth of the bubbling layer H1 and The depth range of the bubble layer H2 gradually changes. Please refer to (D) to (F) in FIG. 4 , after step S3 and step S4, the boundary region between two top semiconductor layers with different thicknesses of the formed semiconductor-on-insulator substrate can be made into a slope (not shown) mark), and since there are bubble layers in the region from bubble layer H1 to bubble layer H2, the smart peeling in step S4 is relatively easy and the effect is better, and the sidewall of the mask layer is used to create The scheme of forming a transitional bubble area between the bubble layers H1 and H2, compared with the mask layer scheme of the vertical side wall shown in FIG. Larger depth difference (for example, 1 μm ~ 5 μm). In addition, in other embodiments of the present invention, the corresponding sidewalls of one or both of the first mask layer mask1 and the second mask layer mask2 may be set as inclined sidewalls as required, so as to form the The desired transitional blistering zone.
第三、图3和图4所示的示例中第一掩膜层Mask1和第二掩膜层Mask2的限制,使得起泡层H1和起泡层H2在横向上和纵向上均相接,但是本发明的技术方案并不仅仅限定于此。在本发明的其他实施例中,通过第一掩膜层Mask1和第二掩膜层Mask2的限制,使得起泡层H1和起泡层H2在横向上也可以不相接,在纵向上也不相接,但是两者之间的横向间距和纵向间距均较小,不影响后续步骤S4中将第二晶圆W2的位于起泡层H1和起泡层H2上侧的部分和位于起泡层H1和起泡层H2的下侧的部分之间的整体智能剥离。Third, the limitations of the first mask layer Mask1 and the second mask layer Mask2 in the example shown in FIG. 3 and FIG. The technical solution of the present invention is not limited thereto. In other embodiments of the present invention, through the restriction of the first mask layer Mask1 and the second mask layer Mask2, the bubble layer H1 and the bubble layer H2 may not be in contact with each other in the horizontal direction, nor in the vertical direction. but the horizontal distance and the vertical distance between the two are relatively small, which does not affect the subsequent step S4 in which the part of the second wafer W2 located on the upper side of the bubble layer H1 and the bubble layer H2 and the part located on the bubble layer Integral Smart Peel between H1 and portions of the underside of the bubble layer H2.
综上所述,本实施例的制造方法,通过对现有的智能剥离技术的改进,在绝缘体上半导体衬底制造阶段就制造出不同顶层半导体厚度的绝缘体上半导体衬底,而且在对于具有两种不同顶层半导体厚度的绝缘体上半导体衬底的制造,起泡离子注入的更深意味着绝缘体上半导体衬底中的顶层半导体层的厚度更厚,由此实现了具有两种不同顶层半导体厚度的绝缘体上半导体衬底的制造,减少了工艺步骤,节约生产时间和成本。To sum up, the manufacturing method of this embodiment, by improving the existing intelligent stripping technology, can manufacture semiconductor-on-insulator substrates with different thicknesses of top-layer semiconductors in the manufacturing stage of semiconductor-on-insulator substrates, and for two The manufacture of semiconductor-on-insulator substrates with different top semiconductor thicknesses, deeper bubble ion implantation means that the thickness of the top semiconductor layer in the semiconductor-on-insulator substrate is thicker, thereby realizing insulators with two different top semiconductor thicknesses The manufacture of the upper semiconductor substrate reduces process steps and saves production time and cost.
还应当注意的,本实施例中,在步骤S2中,仅仅举例了两种深度的起泡层的形成,其对应于具有两种厚度的顶层半导体层的绝缘体上半导体衬底的形成,但是本发明的技术方案并不仅仅限定于此。在本发明的其他实施例中,在步骤S2中,可以通过多张掩膜版分别制造出位于第二晶圆正面上的更多不同区域的离子注入窗口,由此通过各个离子注入窗口中的起泡离子的注入能量各不相同,可以制造更多不同深度的起泡层,从而最终制造出具有更多不同厚度的顶层半导体层的绝缘体上半导体衬底。此外,该过程中形成的各层掩膜层的材料不仅仅限于光刻胶,还可以是其他任意合适的材料。It should also be noted that in this embodiment, in step S2, the formation of bubble layers with two depths is only exemplified, which corresponds to the formation of a semiconductor-on-insulator substrate with a top semiconductor layer with two thicknesses, but this The technical solution of the invention is not limited thereto. In other embodiments of the present invention, in step S2, ion implantation windows located in more different regions on the front side of the second wafer can be respectively manufactured through multiple masks, thereby through the ion implantation windows in each ion implantation window The implantation energies of the bubbling ions are varied to create more bubbling layers with different depths, and ultimately to create S-on-insulator substrates with more top semiconductor layers with different thicknesses. In addition, the material of each mask layer formed in this process is not limited to photoresist, but can also be any other suitable material.
第二实施例second embodiment
上述实施例的方案,每制造一种深度的起泡层都需要一道掩膜层的制造和起泡离子注入工序,工艺相对复杂。In the solutions of the above-mentioned embodiments, each manufacturing of a bubble layer of a depth requires a process of manufacturing a mask layer and bubble ion implantation, and the process is relatively complicated.
为此,本实施例提供一种绝缘体上半导体衬底的制造方法,其也包括如图2中所示的步骤S1~S4,重点在于,在步骤S2中通过一层掩膜层的掩蔽作用就可以制造至少三种不同深度的起泡层。Therefore, this embodiment provides a method for manufacturing a semiconductor-on-insulator substrate, which also includes steps S1 to S4 as shown in FIG. Blistered layers of at least three different depths can be produced.
具体地,请参考图5中的(A),在本实施例的步骤S1中,首先,提供第二晶圆W2,该第二晶圆的选材根据待制造的绝缘体上半导体衬底的顶层半导体材料来选取,第二晶圆可以是裸晶圆,也可以是掺杂有其他任意合适的N型杂质或P型杂质的晶圆。例如,待制造的绝缘体上半导体衬底为绝缘体上硅衬底,第二晶圆为裸硅晶圆。然后通过热氧化工艺对第二晶圆W2的正面、背面和四周侧壁表面进行预氧化,形成包裹第二晶圆W2的预氧化层OX。Specifically, referring to (A) in FIG. 5 , in step S1 of this embodiment, firstly, a second wafer W2 is provided, and the material of the second wafer is selected according to the top layer semiconductor of the semiconductor-on-insulator substrate to be manufactured. The second wafer can be a bare wafer, or a wafer doped with any other suitable N-type impurities or P-type impurities. For example, the semiconductor-on-insulator substrate to be manufactured is a silicon-on-insulator substrate, and the second wafer is a bare silicon wafer. Then pre-oxidize the front, back and surrounding sidewall surfaces of the second wafer W2 through a thermal oxidation process to form a pre-oxidation layer OX surrounding the second wafer W2.
请参考图5中的(B),在本实施例的步骤S2中,利用同一层掩膜层的掩蔽作用及其在第二晶圆W2的不同区域提供不同的起泡离子注入选择比的特点,来使第二晶圆W2的不同区域中形成不同深度的起泡层。Please refer to (B) in FIG. 5 , in step S2 of this embodiment, the masking effect of the same mask layer and its feature of providing different bubble ion implantation selectivity ratios in different regions of the second wafer W2 , so that bubble layers with different depths are formed in different regions of the second wafer W2.
以在第二晶圆W2中形成两种不同深度的起泡层为例,本实施例的步骤S2的具体过程包括:Taking the formation of two types of bubbling layers with different depths in the second wafer W2 as an example, the specific process of step S2 in this embodiment includes:
首先,请参考图5中的(B),通过涂覆或沉积等任意合适的工艺,在第二晶圆W2正面的预氧化层OX上覆盖第三掩膜层Mask3,进一步对第三掩膜层Mask3进行光刻和刻蚀,去除部分区域的该第三掩膜层Mask3。第三掩膜层Mask3的选材可以是任意合适的材料,本发明对此不足具体限定。First, please refer to (B) in FIG. 5 , by any suitable process such as coating or deposition, the third mask layer Mask3 is covered on the pre-oxidized layer OX on the front side of the second wafer W2, and the third mask layer is further The layer Mask3 is subjected to photolithography and etching to remove the third mask layer Mask3 in some areas. The material of the third mask layer Mask3 may be any suitable material, which is not specifically limited in the present invention.
然后,请继续参考图5中的(B),以第三掩膜层Mask3为掩膜,对第二晶圆W2进行起泡离子注入,第三掩膜层Mask3暴露区域中的起泡离子因没有第三掩膜层Mask3的阻挡和能量损耗,可以注入到第二晶圆W2较深的位置,由此形成深度较深的起泡层H2,第三掩膜层Mask3掩蔽区域中的起泡离子因为有第三掩膜层Mask3的阻挡和能量损耗,只可以注入到第二晶圆W2较浅的位置,由此形成深度较浅的起泡层H1。其中第三掩膜层Mask3对起泡离子的透过性能决定了起泡层H1的底部深度(即第一深度),起泡离子注入的能量决定了起泡层H2的底部深度(即第二深度),而起泡层H1和起泡层H2的底部深度(即第一深度)进一步决定后续起泡层H1处发生剥离后剩余的半导体层(即待制造的绝缘体上半导体衬底的顶层半导体)在这两个区域的厚度。Then, please continue referring to (B) in FIG. Without the blocking and energy loss of the third mask layer Mask3, it can be implanted into the deeper position of the second wafer W2, thus forming a deeper bubble layer H2, and the third mask layer Mask3 masks the bubbles in the region Ions can only be implanted into the shallower position of the second wafer W2 because of the barrier and energy loss of the third mask layer Mask3, thereby forming a shallower bubble layer H1. Wherein the permeability of the third mask layer Mask3 to the bubbling ions determines the bottom depth (i.e. the first depth) of the bubbling layer H1, and the energy of the bubbling ion implantation determines the bottom depth (i.e. the second depth) of the bubbling layer H2. depth), and the depth of the bottom of the bubble layer H1 and the bubble layer H2 (i.e. the first depth) further determines the remaining semiconductor layer after the peeling occurs at the subsequent bubble layer H1 (i.e. the top semiconductor layer of the semiconductor-on-insulator substrate to be manufactured ) in the thickness of these two regions.
值得注意的是,第三掩膜层Mask3的侧壁可以是竖直侧壁,也可以是倾斜侧壁。其中,当第三掩膜层Mask3的侧壁为倾斜侧壁时,第三掩膜层Mask3的侧壁的不同厚度位置对起泡离子的透过性能不同,由此在起泡层H1和起泡层H2之间形成深度渐变的过渡起泡区(未标记),从而有利于后续步骤S4中的智能剥离效果,并有利于使得相邻区域中最终形成的不同厚度的顶层半导体层的厚度差(即顶面台阶高度差)更大。It should be noted that the sidewalls of the third mask layer Mask3 may be vertical sidewalls or inclined sidewalls. Wherein, when the sidewall of the third mask layer Mask3 is an inclined sidewall, different thickness positions of the sidewall of the third mask layer Mask3 have different permeability to the bubbling ions. A transitional bubble region (unmarked) with gradual depth is formed between the bubble layers H2, which is beneficial to the smart peeling effect in the subsequent step S4, and is conducive to making the thickness difference between the top semiconductor layers of different thicknesses finally formed in adjacent regions. (ie the top step height difference) is greater.
另外,在步骤S2中的起泡离子注入完成后,通过刻蚀或化学机械平坦化CMP工艺等任意合适的工艺,去除第三掩膜层Mask3,为后续的晶圆键合做准备。In addition, after the bubble ion implantation in step S2 is completed, the third mask layer Mask3 is removed by any suitable process such as etching or chemical mechanical planarization (CMP) to prepare for subsequent wafer bonding.
本实施例中,起泡离子注入工序注入的起泡离子在第二晶圆W2中也遵循高斯分布,从而使得第二晶圆W2内部在对应于第一深度区域内和第二深度区域内自上而下分别被分为三层结构:正面上起泡离子掺杂浓度可以忽略不计的半导体层,中间的起泡层H1或H2,以及背面上起泡离子掺杂浓度可以忽略不计的半导体层。In this embodiment, the bubbling ions implanted in the bubbling ion implantation process also follow a Gaussian distribution in the second wafer W2, so that the inside of the second wafer W2 automatically The structure is divided into three layers from top to bottom: the semiconductor layer with negligible doping concentration of bubbling ions on the front, the bubbling layer H1 or H2 in the middle, and the semiconductor layer with negligible doping concentration of bubbling ions on the back .
此外,起泡离子注入工序注入的起泡离子可以任意合适的离子,例如起泡离子包括氢离子等。向第二晶圆W2中注入起泡离子后,会在第二晶圆W2的注入处(即起泡层H1、H2)中形成微空腔,该微空腔经过后续的退火工艺处理会因内部压强而发泡(或者说起泡)。In addition, the bubble ions implanted in the bubble ion implantation process may be any suitable ions, for example, the bubble ions include hydrogen ions and the like. After the bubbling ions are implanted into the second wafer W2, a microcavity will be formed in the implanted part of the second wafer W2 (i.e., the bubbling layers H1, H2). Internal pressure causes foaming (or foaming).
请参考图5中的(C),在本实施例的步骤S3中,首先提供第一晶圆W1,该第一晶圆W1的选材根据待制造的绝缘体上半导体衬底的底层半导体材料来选取,第一晶圆W1可以是裸晶圆,也可以是掺杂有其他任意合适的N型杂质或P型杂质的晶圆。然后,把第二晶圆W2背面朝向第一晶圆W1,将第二晶圆W2背面上的预氧化层OX键合到第一晶圆W1上。Please refer to (C) in FIG. 5 , in step S3 of this embodiment, a first wafer W1 is first provided, and the material of the first wafer W1 is selected according to the underlying semiconductor material of the semiconductor-on-insulator substrate to be manufactured. , the first wafer W1 may be a bare wafer, or a wafer doped with any other suitable N-type impurity or P-type impurity. Then, the back of the second wafer W2 faces the first wafer W1, and the pre-oxidized layer OX on the back of the second wafer W2 is bonded to the first wafer W1.
请参考图5中的(D),在本实施例的步骤S4中,对键合在一起的第一晶圆W1和第二晶圆W2进行低温退火,起泡层H1和H2因内部的微空腔中产生内部压强而发泡,最终使得第二晶圆W2的起泡层H1、H2上方的背面部分在起泡层H1、H2处剥离去除。然后进行高温退火,增加键合强度,并恢复由于起泡离子注入在剩余的第二晶圆W2中引起的损伤,进而获得了所需的绝缘体上半导体衬底。其中,第一晶圆W1为该绝缘体上半导体衬底的底层半导体层,第一晶圆W1上方剩余的第二晶圆W2为该绝缘体上半导体衬底的顶层半导体层,第一晶圆W1和剩余的第二晶圆W2之间所夹的预氧化层OX为该绝缘体上半导体衬底的预埋氧化层。而且由于起泡层H1、H2的深度不同,剩余的第二晶圆W2在起泡层H1区域和起泡层H2区域中剩余的厚度不同,因此获得的绝缘体上半导体衬底的顶层半导体层在不同区域具有不同的厚度。Please refer to (D) in FIG. 5 , in step S4 of this embodiment, low-temperature annealing is performed on the first wafer W1 and the second wafer W2 bonded together, and the bubble layers H1 and H2 are Internal pressure is generated in the cavity to cause foaming, and finally the backside portion of the second wafer W2 above the bubble layers H1 , H2 is peeled off at the bubble layers H1 , H2 . Then high-temperature annealing is performed to increase the bonding strength and restore the damage caused by the bubble ion implantation in the remaining second wafer W2, thereby obtaining the desired semiconductor-on-insulator substrate. Wherein, the first wafer W1 is the bottom semiconductor layer of the semiconductor-on-insulator substrate, the remaining second wafer W2 above the first wafer W1 is the top semiconductor layer of the semiconductor-on-insulator substrate, and the first wafer W1 and The pre-oxidation layer OX sandwiched between the remaining second wafers W2 is a pre-buried oxide layer of the semiconductor-on-insulator substrate. Moreover, because the depths of the bubble layers H1 and H2 are different, the remaining thicknesses of the remaining second wafer W2 in the area of the bubble layer H1 and the area of the bubble layer H2 are different, so the top semiconductor layer of the semiconductor-on-insulator substrate obtained is Different regions have different thicknesses.
本实施例的制造方法,也是一种对现有的智能剥离技术的改进,其与第一实施例相比,通过以一层第三掩膜层Mask3为掩膜进行一道起泡离子注入,就能够同时形成两种不同深度的起泡层H1、H2,工艺更简单,成本更低。The manufacturing method of this embodiment is also an improvement to the existing intelligent stripping technology. Compared with the first embodiment, a bubble ion implantation is performed with a layer of the third mask layer Mask3 as a mask to achieve The foaming layers H1 and H2 of two different depths can be formed at the same time, and the process is simpler and the cost is lower.
应当理解的是,图5所示的示例的步骤S2中,仅仅举例了两种深度的起泡层的形成,其对应于具有两种厚度的顶层半导体层的绝缘体上半导体衬底的形成,但是本发明的技术方案并不仅仅限定于此。在本实施例的又一示例中,请参考图6中的(A),在步骤S2中,可以通过控制第三掩膜层Mask3在第二晶圆W2至少三个不同区域具有不同的厚度,从而在同一道起泡离子注入工序中向第二晶圆W2整体上提供至少三种不同的起泡离子注入选择比,从而可以通过该第三掩膜层Mask3的掩蔽作用和一道起泡离子注入,在第二晶圆W2中制造至少三种不同深度的起泡层H1、H2、H3,从而在步骤S4中最终制造出具有至少三种不同厚度的顶层半导体层的绝缘体上半导体衬底,如图6中的(B)所示。It should be understood that, in step S2 of the example shown in FIG. 5 , only the formation of bubble layers with two depths is exemplified, which corresponds to the formation of a semiconductor-on-insulator substrate with a top semiconductor layer with two thicknesses, but The technical solution of the present invention is not limited thereto. In another example of this embodiment, please refer to (A) in FIG. 6 , in step S2, by controlling the third mask layer Mask3 to have different thicknesses in at least three different regions of the second wafer W2, Therefore, in the same bubble ion implantation process, at least three different bubble ion implantation selection ratios are provided to the second wafer W2 as a whole, so that through the masking effect of the third mask layer Mask3 and one bubble ion implantation , manufacturing at least three kinds of bubble layers H1, H2, H3 with different depths in the second wafer W2, thereby finally manufacturing a semiconductor-on-insulator substrate with at least three top semiconductor layers with different thicknesses in step S4, such as Shown in (B) in FIG. 6 .
基于同一发明构思,本发明一实施例还提供一种半导体器件的制造方法(未图示),其包括:首先,采用如本发明所述的绝缘体上半导体衬底的制造方法,提供绝缘体上半导体衬底;接着,基于所述绝缘体上半导体衬底的不同厚度的顶层半导体制造不同的元器件。Based on the same inventive concept, an embodiment of the present invention also provides a method for manufacturing a semiconductor device (not shown), which includes: first, using the method for manufacturing a semiconductor-on-insulator substrate according to the present invention to provide a semiconductor-on-insulator substrate Substrate; Next, different components and devices are fabricated based on the semiconductor-on-insulator substrate with different thicknesses of the top-layer semiconductor.
其中,基于所述绝缘体上半导体衬底的不同厚度的顶层半导体制造相应的不同元器件的具体过程,可以采用本领域任意合适工艺来实现,其可以包括离子注入工艺、栅极工艺、金属互连工艺等等,在此不再详述。Wherein, the specific process of manufacturing corresponding different components based on the top-layer semiconductor with different thicknesses of the semiconductor-on-insulator substrate can be realized by any suitable process in the field, which can include ion implantation process, gate process, metal interconnection Process etc., will not be described in detail here.
综上所述,本发明的技术方案能够在绝缘体上半导体衬底的制造阶段,就实现不同区域具有不同的顶层半导体厚度,减少了后续工艺步骤、节约时间、降低成本。To sum up, the technical solution of the present invention can realize different top-layer semiconductor thicknesses in different regions during the manufacturing stage of the semiconductor-on-insulator substrate, thereby reducing subsequent process steps, saving time, and reducing costs.
上述描述仅是对本发明较佳实施例的描述,并非对本发明范围的任何限定,本发明领域的普通技术人员根据上述揭示内容做的任何变更、修饰,均属于本发明技术方案的保护范围。The above description is only a description of the preferred embodiments of the present invention, and does not limit the scope of the present invention. Any changes and modifications made by those of ordinary skill in the field of the present invention based on the above disclosures belong to the protection scope of the technical solution of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310451008.9A CN116387241A (en) | 2023-04-21 | 2023-04-21 | Method for manufacturing semiconductor-on-insulator substrate and method for manufacturing semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310451008.9A CN116387241A (en) | 2023-04-21 | 2023-04-21 | Method for manufacturing semiconductor-on-insulator substrate and method for manufacturing semiconductor device |
Publications (1)
Publication Number | Publication Date |
---|---|
CN116387241A true CN116387241A (en) | 2023-07-04 |
Family
ID=86975066
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202310451008.9A Pending CN116387241A (en) | 2023-04-21 | 2023-04-21 | Method for manufacturing semiconductor-on-insulator substrate and method for manufacturing semiconductor device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN116387241A (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5374564A (en) * | 1991-09-18 | 1994-12-20 | Commissariat A L'energie Atomique | Process for the production of thin semiconductor material films |
US5494835A (en) * | 1993-12-23 | 1996-02-27 | Commissariat A L'energie Atomique | Process for the production of a relief structure on a semiconductor material support |
US6548369B1 (en) * | 2001-03-20 | 2003-04-15 | Advanced Micro Devices, Inc. | Multi-thickness silicon films on a single semiconductor-on-insulator (SOI) chip using simox |
US20060177991A1 (en) * | 2005-02-04 | 2006-08-10 | Satoshi Murakami | SOI wafer production method |
CN104025254A (en) * | 2012-01-06 | 2014-09-03 | 信越半导体株式会社 | Method for manufacturing bonded silicon-on-insulator (SOI) wafer |
-
2023
- 2023-04-21 CN CN202310451008.9A patent/CN116387241A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5374564A (en) * | 1991-09-18 | 1994-12-20 | Commissariat A L'energie Atomique | Process for the production of thin semiconductor material films |
US5494835A (en) * | 1993-12-23 | 1996-02-27 | Commissariat A L'energie Atomique | Process for the production of a relief structure on a semiconductor material support |
US6548369B1 (en) * | 2001-03-20 | 2003-04-15 | Advanced Micro Devices, Inc. | Multi-thickness silicon films on a single semiconductor-on-insulator (SOI) chip using simox |
US20060177991A1 (en) * | 2005-02-04 | 2006-08-10 | Satoshi Murakami | SOI wafer production method |
CN104025254A (en) * | 2012-01-06 | 2014-09-03 | 信越半导体株式会社 | Method for manufacturing bonded silicon-on-insulator (SOI) wafer |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5505367B2 (en) | Method for manufacturing bonded substrate having insulating layer on part of substrate | |
JP4051413B2 (en) | Method for producing a layered structure having a silicide layer | |
US20060017137A1 (en) | Semiconductor device and its manufacturing method | |
KR20000040104A (en) | Method for manufacturing silicon-on-insulator wafer | |
US10784152B2 (en) | Method of making an interconnection between wafers after wafer level stacking, based on 3D-IC technology | |
JP2005354024A (en) | Semiconductor substrate manufacturing method and semiconductor device manufacturing method | |
CN115881622B (en) | Wafer bonding method | |
JPH08279554A (en) | Method for forming dielectric isolation structure | |
US6331470B1 (en) | Process for manufacturing a semiconductor material wafer having power regions dielectrically insulated from circuitry regions | |
US7067387B2 (en) | Method of manufacturing dielectric isolated silicon structure | |
JP3363496B2 (en) | Semiconductor device and manufacturing method thereof | |
JP2976929B2 (en) | Method for manufacturing semiconductor device | |
CN116387241A (en) | Method for manufacturing semiconductor-on-insulator substrate and method for manufacturing semiconductor device | |
JP5254549B2 (en) | Semiconductor composite structure | |
US5851901A (en) | Method of manufacturing an isolation region of a semiconductor device with advanced planarization | |
CN108063112B (en) | Method for manufacturing localized SOI region | |
JPH11111839A (en) | Semiconductor substrate and its manufacture | |
KR20020020189A (en) | Semiconductor ic apparatus and method for fabricating the same | |
GB2489075A (en) | Substrate for integrated circuit and forming method thereof | |
CN115188704B (en) | Semiconductor-on-insulator substrate and method for manufacturing the same | |
JP3527880B2 (en) | Semiconductor device and manufacturing method thereof | |
CN101471249A (en) | Method for manufacturing semiconductor device | |
CN103137538A (en) | Si/NiSi2 substrate material on a patterned insulator and its preparation method | |
JP5466668B2 (en) | Method for forming a semiconductor composite structure | |
KR100588643B1 (en) | Cell trench trench isolation method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20230704 |