[go: up one dir, main page]

CN116382264A - Mobile body control system, mobile body and surface - Google Patents

Mobile body control system, mobile body and surface Download PDF

Info

Publication number
CN116382264A
CN116382264A CN202310135130.5A CN202310135130A CN116382264A CN 116382264 A CN116382264 A CN 116382264A CN 202310135130 A CN202310135130 A CN 202310135130A CN 116382264 A CN116382264 A CN 116382264A
Authority
CN
China
Prior art keywords
mobile body
sequence
encoding
module
control system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310135130.5A
Other languages
Chinese (zh)
Inventor
梁帅
朱松毅
张执南
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Jiao Tong University
Original Assignee
Shanghai Jiao Tong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Jiao Tong University filed Critical Shanghai Jiao Tong University
Priority to CN202310135130.5A priority Critical patent/CN116382264A/en
Publication of CN116382264A publication Critical patent/CN116382264A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0231Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
    • G05D1/0238Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using obstacle or wall sensors
    • G05D1/024Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using obstacle or wall sensors in combination with a laser
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0214Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory in accordance with safety or protection criteria, e.g. avoiding hazardous areas
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0276Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

A moving body control system includes at least one moving body that autonomously moves on a surface having a code pattern, and the moving body can acquire own coordinate position and rotation angle information according to the acquired code pattern. The code pattern is printed on the surface of a block of placemat. The mobile body is provided with an external module which is used for completing the preset function. The number of the mobile bodies is plural, and the mobile bodies can communicate with each other or with other external devices in a wireless manner. The coding pattern consists of virtual grid points which are uniformly arranged along the direction of the rectangular coordinate X, Y axis of the surface and visible mark points which are arranged in an offset manner relative to the virtual grid points along the positive or negative direction of the X or Y axis, and binary assignment of the rectangular coordinate X, Y axis of each visible mark point is respectively constructed into a cyclic bit sequence conforming to the Debrucine sequence rule according to different offset positions of each visible mark point.

Description

一种移动体控制系统、移动体和表面A mobile body control system, mobile body and surface

技术领域technical field

本发明属于移动机器人技术领域,特别涉及一种移动体控制系统、移动体和表面。The invention belongs to the technical field of mobile robots, and in particular relates to a mobile body control system, a mobile body and a surface.

背景技术Background technique

对于室内移动体的集群控制,一般需要高精度、低延迟地感知各个移动体的位置和姿态信息,进一步通过算法实现集群控制。这里的移动体,也可以认为是一种移动机器人。随着研发人员和用户对能满足集群控制的移动体的需求逐渐增长,移动体越来越需要具备尺寸小巧、定位精准、通信即时等特点。目前,针对室内移动体,已经提出了Wi-Fi定位、蓝牙定位、射频识别RFID定位、ZigBee定位、UWB超带宽技术定位、超声波定位、红外线定位、惯性导航定位、机器视觉定位等方式。特别地,近年来也有提出基于OID码的定位方法。For the swarm control of indoor moving objects, it is generally necessary to perceive the position and attitude information of each moving object with high precision and low latency, and further implement swarm control through algorithms. The mobile body here can also be considered as a mobile robot. With the increasing demands of R&D personnel and users for mobile objects that can meet swarm control, mobile objects are increasingly required to have the characteristics of small size, precise positioning, and instant communication. At present, for indoor moving objects, Wi-Fi positioning, Bluetooth positioning, radio frequency identification RFID positioning, ZigBee positioning, UWB ultra-wideband technology positioning, ultrasonic positioning, infrared positioning, inertial navigation positioning, machine vision positioning and other methods have been proposed. In particular, positioning methods based on OID codes have also been proposed in recent years.

其中,in,

Wi-Fi定位技术以无线接入点的信息为基础和前提,对已接入的移动设备进行位置定位,设备靠近哪个热点或基站,即认为处在什么位置,如果附近有多个信源,则可以进一步通过三角定位法提高定位精度。然而,Wi-Fi定位的精度大约在1米至20米之间,且功耗较大、成本相对较高、存在同频干扰问题。Wi-Fi positioning technology uses the information of wireless access points as the basis and premise to locate the connected mobile device. Which hotspot or base station the device is close to, that is, where it is considered to be. If there are multiple sources nearby, Then the positioning accuracy can be further improved by the triangulation positioning method. However, the accuracy of Wi-Fi positioning is about 1 meter to 20 meters, and the power consumption is relatively high, the cost is relatively high, and there are co-channel interference problems.

蓝牙定位技术基于RSSI(Received Signal Strength Indication,信号场强指示)定位原理,能耗更低,最高精度大约在1米至10米之间,且稳定性一般。Bluetooth positioning technology is based on RSSI (Received Signal Strength Indication, signal field strength indication) positioning principle, with lower energy consumption, the highest accuracy is about 1 meter to 10 meters, and the stability is average.

RFID定位技术是通过一组固定的阅读器读取目标RFID标签的特征信息(如身份ID、接收信号强度等),采用近邻法、多边定位法、接收信号强度等方法确定标签所在位置。但其精度一般、且没有通信传输的功能。RFID positioning technology reads the characteristic information of the target RFID tag (such as ID, received signal strength, etc.) through a set of fixed readers, and uses methods such as nearest neighbor method, multilateral positioning method, and received signal strength to determine the location of the tag. But its accuracy is general, and there is no function of communication transmission.

超宽带(Ultra-Wide Band,UWB)技术是一种无线载波通信技术,利用纳秒级的非正弦波窄脉冲传输数据,其所占的频谱范围很宽。在空间中安放4个UWB基站,便可实现对机器人的厘米级定位。然而该种定位技术成本较高。Ultra-wideband (Ultra-Wide Band, UWB) technology is a wireless carrier communication technology, which uses nanosecond-level non-sinusoidal narrow pulses to transmit data, and it occupies a wide spectrum range. By placing 4 UWB base stations in the space, centimeter-level positioning of the robot can be achieved. However, the cost of this positioning technology is relatively high.

红外定位技术主要有两种具体实现方法,一种是将定位对象附上一个会发射红外线的电子标签,通过室内安放的多个红外传感器测量信号源的距离或角度,从而计算出对象所在的位置,该种方法易受热源、灯光等干扰,通信距离较短;另一种红外定位的方法是红外织网,即通过多对发射器和接收器织成的红外线网覆盖待测空间,直接对运动目标进行定位,然而该种方法成本昂贵。Infrared positioning technology mainly has two specific implementation methods. One is to attach an electronic tag that emits infrared rays to the positioning object, and measure the distance or angle of the signal source through multiple infrared sensors placed indoors to calculate the location of the object. , this method is susceptible to interference from heat sources, lights, etc., and the communication distance is relatively short; another method of infrared positioning is infrared weaving, that is, the infrared network woven by multiple pairs of transmitters and receivers covers the space to be measured, directly However, this method is expensive.

超声波定位技术目前大多数采用反射式测距法。系统由一个主测距器和若干个电子标签组成,主测距器可放置于移动机器人本体上,各个电子标签放置于室内空间的固定位置。Most of the ultrasonic positioning technology currently adopts the reflective ranging method. The system consists of a main range finder and several electronic tags. The main range finder can be placed on the mobile robot body, and each electronic tag is placed at a fixed position in the indoor space.

惯性导航技术主要利用终端惯性传感器采集的运动数据,如加速度传感器、陀螺仪等测量物体的速度、方向、加速度等信息,基于航位推测法,经过各种运算得到物体的位置信息。成本较低,但是会产生累积误差。Inertial navigation technology mainly uses the motion data collected by terminal inertial sensors, such as acceleration sensors, gyroscopes, etc. to measure the speed, direction, acceleration and other information of objects. Based on the dead reckoning method, the position information of objects is obtained through various calculations. The cost is lower, but there is a cumulative error.

视觉导航定位技术常有两种方法。一种是在移动体上安装摄像头,通过图像处理模块来获取场景物体或者标签在世界坐标系中的已知坐标信息,从而计算出移动体在世界坐标系中的位姿坐标信息,实现移动体的定位;另一种是在移动体上安装基准标记,在环境上安装摄像头,借助基准标记在摄像头中的位置,计算出机器人的位置和姿态。There are usually two methods for visual navigation and positioning technology. One is to install a camera on the moving body, and use the image processing module to obtain the known coordinate information of the scene object or label in the world coordinate system, thereby calculating the pose coordinate information of the moving body in the world coordinate system, and realizing the moving body The other is to install a fiducial mark on the moving body, install a camera on the environment, and calculate the position and attitude of the robot with the help of the position of the fiducial mark in the camera.

OID码定位技术:OID是Optical Identification的缩写,是光学辨识码的一种。OID搭起了印刷物与数字系统之间最新颖便捷的接口桥梁。每个OID编码图形均是由许多细微而人眼难辨的点依特定规则所组成,并对应到一组特定数值。与其他光学辨识码最大的不同特点是微小化的底码不仅具有保密与低视觉干扰的特性,更能隐藏在印刷品的彩色图案之下。OID code positioning technology: OID is the abbreviation of Optical Identification, which is a kind of optical identification code. OID builds the most novel and convenient interface bridge between printed matter and digital system. Each OID coded graphic is composed of many subtle and difficult-to-distinguish points according to specific rules, and corresponds to a set of specific values. The biggest difference from other optical identification codes is that the miniaturized bottom code not only has the characteristics of confidentiality and low visual interference, but also can be hidden under the color pattern of printed matter.

发明内容Contents of the invention

本发明实施例之一,一种基于连续光学辨识码的移动体控制系统。该系统可以针对单个移动体的控制,也可以针对多个移动体的集群控制。One of the embodiments of the present invention is a mobile body control system based on continuous optical identification codes. The system can be aimed at the control of a single mobile body or the cluster control of multiple mobile bodies.

该移动体在一个具有编码图案的表面上自主移动,移动体在移动中根据获取的编码图案获取自身的坐标位置和旋转角度信息。编码图案被印制在一块定位垫的表面上。移动体具有外接模块,不同外接模块可用于完成不同的预定功能。移动体相互之间或移动体与外部设备之间可以通过无线方式通信。The mobile body moves autonomously on a surface with a coded pattern, and the mobile body obtains its own coordinate position and rotation angle information according to the obtained coded pattern during the movement. The coding pattern is printed on the surface of a locating mat. The mobile body has external modules, and different external modules can be used to complete different predetermined functions. The mobile bodies can communicate with each other or between the mobile body and external devices in a wireless manner.

所述编码图案由沿直角坐标X、Y轴方向均匀延伸排布的不可见的虚拟网格点,以及相对各虚拟网格点沿X或Y轴方向设置的不同位置的真实可见标记点组成,根据所述的不同位置对各可见标记点的直角坐标X、Y轴的二进制赋值分别被构造为符合德布鲁因序列规则的循环位序列。The coding pattern is composed of invisible virtual grid points arranged uniformly along the X and Y axis directions of rectangular coordinates, and real visible marking points set at different positions along the X or Y axis directions relative to each virtual grid point, The binary assignments of the Cartesian coordinates X and Y axes of each visible marker point according to the different positions are respectively constructed as cyclic bit sequences conforming to the De Bruin sequence rules.

进一步的,所述循环位序列基于一种位置编码,位置编码的构造为符合B(2,n)的德布鲁因序列规则,即位置编码由1和0的序列即位序列构成,此位置编码序列的特征是,每一个编码生成n位长的位序列是唯一的,且位置编码序列是循环的,这意味着当位置编码序列的尾端连接到其首端时还有这样的特征,n位长的位序列在位置编码序列中总有唯一确定的位置号。Further, the cyclic bit sequence is based on a position code, and the position code is constructed to conform to the De Bruin sequence rule of B(2,n), that is, the position code is composed of a sequence of 1 and 0, that is, a bit sequence, and the position code The characteristic of the sequence is that each encoding generates a n-bit long bit sequence is unique, and the position coding sequence is cyclic, which means that when the tail end of the position coding sequence is connected to its head end, there is such a feature, n A bit sequence of bit length always has a uniquely defined position number in the position coding sequence.

进一步的,所述位置编码还具备如下特征:位置编码序列中(n+m)位长度的位序列只出现一次并且从不以按位取反且反转位置的形式出现(其中m≥1)。因而得以保证当编码图案被旋转90°、180°或270°时,可以通过识别多个行和列中(n+m)位长度的位序列确定编码被旋转的方向。Further, the position code also has the following characteristics: in the position code sequence, a bit sequence with a length of (n+m) bits appears only once and never appears in the form of bitwise inversion and position reversal (wherein m≥1) . It is thus ensured that when the code pattern is rotated by 90°, 180° or 270°, the direction in which the code is rotated can be determined by identifying a bit sequence of (n+m) bit length in a plurality of rows and columns.

进一步的,所述编码图案的X坐标编码方法为:根据各列之间位置编码的偏移量和/或每列中数列起始位置的值,定义X坐标位置号,进而确定X坐标;Y坐标编码方法为:根据各行之间位置编码的偏移量和/或每行中数列起始位置的值,定义Y坐标位置号,进而确定Y坐标。Further, the X-coordinate coding method of the coding pattern is: according to the offset of the position coding between the columns and/or the value of the starting position of the sequence in each column, define the X-coordinate position number, and then determine the X-coordinate; Y The coordinate encoding method is: according to the offset of the position encoding between each row and/or the value of the starting position of the sequence in each row, define the Y coordinate position number, and then determine the Y coordinate.

所述表面的位置坐标与该区域内编码图案的多个可见标记点构成的编码识别单元一一对应,即移动体可通过解码一定区域多个可见标记点组成的编码识别单元,来计算出该区域的位置坐标。且所述表面的位置坐标与编码识别单元的对应关系是连续的而非间断的,即在编码图案中有部分重叠的两个编码识别单元,可以编码两个不同的坐标;或任意相邻的两个坐标,其对应编码图案的编码识别单元中有重叠的可见标记点。The position coordinates of the surface are in one-to-one correspondence with the code recognition unit composed of a plurality of visible marking points of the coding pattern in the area, that is, the mobile body can calculate the code recognition unit composed of a plurality of visible marking points in a certain area. The location coordinates of the region. And the corresponding relationship between the position coordinates of the surface and the coding identification unit is continuous rather than discontinuous, that is, two coding identification units partially overlapping in the coding pattern can encode two different coordinates; or any adjacent The two coordinates correspond to overlapping visible marking points in the coding recognition unit of the coding pattern.

本发明实施例提供的基于连续光学辨识码的编码和解码方法,相比OID等其他光学辨识码方法,能够编码更多位置信息,获得更高的定位精度,且能够通过算法计算出相对光学辨识码的旋转角度,以使移动体能过获取在定位垫上精确的坐标位置(x,y)和旋转角度θ。相比传统的Wi-Fi定位、蓝牙定位、惯性导航定位、机器视觉定位等方式,本发明实施例的移动体定位方法的精度可达亚毫米级别,角度精度可达到1.5°,并且具有软硬件成本低、能耗更低、不产生累积误差、对环境光源不敏感、易快速布置、无需校准、占用的空间尺寸更小等优点,更适合应用在微小型移动体上。如果将连续光学辨识码系统应用于移动体集群控制上,则每个移动体都可以准确实时感知自己的位姿,以使系统具有更快的反应速度和更优秀的控制精度。The encoding and decoding method based on the continuous optical identification code provided by the embodiment of the present invention, compared with other optical identification code methods such as OID, can encode more position information, obtain higher positioning accuracy, and can calculate the relative optical identification code by algorithm. The rotation angle of the code, so that the mobile body can obtain the precise coordinate position (x, y) and rotation angle θ on the positioning pad. Compared with traditional Wi-Fi positioning, Bluetooth positioning, inertial navigation positioning, machine vision positioning and other methods, the positioning method of the mobile object in the embodiment of the present invention can reach the submillimeter level, the angular accuracy can reach 1.5°, and it has software and hardware Low cost, lower energy consumption, no cumulative error, insensitive to ambient light sources, easy and quick layout, no need for calibration, smaller space size, etc., are more suitable for application on micro-sized mobile objects. If the continuous optical identification code system is applied to the group control of moving bodies, each moving body can accurately perceive its own pose in real time, so that the system has faster response speed and better control accuracy.

附图说明Description of drawings

通过参考附图阅读下文的详细描述,本发明示例性实施方式的上述以及其他目的、特征和优点将变得易于理解。在附图中,以示例性而非限制性的方式示出了本发明的若干实施方式,其中:The above and other objects, features and advantages of exemplary embodiments of the present invention will become readily understood by reading the following detailed description with reference to the accompanying drawings. In the drawings, several embodiments of the invention are shown by way of illustration and not limitation, in which:

图1为本发明实施例之一的移动体控制系统示意图。Fig. 1 is a schematic diagram of a mobile body control system according to one embodiment of the present invention.

图2为本发明实施例之一的移动体示意图。Fig. 2 is a schematic diagram of a mobile body according to one embodiment of the present invention.

图3为本发明实施例之一的移动体的仰视示意图。Fig. 3 is a schematic bottom view of a mobile body according to one embodiment of the present invention.

图4为本发明实施例之一的移动体的正视示意图。Fig. 4 is a schematic front view of a mobile body according to one embodiment of the present invention.

图5为本发明实施例之一的移动体的俯视示意图。Fig. 5 is a schematic top view of a mobile body according to one embodiment of the present invention.

图6为本发明实施例之一的移动体的侧视示意图。Fig. 6 is a schematic side view of a mobile body according to one embodiment of the present invention.

图7为本发明实施例之一的移动体内部结构示意图。Fig. 7 is a schematic diagram of the internal structure of a mobile body according to one embodiment of the present invention.

图8为本发明实施例之一的移动体内部结构侧视示意图。Fig. 8 is a schematic side view of the internal structure of the mobile body according to one embodiment of the present invention.

图9为本发明实施例之一的移动体内部结构后视示意图。Fig. 9 is a schematic rear view of the internal structure of the mobile body according to one embodiment of the present invention.

图10为本发明实施例之一的移动体功能模块配置示意框图。Fig. 10 is a schematic block diagram of the functional module configuration of the mobile body according to one embodiment of the present invention.

图11为本发明实施例之一的移动体中电路模块功能单元配置示意框图。Fig. 11 is a schematic block diagram of the configuration of circuit module functional units in a mobile body according to one embodiment of the present invention.

图12为本发明实施例之一的移动体中第一电路板正、反面结构示意图。Fig. 12 is a schematic diagram of the front and back structures of the first circuit board in the mobile body according to one embodiment of the present invention.

图13为本发明实施例之一的移动体中第二电路板正、反面结构示意图。Fig. 13 is a schematic diagram of the front and back structures of the second circuit board in the mobile body according to one embodiment of the present invention.

图14为本发明实施例之一的第一外接模块示意图。Fig. 14 is a schematic diagram of a first external module according to one embodiment of the present invention.

图15为本发明实施例之一的第一外接模块安装附接至移动体的示意图。Fig. 15 is a schematic diagram of the installation and attachment of the first external module to the mobile body according to one embodiment of the present invention.

图16为本发明实施例之一的第一外接模块安装在移动体上的示意图。Fig. 16 is a schematic diagram of a first external module installed on a mobile body according to one embodiment of the present invention.

图17为本发明实施例之一的移动体控制第一外接模块执行任务的示意图。Fig. 17 is a schematic diagram of a mobile body controlling a first external module to perform tasks according to one embodiment of the present invention.

图18为本发明实施例之一的第二外接模块示意图。Fig. 18 is a schematic diagram of a second external module according to one embodiment of the present invention.

图19为本发明实施例之一的第二外接模块附接安装到移动体的示意图。Fig. 19 is a schematic diagram of a second external module attached to a mobile body according to one embodiment of the present invention.

图20为本发明实施例之一的第二外接模块附接安装在移动体上的示意图。Fig. 20 is a schematic diagram of a second external module attached and installed on a mobile body according to one embodiment of the present invention.

图21为本发明实施例之一的移动体借助第二外接模块执行任务的示意图。Fig. 21 is a schematic diagram of a mobile body performing tasks by means of a second external module according to one embodiment of the present invention.

图22为本发明实施例之一的第三外接模块示意图。Fig. 22 is a schematic diagram of a third external module according to one embodiment of the present invention.

图23为本发明实施例之一的第三外接模块附接安装到移动体的示意图。Fig. 23 is a schematic diagram of a third external module attached to a mobile body according to one embodiment of the present invention.

图24为本发明实施例之一的第三外接模块附接在移动体上的示意图。Fig. 24 is a schematic diagram of a third external module attached to a mobile body according to one embodiment of the present invention.

图25为本发明实施例之一的移动体借助第三外接模块显示自定义图案的示意图。Fig. 25 is a schematic diagram of a mobile object displaying a custom pattern by means of a third external module according to one embodiment of the present invention.

图26为本发明实施例之一的第四外接模块示意图。Fig. 26 is a schematic diagram of a fourth external module according to one embodiment of the present invention.

图27为本发明实施例之一的第四外接模块附接安装到移动体的示意图。Fig. 27 is a schematic diagram of a fourth external module attached to a mobile body according to one embodiment of the present invention.

图28为本发明实施例之一的第四外接模块附接在移动体上的示意图。Fig. 28 is a schematic diagram of a fourth external module attached to a mobile body according to one embodiment of the present invention.

图29为本发明实施例之一的标记有可视图案和编码图案的定位垫的示意图。Fig. 29 is a schematic diagram of a positioning mat marked with a visible pattern and a coding pattern according to one embodiment of the present invention.

图30为根据图29中A的局部放大示意图。FIG. 30 is a partially enlarged schematic diagram according to A in FIG. 29 .

图31为本发明实施例之一的编码图案的示意图。Fig. 31 is a schematic diagram of a coding pattern according to one embodiment of the present invention.

图32为本发明实施例之一的标记点定位示意图。Fig. 32 is a schematic diagram of marking point positioning according to one embodiment of the present invention.

图33为本发明实施例之一的对列序列偏移进而对X坐标编码的示意图。FIG. 33 is a schematic diagram of shifting column sequences and encoding X coordinates according to one embodiment of the present invention.

图34为本发明实施例之一的对X坐标编码的示意图。Fig. 34 is a schematic diagram of encoding X coordinates according to one embodiment of the present invention.

图35为本发明实施例之一的对行序列偏移进而对Y坐标编码的示意图。Fig. 35 is a schematic diagram of offsetting the row sequence and encoding the Y coordinate according to one embodiment of the present invention.

图36为本发明实施例之一的对Y坐标编码的示意图。Fig. 36 is a schematic diagram of encoding the Y coordinate according to one embodiment of the present invention.

图37为本发明实施例之一的对XY坐标联合编码的示意图。Fig. 37 is a schematic diagram of joint encoding of XY coordinates according to one embodiment of the present invention.

图38为本发明实施例之一的将XY坐标的联合编码转化为编码图案的示意图。Fig. 38 is a schematic diagram of converting joint coding of XY coordinates into coding patterns according to one embodiment of the present invention.

图39为本发明实施例之一的对编码识别单元进行旋转校正的示意图。Fig. 39 is a schematic diagram of performing rotation correction on a code recognition unit according to one embodiment of the present invention.

图40为本发明实施例之一的解码位置编码单元的步骤示意图。Fig. 40 is a schematic diagram of steps of decoding a position coding unit according to one embodiment of the present invention.

图41为本发明实施例之一的图像传感器采集到有旋转角度的图像的示例图。Fig. 41 is an example diagram of an image with a rotation angle collected by an image sensor according to one embodiment of the present invention.

图42根据图41中A处的局部放大示意图。FIG. 42 is a partially enlarged schematic diagram at point A in FIG. 41 .

图43为本发明实施例之一的网格估计方法的示例图。Fig. 43 is an example diagram of a grid estimation method according to one embodiment of the present invention.

图44为本发明实施例之一的单个移动体定位及导航控制系统示意图。Fig. 44 is a schematic diagram of a single mobile body positioning and navigation control system according to one embodiment of the present invention.

图45为本发明实施例之一的多个移动体集群示意图。Fig. 45 is a schematic diagram of multiple mobile body clusters according to one embodiment of the present invention.

图46为本发明实施例之一的多移动体集群控制系统示意图。Fig. 46 is a schematic diagram of a cluster control system for multiple moving bodies according to one embodiment of the present invention.

图47为本发明实施例之一的多移动体集群控制系统通信方法示意图。Fig. 47 is a schematic diagram of a communication method of a multi-mobile cluster control system according to one embodiment of the present invention.

图48为本发明实施例之一的多移动体集群控制系统通信方法示意图。Fig. 48 is a schematic diagram of a communication method of a multi-mobile cluster control system according to one embodiment of the present invention.

图49为本发明实施例之一的多移动体集群控制系统通信方法示意图。Fig. 49 is a schematic diagram of a communication method of a multi-mobile cluster control system according to one embodiment of the present invention.

图50为本发明实施例之一的指令卡片示例图。Fig. 50 is an example diagram of an instruction card according to one embodiment of the present invention.

图51为现有的一种光学辨识码编码识别示意图。Fig. 51 is a schematic diagram of an existing optical identification code code identification.

10——移动体,11——第一电路板,12——第二电路板,110——电路模块,111——控制单元,112——光学单元,112a——图像传感器模组,112b——补光灯,113——电源单元,113a——充电接口,113b——电源管理模组,114——驱动单元,115——通信单元,116——传感单元,117——显示单元,118——声音单元,119——拓展单元,10—moving body, 11—first circuit board, 12—second circuit board, 110—circuit module, 111—control unit, 112—optical unit, 112a—image sensor module, 112b— —Fill light, 113—Power unit, 113a—Charging interface, 113b—Power management module, 114—Drive unit, 115—Communication unit, 116—Sensing unit, 117—Display unit, 118——sound unit, 119——expansion unit,

120——运动模块,121——电机,122——驱动轮,123——万向轮,130——电池模块,120—motion module, 121—motor, 122—drive wheel, 123—universal wheel, 130—battery module,

140——壳体模块,141——壳体上罩,142——壳体底盘,20——第一外接模块,20’——第二外接模块,20”——第三外接模块,20”’——第四外接模块,140——shell module, 141——shell upper cover, 142——shell chassis, 20——first external module, 20'——second external module, 20”——third external module, 20” '—the fourth external module,

30——定位垫,31——可视图案,32——编码图案,30—location pad, 31—visible pattern, 32—encoded pattern,

41——标记点,42——虚拟网格线,43——虚拟网格点,44a——第一局部表面,44b——第二局部表面,41—mark point, 42—virtual grid line, 43—virtual grid point, 44a—first partial surface, 44b—second partial surface,

51——图像传感器图像,52——标记点连线,53——最短标记点连线,61——处理设备,51—image sensor image, 52—mark point connection, 53—shortest mark point connection, 61—processing equipment,

71——指令卡片。71—Command card.

具体实施方式Detailed ways

对于室内移动体,现有的Wi-Fi定位、蓝牙定位、射频识别RFID定位、ZigBee定位、UWB超带宽技术定位、超声波定位、红外线定位方法基本都采用近邻法、多边定位法、接收信号强度等原理,其精度只能达到米级,且必须依靠移动体外部的基站。移动体本身也必须安装相应的通信设备、具备通信能力,整体方案成本高、功耗大。此外,以上方法均只能检测到移动体的位置,而无法获取移动体的姿态,具有很大的局限性。For indoor mobile objects, the existing Wi-Fi positioning, Bluetooth positioning, radio frequency identification RFID positioning, ZigBee positioning, UWB ultra-wideband technology positioning, ultrasonic positioning, and infrared positioning methods basically use the nearest neighbor method, multilateral positioning method, received signal strength, etc. In principle, its accuracy can only reach the meter level, and it must rely on the base station outside the mobile body. The mobile itself must also be equipped with corresponding communication equipment and have communication capabilities. The overall solution costs are high and power consumption is high. In addition, the above methods can only detect the position of the moving object, but cannot obtain the attitude of the moving object, which has great limitations.

惯性导航定位方法基于航位推测法,可以获取位置和姿态,但会产生不可忽略的累积误差,必须与其他定位方法协同才可以实现准确的定位。The inertial navigation positioning method is based on the dead reckoning method, which can obtain the position and attitude, but it will produce a non-negligible cumulative error, and it must be coordinated with other positioning methods to achieve accurate positioning.

常规的机器视觉定位方法需要分别在环境或者移动体上安装摄像头或粘贴基准标记,能够获取较为准确的位置和姿态。然而配置摄像头和基准标记需要标定摄像头的内参、外参,校准的步骤繁琐,更换环境之后难以快速布置,对于光源条件的要求更加苛刻、计算量更大、软硬件成本也更高。Conventional machine vision positioning methods need to install cameras or paste fiducial marks on the environment or moving objects respectively, so as to obtain more accurate positions and attitudes. However, configuring the camera and fiducial markers requires calibration of the internal and external parameters of the camera. The calibration steps are cumbersome, and it is difficult to quickly arrange after changing the environment. The requirements for light source conditions are more stringent, the calculation is larger, and the cost of software and hardware is also higher.

将光学辨识码应用在移动体的定位和导航上,已经有所披露。例如,采用图像传感器模组采集到光学辨识码之后,可以计算出移动体所在的位置,根据前后两次位置,可以计算出自身移动方向和移动距离,并可以确定下一时刻的前进路径。然而,现有方案均有较明显的缺陷:The application of optical identification codes to the positioning and navigation of mobile objects has been disclosed. For example, after the optical identification code is collected by the image sensor module, the position of the moving object can be calculated. According to the two positions before and after, the moving direction and moving distance can be calculated, and the forward path at the next moment can be determined. However, the existing solutions all have obvious defects:

(1)所述光学辨识码(包括OID辨识码)都是分块独立、间断而非连续的,图像传感器模组视野中必须包含一个完整的光学辨识码区才可以正确识别出位置;(1) The optical identification codes (including OID identification codes) are block-independent, intermittent rather than continuous, and the image sensor module must include a complete optical identification code area in order to correctly identify the position;

(2)基于(1)所述的特点,该种定位方法的精度至少是一个完整的光学编码区的边长大小,在实际情况下,大约为3-5mm;(2) Based on the characteristics described in (1), the accuracy of this positioning method is at least the size of the side length of a complete optical coding area, which is about 3-5mm in actual situations;

(3)基于(1)所述的特点,为了识别到一个完整的光学编码区,要求图像传感器模组采集的视野边长至少为光学辨识码区边长的2倍,面积为4倍;如果再考虑旋转的话,则边长为

Figure SMS_1
倍,面积为8倍,如图48所示;(3) Based on the characteristics described in (1), in order to identify a complete optical coding area, the side length of the field of view collected by the image sensor module is required to be at least twice the side length of the optical identification code area, and the area is 4 times; if Considering the rotation, the side length is
Figure SMS_1
times, the area is 8 times, as shown in Figure 48;

(4)基于(1)所述的情况,如果被识别的光学辨识码区内存在污点或者破损,则该光学辨识码区则完全不可读,进一步,当纸张上光学辨识码的坏点率达到1/36,则该纸张不可读;(4) Based on the situation described in (1), if there is stain or damage in the identified optical identification code area, the optical identification code area is completely unreadable. Further, when the dead point rate of the optical identification code on the paper reaches 1/36, the paper is unreadable;

(5)基于(4)所述视场较大的要求,镜头与图像传感器模组(CCD或CMOS)之间的距离需要更远,会导致整体设备的尺寸更大;或者可以使用广角镜头以减小镜头与图像传感器模组之间的距离,但会造成图像的桶型畸变,需要借助算法进行畸变矫正,影响计算效率;(5) Based on the requirement of a larger field of view in (4), the distance between the lens and the image sensor module (CCD or CMOS) needs to be farther, which will result in a larger size of the overall device; or a wide-angle lens can be used to reduce the The distance between the lens and the image sensor module is small, but it will cause barrel-shaped distortion of the image, which requires the use of algorithms for distortion correction, which affects computing efficiency;

(6)基于(4)所述视场较大的要求,为准确识别每一个码点的位置,需要使用分辨率更高的图像传感器模组(CCD或CMOS),会进一步增加成本、影响计算效率;(6) Based on the requirement of a large field of view described in (4), in order to accurately identify the position of each code point, it is necessary to use an image sensor module (CCD or CMOS) with a higher resolution, which will further increase the cost and affect the calculation efficiency;

(7)基于(4)所述视场较大的要求,视野内码点数量多,会降低计算效率;(7) Based on the larger requirement of the field of view described in (4), the number of code points in the field of view is large, which will reduce the computational efficiency;

(8)基于(4)所述的视场较大要求,有可能在视场中同时出现4个光学辨识码区块,此时还需要处理防碰撞问题;(8) Based on the larger field of view requirement described in (4), it is possible that 4 optical identification code blocks appear in the field of view at the same time, and at this time, the problem of anti-collision needs to be dealt with;

(9)现有的系统中,通常根据所述的光学辨识码解码出二进制信息,进而计算出对应的坐标信息,但无法求解出移动体和光学辨识码之间的旋转角度,仅能在运动之后,根据两个或多个位置信息拟合计算出当下的前进方向,误差较大;(10)基于(9)的特点,当移动体自身原地旋转、或者被人与其他物体挪动位置后,移动体无法辨别自身的旋转角度。(9) In the existing system, the binary information is usually decoded according to the optical identification code, and then the corresponding coordinate information is calculated, but the rotation angle between the moving body and the optical identification code cannot be calculated, and the Afterwards, the current direction of progress is calculated according to two or more position information fittings, and the error is relatively large; (10) Based on the characteristics of (9), when the moving body rotates in situ, or is moved by people and other objects , the moving body cannot distinguish its own rotation angle.

根据一个或者多个实施例,如图1,一种移动体以及移动体集群控制系统,包括移动体10、外接模块20、定位垫30。其中的移动体结构,该移动体10可以在水平方向上移动和旋转,并具有一定的通信功能。如图2是移动体10的示例图,图3是移动体10的仰视图的示例,图4是移动体10的正视图的示例,图5是移动体10的俯视图的示例,图6是移动体10的侧视图的示例。According to one or more embodiments, as shown in FIG. 1 , a mobile body and a mobile body cluster control system include a mobile body 10 , an external module 20 , and a positioning pad 30 . Among them, the mobile body structure, the mobile body 10 can move and rotate in the horizontal direction, and has a certain communication function. Fig. 2 is an example diagram of the mobile body 10, Fig. 3 is an example of a bottom view of the mobile body 10, Fig. 4 is an example of a front view of the mobile body 10, Fig. 5 is an example of a top view of the mobile body 10, Fig. 6 is a mobile An example of a side view of body 10.

如图2~图6所示,移动体10由壳体上罩141和壳体底盘142所封闭。移动体10底部配置有两个驱动轮122和一个万向轮123与地面接触,可以使移动体10在移动体10所在的表面上移动。移动体10底部配置有光学单元112,可以识别读取移动体10所在表面的图案。移动体10底部配置有充电接口113a,可以为移动体10供电。移动体10前部配置有拓展单元119,可以与各类外接模块20相连。移动体10顶部配置有显示单元117,可以根据需要显示图案或文字。As shown in FIGS. 2 to 6 , the moving body 10 is closed by a housing upper cover 141 and a housing chassis 142 . Two driving wheels 122 and one universal wheel 123 are arranged on the bottom of the mobile body 10 to contact the ground, so that the mobile body 10 can move on the surface where the mobile body 10 is located. An optical unit 112 is disposed at the bottom of the mobile body 10 , which can recognize and read patterns on the surface of the mobile body 10 . The bottom of the mobile body 10 is provided with a charging interface 113 a, which can supply power to the mobile body 10 . The front of the mobile body 10 is equipped with an expansion unit 119 that can be connected with various external modules 20 . A display unit 117 is disposed on the top of the mobile body 10, and can display patterns or characters as required.

如图7为移动体10去除壳体上罩141后的示例,如图8为移动体10去除壳体上罩141后的侧视图的示例,如图9为移动体10去除壳体上罩141后的后视图的示例。Figure 7 is an example of the mobile body 10 after removing the housing upper cover 141, Figure 8 is an example of a side view of the mobile body 10 after the housing upper cover 141 is removed, and Figure 9 is an example of the mobile body 10 removing the housing upper cover 141 Example of rear view of rear.

如图10为本公开一种移动体10的功能配置框图。可将移动体10分为电路模块110、运动模块120、电池模块130、壳体模块140。FIG. 10 is a functional configuration block diagram of a mobile body 10 in the present disclosure. The mobile body 10 can be divided into a circuit module 110 , a motion module 120 , a battery module 130 , and a housing module 140 .

以下展开对各模块的介绍。The introduction of each module is expanded below.

如图11为移动体10中电路模块110的功能配置框图。电路模块由控制单元111,光学单元112,电源单元113,驱动单元114,通信单元115,传感单元116,显示单元117,声音单元118和拓展单元119构成。FIG. 11 is a block diagram of the functional configuration of the circuit module 110 in the mobile body 10 . The circuit module is composed of a control unit 111 , an optical unit 112 , a power supply unit 113 , a drive unit 114 , a communication unit 115 , a sensor unit 116 , a display unit 117 , an audio unit 118 and an expansion unit 119 .

如图12为移动体10中电路板11的示例图,如图13为移动体10中电路板12的示例图。电路板11和电路板12是本实例中电路模块10依托的物理载体。FIG. 12 is an example diagram of the circuit board 11 in the mobile body 10 , and FIG. 13 is an example diagram of the circuit board 12 in the mobile body 10 . The circuit board 11 and the circuit board 12 are physical carriers on which the circuit module 10 is supported in this example.

在本实例中,控制单元111为单片微控制器,主要包括微处理器(CPU)、存储器(随机访问存储器RAM、只读存储器ROM)和各种输入/输出接口(包括定时器/计数器、并行I/O接口、串行口、A/D转换器以及脉冲宽度调制(PWM))等。控制单元111可以处理来自其他各电路单元的信号或控制其他各电路单元,起到全面地控制移动体10的功能。In this example, the control unit 111 is a single-chip microcontroller, mainly including a microprocessor (CPU), memory (random access memory RAM, read-only memory ROM) and various input/output interfaces (including timer/counter, Parallel I/O interface, serial port, A/D converter, and pulse width modulation (PWM)). The control unit 111 can process signals from other circuit units or control other circuit units, so as to fully control the mobile body 10 .

在本实例中,光学单元112包含向定位垫30输出光的补光灯112b和用于检测从定位垫30反射的光的图像传感器模组112a(如图12、图13)。In this example, the optical unit 112 includes a supplementary light 112b for outputting light to the positioning mat 30 and an image sensor module 112a for detecting light reflected from the positioning mat 30 (as shown in FIGS. 12 and 13 ).

当移动体10放置在定位垫30上时,图像传感器模组112a可以拍摄定位垫30上的图像,并将图像信号发送给控制单元111解码处理,进而获取到移动体10在定位垫30上的位置坐标和相对旋转角度。When the mobile body 10 is placed on the positioning mat 30, the image sensor module 112a can take an image on the positioning mat 30, and send the image signal to the control unit 111 for decoding processing, and then obtain the position of the mobile body 10 on the positioning mat 30. Position coordinates and relative rotation angles.

优选的,光学单元112应当配置在移动体10底部的正中央,以便直接计算获取到移动体10的几何中心在定位垫30上的位置坐标和旋转角度。光学单元112也可位于移动体10底部的其他位置,但需额外进行一定的坐标变换才能计算出移动体10在定位垫30上几何中心以及运动学中心的位置坐标和旋转角度。Preferably, the optical unit 112 should be arranged at the center of the bottom of the moving body 10 so as to directly calculate and obtain the position coordinates and rotation angle of the geometric center of the moving body 10 on the positioning pad 30 . The optical unit 112 can also be located at other positions on the bottom of the moving body 10 , but the position coordinates and rotation angles of the geometric center and the kinematic center of the moving body 10 on the positioning pad 30 can be calculated through additional coordinate transformation.

图像传感器模组112a包含图像传感器元件(CCD或CMOS)和镜头组件。The image sensor module 112a includes an image sensor element (CCD or CMOS) and a lens assembly.

优选的,图像传感器元件要求具有全局快门功能、并具有较高帧率(120fps-240fps),以便采集到无拖影或变形的图像,提高移动体10的定位频率。Preferably, the image sensor element is required to have a global shutter function and a relatively high frame rate (120fps-240fps), so as to collect images without smear or deformation and increase the positioning frequency of the moving body 10 .

优选的,图像传感器元件可以选用输出格式为黑白图像的CCD或CMOS,而不必选择输出格式为彩色图像的CCD或CMOS,这样可以进一步降低图像传感器元件的硬件成本,降低图像处理的计算量,提高计算效率。Preferably, the image sensor element can select the CCD or CMOS that the output format is a black and white image for use, and it is not necessary to select the CCD or CMOS that the output format is a color image, which can further reduce the hardware cost of the image sensor element, reduce the calculation amount of image processing, and improve Computational efficiency.

优选的,可以根据需要为镜头组件增加红外滤光片或其他滤光片。Preferably, an infrared filter or other filters can be added to the lens assembly as required.

补光灯112b为图像传感器模组112a提供均匀、稳定的光源环境,保证后者能够采集到准确清晰的定位垫30上的图像。The fill light 112b provides a uniform and stable light source environment for the image sensor module 112a to ensure that the latter can capture accurate and clear images on the positioning mat 30 .

补光灯112b可根据图像传感器模组112和定位垫30上图案的特性,选用白光补光、绿光补光、蓝光补光、红光补光、红外光补光或紫外光补光。The supplementary light 112b can choose white supplementary light, green supplementary light, blue supplementary light, red supplementary light, infrared supplementary light or ultraviolet supplementary light according to the characteristics of the pattern on the image sensor module 112 and the positioning pad 30 .

在本实例中,补光灯112b采用近红外光补光,以便更好地识别到定位垫30上由吸收近红外光的材料印刷的编码图案210。In this example, the fill light 112b uses near-infrared light to fill the light, so as to better recognize the coding pattern 210 printed on the positioning pad 30 by a material that absorbs near-infrared light.

电源单元113在电路模块110中发挥对电能变换、分配、检测及其他电能管理的作用,保障电路模块110、运动模块120等模块正常工作。The power supply unit 113 plays a role in electric energy conversion, distribution, detection and other electric energy management in the circuit module 110 to ensure the normal operation of the circuit module 110, the motion module 120 and other modules.

电源单元113包括但不限于充电接口113a、电源管理模组113b(可以实现电源转换、电源分配和检测、电池充放电管理、无线充电管理、电压基准、显示屏驱动、电压电流检测等功能)。为使移动体10适用于数量庞大的集群系统,移动体10的充电应当便捷、高效。为此,可以改进充电结构113a的构造,或采用无线充电方式为移动体10充电。The power supply unit 113 includes, but is not limited to, a charging interface 113a and a power management module 113b (which can realize power conversion, power distribution and detection, battery charge and discharge management, wireless charging management, voltage reference, display screen drive, voltage and current detection, etc.). In order to make the mobile body 10 suitable for a large number of trunking systems, the charging of the mobile body 10 should be convenient and efficient. To this end, the structure of the charging structure 113a can be improved, or the mobile body 10 can be charged in a wireless charging manner.

驱动单元114用于驱动运动模块120中的两个电机121运动。可以控制两个电机121的转动方向、速度及扭矩,最终带动两个驱动轮122旋转,控制移动体10运动。The drive unit 114 is used to drive the two motors 121 in the motion module 120 to move. The rotation direction, speed and torque of the two motors 121 can be controlled to finally drive the rotation of the two driving wheels 122 to control the movement of the mobile body 10 .

通信单元115可以用于移动体10向外部其他设备通信,或从外部其他设备接受信息。通信单元115采用无线通信方式(如蓝牙、BLE、Wi-Fi、ZigBee等常规通信技术,以及无线电通讯、微波通讯、自由空间光通信、声通讯、电磁感应通讯)。通信单元115可以向外部其他设备发送自身ID、位姿、传感器数据等信息,亦可从外部其他设备接受运动指令等信息。当系统中存在多个移动体10时,各移动体10也可以通过通信单元115相互通信。The communication unit 115 can be used for the mobile body 10 to communicate with other external devices, or receive information from other external devices. The communication unit 115 adopts a wireless communication method (such as Bluetooth, BLE, Wi-Fi, ZigBee and other conventional communication technologies, as well as radio communication, microwave communication, free space optical communication, acoustic communication, electromagnetic induction communication). The communication unit 115 can send information such as its own ID, pose, and sensor data to other external devices, and can also receive information such as motion instructions from other external devices. When there are multiple mobile bodies 10 in the system, each mobile body 10 can also communicate with each other through the communication unit 115 .

传感单元116包括陀螺仪与加速度传感器、用于电机测速的传感器、温度传感器、距离传感器、触摸开关或其他开关等元器件。陀螺仪与加速度传感器可以使移动体10有能力获取自身位姿,用于移动体10运动状态的反馈,或拓展人机交互方式;电机测速传感器可以反馈电机实际转动的方向、角度和速度,提升移动体10的闭环控制性能;温度传感器可以检测移动体10的内部温度,防止过热发生故障,或检测外部环境温度;距离传感器可以选择配置在移动体10底部靠前位置,防止移动体10从桌面等平台坠落;触摸开关或其他开关可用于移动体10电路模块110的唤醒和关闭、以及功能切换等功能。The sensing unit 116 includes components such as a gyroscope and an acceleration sensor, a sensor for motor speed measurement, a temperature sensor, a distance sensor, a touch switch or other switches. The gyroscope and the acceleration sensor can enable the mobile body 10 to have the ability to obtain its own posture, which can be used for the feedback of the motion state of the mobile body 10, or to expand the human-computer interaction mode; the motor speed sensor can feedback the actual rotation direction, angle and speed of the motor, and improve The closed-loop control performance of the mobile body 10; the temperature sensor can detect the internal temperature of the mobile body 10 to prevent overheating and malfunction, or detect the external ambient temperature; the distance sensor can be optionally configured at the front of the bottom of the mobile body 10 to prevent the mobile body 10 from the desktop Wait for the platform to fall; the touch switch or other switches can be used for functions such as waking up and shutting down the circuit module 110 of the mobile body 10, and switching functions.

显示单元117为一块配置于移动体10顶部的多色LED点阵,通过排线等方式与电路板11和电路板12相连,受控制单元111的控制,可以起到显示移动体10状态、提升美观性等作用。此外,显示单元117可以包括单色LED灯珠、多色LED灯珠、单色LED点阵、多色LED点阵、单色墨水屏、多色墨水屏、液晶显示屏LCD、有机发光半导体OLED、带触屏的显示屏等,并可以调节显示亮度,显示单元117也可以配置在移动体10的其他位置。The display unit 117 is a multi-color LED dot matrix arranged on the top of the mobile body 10, which is connected to the circuit board 11 and the circuit board 12 by means of wiring, etc., and controlled by the control unit 111, it can display the state of the mobile body 10, lift aesthetics etc. In addition, the display unit 117 may include single-color LED lamp beads, multi-color LED lamp beads, single-color LED dot matrix, multi-color LED dot matrix, single-color ink screen, multi-color ink screen, liquid crystal display LCD, organic light-emitting semiconductor OLED , a display screen with a touch screen, etc., and the display brightness can be adjusted, and the display unit 117 can also be arranged at other positions of the mobile body 10 .

声音单元118包括音频识别芯片、音频解码芯片、麦克风、扬声器或蜂鸣器等组件。声音单元118可以借助扬声器识别外部环境声音的响度、频率等特征;可以借助麦克风和音频识别芯片识别语音,进而使控制单元111控制移动体10执行一定的操作;可以借助扬声器或蜂鸣器输出各种声音或者音效,实现更好的人机交互效果。The sound unit 118 includes components such as an audio recognition chip, an audio decoding chip, a microphone, a speaker, or a buzzer. The sound unit 118 can recognize features such as the loudness and frequency of the external environment sound by means of a speaker; it can recognize voice by means of a microphone and an audio recognition chip, and then make the control unit 111 control the mobile body 10 to perform certain operations; A sound or sound effect to achieve better human-computer interaction effect.

拓展单元119可以配置在移动体10的正面,用于与外接模块20连接。拓展单元119包括连接装置和电气接口。本实例的连接装置为磁吸连接结构。此外,连接装置还可配置为插槽卡扣、电磁铁、能够控制磁铁磁场方向的机构等形式,或多种连接结构的组合。The expansion unit 119 can be arranged on the front of the mobile body 10 for connecting with the external module 20 . The expansion unit 119 includes connection means and an electrical interface. The connecting device in this example is a magnetic connection structure. In addition, the connection device can also be configured in the form of a slot buckle, an electromagnet, a mechanism capable of controlling the direction of the magnetic field of the magnet, or a combination of various connection structures.

优选的,连接装置是电磁铁,或能够控制磁场方向的机构,因而移动体10可以自行控制和外接模块的连接和分离,无需外界的辅助。Preferably, the connection device is an electromagnet, or a mechanism capable of controlling the direction of the magnetic field, so that the mobile body 10 can control the connection and separation of the external module without external assistance.

本实例的电气接口包含电源接口和信号接口。The electrical interface in this example includes a power interface and a signal interface.

其中,电源接口可以实现移动体10和外接模块20之间电能传输。如移动体10可以给外接模块20中的电子器件供电;或是外接模块20借助拓展单元119给移动体10充电。Wherein, the power interface can realize power transmission between the mobile body 10 and the external module 20 . For example, the mobile body 10 can supply power to the electronic devices in the external module 20 ; or the external module 20 can charge the mobile body 10 through the expansion unit 119 .

在本实例中,信号接口采用串行传输总线(I2C),可以实现移动体10和外接模块20的双向数据通信、还可以借助I2C总线的寻址功能,使控制单元110区分出所连接的不同外接模块20的类型。此外,信号接口可以采用通用异步收发器(SCI)、串行外设接口(SPI)、CAN总线、LIN总线、通用输入/输出(GPIO),或是多种接口的组合。In this example, the signal interface adopts a serial transmission bus (I2C), which can realize two-way data communication between the mobile body 10 and the external module 20, and can also use the addressing function of the I2C bus to make the control unit 110 distinguish the connected external modules. Type of module 20. In addition, the signal interface may adopt a general asynchronous transceiver (SCI), a serial peripheral interface (SPI), a CAN bus, a LIN bus, a general-purpose input/output (GPIO), or a combination of multiple interfaces.

在本实例中,移动体10的运动模块120包含两个电机121、两个驱动轮122、一个万向轮123。电机121与电路模块110连接,驱动单元114可以控制电机121转动的方向、速度和扭矩。电机121直接或间接地控制驱动轮122旋转。两个驱动轮122和万向轮123与地面接触,移动体10可以在其所在表面上运动。In this example, the motion module 120 of the mobile body 10 includes two motors 121 , two driving wheels 122 and one universal wheel 123 . The motor 121 is connected to the circuit module 110 , and the drive unit 114 can control the direction, speed and torque of the motor 121 . The motor 121 directly or indirectly controls the rotation of the driving wheel 122 . The two driving wheels 122 and the universal wheel 123 are in contact with the ground, and the mobile body 10 can move on the surface on which it is located.

如图7—图9,电池模块130包括电池和电池管理装置。电池模块130与电源单元113连接,可以为电路模块110、运动模块120提供稳定可靠的电源,也可通过电路模块110为电池模块130充电。As shown in FIGS. 7-9 , the battery module 130 includes a battery and a battery management device. The battery module 130 is connected to the power supply unit 113 , which can provide stable and reliable power for the circuit module 110 and the motion module 120 , and can also charge the battery module 130 through the circuit module 110 .

壳体模块140起到防水防尘、保护内部结构、提升美观性的作用。The shell module 140 plays the role of waterproof and dustproof, protecting the internal structure, and improving aesthetics.

在本实例中,壳体模块140由壳体上罩141和壳体底盘142构成,两者可通过卡扣、焊接、胶粘等方式连接固定。In this example, the housing module 140 is composed of a housing upper cover 141 and a housing chassis 142 , and the two can be connected and fixed by buckling, welding, gluing and the like.

在本公开中,外接模块是相对独立的组件,其后部合适位置上配置有磁吸单元210,可以附接到移动体10的拓展单元119上,实现紧密连接和电气导通,移动体10可以带着外接模块一同移动。In this disclosure, the external module is a relatively independent component, and a magnetic attraction unit 210 is arranged at a suitable position on the rear thereof, which can be attached to the expansion unit 119 of the mobile body 10 to achieve close connection and electrical conduction, and the mobile body 10 It can be moved together with the external modules.

根据外接模块实现功能的不同,本公开提供四种外接模块实例——外接模块20、外接模块20’、外接模块20”和外接模块20”’。According to the different functions of the external modules, the present disclosure provides four examples of external modules——external module 20, external module 20', external module 20" and external module 20"'.

外接模块上可以配置电机、舵机、继电器、蜂鸣器等执行器,并可配置相应的运动机构,此时移动体10可以控制外接模块20的运动或工作。本公开实施例提供一种安装有舵机的铲斗造型外接模块20的实施例。如图14为外接模块20的示例图,图15为外接模块20即将附接到移动体10上的示例图,图16为外接模块20已经附接到移动体10上的示例图,图17为移动体10控制外接模块20运动并执行特殊功能的示例图。当外接模块20附接到移动体10上后,移动体10和外接模块20共同构成铲车模型,可以搬运货物模型。Actuators such as motors, steering gears, relays, and buzzers can be configured on the external module, and corresponding motion mechanisms can be configured. At this time, the mobile body 10 can control the movement or work of the external module 20 . The embodiment of the present disclosure provides an embodiment of a bucket-shaped external module 20 installed with a steering gear. Figure 14 is an example diagram of the external module 20, Figure 15 is an example diagram of the external module 20 about to be attached to the mobile body 10, Figure 16 is an example diagram of the external module 20 already attached to the mobile body 10, and Figure 17 is An example diagram of the mobile body 10 controlling the movement of the external module 20 and performing special functions. After the external module 20 is attached to the mobile body 10, the mobile body 10 and the external module 20 together constitute a forklift model, which can carry the cargo model.

外接模块上可以配置超声波测距、TOF激光测距、光敏电阻、光电二极管、轻触开关、干簧管、光电开关、麦克风、摄像头、NFC读卡器等传感器,此时移动体10可以借助外接模块20’拓展功能。本公开实施例提供一种配置了超声波传感器的外接模块20’。如图18为外接模块20’的示例图,图19为外接模块20’即将附接到移动体10上的示例图,图20为外接模块20’已经附接到移动体10上的示例图,图21为移动体10借助外接模块20’执行功特殊能的示例图。当外接模块20’附接到移动体10上后,移动体10可以感知前方是否有障碍物,如果有障碍物可以自主绕行。Sensors such as ultrasonic ranging, TOF laser ranging, photoresistor, photodiode, tact switch, reed switch, photoelectric switch, microphone, camera, NFC card reader, etc. can be configured on the external module. Module 20' extends functionality. An embodiment of the present disclosure provides an external module 20' configured with an ultrasonic sensor. Figure 18 is an example diagram of an external module 20', Figure 19 is an example diagram of an external module 20' that is about to be attached to the mobile body 10, and Figure 20 is an example diagram of an external module 20' that has been attached to the mobile body 10, Fig. 21 is an example diagram of the mobile body 10 performing special functions by means of the external module 20'. When the external module 20' is attached to the mobile body 10, the mobile body 10 can sense whether there is an obstacle ahead, and if there is an obstacle, it can go around autonomously.

外接模块上可以配置LED、激光、墨水屏、LCD、OLED等显示器,此时移动体10可以控制外接模块20”发光或显示文字、图案或色彩。本公开提供一种配置了LCD显示屏的外接模块20”。如图22为外接模块20”的示例图,图23为外接模块20”即将附接到移动体10上的示例图,图24为外接模块20”已经附接到移动体10上的示例图,图25为移动体10借助外接模块20”显示自定义图案的示例图。当外接模块20”附接到移动体10上后,移动体10可以具备发光、显示文字、图案或色彩的功能,拓展移动体10的功能,满足更多使用场景。Displays such as LEDs, lasers, ink screens, LCDs, and OLEDs can be configured on the external module. At this time, the mobile body 10 can control the external module 20" to emit light or display text, patterns or colors. This disclosure provides an external display equipped with an LCD display. Module 20". Figure 22 is an example diagram of the external module 20", Figure 23 is an example diagram of the external module 20" about to be attached to the mobile body 10, and Figure 24 is an example diagram of the external module 20" already attached to the mobile body 10, Fig. 25 is an example diagram of the mobile body 10 displaying a custom pattern by means of an external module 20". When the external module 20" is attached to the mobile body 10, the mobile body 10 can have the functions of emitting light, displaying characters, patterns or colors, expanding the functions of the mobile body 10 and meeting more usage scenarios.

外接模块还可以是无特殊功能的造型模块。本公开提供一种汽车形状的外接模块20”’。如图26为外接模块20”’的示例图,图27为外接模块20”’即将附接到移动体10上的示例图,图28为外接模块20”’已经附接到移动体10上的示例图。外接模块20”’可以套在移动体10上方实现连接,此时可以提升移动体10的美观性,使移动体10扮演特定的角色。The external module can also be a modeling module without special function. The present disclosure provides a car-shaped external module 20"'. Figure 26 is an example diagram of the external module 20"', and Figure 27 is an example diagram of the external module 20"' about to be attached to the mobile body 10, and Figure 28 is An example diagram of the external module 20 ″' attached to the mobile body 10 . The external module 20"' can be placed on the top of the mobile body 10 to realize the connection. At this time, the aesthetics of the mobile body 10 can be improved, and the mobile body 10 can play a specific role.

另外,外接模块还可以是能给移动体10充电的充电模块。In addition, the external module may also be a charging module capable of charging the mobile body 10 .

此外,由于本公开实例的拓展单元119采用串行传输总线(I2C)接口,有能力同时和多个子设备通信,因此,单个外接模块还可以是上述执行器模块、传感器模块、显示器模块、造型模块、充电模块各功能配件的组合,以实现更丰富的功能。In addition, since the expansion unit 119 of the disclosed example adopts a serial transmission bus (I2C) interface, it has the ability to communicate with multiple sub-devices at the same time, therefore, a single external module can also be the above-mentioned actuator module, sensor module, display module, modeling module , The combination of various functional accessories of the charging module to achieve richer functions.

外接模块不只可以连接在移动体10前方,还可以通过特定的结构嵌套于移动体10上部、或者其他部位;外接模块可以与拓展单元119连接,也可以不与拓展单元119连接;外接模块可以与拓展单元119实现电气连接,也可以不与拓展单元110实现电气连接。The external module can not only be connected to the front of the mobile body 10, but also can be embedded in the upper part of the mobile body 10 or other parts through a specific structure; the external module can be connected with the expansion unit 119 or not connected with the expansion unit 119; the external module can It may be electrically connected with the expansion unit 119 , or may not be electrically connected with the expansion unit 110 .

根据一个或者多个实施例,一种移动体集群控制系统,单个或者多个移动体运动于经过编码的表面上,该表面可以是一个定位垫30的表面,如图29、图30。定位垫30上标记有两种图案,包括可视图案31和编码图案32。可视图案31是希望直接被人肉眼所观看到的图案,主要起直观地给人传递信息和美化装饰的作用。因此,可视图案31需要由可以反射或吸收人类可见光的材料打印;同时为了避免对于光学单元112读取编码图案32的干扰,可视图案31尽可能避免使用红外可读材料打印。具体而言,可采用印刷业最常用的四色印刷工艺(four-color printing),即用减色法三原色颜色(黄、品红、青)及黑色进行印刷。优选的,在印刷时,需要尽量控制黄、品红、青三色和黑色的密度不要太高,以免在可视图案31颜色较深的区域影响光学单元112对编码图案32的识别。According to one or more embodiments, a mobile body cluster control system, a single or multiple mobile bodies move on a coded surface, which can be a surface of a positioning mat 30, as shown in Fig. 29 and Fig. 30 . There are two patterns marked on the positioning mat 30 , including a visible pattern 31 and a coding pattern 32 . The visible pattern 31 is a pattern that is expected to be directly observed by human eyes, and mainly plays the role of intuitively conveying information to people and beautifying the decoration. Therefore, the visible pattern 31 needs to be printed with a material that can reflect or absorb visible light for humans; meanwhile, in order to avoid interference with the optical unit 112 reading the coding pattern 32, the visible pattern 31 should avoid printing with infrared-readable materials as much as possible. Specifically, the most commonly used four-color printing process (four-color printing) in the printing industry can be used, that is, three primary colors (yellow, magenta, cyan) and black are used for printing by subtractive color method. Preferably, during printing, it is necessary to control the densities of yellow, magenta, cyan and black not to be too high, so as not to affect the recognition of the coding pattern 32 by the optical unit 112 in the darker region of the visible pattern 31 .

编码图案32是希望被移动体10的光学单元112所识别的图案,主要起编码位置信息,使移动体10能够识别到自身在定位垫30上的坐标位置和相对旋转方向的作用。由于编码图案32由打印于定位垫30表面的密集而细小的光学辨识码构成,如果使用可以反射或吸收人类可见光的材料打印,可能会影响使用者的观感。因此,编码图案32理想地仅在近红外光谱(NIR)、红外光谱(IR)或紫外光谱(UV)中可见,并且是人眼完全看不见的。本公开中的编码图案32使用吸收不可见光的材料印刷,具体而言,使用吸收近红外光谱的墨水(或墨粉等)打印,其峰值吸收频率与补光灯112b发射光的波长大致相同。因而,在图像传感器模组112a的视野中,编码图案32印刷的部分即光学辨识码呈现为黑色,而没有印刷的表面呈现为白色。以下详细描述关于连续光学辨识码的编码方法,以及其中涉及的标记点配置方法。The coding pattern 32 is a pattern that is expected to be recognized by the optical unit 112 of the moving body 10 , and mainly serves to encode position information so that the moving body 10 can recognize its own coordinate position and relative rotation direction on the positioning mat 30 . Since the coding pattern 32 is composed of dense and fine optical identification codes printed on the surface of the positioning pad 30, if it is printed with a material that can reflect or absorb visible light of human beings, it may affect the perception of the user. Thus, the encoding pattern 32 is ideally only visible in the near infrared spectrum (NIR), infrared spectrum (IR) or ultraviolet spectrum (UV), and is completely invisible to the human eye. The coding pattern 32 in the present disclosure is printed using materials that absorb invisible light, specifically, ink (or toner, etc.) that absorbs near-infrared spectrum, and its peak absorption frequency is approximately the same as the wavelength of light emitted by the supplementary light 112b. Therefore, in the field of view of the image sensor module 112a, the printed part of the encoding pattern 32, that is, the optical identification code, appears black, while the non-printed surface appears white. The following describes in detail the encoding method of the continuous optical identification code and the marking point configuration method involved therein.

设,定位垫30具有X坐标轴和Y坐标轴,并在其上印刷有编码图案32,如图31为定位垫上一部分编码图案32。移动体的光学单元112通过扫描任意一个完整的8*8大小的编码识别单元获取位置坐标和旋转角度信息。如图31中的第一编码识别单元44a可以编码第一个位置信息,第二编码识别单元44b可以编码第二个位置信息。两个识别单元具有部分相同的标记点41。Assume that the positioning mat 30 has an X coordinate axis and a Y coordinate axis, and a coding pattern 32 is printed thereon, as shown in FIG. 31 , a part of the coding pattern 32 on the positioning mat. The optical unit 112 of the moving body acquires position coordinates and rotation angle information by scanning any complete 8*8 code identification unit. As shown in FIG. 31 , the first code recognition unit 44a can code the first position information, and the second code recognition unit 44b can code the second position information. Both identification units have partially identical marking points 41 .

图32中a-d展示了本实施例中如何设计和如何定位标记点41。为方便理解,引入虚拟网格线42作为辅助线,引入虚拟网格点43作为辅助点。在定位垫30水平和竖直方向等距分布的虚拟网格线42相互交叉,形成虚拟网格点43,每一个标记点41的值取决于标记点41相对于虚拟网格点43的相对位置。在本实施例中,标记点41偏移虚拟网格点43的距离是相邻虚拟网格线间距的1/6。A-d in Fig. 32 shows how to design and how to locate the marking point 41 in this embodiment. To facilitate understanding, virtual grid lines 42 are introduced as auxiliary lines, and virtual grid points 43 are introduced as auxiliary points. The virtual grid lines 42 equidistantly distributed in the horizontal and vertical directions of the positioning mat 30 cross each other to form virtual grid points 43, and the value of each marked point 41 depends on the relative position of the marked point 41 with respect to the virtual grid point 43 . In this embodiment, the distance between the marker point 41 and the virtual grid point 43 is 1/6 of the distance between adjacent virtual grid lines.

图32a中的标记点表示值1,图32b中的标记点表示值2,图32c中的标记点表示值3,图32d中的标记点表示值4,在此基础上,可以用二进制方法将4种标记点41分成用于X坐标和Y坐标的位置编码值,如下表。The marked point in Figure 32a represents the value 1, the marked point in Figure 32b represents the value 2, the marked point in Figure 32c represents the value 3, and the marked point in Figure 32d represents the value 4, on this basis, the binary method can be used to The four marker points 41 are divided into position code values for X and Y coordinates, as shown in the table below.

标记值tagged value X-编码值X-encoded value Y-编码值Y-coded value 11 11 11 22 11 00 33 00 00 44 00 11

以此方式,每个位置都可以用多个标记点进行编码。In this way, each location can be coded with multiple marker points.

以下通过例子说明编码图案32涉及的编码方法。The encoding method involved in the encoding pattern 32 will be described below by way of example.

1.位置编码识别单元配置方法1. Configuration method of position code recognition unit

如图33-图38,以四位位序列为例,阐述本公开中的方法。As shown in FIG. 33-FIG. 38 , the method in the present disclosure is described by taking a four-bit sequence as an example.

1.1.X坐标编码1.1. X coordinate coding

位置编码需要符合B(2,4)的德布鲁因序列规则。位置编码由1和0的序列即位序列构成,此位置编码序列的特征是,每一个四位长的位序列在位置编码序列中是唯一的。位置编码序列是循环的,这意味着当位置编码序列的尾端连接到其首端时还有这样的特征。四位长的位序列因而在位置编码序列中总有唯一确定的位置号。The position code needs to conform to the B(2,4) De Bruin sequence rule. The position code is composed of a sequence of 1 and 0, that is, a bit sequence. The characteristic of this position code sequence is that each four-bit long bit sequence is unique in the position code sequence. The position-coding sequence is circular, which means that there is also such a feature when the tail of the position-coding sequence is joined to its head. A four-bit long bit sequence therefore always has a uniquely defined position number in the position coding sequence.

如果四位位序列要具有上述特征,位置编码序列最大可为16位长(即B(2,4)德布鲁因序列)。在此实例中,只使用七位长的位序列(准德布鲁因序列),如下所示:If the four-bit sequence is to have the above-mentioned characteristics, the position coding sequence can be at most 16 bits long (ie B(2,4) de Bruin sequence). In this example, only a seven-bit long bit sequence (quasi-De Bruin sequence) is used, as follows:

0 0 0 1 0 1 00 0 0 1 0 1 0

此位序列包含七个唯一的四位位序列,这些序列对序列中的位置号进行编码,如下所示:This bit sequence consists of seven unique four-bit bit sequences that encode the position number in the sequence, as follows:

序列中的位置号position number in sequence 四位位序列four-bit sequence 00 00010001 11 00100010 22 01010101 33 10101010 44 01000100 55 10001000 66 00000000

为了对X-坐标编码,位序列在待编码的所有表面上顺序写入列中,最左列C0对应于X-坐标零(0)。因而,在一列中,位序列可连续重复几次。To encode an X-coordinate, the bit sequence is written sequentially in columns on all surfaces to be encoded, the leftmost column C 0 corresponding to an X-coordinate of zero (0). Thus, within a column, the sequence of bits can be repeated several times in succession.

基于相邻列中相邻位序列之间的偏移量进行编码,偏移量的大小由四位位序列在位置编码序列中的位置号确定。如图33展示本公开实施例中如何对X方向上的相邻序列求取偏移量,图中第Ck+1列的偏移量为(m-l)mod7。The encoding is performed based on the offset between adjacent bit sequences in adjacent columns, and the size of the offset is determined by the position number of the four-bit bit sequence in the position encoding sequence. Figure 33 shows how to calculate the offset for the adjacent sequence in the X direction in the embodiment of the present disclosure, the offset of the C k+1th column in the figure is (ml) mod7.

在此实例中,每个位置用包括5*5标记的编码识别单元,因此,得到五个垂直的位序列以及四个偏移量△用于对X-坐标编码,每个偏移量都在0-6之间。In this example, each position is identified by a code consisting of 5*5 markers, thus resulting in five vertical bit sequences and four offsets △ for encoding the X-coordinate, each offset in Between 0-6.

为了避免出现太过对称的编码图案,本实施例按照以下方式执行编码:对于四个偏移量,其中一个偏移量△0总是为值1或2,它指用于表示位置编码识别单元在X方向上位置的数字的最低有效数字S0。其它三个偏移量△1、△2、△3的值都在3-6范围内,它们指用于位置编码识别单元的坐标的三个最高有效数字S1、S2、S3。换而言之,在确定好最左列C0的位置号后,从C1开始对列进行编码,使得偏移量如下:In order to avoid an overly symmetrical coding pattern, this embodiment performs coding in the following manner: For four offsets, one of the offsets △ 0 is always a value of 1 or 2, which refers to the position code identification unit The least significant digit S 0 of the digits of the position in the X direction. The values of the other three offsets Δ 1 , Δ 2 , Δ 3 are all in the range of 3-6, and they refer to the three most significant digits S 1 , S 2 , S 3 of the coordinates for the position-coding identification unit. In other words, after determining the position number of the leftmost column C 0 , start encoding the column from C 1 , so that the offset is as follows:

(3至6)、(3至6)、(3至6)、(1至2);(3至6)、(3至6)、(3至6)、(1至2);(3至6)、(3至6)、(3至6)、(1至2)……(3 to 6), (3 to 6), (3 to 6), (1 to 2); (3 to 6), (3 to 6), (3 to 6), (1 to 2); (3 to 6), (3 to 6), (3 to 6), (1 to 2)...

如图34,基于相邻列中相邻位序列之间的偏移量对X-坐标进行编码。选定最左列C0的位置号为0后,后续相邻列中相邻位序列之间的偏移量依次为3、3、3、1;3、3、3、2;3、3、4、1;3、3、4、2;3、3、5、1;3、3、5、2……,因此,C1、C2、C3……C14……列的位置号分别为3、6、2、3、6、2、5、0、3、6、3、4、0、3……As in Figure 34, the X-coordinate is encoded based on the offset between adjacent bit sequences in adjacent columns. After the position number of the leftmost column C 0 is selected as 0, the offsets between adjacent bit sequences in subsequent adjacent columns are 3, 3, 3, 1; 3, 3, 3, 2; 3, 3 . _ _ _ The numbers are 3, 6, 2, 3, 6, 2, 5, 0, 3, 6, 3, 4, 0, 3...

因此每个X坐标用三个在3和6之间的偏移量△1、△2、△3以及为1或2的偏移量△0进行编码。通过从最低偏移量△0减去一(1),其他偏移量△1、△2、△3减去三(3)获得四个数字偏移量S3、S2、S1、S0,它们直接给出位置编码识别单元在X方向上的以数字偏移量为基数的位置号,从位置号可直接确定X坐标,如以下实例所示。X-坐标上,位置编码识别单元的位置号为:Each X coordinate is thus coded with three offsets Δ 1 , Δ 2 , Δ 3 between 3 and 6 and an offset Δ 0 of 1 or 2. Four digital offsets S 3 , S 2 , S 1 , S are obtained by subtracting one ( 1 ) from the lowest offset △ 0 and three ( 3 ) from the other offsets △ 1 , △ 2 ,3 0 , they directly give the position number of the position code recognition unit in the X direction based on the digital offset, and the X coordinate can be directly determined from the position number, as shown in the following example. On the X-coordinate, the position number of the position code identification unit is:

32×S3+8×S2+2×S1+S0 32×S 3 +8×S 2 +2×S 1 +S 0

为了根据本实施例提供对本发明的进一步说明,下面给出基于位置编码所述实施例的具体实例。In order to provide a further description of the present invention according to this embodiment, a specific example of the embodiment based on position coding is given below.

如图34中,位置编码识别单元W1的5列列序列的位置号分别为0、3、6、2、3,则沿X-坐标方向的偏移量分别为3、3、3、1,则其位置号为:As shown in Fig. 34, the position numbers of the 5-column sequence of the position code identification unit W1 are 0, 3, 6, 2, 3 respectively, then the offsets along the X-coordinate direction are 3, 3, 3, 1 respectively, Then its position number is:

32×(3-3)+8×(3-3)+2×(3-3)+(1-1)=032×(3-3)+8×(3-3)+2×(3-3)+(1-1)=0

则位置编码识别单元W1第一列对应的列编号为Then the column number corresponding to the first column of the position code identification unit W1 is

0×4=00×4=0

位置编码识别单元W3的5列列序列的位置号分别为5、1、4、0、1,则沿X-坐标方向的偏移量与W1相同,仍是3、3、3、1亦可以解码出相同的列编号。The position numbers of the 5-column sequence of the position code recognition unit W3 are 5, 1, 4, 0, 1 respectively, then the offset along the X-coordinate direction is the same as that of W1, and it is also 3, 3, 3, 1 Decodes out the same column number.

位置编码识别单元W2的5列列序列的位置号分别为3、6、2、5、0,列序列沿X-坐标方向的偏移量分别为3、3、3、2,则其位置号为:The position numbers of the 5 columns of the position coding recognition unit W2 are 3, 6, 2, 5, 0 respectively, and the offsets of the column sequences along the X-coordinate direction are 3, 3, 3, 2 respectively, then the position numbers for:

32×(3-3)+8×(3-3)+2×(3-3)+(2-1)=132×(3-3)+8×(3-3)+2×(3-3)+(2-1)=1

则位置编码识别单元W2第一列对应的列编号为Then the column number corresponding to the first column of the position code identification unit W2 is

1×4=41×4=4

然而,在许多情况下,移动体会捕捉到的编码图案的局部单元包括5×5标记,但同时包含有两个位置号的部分。此时由于最低有效数字的值总是1或者2,可以很容易地构造出完整的位置号,并求出该局部单元第一列的列编号。However, in many cases, the local unit of the coded pattern captured by the mobile body includes a 5×5 mark, but also contains a part with two position numbers. At this time, since the value of the least significant digit is always 1 or 2, the complete position number can be easily constructed, and the column number of the first column of the local unit can be obtained.

如图34中,位置编码识别单元W4的5列列序列的位置号分别为2、5、0、3、6,列序列沿X-坐标方向的偏移量分别为3、2、3、3,则其位置号为:As shown in Figure 34, the position numbers of the 5 columns of the position code recognition unit W4 are 2, 5, 0, 3, 6 respectively, and the offsets of the column sequences along the X-coordinate direction are 3, 2, 3, 3 respectively , then its position number is:

32×(3-3)+8×(3-3)+2×(3-3)+(2-1)=132×(3-3)+8×(3-3)+2×(3-3)+(2-1)=1

由于最小偏移量2位于第二位而不在末尾,故位置编码识别单元W4第一列对应的列编号为:Since the minimum offset 2 is located at the second position and not at the end, the column number corresponding to the first column of the position coding identification unit W4 is:

1×4+(4-2)=61×4+(4-2)=6

因而,运用上述原理,使用编码识别单元的位置号,可以对编码识别单元0,1,2,3,……,127进行编码,所述位置号包含用四个数字偏移量表示的四个数字。这些偏移量用基于以上数列的位图进行编码。位图最后可用图31的标记点进行图形编码。Therefore, using the above principle, the code identification unit 0, 1, 2, 3, ..., 127 can be encoded by using the position number of the code identification unit. number. These offsets are encoded with a bitmap based on the above sequence. The bitmap can finally be graphically coded with the marker points in Figure 31.

1.2.Y坐标编码1.2. Y coordinate coding

根据与用于X坐标的原理大致相同的原理,借助位置编码识别单元对Y坐标进行编码。与X-编码中所用数列相同的循环数列,在将进行位置编码的表面上重复写入水平行中。对于X坐标更准确地,各行在数列中从不同的位置开始,不同的位置对应不同的位序列。然而,对于Y坐标,不使用偏移量,而是用基于每行中数列起始位置的值对坐标进行编码。当对具有5*5标记的局部表面确定了X坐标时,对于各行,事实上可确定数列中的起始位置,这些起始序列的位置号再用于5*5标记的Y-编码中,如图35展示本发明实施例中如何对Y方向上的行序列求取起始位置的编码,图中第Rk行的编码为l,第Rk+1行的编码为m。According to approximately the same principle as for the X-coordinate, the Y-coordinate is coded by means of the position-coding recognition unit. The same cyclic sequence as used in X-coding, repeated in horizontal rows on the surface to be position-coded. More precisely for the X coordinate, each row starts at a different position in the sequence, and the different positions correspond to different bit sequences. However, for the Y coordinate, instead of using an offset, the coordinate is encoded with a value based on the start of the sequence in each row. When the X-coordinates are determined for a partial surface with 5*5 marks, for each row it is in fact possible to determine the starting positions in the sequence, and the position numbers of these starting sequences are then used in the Y-coding of the 5*5 marks, Figure 35 shows how to obtain the code of the starting position for the row sequence in the Y direction in the embodiment of the present invention, the code of the R kth row in the figure is l, and the code of the R k+1th row is m.

在Y-编码中,最低有效数字S0通过令它是具有特定范围内值的唯一数字而确定。在此实例中,为了指示此行涉及位置编码识别单元中的最低有效数字S0,五行中的一行在数列中的位置0至1开始;为了指示编码窗口中的其它数字S1、S2、S3、S4,其它四行从2至6的任意位置开始。在Y方向中因而有一系列的值,从最顶行R0开始,如下所示:In Y-coding, the least significant number S 0 is determined by making it the only number with a value within a certain range. In this example, to indicate that the row concerns the least significant digit S 0 in the position code identification unit, one of the five rows begins at positions 0 to 1 in the sequence; to indicate that the other digits S 1 , S 2 , S 2 , S 3 , S 4 , and the other four lines start from any position from 2 to 6. In the Y direction there is thus a series of values, starting with the topmost row R 0 , as follows:

(2至6)、(2至6)、(2至6)、(2至6)、(0至1);(2至6)、(2至6)、(2至6)、(2至6)、(0至1);(2至6)、...(2 to 6), (2 to 6), (2 to 6), (2 to 6), (0 to 1); (2 to 6), (2 to 6), (2 to 6), (2 to 6), (0 to 1); (2 to 6), ...

因而,毎个位置编码识别单元用四个在2和6之间的值以及一个在0和1之间的最低值进行编码。Thus, each position code identification unit is coded with four values between 2 and 6 and a lowest value between 0 and 1.

如果将最低值减去零(0),将其它值减去二(2),就与X坐标中情况相似地,获得Y方向上以数字偏移量为基数的位置S0、S1、S2、S3、S4,从它们可直接确定Y-坐标上位置编码识别单元的位置号,即:If you subtract zero (0) from the lowest value and subtract two (2) from the other values, similar to the situation in the X coordinate, you can obtain the positions S 0 , S 1 , S in the Y direction based on the digital offset 2. S 3 , S 4 , from which the position number of the position code identification unit on the Y-coordinate can be directly determined, namely:

250×S4+50×S3+10×S2+2×S1+S0 250×S 4 +50×S 3 +10×S 2 +2×S 1 +S 0

为了根据本实施例提供对本发明的进一步说明,下面给出基于位置编码所述实施例的具体实例。如图36,基于各行起始序列的位置号对Y-坐标进行编码。In order to provide a further description of the present invention according to this embodiment, a specific example of the embodiment based on position coding is given below. As shown in Figure 36, the Y-coordinate is encoded based on the position number of the start sequence of each row.

位置编码识别单元W1的Y-编码中,水平位序列对应的数列位置号是2、2、2、2、0。由于这些水平位序列就是从第0行开始的,即起始序列的位置号就是2、2、2、2、0。则位置号为:In the Y-code of the position code recognition unit W1, the sequence position numbers corresponding to the horizontal bit sequence are 2, 2, 2, 2, 0. Since these horizontal bit sequences start from row 0, the position numbers of the initial sequence are 2, 2, 2, 2, 0. Then the position number is:

250×(2-2)+50×(2-2)+10×(2-2)+2×(2-2)+(0-0)=0250×(2-2)+50×(2-2)+10×(2-2)+2×(2-2)+(0-0)=0

即位置编码识别单元W1第一行对应的行编号为That is, the row number corresponding to the first row of position code recognition unit W1 is

0×5=00×5=0

位置编码识别单元W2的Y-编码中,水平位序列对应的数列位置号是6、6、6、6、4。由于这些水平位序列是从第4行开始的,即起始序列的位置号就是2、2、2、2、0。则位置号同样可计算为:In the Y-code of the position code identification unit W2, the sequence position numbers corresponding to the horizontal bit sequence are 6, 6, 6, 6, 4. Since these horizontal bit sequences start from line 4, the position numbers of the initial sequence are 2, 2, 2, 2, 0. Then the position number can also be calculated as:

250×(2-2)+50×(2-2)+10×(2-2)+2×(2-2)+(0-0)=0250×(2-2)+50×(2-2)+10×(2-2)+2×(2-2)+(0-0)=0

即位置编码识别单元W2第一行对应的行编号为That is, the row number corresponding to the first row of the position code recognition unit W2 is

0×5=00×5=0

位置编码识别单元W3的Y-编码中,水平位序列对应的数列位置号是2、2、2、2、1。由于这些水平位序列就是从第0行开始的,即起始序列的位置号就是2、2、2、2、1。则位置号为:In the Y-code of the position code identification unit W3, the sequence position numbers corresponding to the horizontal bit sequence are 2, 2, 2, 2, 1. Since these horizontal bit sequences start from row 0, the position numbers of the initial sequence are 2, 2, 2, 2, 1. Then the position number is:

250×(2-2)+50×(2-2)+10×(2-2)+2×(2-2)+(1-0)=1250×(2-2)+50×(2-2)+10×(2-2)+2×(2-2)+(1-0)=1

即位置编码识别单元W3第一行对应的行编号为That is, the row number corresponding to the first row of the position code recognition unit W3 is

1×5=51×5=5

同样,在许多情况下,移动体会捕捉到的编码图案的局部单元包括5×5标记,但同时包含有两个Y-编码位置号的部分。此时由于最低有效数字的值总是0或者1,可以很容易地构造出完整的位置号,并求出该局部单元第一列的列编号。Also, in many cases, the mobile body captures local cells of the coded pattern that include 5x5 marks, but also contain parts of two Y-coded position numbers. At this time, since the value of the least significant digit is always 0 or 1, the complete position number can be easily constructed, and the column number of the first column of the local unit can be obtained.

位置编码识别单元W4的Y-编码中,水平位序列对应的数列位置号是1、1、0、1、1。由于这些水平位序列就是从第7行(C6)开始的,即起始序列的位置号是这些值减去6模7,得到起始位置的位置号2、2、1、2、2。则位置号为:In the Y-code of the position code recognition unit W4, the sequence position numbers corresponding to the horizontal bit sequence are 1, 1, 0, 1, 1. Since these horizontal bit sequences start from row 7 (C 6 ), that is, the position number of the start sequence is these values minus 6 modulo 7, and the position numbers 2, 2, 1, 2, 2 of the start position are obtained. Then the position number is:

250×(2-2)+50×(2-2)+10×(2-2)+2×(2-2)+(1-0)=1250×(2-2)+50×(2-2)+10×(2-2)+2×(2-2)+(1-0)=1

由于最低有效位位于第三位而不在末尾,故位置编码识别单元W4第一行对应的行编号为:Since the least significant bit is at the third bit and not at the end, the row number corresponding to the first row of the position code identification unit W4 is:

1×5+(5 -3)=71×5+(5-3)=7

至此,可以完整的计算出W1、W2、W3、W4四个位置编码识别单元最左列和最顶行的坐标——W1(0,0),W2(4,0),W3(0,5),W4(6,7)。So far, the coordinates of the leftmost column and the top row of the four position code recognition units of W1, W2, W3, and W4 can be completely calculated—W1(0,0), W2(4,0), W3(0,5 ), W4(6,7).

1.3.XY坐标联合编码1.3. Joint encoding of XY coordinates

如图37和图38,根据X-坐标编码、Y坐标编码以及二进制位置编码值,可以构建出完整的编码图案。As shown in Fig. 37 and Fig. 38, according to the X-coordinate code, the Y-coordinate code and the binary position code value, a complete coding pattern can be constructed.

使用以上方法,有可能对5*5大小的位置编码识别单元在X方向上编码4*4*4*2=128个位置号。每个位置编码识别单元包括四个偏移量,最小偏移量△0出现的位置有四种情况,得到4*128=512个列或X坐标。另外,有可能对位置编码识别单元在Y方向上编码5*5*5*5*2=1250个位置号。每个这样的位置号包括5行的水平位序列,得到5*1250=6250个行或Y坐标。因此总共能编码512*6250=3,200,000个坐标位置。Using the above method, it is possible to encode 4*4*4*2=128 position numbers in the X direction for a position encoding identification unit with a size of 5*5. Each position code identification unit includes four offsets, and there are four situations where the minimum offset △ 0 appears, and 4*128=512 columns or X coordinates are obtained. In addition, it is possible to encode 5*5*5*5*2=1250 position numbers in the Y direction to the position code identification unit. Each such position number consists of 5 rows of horizontal bit sequences, resulting in 5*1250=6250 rows or Y coordinates. A total of 512*6250=3,200,000 coordinate positions can thus be encoded.

然而,由于X-编码基于偏移量,如果考虑到第一数列可在七个不同的位置上开始,就有可能编码7*3,000,000=22,400,000个位置,用于7种不同的编码图案。当X和Y坐标已确定时,可以计算在第一列K0中第一数列的起始位置。However, since X-coding is based on offsets, if one considers that the first sequence can start at seven different positions, it is possible to encode 7*3,000,000 = 22,400,000 positions for 7 different encoding patterns. When the X and Y coordinates have been determined, the starting position of the first sequence in the first column K 0 can be calculated.

1.4.位置编码识别单元的旋转校正方法1.4. Rotation correction method of position code recognition unit

被图像传感器读取的局部表面可以有四个不同的旋转位置,相对于位置编码识别单元旋转0°、90°、180°或270°然而,在局部表面旋转的情况下,与在0°读的情况相比,将要被读的编码在X方向或Y方向或在这两个方向都进行反转位置且比特翻转。The partial surface read by the image sensor can have four different rotational positions, 0°, 90°, 180° or 270° with respect to the position-coding recognition unit. The code to be read is position-reversed and bit-flipped in either the X-direction or the Y-direction, or both, compared to the case of .

如果位序列中的下一位添加到所述四位序列中,就得到五位序列。上述位置编码序列0 0 0 1 0 1 0的特征是:仅包含两个“1”,所有五位序列必须包含至少三个0。然而,局部表面在旋转后将有可能被识别出三个1,因而如果发现五位序列在位数列中没有位置号,就可得出结论:局部表面应该有可能被旋转,并且应进行旋转校正。If the next bit in the bit sequence is added to the four bit sequence, a five bit sequence is obtained. The feature of the above position coding sequence 0 0 0 1 0 1 0 is that it only contains two "1", and all five-bit sequences must contain at least three 0's. However, the partial surface will likely be recognized as three 1's after rotation, so if it is found that the five-digit sequence has no position number in the bit array, it can be concluded that the partial surface should probably be rotated and the rotation correction should be performed .

在此给出实例,来说明位置编码识别单元的旋转校正方法。An example is given here to illustrate the rotation correction method of the position code recognition unit.

以图38中位置编码识别单元W4为例,当没有任何旋转方向时,假设这些标记点被光学单元112捕获。这些5*5的标记点将被解码为以下值:Taking the position code recognition unit W4 in FIG. 38 as an example, when there is no rotation direction, it is assumed that these marked points are captured by the optical unit 112 . These 5*5 markers will be decoded to the following values:

Figure SMS_2
Figure SMS_2

如图39,将位置编码识别单元W4顺时针旋转0°、90°、180°和270°。As shown in Figure 39, rotate the position code recognition unit W4 clockwise by 0°, 90°, 180° and 270°.

当该位置编码识别单元W4顺时针旋转0度时,这些值进一步解码为二进制X-和Y-编码值后,可以看到X编码的各列中,均包含至少三个0,Y编码的各行中,也均包含至少三个0,符合校验要求,说明没有被旋转角度。When the position code recognition unit W4 rotates 0 degrees clockwise, after these values are further decoded into binary X- and Y-coded values, it can be seen that each column of the X code contains at least three 0s, and each row of the Y code , also contain at least three 0s, which meet the verification requirements, indicating that the angle has not been rotated.

当该位置编码识别单元W4顺时针旋转90度后,再被光学单元112捕获,可以发现X-编码的各列中,均包含至少三个零,而Y-编码的各行中,均不满足至少包含三个零的要求,此时即可判断为编码识别单元被顺时针旋转了90度。When the position code recognition unit W4 is rotated 90 degrees clockwise and then captured by the optical unit 112, it can be found that each column of the X-code contains at least three zeros, while each row of the Y-code does not satisfy at least three zeros. Including the requirement of three zeros, it can be judged that the code recognition unit has been rotated 90 degrees clockwise.

当该位置编码识别单元W4顺时针旋转180度后,再被光学单元112捕获,可以发现解码后X-编码的各列和Y-编码的各行中,均不满足至少包含三个零的要求,此时即可判断为编码识别单元被顺时针旋转了180度。When the position code recognition unit W4 rotates 180 degrees clockwise and is captured by the optical unit 112, it can be found that the columns of the X-code and the rows of the Y-code after decoding do not meet the requirement of at least three zeros. At this time, it can be judged that the code recognition unit has been rotated 180 degrees clockwise.

当该位置编码识别单元W4顺时针旋转270度后,再被光学单元112捕获,可以发现X-编码的各列中,均不满足至少包含三个零的要求,而Y-编码的各行中均包含至少三个零,此时即可判断为编码识别单元被顺时针旋转了270度。When the position code recognition unit W4 rotates 270 degrees clockwise and is captured by the optical unit 112, it can be found that each column of the X-code does not meet the requirement of at least three zeros, while each row of the Y-code does not satisfy the requirement of at least three zeros. If it contains at least three zeros, it can be judged that the code recognition unit has been rotated 270 degrees clockwise.

因此,在以上四种角度中,只有一种方向的可以被正确解码。Therefore, among the above four angles, only one direction can be decoded correctly.

当解码的5*5矩阵不符合要求时,可以根据行或列错误的位置,推断出当下5*5位置编码识别单元的旋转位置(90°、180°或270°)。或者,控制单元111也可将矩阵旋转,并对各个元素值进行相应的变换,直到可以正确解码为止。此时控制单元111也能知道编码图案与移动体之间的相对旋转角度。When the decoded 5*5 matrix does not meet the requirements, the current rotation position (90°, 180° or 270°) of the 5*5 position coding recognition unit can be deduced according to the wrong position of the row or column. Alternatively, the control unit 111 may also rotate the matrix, and perform a corresponding transformation on each element value until it can be decoded correctly. At this time, the control unit 111 can also know the relative rotation angle between the encoding pattern and the moving body.

1.5.以下给出一个实例1.5. An example is given below

在实际应用中,本公开采用长度为18的五位循环位序列,即生成一种由0和1构成的循环位序列,它的5位长度子序列如果存在则仅出现一次,即选取一种长度为18的五位准德布鲁因位序列。In practical applications, the present disclosure adopts a five-bit cyclic bit sequence with a length of 18, that is, a cyclic bit sequence composed of 0 and 1 is generated, and its 5-bit subsequence only appears once if it exists, that is, a A five-bit quasi-De Bruin bit sequence of length 18.

0 0 0 0 1 0 0 1 1 1 0 1 1 0 1 0 1 10 0 0 0 1 0 0 1 1 1 0 1 1 0 1 0 1 1

对于每一个五位长度的子序列,其位置号在0-17之间。For each five-bit subsequence, its position number is between 0-17.

在此实例中,每个位置用包括6*6标记的编码识别单元,因此,得到六个垂直的位序列以及五个偏移量用于对X-坐标编码,每个偏移量都在0-17之间。In this example, each position is identified by an encoding consisting of 6*6 markers, thus resulting in six vertical bit sequences and five offsets for encoding the X-coordinate, each offset at 0 Between -17.

由于because

18=2×3×318=2×3×3

可以构建一个双射φ,对于每一个偏移量r∈{0,…,17},都存在唯一的(a1,a2,a3)∈{(a1,a2,a3)|a1,a3∈{0,1,2},a2∈{0,1}},可以使:A bijective φ can be constructed, for each offset r∈{0,…,17}, there is a unique (a 1 ,a 2 ,a 3 )∈{(a 1 ,a 2 ,a 3 )| a 1 ,a 3 ∈{0,1,2},a 2 ∈{0,1}}, we can make:

r=6a3+3a2+a1 r=6a 3 +3a 2 +a 1

即φ(r)=(φ1(r),φ2(r),φ3(r))=(a1,a2,a3).That is, φ(r)=(φ 1 (r),φ 2 (r),φ 3 (r))=(a 1 ,a 2 ,a 3 ).

对于l从1到3,定义次要序列{al,n}n≥1,序列{a1,n}n≥1和{a3,n}n≥1分别由长度为236和241的五阶字母表{0,1,2}的准德布鲁因序列重复形成,而序列{a2,n}n≥1通过重复长度为29的五阶字母表{0,1}的准德布鲁因序列而形成。这些准德布鲁因序列的长度被选择为相对质数,可以使得所有长度的最小公倍数是它们的乘积,即lcm(236,241,29)=236·241·29=1,649,404。For l from 1 to 3, define the secondary sequence {a l,n } n≥1 , the sequences {a 1,n } n≥1 and {a 3,n } n≥1 are composed of five The quasi-De Bruin sequence of the first-order alphabet {0,1,2} is repeatedly formed, while the sequence {a 2,n } n≥1 is formed by repeating the quasi-DeBruin sequence of the fifth-order alphabet {0,1} of length 29 Lu Yin sequence formed. The lengths of these quasi-De Bruin sequences are selected as relatively prime numbers, so that the least common multiple of all lengths is their product, that is, lcm(236,241,29)=236·241·29=1,649,404.

因此,对于任何偏移量序列中的dk,有dk=φ-1((a1,k,a2,k,a3,k)),意味着偏移量序列中长度为5的任何子序列每1,649,404个元素出现一次。Therefore, for d k in any offset sequence, there is d k = φ -1 ((a 1,k ,a 2,k ,a 3,k )), meaning that the offset sequence of length 5 Any subsequence occurs every 1,649,404 elements.

对于X-坐标和Y-坐标,均可采取上述的编码方法,则共计可以编码1,649,4042≈2.7×1012个独一无二的坐标。倘若虚拟网格线之间的间距为0.5mm,采用该实例,约可以编码824,702m×824,702m大小的平面,约为9.5×107个标准足球场。For both the X-coordinate and the Y-coordinate, the above-mentioned coding method can be adopted, and a total of 1,649,404 2 ≈2.7×10 12 unique coordinates can be coded. Assuming that the distance between the virtual grid lines is 0.5mm, using this example, a plane with a size of about 824,702m×824,702m can be encoded, which is about 9.5×10 7 standard football fields.

到目前为止,是假设移动体在没有任何旋转的情况下感知到位置编码单元的图案。然而,在现实环境中,6*6矩阵可能会被旋转0°、90°、180°或270°,并且这些点仍然可能代表着正确的编码信息。因此,在进行实际解码之前,必须在这四个中做出选择。So far it has been assumed that the moving body perceives the pattern of position-coding units without any rotation. However, in a real-world environment, the 6*6 matrix may be rotated by 0°, 90°, 180° or 270°, and the points may still represent the correct encoded information. So a choice among these four has to be made before doing the actual decoding.

有3个错误的选择,每个错误的选择都将导致在相反方向上至少读取一个轴。在相反方向上读取点相当于将编码的序列反转位置且比特翻转。因此,需要一种检测此操作的机制。这是通过选择主数字序列来确保的,上述五位循环位序列中的6位长度位序列只出现一次并且从不以按位取反且反转位置的形式出现。There are 3 wrong choices, each of which will cause at least one axis to be read in the opposite direction. Reading a point in the opposite direction is equivalent to reversing the position of the encoded sequence and flipping the bits. Therefore, a mechanism to detect this action is required. This is ensured by choosing the main number sequence such that the 6-bit length bit sequence in the above five-bit cyclic bit sequence occurs only once and never in the form of bitwise inversion and reversed position.

例如,6位长度子序列0 0 0 0 1 0在上述序列中只出现一次,但是该6位长度位序列0 0 0 0 1 0的按位取反且反转位置的序列1 0 1 1 1 1却不在上述序列中。For example, the 6-bit length subsequence 0 0 0 0 1 0 occurs only once in the above sequence, but the bitwise inversion of the 6-bit length bit sequence 0 0 0 0 1 0 and the reversed position sequence 1 0 1 1 1 1 is not in the above sequence.

因此,如果在主数字序列中找不到某些行或列中的6位长位序列,则包含行或列的方向一定是在错误的方向上读取的,且可以根据行或列错误的位置,推断出当下6*6位置编码单元的旋转位置(90°、180°或270°)。具体而言:当位置编码单元旋转90°时,此时列满足条件,行不满足条件;当位置编码单元旋转180°时,此时行和列均不满足条件;当位置编码单元旋转270°时,此时行满足条件,列不满足条件。Therefore, if a 6-digit long bit sequence in some row or column is not found in the main number sequence, the direction containing the row or column must be read in the wrong direction and can be wrong according to the row or column Position, deduce the current rotational position (90°, 180° or 270°) of the 6*6 position encoding unit. Specifically: when the position encoding unit rotates 90°, the column satisfies the condition, but the row does not meet the condition; when the position encoding unit rotates 180°, neither the row nor the column meets the condition; when the position encoding unit rotates 270° , the row satisfies the condition and the column does not.

当旋转位置已知时,可以将位置编码单元旋转到正确的位置后再解码。When the rotational position is known, the position encoding unit can be rotated to the correct position before decoding.

相比于现有的定位方法,本公开实施例使用的连续光学辨识码的方法,相邻的平行虚拟网格线之间的距离可以设置为0.5mm左右,因而系统能够具有亚毫米级定位精度(可达0.3-0.6mm),且图像传感器模组需要识别的图像视野小、可以进一步降低对图像传感器模组分辨率的要求,具有精度高、成本低、尺寸小、功耗低、计算效率高、冗余性强、可以精确获取旋转角度的优势。Compared with the existing positioning methods, the continuous optical identification code method used in the embodiments of the present disclosure can set the distance between adjacent parallel virtual grid lines to about 0.5mm, so the system can have submillimeter level positioning accuracy (up to 0.3-0.6mm), and the image sensor module needs to recognize a small field of view, which can further reduce the resolution requirements of the image sensor module, with high precision, low cost, small size, low power consumption, and computational efficiency. High, strong redundancy, can accurately obtain the advantages of rotation angle.

同时,根据现有的基于德布鲁因序列构造编码图案的方案,虽然对不同旋转角度下的位置编码单元也可以进行校正、正确解码,但需要图像传感器额外识别多行或/和多列。例如,为对不同旋转方向的4*4大小的位置编码单元正确解码,图像传感器需要识别5*5范围内的识别点,该种方法意味着能够编码的位置更少。而本公开将用于校正旋转而增加的行和列,也用于编码X和Y坐标,因而能够编码更多的位置。以识别5*5大小的位置编码单元为例,在采用相同的四位序列情况下,仅能编码672,000个位置,而本公开实施例可以编码3,200,000个位置。At the same time, according to the existing scheme of constructing coding patterns based on De Bruin sequences, although the position coding units at different rotation angles can also be corrected and decoded correctly, the image sensor needs to additionally identify multiple rows or/and columns. For example, in order to correctly decode 4*4 position encoding units with different rotation directions, the image sensor needs to identify recognition points within a 5*5 range, which means fewer positions that can be encoded. Whereas the present disclosure will be used to correct for the increased rows and columns for rotation, it is also used to encode X and Y coordinates, thus being able to encode more positions. Taking the identification of a position encoding unit with a size of 5*5 as an example, in the case of using the same four-bit sequence, only 672,000 positions can be encoded, while the embodiment of the present disclosure can encode 3,200,000 positions.

因此,本公开实施例在借鉴现有编码方法获取移动体位置信息的基础上,提出获取移动体相对于定位垫的旋转角度的方法,以便更好地对单个移动体运动、多个移动体集群做出规划和控制;并对校正位置编码单元旋转、正确解码的问题进行了改进,使本系统能够在主数序列相同、图像传感器的视野大小相同的情况下,编码更多位置信息。Therefore, the embodiment of the present disclosure proposes a method of obtaining the rotation angle of the moving body relative to the positioning pad on the basis of referring to the existing encoding method to obtain the position information of the moving body, so as to better understand the movement of a single moving body and the clustering of multiple moving bodies. Make planning and control; and improve the problem of correcting the rotation of the position encoding unit and correct decoding, so that the system can encode more position information under the condition of the same main number sequence and the same field of view of the image sensor.

1.6.光学辨识码变化方法1.6. Optical identification code change method

一种移动体集群控制系统,其中,在上述实施例中,每一个光学辨识码和定位垫30上的位置坐标一一对应。然而,在某些使用场景下,希望借助光学辨识码为移动体10传递特定的指令,且希望将一定区域内的所有光学辨识码指向唯一的指令,如图50,指令卡片71同定位垫30类似印刷有可视图案31和编码图案32,但指令卡片71希望让移动体10执行前进、旋转、开启音量、关闭显示等指令,而非定义坐标位置。A mobile body group control system, wherein, in the above embodiment, each optical identification code is in one-to-one correspondence with the position coordinates on the positioning mat 30 . However, in some usage scenarios, it is desired to transmit specific instructions to the mobile body 10 by means of optical identification codes, and it is desired to direct all optical identification codes in a certain area to a unique instruction, as shown in FIG. Similar to the printed visual patterns 31 and coded patterns 32 , but the instruction card 71 is intended to make the mobile body 10 perform instructions such as forward, rotate, turn on the volume, and turn off the display, rather than defining coordinate positions.

本公开提供另外两种光学辨识码的变化方法,以满足此类场景用途。The present disclosure provides two other variation methods of the optical identification code to meet such scenarios.

1.6.1.利用定位垫未使用的光学辨识码1.6.1. Utilize the unused optical identification code of the positioning pad

由于本发明的光学辨识码编码方法可以编码数量庞大的位置编码单元,在绝大多数情况下,定位垫30仅能利用到其中极少的位置编码单元。Since the optical identification code encoding method of the present invention can encode a large number of position coding units, in most cases, the positioning mat 30 can only use a very small number of position coding units.

可以在指令卡片71上印刷未被定位垫30占用的位置编码单元,并在控制单元111中将各指令卡片上所有位置坐标和预期的指令对应。The position coding units that are not occupied by the positioning pad 30 can be printed on the instruction card 71 , and all position coordinates on each instruction card are associated with expected instructions in the control unit 111 .

1.6.2.生成新型循环光学辨识码1.6.2. Generate a new type of cyclic optical identification code

在编码定位垫30上的位置编码单元时,曾对X-坐标和Y-坐标的编码规则做出限制。When encoding the position encoding units on the place mat 30, restrictions have been imposed on the encoding rules for the X-coordinate and the Y-coordinate.

以上述实施例为例,对X坐标编码时:对于四个偏移量,其中一个偏移量△0总是为值1或2,它指用于表示位置编码识别单元在X方向上位置的数字的最低有效数字S0。其它三个偏移量△1、△2、△3的值都在3-6范围内,它们指用于位置编码识别单元的坐标的三个最高有效数字S1、S2、S3Taking the above-mentioned embodiment as an example, when encoding the X coordinate: For the four offsets, one of the offsets △ 0 is always a value of 1 or 2, which refers to the position used to represent the position coding identification unit in the X direction. The least significant digit S 0 of the number. The values of the other three offsets Δ 1 , Δ 2 , Δ 3 are all in the range of 3-6, and they refer to the three most significant digits S 1 , S 2 , S 3 of the coordinates for the position-coding identification unit.

对Y坐标编码时:最低有效数字S0通过令它是具有特定范围内值的唯一数字而确定。为了指示此行涉及位置编码识别单元中的最低有效数字S0,五行中的一行在数列中的位置0至1开始;为了指示编码窗口中的其它数字S1、S2、S3、S4,其它四行从2至6的任意位置开始。When encoding the Y coordinate: the least significant number S 0 is determined by making it the only number with a value within a certain range. To indicate that this row concerns the least significant digit S 0 in the position code identification unit, one of the five rows begins at positions 0 to 1 in the sequence; to indicate the other digits S 1 , S 2 , S 3 , S 4 in the code window , and the other four lines start anywhere from 2 to 6.

当对一块指令卡片71编码时,可以使用不同的规则。如:When encoding an instruction card 71, different rules may be used. like:

对X坐标编码时:其中一个偏移量△0总是为0,它指用于表示位置编码识别单元在X方向上位置的数字的最低有效数字S0。其它三个偏移量△1、△2、△3的值都在3-6范围内,它们指用于位置编码识别单元的坐标的三个最高有效数字S1、S2、S3。且X方向上不断循环该四个偏移量,如:When encoding the X coordinate: one of the offsets △ 0 is always 0, which refers to the least significant digit S 0 of the number used to represent the position of the position encoding identification unit in the X direction. The values of the other three offsets Δ 1 , Δ 2 , Δ 3 are all in the range of 3-6, and they refer to the three most significant digits S 1 , S 2 , S 3 of the coordinates for the position-coding identification unit. And the four offsets are continuously cycled in the X direction, such as:

(0)、(3)、(4)、(5);(0)、(3)、(4)、(5);(0)、(3)、(4)、(5);……(0), (3), (4), (5); (0), (3), (4), (5); (0), (3), (4), (5); ...

对Y坐标编码时:其中一个偏移量△0总是为1,它指用于表示位置编码识别单元在Y方向上位置的数字的最低有效数字S0。其它三个偏移量△1、△2、△3的值都在3-6范围内,它们指用于位置编码识别单元的坐标的三个最高有效数字S1、S2、S3。且X方向上不断循环该四个偏移量,如:When encoding the Y coordinate: one of the offsets △ 0 is always 1, which refers to the least significant digit S 0 of the number used to indicate the position of the position encoding identification unit in the Y direction. The values of the other three offsets Δ 1 , Δ 2 , Δ 3 are all in the range of 3-6, and they refer to the three most significant digits S 1 , S 2 , S 3 of the coordinates for the position-coding identification unit. And the four offsets are continuously cycled in the X direction, such as:

(1)、(4)、(5)、(6);(1)、(4)、(5)、(6);(1)、(4)、(5)、(6);……该指令卡片71的编号值可以唯一指定为:(1), (4), (5), (6); (1), (4), (5), (6); (1), (4), (5), (6); ... The number value of the instruction card 71 can be uniquely specified as:

X=16×S3+4×S2+1×S1 X=16×S 3 +4×S 2 +1×S 1

Y=16×S4+4×S3+1×S2 Y=16×S 4 +4×S 3 +1×S 2

以上例子中,编号值为:In the example above, the ID values are:

X=16×S3+4×S2+1×S1 X=16×S 3 +4×S 2 +1×S 1

=16×(5-3)+4×(4-3)+1×(3-3)=16×(5-3)+4×(4-3)+1×(3-3)

=36=36

Y=16×S4+4×S3+1×S2 Y=16×S 4 +4×S 3 +1×S 2

=16×(6-3)+4×(5-3)+1×(4-3)=16×(6-3)+4×(5-3)+1×(4-3)

=57=57

则该指令的编号为(36,57),例如可将该编号和“向前”的指令对应。基于该种方法,已可以编码64*64=4096种信息,能满足指令卡片71的数量要求。且对于指令卡片71上任何一区域,均只能读出唯一的编号值。Then the serial number of the instruction is (36, 57), for example, the serial number may correspond to the "forward" instruction. Based on this method, 64*64=4096 kinds of information can be encoded, which can meet the quantity requirement of the instruction card 71 . And for any area on the instruction card 71, only the unique numbering value can only be read out.

由于采用相同的位置序列,因此指令卡片71上的编码图案同样具有旋转校正的特点,移动体10可以从各个角度读取出正确的编码信息。Since the same position sequence is adopted, the coding pattern on the instruction card 71 also has the feature of rotation correction, and the mobile body 10 can read the correct coding information from various angles.

因此,本公开实施例在位置编码图案的基础上提出了一种指令编码图案的编码方法,可以将一定区域内的编码图案都识别为某一特定指令,且不与位置编码图案冲突。Therefore, the embodiments of the present disclosure propose an encoding method for an instruction encoding pattern based on a position encoding pattern, which can identify an encoding pattern in a certain area as a specific instruction without conflicting with the position encoding pattern.

2.单移动体解码及定位方法2. Single moving object decoding and positioning method

根据一个或者多个实施例,一种移动体集群控制系统,其中,对于单移动体解码及定位方法如下。According to one or more embodiments, a mobile body cluster control system, wherein the decoding and positioning method for a single mobile body is as follows.

如图40展示本公开提供的一种对位置编码单元的解码步骤示例,光学单元112获取的图像经图像处理、网格估计、概率处理、位姿解算后,即可获得动体10位于定位垫30上的坐标(x,y)以及相对定位垫30的旋转方向θ。Figure 40 shows an example of decoding steps for the position encoding unit provided by the present disclosure. After the image acquired by the optical unit 112 undergoes image processing, grid estimation, probability processing, and pose calculation, the location of the moving body 10 can be obtained. The coordinates (x, y) on the pad 30 and the rotation direction θ relative to the positioning pad 30 .

2.1.图像处理2.1. Image processing

由于在实际应用中,光学单元112与定位垫30之间的距离较近,图像传感器模组112a可能使用广角透镜,以便尽可能扩大成像区域的同时降低图像传感器模组112a的高度。这一般会导致桶形失真,因此,控制单元111首先对图像进行桶型畸变校正。Due to the short distance between the optical unit 112 and the positioning pad 30 in practical applications, the image sensor module 112a may use a wide-angle lens to expand the imaging area as much as possible while reducing the height of the image sensor module 112a. This generally results in barrel distortion, so the control unit 111 first corrects the image for barrel distortion.

然后,通过全局阈值和斑点阈值算法对图像进行处理,并将斑点的重心对应于点的位置。Then, the image is processed by global thresholding and blob thresholding algorithms, and the centroids of blobs correspond to the locations of points.

2.2.网格估计2.2. Grid Estimation

如图41,为图像传感器采集的图像,经过第一步处理后的图像,此时已经获取到各个标记点41的位置。As shown in FIG. 41 , it is the image collected by the image sensor, the image processed in the first step, and the position of each marker point 41 has been obtained at this time.

为了找到初始的网格估计,使用了标记点41的邻域连接:对于每个标记点41,首先确定四个最近的邻点,然后,将各个标记点41和四个最近的邻点连接,形成标记点连线52(图中虚线)。In order to find an initial grid estimate, a neighborhood connection of marked points 41 is used: for each marked point 41, the four nearest neighbors are first determined, and then each marked point 41 is connected to the four nearest neighbors, A marked line 52 (dotted line in the figure) is formed.

进一步,在视野内所有标记点连线52中,找到所有最短的标记点连线53(图中黑实线),并可以计算出在视野中最短标记点连线53的像素尺寸。Further, among all the marked point lines 52 in the field of view, all the shortest marked point lines 53 (black solid lines in the figure) are found, and the pixel size of the shortest marked point line 53 in the field of view can be calculated.

如图41-图43,由图32标记点41相对于网络点43的分布规律可知:只有当一对标记点的网络坐标在u、v轴上相邻时,才会产生最短标记点连线53。As shown in Fig. 41-Fig. 43, it can be seen from the distribution law of the marked point 41 relative to the network point 43 in Fig. 32: only when the network coordinates of a pair of marked points are adjacent on the u and v axes, the shortest marked point connection will be generated 53.

由于本实例中规定标记点42偏移虚拟网格点43之间的距离δ是相邻虚拟网格线间距d的1/6,因此,最短标记点连线53的长度是相邻虚拟网格线间距d的2/3。Since the distance δ between the offset virtual grid points 43 of the stipulation mark point 42 is 1/6 of the adjacent virtual grid line spacing d in this example, therefore, the length of the shortest mark point connection line 53 is the adjacent virtual grid 2/3 of the line spacing d.

由此,可以根据视野中最短标记点连线53的像素尺寸求解出视野中相邻虚拟网格线间的像素尺寸d,将该尺寸长度作为向量基{u,v}的单位长度。Thus, the pixel size d between adjacent virtual grid lines in the field of view can be calculated according to the pixel size of the shortest line 53 between marked points in the field of view, and the length of this dimension can be used as the unit length of the vector base {u, v}.

进一步,可以通过最短标记点连线54其中一个端点54为起点,将沿最短标记点连线53向外延伸δ=d/6距离的点作为向量基{u,v}的原点。将u方向规定为沿最短标记点连线53向外延伸,进一步得到与u方向垂直的v方向。Further, one end point 54 of the shortest marked point line 54 can be used as the starting point, and the point extending outward along the shortest marked point line 53 for a distance of δ=d/6 can be used as the origin of the vector basis {u, v}. The u direction is defined as extending outward along the shortest marking point connecting line 53, and a v direction perpendicular to the u direction is further obtained.

进一步,向量基{u,v}在视野中的旋转方向θ即为移动体10与定位垫30之间的旋转方向θ。Further, the rotation direction θ of the vector basis {u, v} in the field of view is the rotation direction θ between the mobile body 10 and the positioning pad 30 .

得到向量基{u,v}后,则可以u,v为基准,估计出虚拟网格线42并得到视野内所有虚拟网格点43的像素坐标。After the vector basis {u, v} is obtained, u, v can be used as the reference to estimate the virtual grid line 42 and obtain the pixel coordinates of all virtual grid points 43 within the field of view.

除上述通过寻找最短的标记点连线53实现网格估计的方法外,本发明提出另一种网格估计的方法:In addition to the above-mentioned method for realizing grid estimation by finding the shortest marked point connection 53, the present invention proposes another method for grid estimation:

在找到视野内所有标记点连线52后,以向下方向的向量将所有标记点连线52表示出来,然后对向量终点使用聚类算法。由于标记点41基本服从随机均匀分布,因此朝着连接起点和聚类得到的点的质心的方向,基本是虚拟网格线42的方向,起点和聚类得到的点的质心之间的距离可作为相邻虚拟网格线42之间的距离。After finding all the marked point lines 52 in the field of view, all the marked point lines 52 are represented by a downward vector, and then a clustering algorithm is used for the end point of the vector. Since the marked points 41 basically obey the random uniform distribution, the direction towards the centroid of the points connecting the starting point and the clustering is basically the direction of the virtual grid line 42, and the distance between the starting point and the centroid of the points obtained by clustering can be as the distance between adjacent virtual grid lines 42 .

2.3.概率处理2.3. Probability processing

由于图像获取、图像处理、网络估计等步骤产生的误差,标记点41不可能绝对理想地位于虚拟网格点43的正上、正左、正右、正下方。Due to errors generated in steps such as image acquisition, image processing, and network estimation, it is impossible for the marker point 41 to be absolutely ideally positioned directly above, directly to the left, directly to the right, and directly below the virtual grid point 43 .

概率处理步骤旨在计算出为每个标记点41分配成为四个符号(上、下、左、右)之一的可能性。The probabilistic processing step aims at calculating the probability that each marked point 41 is assigned one of the four symbols (up, down, left, right).

假设标记点41相对虚拟网格点43的漂移服从高斯分布,则通过构建准概率分布函数,可确定每一个标记点41正确表示X坐标和Y坐标上符号0或者1的可能性大小。Assuming that the drift of the marker point 41 relative to the virtual grid point 43 obeys a Gaussian distribution, by constructing a quasi-probability distribution function, the probability that each marker point 41 correctly represents the symbol 0 or 1 on the X-coordinate and Y-coordinate can be determined.

根据以上概率处理后,进一步选取出最佳的6*6位置编码区,使得该位置编码区有最小的解码错误可能性。After processing according to the above probability, the best 6*6 position coding area is further selected, so that the position coding area has the smallest possibility of decoding error.

2.4.位姿解算2.4. Pose calculation

当移动体已知位置序列和次要序列的情况下,在校正了位置编码单元的旋转方向后(指0°、90°、180°、270°),则根据编码规则解码出坐标(x,y)。When the position sequence and secondary sequence of the mobile body are known, after correcting the rotation direction of the position coding unit (referring to 0°, 90°, 180°, 270°), the coordinates (x, y).

根据最佳的6*6位置编码区中每一个标记点41的概率值,还可以通过算法对网格进行进一步的调整优化,得到绝对网格坐标,并输出经调整优化后的坐标(x,y)和θ值。According to the probability value of each marker point 41 in the best 6*6 position coding area, the grid can also be further adjusted and optimized through the algorithm to obtain the absolute grid coordinates, and output the adjusted and optimized coordinates (x, y) and θ values.

2.5.单移动体定位及导航控制2.5. Single moving body positioning and navigation control

如图44为本发明单移动体定位及导航控制方法的示例图。Fig. 44 is an example diagram of the positioning and navigation control method for a single mobile object in the present invention.

控制单元111通过驱动单元114控制运动模块120,可以实现对移动体10运动方向、速度的控制。光学单元112实时捕获位于移动体10正下方的编码图案32,并将获取到的图像数据传递给控制单元111进行解码,以计算得到实测位置(x,y)和实测角度θ,并与预期的位置(x,y)和预期的速度进行误差比较,并通过控制算法对位置和速度进行反馈校正,进而将新的控制信号发送给驱动单元114。如此循环,实现精准的位置和速度闭环控制。The control unit 111 controls the motion module 120 through the drive unit 114 to control the moving direction and speed of the mobile body 10 . The optical unit 112 captures the coding pattern 32 directly below the moving body 10 in real time, and transmits the acquired image data to the control unit 111 for decoding, so as to calculate the measured position (x, y) and the measured angle θ, and compare them with the expected An error comparison is performed between the position (x, y) and the expected speed, and a control algorithm is used to perform feedback correction on the position and speed, and then send a new control signal to the drive unit 114 . This cycle realizes precise position and speed closed-loop control.

上述实测位置(x,y)和实测角度θ可以通过通信单元115发送给外部设备;上述预期位置(x,y)和预期的速度可以来源于预先设定的控制算法,也可通过通信单元115从外部设备获取。The above-mentioned measured position (x, y) and the measured angle θ can be sent to the external device through the communication unit 115; Obtained from an external device.

3.多移动体集群控制方法3. Multi-moving body swarm control method

根据一个或者多个实施例,一种移动体集群控制系统,其中,多个移动体集群控制方法如下。According to one or more embodiments, a mobile body group control system, wherein a plurality of mobile body group control methods are as follows.

如图45为本发明多移动体集群控制的配置示意图。将多个移动体10放置于同一块定位垫30上即可。Figure 45 is a schematic configuration diagram of the multi-mobile cluster control of the present invention. It is sufficient to place multiple mobile bodies 10 on the same positioning pad 30 .

图46为本发明一种多移动体集群控制方法的示例图。构建多移动体集群控制系统时,需要有一种具备通信能力的处理设备61,通过无线通信的方式感知数个或所有移动体10的位姿信息以及活动事件逻辑,进而通过集群调控算法调配各移动体10的运动,并通过无线通信方式向各移动体10传递指令,控制移动体10运动。Fig. 46 is an example diagram of a multi-mobile body cluster control method according to the present invention. When constructing a multi-moving body cluster control system, it is necessary to have a processing device 61 with communication capabilities, which senses the pose information and activity event logic of several or all moving bodies 10 through wireless communication, and then deploys each moving body through a cluster control algorithm. The movement of the mobile body 10, and transmit instructions to each mobile body 10 through wireless communication, and control the movement of the mobile body 10.

移动体10的群体体系结构可采取集中式、分布式或混合式。The group architecture of the mobile body 10 can be centralized, distributed or mixed.

如图47为本发明一种多移动体集群控制的通信方法示例图,采取集中式群体体系结构。其中,处理设备61可以是计算机设备,也可以是某一个移动体10。Figure 47 is an example diagram of a communication method for cluster control of multiple mobile bodies in the present invention, adopting a centralized group architecture. Wherein, the processing device 61 may be a computer device, or may be a certain mobile body 10 .

如图48为本发明又一种多移动体集群控制的通信方法示例图,采取分布式群体体系结构。其中,各个移动体10之间是平等关系,可以相互传递和接受位姿信息、控制指令等信息。Figure 48 is an example diagram of another communication method for cluster control of multiple mobile bodies in the present invention, which adopts a distributed group architecture. Among them, each mobile body 10 is in an equal relationship, and information such as pose information and control instructions can be transmitted and received from each other.

如图49为本发明再一种多移动体集群控制的通信方法示例图,采取混合式群体体系结构,是介于集中式和分布式之间的混合结构。其中,处理设备61可以接受并处理来自各移动体10的位姿信息,也可以向各移动体10传递控制指令;同时,各个移动体10之间也可以相互传递和接受位姿信息、控制指令等信息。Figure 49 is an example diagram of another communication method for multi-mobile group control in the present invention, which adopts a hybrid group architecture, which is a hybrid structure between centralized and distributed. Among them, the processing device 61 can receive and process the pose information from each mobile body 10, and can also transmit control instructions to each mobile body 10; at the same time, each mobile body 10 can also transmit and receive pose information and control instructions from each other. and other information.

根据一个或者多个实施例,一种移动体集群控制系统,对于移动体,在上述实例中,移动体10的电路模块110的物理载体——电路板11和电路板12是印刷电路板(PCB),但也可以是柔性电路板(FPC),或其他任意可以连通各单元的方式。According to one or more embodiments, a mobile body cluster control system, for the mobile body, in the above example, the physical carrier of the circuit module 110 of the mobile body 10 - the circuit board 11 and the circuit board 12 are printed circuit boards (PCB ), but it can also be a flexible circuit board (FPC), or any other way that can communicate with each unit.

在上述实例中,移动体10的控制单元111是单片微控制器,但控制单元111可以是计算机、FPGA、服务器、平板、手机等任何计算设备。In the above examples, the control unit 111 of the mobile body 10 is a single-chip microcontroller, but the control unit 111 can be any computing device such as a computer, FPGA, server, tablet, or mobile phone.

在上述实例中,驱动单元114只用于驱动运动模块120,但也可以用于驱动其他设备。例如,驱动单元114可以驱动移动体10内部的电磁铁、舵机或者电机,使得移动体10具备自行控制和外接模块20连接与分离的能力。In the above examples, the driving unit 114 is only used to drive the motion module 120, but it can also be used to drive other devices. For example, the drive unit 114 can drive the electromagnet, steering gear or motor inside the moving body 10 , so that the moving body 10 has the capability of self-controlling and connecting and separating the external module 20 .

在上述实例中,移动体10的运动模块120采用的是双轮差速移动底盘,但并不限制驱动轮122和万向轮123之间的相对位置。且运动模块120也可以采用空气悬浮式、全轮转向式、麦克纳姆轮式、球履带全方位移动机构等全方位移动底盘。运动模块120除了可以是轮式移动机构,也可以是履带式移动机构、足式移动机构。移动体10也可以不包含主动的运动模块120,可以通过人手拿取、推动等方式移动。In the above example, the motion module 120 of the mobile body 10 adopts a two-wheel differential mobile chassis, but the relative position between the driving wheel 122 and the universal wheel 123 is not limited. And the motion module 120 can also adopt an all-round mobile chassis such as an air suspension type, an all-wheel steering type, a mecanum wheel type, and a ball track omnidirectional mobile mechanism. The motion module 120 may not only be a wheel-type moving mechanism, but also a crawler-type moving mechanism or a foot-type moving mechanism. The mobile body 10 may also not include an active motion module 120 , and may be moved by means of being picked up and pushed by human hands.

就外接模块20相对于移动体10的位置而言,外接模块20可以连接在移动体10前方,上方、两侧、后方、底部或是多个的组合。As far as the position of the external module 20 relative to the mobile body 10 is concerned, the external module 20 can be connected to the front, top, side, rear, bottom or a combination of multiple of the mobile body 10 .

就外接模块20的运动方式而言,外接模块20可以跟随移动体10一起运动,可以驱动移动体10运动(如外接模块20上安装有驱动轮,移动体10被安放在该种外接模块20的上部),也可以不随移动体10运动(如固定在定位垫30上的外接模块20,只有移动体10和该种外接模块靠近并连接时才可以通信控制)。As far as the motion mode of the external module 20 is concerned, the external module 20 can move together with the mobile body 10, and can drive the mobile body 10 to move (such as a drive wheel is installed on the external module 20, and the mobile body 10 is placed on the side of the external module 20). upper part), or not move with the mobile body 10 (as the external module 20 fixed on the positioning pad 30, only the mobile body 10 and this external module can be controlled by communication when they are close to and connected).

就外接模块20的功能而言,外接模块可以起到传感器模块、执行器模块、显示器模块、造型模块、充电模块等功能,或是以上各种功能的组合。As far as the functions of the external module 20 are concerned, the external module can function as a sensor module, an actuator module, a display module, a modeling module, a charging module, etc., or a combination of the above functions.

就外接模块20和移动体10的连接方式(传递信息或能量的方式)而言,可以是机械连接、电气连接、磁性连接、无线连接等多种方式或组合。As far as the connection method (the method of transmitting information or energy) between the external module 20 and the mobile body 10 is concerned, various methods or combinations such as mechanical connection, electrical connection, magnetic connection, wireless connection, etc. may be used.

根据一个或者多个实施例,一种移动体集群控制系统,其中,在上述实例中,定位垫30是一块单层单面印刷的硬质矩形纸质平面。然而:According to one or more embodiments, a mobile body swarm control system, wherein, in the above example, the positioning pad 30 is a rigid rectangular paper plane with single layer and single side printing. However:

定位垫30不限于是单层,也可以是多层的。如底层为不透明材质,印刷有可视图案31,顶层为透明或半透明材质,印刷有编码图案32,两层之间可以胶合固定,或者可以分离使用。The positioning pad 30 is not limited to a single layer, and may also be multi-layered. If the bottom layer is made of opaque material printed with a visible pattern 31, and the top layer is made of a transparent or translucent material printed with a coded pattern 32, the two layers can be glued and fixed, or can be used separately.

定位垫30不限于是单面印刷,也可以是双面印刷的。因而,定位垫30正反面可以印刷不同的可视图案31和编码图案32,将定位垫使用于不同场景。The positioning pad 30 is not limited to single-sided printing, and may also be double-sided printing. Therefore, different visible patterns 31 and coding patterns 32 can be printed on the front and back of the positioning mat 30, and the positioning mat can be used in different scenarios.

定位垫30的材质不限于是纸质,可以是塑料、布、橡胶等各种材料,也可以是LED、电子墨水屏、LCD、OLED等电子屏幕或表面,编码图案32在屏幕上显示覆盖。这样更易于配置定位垫30中的可视图案31和编码图案32。The material of the positioning pad 30 is not limited to paper, and can be various materials such as plastic, cloth, rubber, etc., and can also be electronic screens or surfaces such as LED, electronic ink screen, LCD, OLED, etc., and the coding pattern 32 is displayed on the screen. This makes it easier to configure the visible pattern 31 and the coded pattern 32 in the placemat 30 .

定位垫30的平面形状不限于是矩形,可以是任意形状。如规则的三角形、五边形、六边形、圆形等,也可以是不规则的任意多边形或曲线图形。The planar shape of the positioning pad 30 is not limited to a rectangle, but can be any shape. Such as regular triangles, pentagons, hexagons, circles, etc., can also be irregular polygons or curves.

定位垫30的形体不限于是平面,也可以是立体的。如定位垫可以折叠出一定的空间形状,也可以原本就具有立体形状。The shape of the positioning pad 30 is not limited to a plane, but also can be three-dimensional. For example, the positioning pad can be folded into a certain spatial shape, or it can originally have a three-dimensional shape.

定位垫30的数量不限于是一块,也可以是多块。如多块定位垫30拼接在一起,通过适当的算法,移动体10可以移动跨越过多个定位垫30,依然能够获得自身的坐标。这样可以丰富定位垫30的玩法。The number of positioning pads 30 is not limited to one, and may also be multiple. If multiple positioning pads 30 are spliced together, the mobile body 10 can move across multiple positioning pads 30 through an appropriate algorithm and still obtain its own coordinates. Can enrich the playing method of positioning pad 30 like this.

在以上发明实例中,定位垫30上的可视图案31采用四色印刷方法,编码图案32采用吸收红外的材料印刷。然而,两类图案均可以由吸收、反射或者激发可见光谱、红外光谱(NIR)、红外光谱(IR)或紫外光谱(UV)的材料印刷,只要保证编码图案32能被正确识别即可。In the above invention example, the visible pattern 31 on the positioning pad 30 is printed in four colors, and the coding pattern 32 is printed with an infrared-absorbing material. However, both types of patterns can be printed by materials that absorb, reflect or excite the visible spectrum, infrared spectrum (NIR), infrared spectrum (IR) or ultraviolet spectrum (UV), as long as the coding pattern 32 can be correctly identified.

根据一个或者多个实施例,一种连续光学辨识码的编码和解码方法、安装有光学单元并能对本公开提出的光学辨识码解码以获取位置坐标和旋转角度的移动体、可以附接在移动体上的外接模块、印刷有光学辨识码的定位垫,以及借助多个移动体实现集群控制的方法和系统。According to one or more embodiments, a method for encoding and decoding a continuous optical identification code, a mobile body equipped with an optical unit and capable of decoding the optical identification code proposed in the present disclosure to obtain position coordinates and rotation angles, can be attached to a mobile An external module on the body, a positioning pad printed with an optical identification code, and a method and system for realizing cluster control by means of multiple moving bodies.

移动体——由电路模块、运动模块、电池模块、壳体模块等构成,其中电路模块又包含控制单元、光学单元、电源单元、驱动单元、通信单元、传感单元、显示单元、声音单元、拓展单元等单元。关键点在于具有在平面上运动、识别所在平面上光学辨识码、可以附接外接模块、能够与外部设备通信等功能。Mobile body—consists of a circuit module, a motion module, a battery module, a housing module, etc., and the circuit module includes a control unit, an optical unit, a power supply unit, a drive unit, a communication unit, a sensing unit, a display unit, a sound unit, Extension unit and other units. The key point is that it has the functions of moving on a plane, recognizing the optical identification code on the plane, attaching external modules, and being able to communicate with external devices.

其中,光学单元包含图像传感器模组和补光灯,补光灯应工作在图像传感器模组的敏感区域。Among them, the optical unit includes an image sensor module and a supplementary light, and the supplementary light should work in the sensitive area of the image sensor module.

拓展单元包括连接装置和电气接口。连接装置可以是磁吸连接结构、插槽卡扣结构,连接装置还可以是电磁铁装置、能控制磁场方向的结构等形式,以便移动体自行控制和外接模块连接或分离;电气接口包含电源接口和总线信号,能时间对外接模块的供电和双向数据通信,还可以借助总线的寻址功能,区分出所连接的不同外接模块的类型。The expansion unit includes the connection device and the electrical interface. The connection device can be a magnetic connection structure, a slot buckle structure, and the connection device can also be an electromagnet device, a structure that can control the direction of the magnetic field, etc., so that the mobile body can control itself and connect or separate the external module; the electrical interface includes a power interface. And the bus signal, it can provide power supply and two-way data communication to the external module in time, and can also use the addressing function of the bus to distinguish the types of different external modules connected.

定位垫——定位垫上具有能直接被人肉眼所观看到的可视图案,以及能被移动体的光学单元所采集到的编码图案。可视图案和编码图案分别采用吸收/反射可见光或不可见光的材料所印刷。Positioning mat - the positioning mat has a visible pattern that can be directly observed by the naked eye, and a coded pattern that can be collected by the optical unit of the moving body. The visible pattern and the coding pattern are respectively printed with materials that absorb/reflect visible light or invisible light.

外接模块——外接模块上包含与拓展单元匹配的机械和电气连接装置。外接模块可以配置为传感器模块、执行器模块、显示器模块、造型模块、充电模块或多种模块的功能组合。External Modules - External modules contain mechanical and electrical connections that match the expansion unit. The external module can be configured as a sensor module, an actuator module, a display module, a styling module, a charging module or a functional combination of various modules.

本公开的移动集群控制系统涉及的方法包括:位置编码识别单元配置方法、单移动体解码及定位方法、多移动体集群控制方法。The methods involved in the mobile cluster control system of the present disclosure include: a position code recognition unit configuration method, a single mobile body decoding and positioning method, and a multi-mobile body cluster control method.

位置编码识别单元配置方法——通过标记点偏移虚拟网格线的方向定义四个标记点以及对应值,分别对应X和Y的01编码。设计循环位序列,对X坐标而言,根据各列之间循环位序列的偏移量定义X坐标位置号;对Y坐标而言,根据每行中数列起始位置的值或根据各行之间循环位序列的偏移量定义Y坐标位置号。借助循环位序列在更高位位序列的特点,实现对不同旋转方向编码的正确校正。Configuration method of the position coding recognition unit - define four marking points and corresponding values through the direction of the marking point offset from the virtual grid line, corresponding to the 01 codes of X and Y respectively. Design a cyclic bit sequence. For the X coordinate, the X coordinate position number is defined according to the offset of the cyclic bit sequence between the columns; for the Y coordinate, the value of the starting position of the sequence in each row or according to the The offset of the cyclic bit sequence defines the Y coordinate position number. With the help of the characteristics of the cyclic bit sequence in the higher bit sequence, the correct correction of the coding of different rotation directions is realized.

对于定位垫和指令卡片的不同需求,提出一种在同一系统下采用两种编码,以实现区别的方法,且两种编码方法互不干扰。For the different requirements of the positioning pad and the instruction card, a method of using two kinds of coding in the same system to realize the difference is proposed, and the two coding methods do not interfere with each other.

单移动体解码及定位方法——光学单元获取的图像经控制单元进行图像处理、网格估计、概率处理、位姿解算后,即可获得动体位于定位垫上的坐标(x,y)以及相对定位垫的旋转方向θ。进而,可以对移动体运动进行反馈。Single moving body decoding and positioning method - after the image acquired by the optical unit is processed by the control unit for image processing, grid estimation, probability processing, and pose calculation, the coordinates (x, y) of the moving body on the positioning mat and Relative to the rotation direction θ of the positioning pad. Furthermore, the movement of the mobile body can be fed back.

多移动体集群控制方法——借助具备通信能力的处理设备,通过无线通信的方式感知移动体的位姿信息以及活动事件逻辑,进而通过集群调控算法调配各移动体的运动,并通过无线通信方式向各移动体传递指令,控制移动体运动。Multi-moving body cluster control method - with the help of processing equipment with communication capabilities, the pose information and activity event logic of the moving body are perceived through wireless communication, and then the movement of each moving body is allocated through the cluster control algorithm, and the wireless communication method Send instructions to each moving body to control the movement of the moving body.

综合上述技术方案,本发明具有的有益效果包括:Based on the above technical solutions, the beneficial effects of the present invention include:

1.将印刷在平面的微型光学辨识码和位置坐标一一对应,可以得到移动体在定位垫上的绝对坐标,没有累积误差。1. One-to-one correspondence between the micro-optical identification code printed on the plane and the position coordinates, the absolute coordinates of the moving body on the positioning pad can be obtained without accumulative errors.

2.具有无限的可拓展性,每个移动体都可以自我定位。2. It has unlimited scalability, and each mobile body can position itself.

3.相比OID编码图案给移动体提供指令,本公开设计为在移动中工作,可用于移动体的实时轨迹跟踪。3. Compared with the OID coding pattern providing instructions to the moving body, the present disclosure is designed to work while moving and can be used for real-time trajectory tracking of the moving body.

4.无需校准。4. No calibration required.

5.对环境光源不敏感,只要设备停留在表面,即可完全抵抗遮挡和照明条件。5. Insensitive to ambient light sources, as long as the device stays on the surface, it can completely resist occlusion and lighting conditions.

6.部署简单快速,定位垫可以较方便打印、运输、携带和储存。6. The deployment is simple and fast, and the positioning pad can be printed, transported, carried and stored more conveniently.

7.编码图案使用吸收不可见光的材料打印,可以覆盖在可视图案上,不影响美观。7. The coding pattern is printed with materials that absorb invisible light, which can be covered on the visible pattern without affecting the appearance.

8.改进编码和解码方法,定位精度由毫米级提升到亚毫米级,并可以通过算法计算每一帧图像下移动体的旋转角度。8. Improve the encoding and decoding method, the positioning accuracy is improved from millimeter level to sub-millimeter level, and the rotation angle of the moving object under each frame of image can be calculated by algorithm.

9.改进编码和解码方法,在位置编码序列长度相同、图像传感器的视野大小相同的情况下,能够编码和解码更多位置信息。9. Improve the encoding and decoding methods, and can encode and decode more positional information under the condition that the length of the positional encoding sequence is the same and the field of view of the image sensor is the same.

10.工作区域仅受定位垫尺寸的限制,如果拼接可以校准,则可以将多个定位垫缝合在一起以覆盖更大的区域。10. The working area is limited only by the size of the locating pad, if the stitching can be calibrated, multiple locating pads can be stitched together to cover a larger area.

11.可以在同一系统下采用多种编码,以实现对位置、指令的区别,且多种编码方法互不干扰。11. Multiple encodings can be used in the same system to distinguish positions and instructions, and multiple encoding methods do not interfere with each other.

应理解,在本发明实施例中,术语“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系。例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。It should be understood that in the embodiments of the present invention, the term "and/or" is only an association relationship describing associated objects, indicating that there may be three relationships. For example, A and/or B may mean that A exists alone, A and B exist simultaneously, and B exists alone. In addition, the character "/" in this article generally indicates that the contextual objects are an "or" relationship.

本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。Those of ordinary skill in the art can realize that the units and algorithm steps of the examples described in conjunction with the embodiments disclosed herein can be implemented by electronic hardware, computer software, or a combination of the two. In order to clearly illustrate the relationship between hardware and software Interchangeability. In the above description, the composition and steps of each example have been generally described according to their functions. Whether these functions are executed by hardware or software depends on the specific application and design constraints of the technical solution. Skilled artisans may use different methods to implement the described functions for each specific application, but such implementation should not be regarded as exceeding the scope of the present invention.

在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口、装置或单元的间接耦合或通信连接,也可以是电的,机械的或其它的形式连接。In the several embodiments provided in this application, it should be understood that the disclosed systems, devices and methods may be implemented in other ways. For example, the device embodiments described above are only illustrative. For example, the division of the units is only a logical function division. In actual implementation, there may be other division methods. For example, multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented. In addition, the mutual coupling or direct coupling or communication connection shown or discussed may be indirect coupling or communication connection through some interfaces, devices or units, and may also be electrical, mechanical or other forms of connection.

以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求的保护范围为准。The above is only a specific embodiment of the present invention, but the protection scope of the present invention is not limited thereto. Any person familiar with the technical field can easily think of various equivalents within the technical scope disclosed in the present invention. Modifications or replacements shall all fall within the protection scope of the present invention. Therefore, the protection scope of the present invention should be based on the protection scope of the claims.

Claims (14)

1.一种移动体控制系统,其特征在于,该系统包括,1. A mobile body control system, characterized in that the system comprises, 至少一个移动体,该移动体在一个具有编码图案的表面上自主移动,所述移动体可以根据获取的编码图案获取自身的坐标位置和旋转角度信息。At least one mobile body, the mobile body autonomously moves on a surface with a coded pattern, and the mobile body can obtain its own coordinate position and rotation angle information according to the obtained coded pattern. 2.根据权利要求1所述的移动体控制系统,其特征在于,所述编码图案被印制在一块定位垫的表面上。2. The moving body control system according to claim 1, wherein the coding pattern is printed on the surface of a positioning mat. 3.根据权利要求1所述的移动体控制系统,其特征在于,所述移动体具有外接模块,该外接模块用于完成预定的功能。3. The mobile body control system according to claim 1, wherein the mobile body has an external module, and the external module is used to complete predetermined functions. 4.根据权利要求1所述的移动体控制系统,其特征在于,所述移动体的数量为多个,移动体相互之间或移动体与外部其他设备之间可以通过无线方式通信。4. The mobile body control system according to claim 1, characterized in that there are multiple mobile bodies, and the mobile bodies can communicate with each other or with other external devices in a wireless manner. 5.根据权利要求2所述的移动体控制系统,其特征在于,所述编码图案由沿表面的直角坐标X、Y轴方向均匀延伸排布的虚拟网格点,以及相对各虚拟网格点沿X或Y轴的正或负方向偏移设置的可见标记点组成,根据所述的各可见标记点的不同偏移位置对各可见标记点的直角坐标X、Y轴的二进制赋值分别被构造为符合德布鲁因序列规则的循环位序列。5. The mobile body control system according to claim 2, wherein the coding pattern consists of virtual grid points arranged uniformly along the Cartesian coordinates X and Y axis directions of the surface, and virtual grid points corresponding to each virtual grid point It is composed of visible markers offset along the positive or negative direction of the X or Y axis, and the binary assignments of the Cartesian coordinates X and Y axes of each visible marker are constructed respectively according to the different offset positions of the visible markers is a cyclic bit sequence that conforms to the De Bruin sequence rule. 6.根据权利要求5所述的移动体控制系统,其特征在于,所述循环位序列基于一种位置编码,该位置编码的构造符合B(2,n)的德布鲁因序列规则,即位置编码由1或0的位序列构成,6. mobile body control system according to claim 5, is characterized in that, described cyclic bit sequence is based on a kind of position code, and the structure of this position code conforms to the De Bruin sequence rule of B(2,n), namely The position code consists of a bit sequence of 1 or 0, 所述位置编码序列的编码特征是,每一个编码生成n位长的位序列是唯一,且位置编码序列的编码是循环的,使得,The encoding feature of the position encoding sequence is that each encoding generates an n-bit long bit sequence that is unique, and the encoding of the position encoding sequence is cyclic, so that, 当位置编码序列的尾端连接到其首端时具有这样的特征,即n位长的位序列在位置编码序列中总有唯一确定的位置号。When the tail end of the position-coding sequence is connected to its head-end, it has the feature that the n-bit long bit sequence always has a uniquely determined position number in the position-coding sequence. 7.根据权利要求6所述的移动体控制系统,其特征在于,所述位置编码还具备如下特征:7. The mobile body control system according to claim 6, wherein the position code also possesses the following features: 位置编码序列中每一种(n+m)位长度的位序列编码是唯一的,并且排除按位取反且反转位置的编码形式,其中m≥1,The bit sequence encoding of each (n+m) bit length in the position encoding sequence is unique, and excludes the bitwise inversion and the encoding form of inverting the position, where m≥1, 使得当编码图案被旋转90°、180°或270°时,通过识别多个行和列中(n+m)位长度的位序列确定编码图案被旋转的方向。Such that when the encoding pattern is rotated by 90°, 180° or 270°, the direction in which the encoding pattern is rotated is determined by identifying a bit sequence of (n+m) bit length in a plurality of rows and columns. 8.根据权利要求6所述的移动体控制系统,其特征在于,8. The mobile body control system according to claim 6, wherein: 所述编码图案的X坐标编码方法为,根据各列之间位置编码的偏移量和/或每列中数列起始位置的值,定义X坐标位置号,进而确定X坐标;The X-coordinate coding method of the coding pattern is to define the X-coordinate position number according to the offset of the position coding between each column and/or the value of the starting position of the sequence in each column, and then determine the X-coordinate; Y坐标编码方法为,根据各行之间位置编码的偏移量和/或每行中数列起始位置的值,定义Y坐标位置号,进而确定Y坐标。The Y coordinate encoding method is to define the Y coordinate position number according to the offset of the position encoding between each row and/or the value of the starting position of the sequence in each row, and then determine the Y coordinate. 9.根据权利要求6所述的移动体控制系统,其特征在于,所述表面的位置坐标与该区域内编码图案的多个可见标记点构成的编码识别单元一一对应,即移动体可通过解码移动区域多个可见标记点组成的编码识别单元,来计算出该区域的位置坐标。9. The mobile body control system according to claim 6, characterized in that, the position coordinates of the surface correspond one-to-one to the code recognition unit formed by a plurality of visible marking points of the code pattern in the area, that is, the mobile body can pass through Decode the code recognition unit composed of multiple visible marking points in the moving area to calculate the position coordinates of the area. 10.根据权利要求7所述的移动体控制系统,其特征在于,在对所述移动体旋转方向的判断中,包括通过对于所述编码图案的位置编码的解码,对旋转方向的计算进行校核。10. The mobile body control system according to claim 7, wherein the judgment of the rotation direction of the mobile body includes correcting the calculation of the rotation direction by decoding the position code of the coding pattern. nuclear. 11.根据权利要求5所述的移动体控制系统,其特征在于,所述编码图案中未被使用的若干标记点可被编码为对于所述移动体的预设指令。11. The mobile object control system according to claim 5, wherein the unused marking points in the encoding pattern can be encoded as preset instructions for the mobile object. 12.一种移动体,被用于如权利要求1所述的控制系统,其特征在于,所述移动体具有拓展单元,该拓展单元包括用于连接预设外接模块的连接装置和电气接口。12. A mobile body used in the control system according to claim 1, characterized in that the mobile body has an expansion unit, and the expansion unit includes a connection device and an electrical interface for connecting a preset external module. 13.根据权利要求8所述的移动体,其特征在于,所述外接模块可以配置为传感器模块、执行器模块、显示器模块或造型模块中的一种或其组合。13. The mobile body according to claim 8, wherein the external module can be configured as one or a combination of a sensor module, an actuator module, a display module, or a modeling module. 14.一种表面,被用于如权利要求1所述的控制系统,其特征在于,所述表面具有编码图案,该编码图案采用吸收/反射可见光或不可见光的材料所印刷。14. A surface used in the control system according to claim 1, characterized in that the surface has a coding pattern printed with a material that absorbs/reflects visible light or invisible light.
CN202310135130.5A 2023-02-20 2023-02-20 Mobile body control system, mobile body and surface Pending CN116382264A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310135130.5A CN116382264A (en) 2023-02-20 2023-02-20 Mobile body control system, mobile body and surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310135130.5A CN116382264A (en) 2023-02-20 2023-02-20 Mobile body control system, mobile body and surface

Publications (1)

Publication Number Publication Date
CN116382264A true CN116382264A (en) 2023-07-04

Family

ID=86977724

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310135130.5A Pending CN116382264A (en) 2023-02-20 2023-02-20 Mobile body control system, mobile body and surface

Country Status (1)

Country Link
CN (1) CN116382264A (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104105951A (en) * 2012-02-07 2014-10-15 三菱电机株式会社 Method and apparatus for determining position
CN108664965A (en) * 2017-04-02 2018-10-16 田雪松 The generation method and generating means of position encoded information
CN108664867A (en) * 2017-04-02 2018-10-16 田雪松 The processing method and processing unit of coding pattern in a kind of substrate and substrate
CN110018633A (en) * 2018-12-14 2019-07-16 华南理工大学 A kind of two-dimensional encoded design method positioned for AGV with navigation
US20200096343A1 (en) * 2018-09-26 2020-03-26 Ubtech Robotics Corp Ltd Positioning method and robot with the same
KR20210065130A (en) * 2018-09-18 2021-06-03 파이벨리 트랜스포트 이탈리아 에스.피.에이. Train-dependent position recognition system of a brake control mechatronic device associated with a rolling stock
EP3910937A1 (en) * 2020-05-11 2021-11-17 Voysys AB Method and system for monitoring communication between vehicle and remote terminal

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104105951A (en) * 2012-02-07 2014-10-15 三菱电机株式会社 Method and apparatus for determining position
CN108664965A (en) * 2017-04-02 2018-10-16 田雪松 The generation method and generating means of position encoded information
CN108664867A (en) * 2017-04-02 2018-10-16 田雪松 The processing method and processing unit of coding pattern in a kind of substrate and substrate
KR20210065130A (en) * 2018-09-18 2021-06-03 파이벨리 트랜스포트 이탈리아 에스.피.에이. Train-dependent position recognition system of a brake control mechatronic device associated with a rolling stock
US20200096343A1 (en) * 2018-09-26 2020-03-26 Ubtech Robotics Corp Ltd Positioning method and robot with the same
CN110018633A (en) * 2018-12-14 2019-07-16 华南理工大学 A kind of two-dimensional encoded design method positioned for AGV with navigation
EP3910937A1 (en) * 2020-05-11 2021-11-17 Voysys AB Method and system for monitoring communication between vehicle and remote terminal

Similar Documents

Publication Publication Date Title
US20080211183A1 (en) Computer Controlled Pawn
US7809194B2 (en) Coded visual markers for tracking and camera calibration in mobile computing systems
CN102302854B (en) Electronic building block combination system
CN103837147B (en) Active infrared dot-matrix type artificial road sign, intelligent body locating system and intelligent body locating method
CN102809354B (en) Three-dimensional dual-mode scanning device and three-dimensional dual-mode scanning system
CN103294059A (en) Hybrid navigation belt based mobile robot positioning system and method thereof
CN110989674B (en) Unmanned aerial vehicle visual guidance landing method based on ArUco label
TW201318793A (en) Robot optical positioning system and positioning method thereof
CN207115193U (en) A kind of mobile electronic device for being used to handle the task of mission area
CN106403926B (en) Positioning method and system
CN110120099A (en) Localization method, device, recognition and tracking system and computer-readable medium
CN106079896B (en) Mobile robot print system based on One-Point Location technology
CN108459597A (en) A kind of mobile electronic device and method for handling the task of mission area
CN207780718U (en) Visual interactive device
TW202119055A (en) Systems and methods for calibrating nonvisible light emitting sensors using alignment targets
CN116382264A (en) Mobile body control system, mobile body and surface
CN115186688B (en) Visual reference method for visible light positioning
CN115661240A (en) Position information determining method and device, electronic equipment and storage medium
CN110120100B (en) Image processing method, device and recognition tracking system
CN108414980A (en) A kind of indoor positioning device based on dotted infrared laser
CN114895680A (en) A mobile robot vision positioning system and method
CN111220949A (en) A spatial positioning method of unmanned system based on LED light source
CN109901714A (en) A kind of electronics paper pen system and its control method
US20140132500A1 (en) Method and apparatus for recognizing location of moving object in real time
CN116483011A (en) Indoor cluster control system of aircraft and gesture control method

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination