CN116367937A - Extrusion and/or pultrusion apparatus and method - Google Patents
Extrusion and/or pultrusion apparatus and method Download PDFInfo
- Publication number
- CN116367937A CN116367937A CN202180071746.XA CN202180071746A CN116367937A CN 116367937 A CN116367937 A CN 116367937A CN 202180071746 A CN202180071746 A CN 202180071746A CN 116367937 A CN116367937 A CN 116367937A
- Authority
- CN
- China
- Prior art keywords
- profile
- channel portion
- channel
- rotary die
- final
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000001125 extrusion Methods 0.000 title claims abstract description 48
- 238000000034 method Methods 0.000 title claims abstract description 26
- 239000000463 material Substances 0.000 claims abstract description 278
- 238000004519 manufacturing process Methods 0.000 claims abstract description 66
- 230000002093 peripheral effect Effects 0.000 claims abstract description 40
- 238000007373 indentation Methods 0.000 claims description 54
- 239000002783 friction material Substances 0.000 claims description 23
- 238000001816 cooling Methods 0.000 claims description 21
- 230000008859 change Effects 0.000 claims description 18
- 239000004033 plastic Substances 0.000 claims description 18
- 230000007704 transition Effects 0.000 claims description 14
- 230000000694 effects Effects 0.000 claims description 13
- 238000002844 melting Methods 0.000 claims description 7
- 230000008018 melting Effects 0.000 claims description 7
- 230000009477 glass transition Effects 0.000 claims description 6
- 239000000203 mixture Substances 0.000 claims description 6
- 238000011144 upstream manufacturing Methods 0.000 claims description 5
- 238000007493 shaping process Methods 0.000 claims 1
- 239000000047 product Substances 0.000 description 77
- 230000008901 benefit Effects 0.000 description 29
- 239000011343 solid material Substances 0.000 description 14
- 230000008569 process Effects 0.000 description 11
- 239000007788 liquid Substances 0.000 description 9
- 239000007795 chemical reaction product Substances 0.000 description 6
- 230000003068 static effect Effects 0.000 description 6
- 239000012530 fluid Substances 0.000 description 5
- 239000007787 solid Substances 0.000 description 5
- 239000003190 viscoelastic substance Substances 0.000 description 5
- 229910052782 aluminium Inorganic materials 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 3
- 230000001419 dependent effect Effects 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 230000001360 synchronised effect Effects 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 230000005489 elastic deformation Effects 0.000 description 2
- 239000008240 homogeneous mixture Substances 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000002829 reductive effect Effects 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 239000004575 stone Substances 0.000 description 2
- 239000004411 aluminium Substances 0.000 description 1
- 238000003490 calendering Methods 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000006837 decompression Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000013013 elastic material Substances 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000008707 rearrangement Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 239000012779 reinforcing material Substances 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000036962 time dependent Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 239000011345 viscous material Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21C—MANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
- B21C23/00—Extruding metal; Impact extrusion
- B21C23/02—Making uncoated products
- B21C23/04—Making uncoated products by direct extrusion
- B21C23/14—Making other products
- B21C23/142—Making profiles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21C—MANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
- B21C25/00—Profiling tools for metal extruding
- B21C25/02—Dies
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21C—MANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
- B21C35/00—Removing work or waste from extruding presses; Drawing-off extruded work; Cleaning dies, ducts, containers, or mandrels
- B21C35/02—Removing or drawing-off work
- B21C35/023—Work treatment directly following extrusion, e.g. further deformation or surface treatment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21J—FORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
- B21J5/00—Methods for forging, hammering, or pressing; Special equipment or accessories therefor
- B21J5/06—Methods for forging, hammering, or pressing; Special equipment or accessories therefor for performing particular operations
- B21J5/12—Forming profiles on internal or external surfaces
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C43/00—Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
- B29C43/32—Component parts, details or accessories; Auxiliary operations
- B29C43/44—Compression means for making articles of indefinite length
- B29C43/46—Rollers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/001—Combinations of extrusion moulding with other shaping operations
- B29C48/0011—Combinations of extrusion moulding with other shaping operations combined with compression moulding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/001—Combinations of extrusion moulding with other shaping operations
- B29C48/0018—Combinations of extrusion moulding with other shaping operations combined with shaping by orienting, stretching or shrinking, e.g. film blowing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/03—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
- B29C48/12—Articles with an irregular circumference when viewed in cross-section, e.g. window profiles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/15—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor incorporating preformed parts or layers, e.g. extrusion moulding around inserts
- B29C48/154—Coating solid articles, i.e. non-hollow articles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/16—Articles comprising two or more components, e.g. co-extruded layers
- B29C48/18—Articles comprising two or more components, e.g. co-extruded layers the components being layers
- B29C48/21—Articles comprising two or more components, e.g. co-extruded layers the components being layers the layers being joined at their surfaces
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/25—Component parts, details or accessories; Auxiliary operations
- B29C48/30—Extrusion nozzles or dies
- B29C48/32—Extrusion nozzles or dies with annular openings, e.g. for forming tubular articles
- B29C48/34—Cross-head annular extrusion nozzles, i.e. for simultaneously receiving moulding material and the preform to be coated
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/25—Component parts, details or accessories; Auxiliary operations
- B29C48/30—Extrusion nozzles or dies
- B29C48/35—Extrusion nozzles or dies with rollers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/25—Component parts, details or accessories; Auxiliary operations
- B29C48/36—Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
- B29C48/49—Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using two or more extruders to feed one die or nozzle
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/25—Component parts, details or accessories; Auxiliary operations
- B29C48/88—Thermal treatment of the stream of extruded material, e.g. cooling
- B29C48/911—Cooling
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C55/00—Shaping by stretching, e.g. drawing through a die; Apparatus therefor
- B29C55/30—Drawing through a die
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C70/00—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
- B29C70/04—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
- B29C70/28—Shaping operations therefor
- B29C70/40—Shaping or impregnating by compression not applied
- B29C70/50—Shaping or impregnating by compression not applied for producing articles of indefinite length, e.g. prepregs, sheet moulding compounds [SMC] or cross moulding compounds [XMC]
- B29C70/52—Pultrusion, i.e. forming and compressing by continuously pulling through a die
- B29C70/525—Component parts, details or accessories; Auxiliary operations
- B29C70/526—Pultrusion dies, e.g. dies with moving or rotating parts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C70/00—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
- B29C70/04—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
- B29C70/28—Shaping operations therefor
- B29C70/40—Shaping or impregnating by compression not applied
- B29C70/50—Shaping or impregnating by compression not applied for producing articles of indefinite length, e.g. prepregs, sheet moulding compounds [SMC] or cross moulding compounds [XMC]
- B29C70/52—Pultrusion, i.e. forming and compressing by continuously pulling through a die
- B29C70/525—Component parts, details or accessories; Auxiliary operations
- B29C70/527—Pulling means
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C70/00—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
- B29C70/04—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
- B29C70/28—Shaping operations therefor
- B29C70/40—Shaping or impregnating by compression not applied
- B29C70/50—Shaping or impregnating by compression not applied for producing articles of indefinite length, e.g. prepregs, sheet moulding compounds [SMC] or cross moulding compounds [XMC]
- B29C70/52—Pultrusion, i.e. forming and compressing by continuously pulling through a die
- B29C70/525—Component parts, details or accessories; Auxiliary operations
- B29C70/528—Heating or cooling
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C43/00—Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
- B29C43/32—Component parts, details or accessories; Auxiliary operations
- B29C43/44—Compression means for making articles of indefinite length
- B29C43/46—Rollers
- B29C2043/461—Rollers the rollers having specific surface features
- B29C2043/463—Rollers the rollers having specific surface features corrugated, patterned or embossed surface
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C43/00—Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
- B29C43/32—Component parts, details or accessories; Auxiliary operations
- B29C43/44—Compression means for making articles of indefinite length
- B29C43/46—Rollers
- B29C2043/461—Rollers the rollers having specific surface features
- B29C2043/465—Rollers the rollers having specific surface features having one or more cavities, e.g. for forming distinct products
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29L—INDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
- B29L2031/00—Other particular articles
- B29L2031/001—Profiled members, e.g. beams, sections
- B29L2031/003—Profiled members, e.g. beams, sections having a profiled transverse cross-section
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Composite Materials (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Extrusion Moulding Of Plastics Or The Like (AREA)
- Extrusion Of Metal (AREA)
- Press-Shaping Or Shaping Using Conveyers (AREA)
- Casting Or Compression Moulding Of Plastics Or The Like (AREA)
- Metal Extraction Processes (AREA)
Abstract
一种用于在生产方向(Y)上形成由塑性可变形材料和/或粘塑性材料制成的型材产品(2)的方法和挤压或拉挤装置(1),所述装置包括沿径向(R)方向和宽度方向(X)延伸的旋转模具(3),且具有二相对的第一侧壁和第二侧壁(5、6)及在所述第一侧壁和第二侧壁(5、6)之间沿所述宽度方向(X)延伸的外周表面(4),所述旋转模具(3)包含连接所述第一侧壁(5)的第一侧部(23)、连接所述第二侧壁(6)的第二侧部(25)及在所述第一和第二侧部(23、25)之间延伸的中间部分(22);及具有与所述生产方向(Y)重叠的纵向(Y)、高度方向(Z)及垂直于所述高度方向(Z)的宽度方向(X)的型材限定区(7),并包含直通通道(8),所述直通通道(8)包含第一通道部分(9)及随后参考所述生产方向在所述第一通道部分(9)下游的第二通道部分(10);其中,所述旋转模具(3)可绕横跨所述生产方向(Y)延伸的轴线旋转,并设置成允许所述外周表面(4)当通过所述型材限定区(7)时,在所述旋转模具(3)旋转的同时施加压力到所述材料的表面上。
A method and an extrusion or pultrusion device (1) for forming a profile product (2) made of plastically deformable and/or viscoplastic material in a production direction (Y), said device comprising A rotary mold (3) extending in the (R) direction and the width direction (X), and has two opposite first and second side walls (5, 6) and An outer peripheral surface (4) between walls (5, 6) extending along said width direction (X), said rotary mold (3) comprising a first side portion (23) connecting said first side wall (5) , a second side portion (25) connecting said second side wall (6) and an intermediate portion (22) extending between said first and second side portions (23, 25); and having a The production direction (Y) overlaps the longitudinal (Y), height direction (Z) and the profile limited area (7) perpendicular to the width direction (X) of the height direction (Z), and includes a straight-through channel (8), so Said straight-through channel (8) comprises a first channel portion (9) and then a second channel portion (10) downstream of said first channel portion (9) with reference to said production direction; wherein said rotary mold (3) is rotatable about an axis extending across said production direction (Y) and is arranged to allow said peripheral surface (4) while passing said profile-defining zone (7) while said rotating mold (3) is rotating Apply pressure to the surface of the material.
Description
技术领域technical field
本发明涉及一种用于在生产方向上形成由可塑性变形材料制成的型材产品的挤压和/或拉挤装置,所述装置包括:The invention relates to an extrusion and/or pultrusion device for forming profile products made of plastically deformable material in the production direction, said device comprising:
一旋转模具,沿一径向方向和一宽度方向延伸,且具有二相对的第一侧壁和第二侧壁以及在所述第一侧壁和第二侧壁之间沿所述宽度方向延伸的一外周表面,其中所述旋转模具包含:一第一侧部,连接所述第一侧壁;一第二侧部,连接所述第二侧壁;以及一中间部分,在所述第一和第二侧部之间延伸;以及A rotary mold extending along a radial direction and a widthwise direction, having two opposing first and second sidewalls and extending along said widthwise direction between said first and second sidewalls wherein the rotary mold comprises: a first side portion connected to the first side wall; a second side portion connected to the second side wall; and an intermediate portion connected to the first side wall extending between the second side; and
一型材限定区,具有与所述生产方向重叠的一纵向、一高度方向及垂直于所述高度方向的一宽度方向;并包含一直通通道,所述直通通道包含一第一通道部分及随后参考所述生产方向在所述第一通道部分下游的一第二通道部分;其中,所述旋转模具可绕横跨所述生产方向延伸的一轴线旋转,并设置成允许所述外周表面当通过所述型材限定区时,在所述旋转模具旋转的同时施加压力到所述材料的一表面上;A profile-defining area having a longitudinal direction overlapping said production direction, a height direction and a width direction perpendicular to said height direction; and comprising a through-channel comprising a first channel portion and subsequent reference a second channel portion downstream of the first channel portion in the production direction; wherein the rotary mold is rotatable about an axis extending across the production direction and is arranged to allow the peripheral surface to pass through the applying pressure to a surface of the material while the rotating mold rotates while defining the profile;
所述第一通道部分由一个或多个壁周向界定;及said first channel portion is bounded circumferentially by one or more walls; and
所述第二通道部分由以下周向界定:The second channel portion is bounded circumferentially by:
所述旋转模具的所述外周表面,及the peripheral surface of the rotary mold, and
一通道部分,所述通道部分包含,a channel portion, said channel portion comprising,
一反向轴承,与所述旋转模具相对,及a counter bearing, opposite said rotating mold, and
在所述旋转模具和所述反向轴承之间且相对的第一通道部分侧壁和第二通道部分侧壁。The opposing first and second channel portion sidewalls are between the rotary mold and the counter bearing.
本发明还涉及一种使用这种装置生产型材产品的方法。The invention also relates to a method for producing profiled products using such a device.
背景技术Background technique
在挤压和/或拉挤装置领域,已知在使用固定或静态壁更传统的挤压和/或拉挤装置的紧下游使用旋转模具。这种使用旋转模具的挤压类型在下文中称为3D挤压,并且涉及旋转模具在加压区中操作,与装置更传统的挤压和/或拉挤部分相关,这与压延3D挤压不同。第一通道部分中的静态壁和第二通道部分中的旋转模具的组合提供了以非常高的速度生产型材产品,同时保持高质量的形状和印记。因此,它是一种有效且相对便宜的生产方法,可用于大多数可通过挤压成型的材料,即任何材料,例如塑料到铝。In the field of extrusion and/or pultrusion devices it is known to use rotating dies immediately downstream of more conventional extrusion and/or pultrusion devices using fixed or static walls. This type of extrusion using a rotating die is hereinafter referred to as 3D extrusion, and involves the rotating die operating in a pressurized zone, in relation to the more traditional extrusion and/or pultrusion portion of the apparatus, as opposed to calendered 3D extrusion . The combination of static walls in the first channel section and rotating molds in the second channel section provides for the production of profile products at very high speeds while maintaining high quality shapes and impressions. As such, it is an efficient and relatively cheap production method that can be used for most materials that can be molded by extrusion, that is, any material, such as plastic to aluminium.
在第PCT/SE2020/050451号中,讨论了关于最小侧漏(minimum side leakage)的优化第一通道部分和第二通道部分的优点。In PCT/SE2020/050451 the advantages of optimizing the first and second channel sections with respect to minimum side leakage are discussed.
发明内容Contents of the invention
然而,参考背景技术,当挤压经历塑性变形的材料时,需要沿型材限定区(即第一通道部分和第二通道部分)改进优化。通过相应的第一通道和第二通道的设计,参考第二通道中的负载率来控制第一通道中的材料的负载率。However, with reference to the background art, when extruding a material that undergoes plastic deformation, there is a need for improved optimization along the defined zones of the profile, ie the first channel portion and the second channel portion. The loading rate of the material in the first channel is controlled with reference to the loading rate in the second channel by corresponding design of the first channel and the second channel.
要求保护的装置包括静态和移动部分,并在高生产率和高压下运行,有时在高温和高压下运行。装置的设置取决于要生产的材料和型材类型。在很长一段时间内进行的实验表明,经历塑性变形的材料具有特殊的特征/特性,为了在要求保护的装置中生产高质量的型材产品,同时设计装置以使其在操作过程中承受高力,必须考虑这些因素。引入以下限定是为了向读者提供有关合适的此类材料和装置设置的信息。The claimed apparatus includes static and moving parts and operates at high production rates and pressures, sometimes at elevated temperatures and pressures. The setup of the unit depends on the material and profile type to be produced. Experiments carried out over a long period of time have shown that materials undergoing plastic deformation have special characteristics/properties, in order to produce high-quality profile products in the claimed device, and at the same time design the device so that it withstands high forces during operation , these factors must be considered. The following definitions are introduced to provide the reader with information on suitable such materials and device settings.
塑性变形材料plastic deformation material
一些材料,例如金属,在受到足够大的力时会永久变形。永久变形通常被称为塑性变形,因此表现出这种类型变形的材料可被命名为“塑性可变形材料”。塑性可变形材料的变形行为取决于材料所受力的大小,通常用所谓的“应力-应变曲线”来描述。通常,可塑性变形材料表现出以下变形行为。Some materials, such as metals, permanently deform when subjected to sufficient force. Permanent deformation is often referred to as plastic deformation, so materials that exhibit this type of deformation can be named "plastically deformable materials". The deformation behavior of plastically deformable materials depends on the amount of force to which the material is subjected, and is usually described by a so-called "stress-strain curve". In general, plastically deformable materials exhibit the following deformation behavior.
当材料受到较小的力时,它会发生弹性变形,因为材料中的应力会增加材料中原子之间的距离,但不会影响它们的相互排列。因此,当移除应力时,材料会线性恢复到其原始尺寸。因此,在该应力区中,材料表现出线性弹性变形行为。When a material is subjected to a small force, it deforms elastically because the stress in the material increases the distance between the atoms in the material but does not affect their mutual alignment. Therefore, when the stress is removed, the material returns linearly to its original dimensions. Therefore, in this stress region, the material exhibits linear elastic deformation behavior.
如果对材料施加更大的力,则材料中的应力会增加。当应力超过所谓的弹性极限时,材料中的原子平面开始相互滑动。如果移除应力并因此实现材料的永久变形,则该效果不会逆转。因此,在该应力区中,材料表现出塑性变形行为。If more force is applied to the material, the stress in the material increases. When the stress exceeds the so-called elastic limit, the planes of atoms in the material start to slide against each other. This effect is not reversed if the stress is removed and thus a permanent deformation of the material is achieved. Therefore, in this stress region, the material exhibits plastic deformation behavior.
如果应力进一步增加,应力将超过材料的破裂极限,材料最终会破裂。If the stress is increased further, the stress will exceed the fracture limit of the material and the material will eventually crack.
粘塑性材料viscoplastic material
粘塑性是一种理论,它描述了在低于临界应力值时表现为固体但在较大应力值时像粘性液体一样流动的材料。对于金属和合金,粘塑性是由与晶粒中位错运动相关的机制引起的宏观行为,具有晶间滑动的叠加效应。该机制通常在高于绝对熔化温度的大约三分之一的温度下变得占主导地位。因此,这些材料在该临界温度以上变成粘塑性材料。Viscoplasticity is a theory that describes materials that behave as solids below critical stress values but flow like viscous liquids at larger stress values. For metals and alloys, viscoplasticity is a macroscopic behavior induced by mechanisms related to the movement of dislocations in grains, with superimposed effects of intergranular sliding. This mechanism usually becomes dominant at temperatures above about one-third of the absolute melting temperature. These materials therefore become viscoplastic above this critical temperature.
粘塑性材料与非粘塑性材料的主要区别在于,粘塑性材料在塑性变形的力区表现出与速率相关的变形行为。即,粘塑性材料不仅在施加力后永久变形,而且在施加力的影响下继续经历作为时间函数的蠕变流动。这种蠕变流动使材料进一步变形。The main difference between viscoplastic and non-viscoplastic materials is that viscoplastic materials exhibit rate-dependent deformation behavior in the force region of plastic deformation. That is, viscoplastic materials not only permanently deform after the application of force, but continue to undergo creep flow as a function of time under the influence of the applied force. This creep flow further deforms the material.
粘弹性材料viscoelastic material
粘性材料,如甘油、油或水,在施加应力时抵抗剪切流和随时间呈线性变化的应变。在纯粘性流体中,由于分子的重排,变形是不可恢复的。弹性材料在拉伸时会变形,一旦应力消除就会立即恢复到原来的状态。Viscous materials, such as glycerin, oil, or water, resist shear flow and strain that varies linearly with time when stress is applied. In purely viscous fluids, deformations are irreversible due to molecular rearrangements. Elastic materials deform when stretched and return to their original state as soon as the stress is removed.
如果材料具有弹性(可恢复)部分和粘性(不可恢复)部分,则称该材料是粘弹性的。当负载施加到粘弹性材料上时,弹性变形是瞬时的,而粘性部分的变形随时间发生。A material is said to be viscoelastic if it has an elastic (recoverable) part and a sticky (nonrecoverable) part. When a load is applied to a viscoelastic material, the elastic deformation is instantaneous, whereas the deformation of the viscous part occurs over time.
由于粘弹性材料具有弹性(可恢复)特性和粘性(不可恢复)特性,因此据说它会表现出随时间变化的应变,即它会随着时间的推移通过所谓的蠕变变形。粘弹性材料也可能与应变率相关,即它们会根据施加载荷的速度发生不同的变形。Since a viscoelastic material has both elastic (recoverable) and viscous (non-recoverable) properties, it is said to exhibit a time-dependent strain, i.e. it deforms over time through so-called creep. Viscoelastic materials can also be strain rate dependent, meaning that they deform differently depending on how fast a load is applied.
粘弹性材料的例子是聚合物,它们的粘弹性行为可以通过聚合物链分子水平上的缠结和解缠结过程来解释。Examples of viscoelastic materials are polymers whose viscoelastic behavior can be explained by entanglement and disentanglement processes at the molecular level of the polymer chains.
参照上述限定,本发明涉及一种挤压和/或拉挤材料的装置,所述材料不经历任何可恢复,或者只有极小部分,即弹性,从变形状态回弹到变形较小的状态,但仅限于塑性可变形材料。此类材料的示例的非详尽清单是;铝、陶瓷、合金等With reference to the above definition, the present invention relates to a device for extruding and/or pultruding a material which does not undergo any recovery, or which only has a very small part, namely elastic, springs back from a deformed state to a less deformed state, But only for plastically deformable materials. A non-exhaustive list of examples of such materials are; aluminum, ceramics, alloys, etc.
本发明涉及一种用于在生产方向上形成由可塑性变形材料和/或粘塑性材料制成的型材产品的挤压和/或拉挤装置,所述装置包括:The invention relates to an extrusion and/or pultrusion device for forming, in the production direction, profile products made of plastically deformable and/or viscoplastic materials, said device comprising:
一旋转模具,沿一径向方向和一宽度方向延伸,且具有二相对的第一侧壁和第二侧壁以及在所述第一侧壁和第二侧壁之间沿所述宽度方向延伸的一外周表面,其中所述旋转模具包含:一第一侧部,连接所述第一侧壁;一第二侧部,连接所述第二侧壁;以及一中间部分,在所述第一和第二侧部之间延伸;以及A rotary mold extending along a radial direction and a widthwise direction, having two opposing first and second sidewalls and extending along said widthwise direction between said first and second sidewalls wherein the rotary mold comprises: a first side portion connected to the first side wall; a second side portion connected to the second side wall; and an intermediate portion connected to the first side wall extending between the second side; and
一型材限定区,具有与所述生产方向重叠的一纵向、一高度方向及垂直于所述高度方向的一宽度方向;并包含一直通通道,所述直通通道包含一第一通道部分及随后参考所述生产方向在所述第一通道部分下游的一第二通道部分;A profile-defining area having a longitudinal direction overlapping said production direction, a height direction and a width direction perpendicular to said height direction; and comprising a through-channel comprising a first channel portion and subsequent reference a second channel portion downstream of said first channel portion in said production direction;
其中,所述旋转模具可绕横跨所述生产方向延伸的一轴线旋转,并设置成允许所述外周表面当通过所述型材限定区时,在所述旋转模具旋转的同时施加压力到所述材料的一表面上,其中;wherein said rotating die is rotatable about an axis extending transversely to said production direction and is arranged to allow said peripheral surface to apply pressure to said on a surface of the material, wherein;
所述第一通道部分由一个或多个壁周向界定;及said first channel portion is bounded circumferentially by one or more walls; and
所述第二通道部分由以下周向界定:The second channel portion is bounded circumferentially by:
所述旋转模具的所述外周表面,及the peripheral surface of the rotary mold, and
一通道部分,所述通道部分包含,a channel portion, said channel portion comprising,
一反向轴承,与所述旋转模具相对,及a counter bearing, opposite said rotating mold, and
在所述旋转模具和所述反向轴承之间且相对的第一通道部分侧壁和第二通道部分侧壁;opposing first and second channel portion sidewalls between said rotating mold and said counter bearing;
所述第一通道部分配置为将所述材料塑性变形为主型材,所述主型材在取决于材料的预定供给速率下具有最大高度和在第一通道部分中具有第一最大高度的最小截面积;The first channel portion is configured to plastically deform the material into a main profile having a maximum height at a predetermined feed rate dependent on the material and a minimum cross-sectional area having a first maximum height in the first channel portion ;
而且其中所述第二通道部分配置为通过所述旋转模具进一步使材料变形为具有最小高度的最终型材,所述旋转模具配置为当主型材离开所述第一通道部分时在所述主型材上施加增加的压力抵靠所述反向轴承;And wherein said second channel portion is configured to further deform the material into a final profile having a minimum height by said rotating die configured to apply a increased pressure against the counter bearing;
其中所述旋转模具配置在所述旋转模具和所述反向轴承之间的最小距离处,所述最小距离取决于所述旋转模具在所述最小距离的位置处施加的最大允许压力,其中最大允许压力对应于所述主型材和最终型材的高度差,并取决于所述旋转模具的外周表面的图案。Wherein the rotary mold is configured at the minimum distance between the rotary mold and the counter bearing, the minimum distance depends on the maximum allowable pressure exerted by the rotary mold at the position of the minimum distance, wherein the maximum The allowable pressure corresponds to the height difference between the main profile and the final profile and depends on the pattern of the peripheral surface of the rotary mould.
这里的优点是在所述第一通道和第二通道中都控制了最大允许压力,这使得可以根据待处理的材料和处理速度来设计挤压和/或拉挤装置。根据要处理的材料控制最大允许压力可以实现高质量输出的生产率并降低风险,例如由于材料上的应力过高而破裂,并进一步降低了损坏装置的风险。The advantage here is that the maximum allowable pressure is controlled in both said first and second channel, which makes it possible to design the extrusion and/or pultrusion device according to the material to be processed and the processing speed. Controlling the maximum allowable pressure according to the material to be processed enables productivity of high quality output and reduces risks such as rupture due to excessive stress on the material and further reduces the risk of damage to the device.
根据一示例,所述旋转模具包含具有至少一凹痕的图案,其中所述旋转模具配置在所述凹痕的一底部和所述反向轴承之间的一最大距离取决于所述旋转模具在所述最大距离位置施加的最小允许压力,以实现所述凹痕中材料的塑性变形。According to an example, said rotary mold comprises a pattern with at least one indentation, wherein said rotary mold is arranged at a maximum distance between a bottom of said indentation and said counter bearing depending on said rotary mold at The minimum allowable pressure applied at the maximum distance position to achieve plastic deformation of the material in the indentation.
所述旋转模具中的图案在最终型材中产生对应的相反图案,即当旋转模具中的图案包括凹痕时,它在最终型材中产生包括凸起的对应相反图案。The pattern in the rotating mold produces a corresponding opposite pattern in the final profile, ie when the pattern in the rotating mold comprises indentations, it produces a corresponding opposite pattern in the final profile comprising protrusions.
所述旋转模具因此被配置在旋转模具和反向轴承之间的最大距离处,这取决于所述旋转模具在最小距离的位置处施加的最小允许压力,其中最小允许压力对应于主型材和最终型材的高度差,并取决于旋转模具外周表面的图案,以实现凹痕中所需的塑性变形,最小压力取决于待挤压和/或拉挤的材料。The rotary mold is thus configured at the maximum distance between the rotary mold and the counter bearing, depending on the minimum permissible pressure exerted by the rotary mold at the position of the smallest distance, where the minimum permissible pressure corresponds to the main profile and the final The height difference of the profile, and depending on the pattern of the peripheral surface of the rotating die to achieve the required plastic deformation in the indentation, the minimum pressure depends on the material to be extruded and/or pultruded.
应当注意的是,所述旋转模具中的图案可以布置成使得装置同时呈现最小距离和最大距离,如果图案被布置成使得凹痕定位在外周表面中且周围部分位于装置的周围。至少在宽度方向上的外周表面在面对方向轴承时不包括凹痕。作为替代方案,所述图案包括在宽度方向上分布的多个凹痕,它们之间的非凹痕部分同时面向所述反向轴承。在这里,至少在所述旋转模具旋转期间的短时间间隔期间,所述旋转模具由于最小距离而在非凹痕部分中施加最大压力,并且由于最小距离而在凹痕部分中施加最小压力。最大压力和最小压力的设计选择进一步允许根据材料从主型材到最终型材的优化形式变化,使得凹痕中的材料填充凹痕并与最外层之间的材料同时部分变形,在径向方向上,所述旋转模具的压力不超过材料允许的最大压力和/或挤压和/或拉挤装置的设计。还应注意的是,由于凹痕内外之间的初始压力差,一些材料表现出允许容易填充凹痕的特性。当凹痕被填满时,在短时间内实现了关于压差的稳态条件。在这种稳态条件下,材料中的压力是平衡的并且压力差被最小化。对于一些材料,在凹痕面向所述反向轴承并且凹痕被填充的那部分操作期间,凹痕和周围的非凹痕部分中的压力可以相等或基本相等。It should be noted that the pattern in the rotating mold can be arranged such that the device exhibits both a minimum distance and a maximum distance, if the pattern is arranged such that the indentations are located in the peripheral surface and the peripheral portion is located around the periphery of the device. At least the outer peripheral surface in the width direction does not include dimples when facing the directional bearing. Alternatively, said pattern comprises a plurality of dimples distributed in the width direction, with non-dimpled portions between them simultaneously facing said counter bearing. Here, at least during short time intervals during the rotation of the rotary mold, the rotary mold exerts a maximum pressure due to the minimum distance in the non-dimpled part and a minimum pressure due to the minimum distance in the dimpled part. The design choice of maximum and minimum pressure further allows for an optimized form change from the main profile to the final profile according to the material, such that the material in the indentation fills the indentation and partially deforms simultaneously with the material between the outermost layers, in the radial direction , the pressure of the rotating die does not exceed the maximum pressure allowed by the material and/or the design of the extrusion and/or pultrusion device. It should also be noted that some materials exhibit properties that allow easy filling of dents due to the initial pressure difference between the inside and outside of the dent. When the dimples are filled, a steady state condition with respect to the differential pressure is achieved within a short time. In this steady state condition, the pressure in the material is balanced and the pressure difference is minimized. For some materials, the pressure in the dimple and the surrounding non-dimpled portion may be equal or substantially equal during the part of the operation where the dimple is facing the counter bearing and the dimple is filled.
参考但不限于上述限定,相信实现塑性变形需要最小压力。例如,相信铝具有尤其取决于温度的最小压力水平,并且温度越高,需要的压力越小。然而,过高的压力和过高的温度可能导致铝液化,从而失去塑性变形的优点。材料的温度升高至少部分地在第一通道部分中实现,其中最小截面积迫使材料的形状变化,在第一通道部分中在所有方向上对材料施加压力,并且形状变化会增加温度。在第二通道部分,所述旋转模具通过在最小和最大限制范围内施加平衡压力,继续将所述主型材的形状改变为最终型材。如果所述旋转模具包括具有一个或多个凹痕的图案,则最小压力对于以足够压力填充凹痕,以在凹痕内实现塑性变形的方式也是至关重要的。同时,由于所述旋转模具与所述反向轴承之间的距离小于凹痕底部与所述反向轴承之间的距离,因此缺少凹痕的旋转模具部分对所述主型材施加更高的压力。因此,当所述旋转模具包括凹痕,即图案时,最小压力和最大压力都变得特别重要,因此所述旋转模具和所述反向轴承之间的相应最大和最小距离变得特别重要。With reference to, but not limited to, the above definitions, it is believed that a minimum pressure is required to achieve plastic deformation. For example, it is believed that aluminum has a minimum pressure level that depends inter alia on temperature, and that the higher the temperature, the less pressure is required. However, too high a pressure and too high a temperature may cause the aluminum to liquefy, thereby losing the advantage of plastic deformation. The temperature rise of the material is achieved at least partially in the first channel portion where the minimum cross-sectional area forces a shape change of the material in which pressure is exerted on the material in all directions and the shape change increases the temperature. In the second channel section, the rotating die continues to change the shape of the main profile into the final profile by applying balanced pressure within minimum and maximum limits. If the rotating mold comprises a pattern with one or more dimples, minimum pressure is also critical in order to fill the dimples with sufficient pressure in such a way as to achieve plastic deformation within the dimples. At the same time, since the distance between the rotating die and the counter bearing is smaller than the distance between the bottom of the dimple and the counter bearing, the part of the rotating die that lacks dimples exerts a higher pressure on the main profile . Therefore, when the rotating die comprises indentations, ie patterns, both the minimum and the maximum pressure become particularly important, and thus the corresponding maximum and minimum distances between the rotating die and the counter bearing.
为了更容易解释所述装置,所述旋转模具通常使用圆柱坐标系,所述装置的三维空间通常使用正交笛卡尔坐标系。因此,所述旋转模具被描述为具有从一端到另一端的宽度方向与中心线重叠,即,所述旋转模具围绕其旋转的旋转轴线,并且径向方向上的厚度正交于宽度方向。外周表面进一步绕轴线沿垂直于宽度方向的旋转方向延伸。这里,旋转对称是指旋转模具中的物质绕旋转轴对称布置或旋转平衡布置。一般的装置,即例如型材限定区,即第一和第二通道部分,被描述为具有宽度方向、高度方向和纵向方向,其中纵向方向与一般生产方向重叠。所述旋转模具布置成可绕轴旋转,并且轴可以直接或间接地存储在第一和第二通道部分侧壁中并可旋转地联接到第一和第二通道部分侧壁。In order to explain the device more easily, the rotating mold usually uses a cylindrical coordinate system, and the three-dimensional space of the device usually uses an orthogonal Cartesian coordinate system. Thus, the rotary mold is described as having a width direction from one end to the other overlapping the centerline, ie the axis of rotation about which the rotary mold rotates, and a thickness in the radial direction orthogonal to the width direction. The outer peripheral surface further extends around the axis in a rotational direction perpendicular to the width direction. Here, rotational symmetry means that the substances in the rotating mold are arranged symmetrically or rotationally balanced around the axis of rotation. The general arrangement, ie eg the profile-defining area, ie the first and the second channel part, is described as having a width direction, a height direction and a longitudinal direction, wherein the longitudinal direction overlaps with the general production direction. The rotary mold is arranged to be rotatable about an axis, and the axis may be directly or indirectly stored in and rotatably coupled to the first and second channel portion side walls.
参照上述坐标系,应当注意旋转模具的轴线可以布置成垂直于纵向方向,即通常垂直于装置的生产方向,或者可以布置成一定角度。Referring to the above coordinate system, it should be noted that the axis of the rotating mold may be arranged perpendicular to the longitudinal direction, ie generally perpendicular to the production direction of the device, or may be arranged at an angle.
根据一示例,所述旋转模具的轴线基本上垂直于生产方向,外周表面在其宽度方向上延伸穿过生产方向。According to an example, the axis of the rotating mold is substantially perpendicular to the production direction, the peripheral surface extending in its width direction through the production direction.
根据一示例,所述旋转模具的轴线与装置的宽度方向大致重叠,并且旋转模具的宽度方向与装置的宽度方向大致重叠。纵向与生产方向一致,即生产过程中材料行进的主要方向。According to an example, the axis of the rotating mold substantially overlaps the width direction of the device, and the width direction of the rotating mold substantially overlaps the width direction of the device. The longitudinal direction coincides with the production direction, i.e. the main direction in which material travels during production.
根据一示例,所述旋转模具的轴线一般不与装置的宽度方向重叠,但所述旋转模具的轴线和所述旋转模具的宽度方向与纵向成小于或大于900°的角度设置。然而,所述旋转模具的轴布置成使得外表面在其宽度方向上横跨生产方向延伸。According to an example, the axis of the rotary mold generally does not overlap with the width direction of the device, but the axis of the rotary mold and the width direction of the rotary mold are arranged at an angle of less than or greater than 900° to the longitudinal direction. However, the axis of the rotary mold is arranged such that the outer surface extends in its width across the production direction.
参考上述二示例中的任一个,所述旋转模具的轴线的法线通常与装置的高度方向重叠。此处,法线与旋转模具的径向一致。此处,旋转模具的轴线通常垂直于生产方向的法线,而不管旋转模具的轴线是否与装置的宽度方向重叠。然而,根据一示例,所述旋转模具的轴线的法线通常可以布置成与装置的高度方向成一定角度。然而,所述旋转模具的轴线布置成使得外周表面在其宽度方向上横跨生产方向延伸,但与生产方向成一定角度。Referring to either of the above two examples, the normal to the axis of the rotating mold generally overlaps the height direction of the device. Here, the normal coincides with the radial direction of the rotating mold. Here, the axis of the rotary mold is generally perpendicular to the normal to the production direction, regardless of whether the axis of the rotary mold overlaps with the width direction of the device. However, according to an example, the normal to the axis of the rotating mold may generally be arranged at an angle to the height direction of the device. However, the axis of the rotary mold is arranged such that the peripheral surface extends in its width direction across the production direction, but at an angle thereto.
根据一示例,一个或多个壁在第一通道部分的端部限定第一截面,并且其中第二通道部分在外周表面和反向轴承之间的距离最小的位置处限定第二截面。如上所述,第一通道部分的几何形状不同于第二通道部分,使得通过第一通道部分的材料在进入第二通道部分时改变形状。形状的改变对于将压力水平增加或保持到一定程度是必不可少的,以便它能够足够快地克服材料的内部阻力(剪切应力),使材料充满第二截面,包括所述旋转模具。According to an example, the one or more walls define a first section at the end of the first channel portion, and wherein the second channel portion defines a second section at a position where the distance between the peripheral surface and the counter bearing is smallest. As noted above, the geometry of the first channel portion differs from that of the second channel portion such that material passing through the first channel portion changes shape upon entering the second channel portion. The change in shape is necessary to increase or maintain the pressure level to such an extent that it can overcome the material's internal resistance (shear stress) fast enough to fill the second section, including the rotating die, with material.
根据一示例,在第二截面中的外周表面和反向轴承之间在高度方向上的最小距离小于在第一截面中在高度方向上的最大距离。这具有进入第二通道部分的材料将在第二通道部分中被压缩的优点,使得压力增加或保持到这样的水平,即材料将足够快地转变以饱和第二通道部分,包括旋转模具的印记。According to an example, the minimum distance in height direction between the outer peripheral surface and the counter bearing in the second section is smaller than the maximum distance in height direction in the first section. This has the advantage that material entering the second channel section will be compressed in the second channel section such that the pressure is increased or maintained to a level where the material will transition quickly enough to saturate the second channel section, including the imprint of the rotating die .
因此,压力增加或保持到这样的水平,即材料将足够快地转变以浸透第二通道部分,包括旋转模具的印记。所述压力是通过外周表面的图案压印深度和泊松效应的组合和/或由于第一和第二截面之间的几何形状差异和泊松效应引起的形状转变的组合来实现的。Thus, the pressure is increased or maintained to a level where the material will transition quickly enough to saturate the second channel section, including the imprint of the rotating mold. Said pressure is achieved by a combination of the pattern imprint depth of the peripheral surface and the Poisson effect and/or a shape transformation due to the geometrical difference between the first and second sections and the Poisson effect.
根据一示例,第一通道部分的几何形状不同于第二通道部分,使得通过第一通道部分的材料在进入第二通道部分时改变形式,其中主型材具有对应于第一截面的第一截面积几何形状,而且其中最终型材具有由第二截面限定的第二截面几何形状,其中在任何给定的可比位置,第一截面几何形状不同于第二截面几何形状,其中第二通道部分中的最大压力和最小距离取决于主型材的截面积几何形状和最终型材的截面积几何形状的差异。According to an example, the geometry of the first channel part differs from that of the second channel part such that material passing through the first channel part changes form when entering the second channel part, wherein the main profile has a first cross-sectional area corresponding to the first cross-section geometry, and wherein the final profile has a second cross-sectional geometry defined by a second cross-section, wherein at any given comparable position, the first cross-sectional geometry differs from the second cross-sectional geometry, wherein the maximum The pressure and the minimum distance depend on the difference between the cross-sectional geometry of the main profile and the final profile.
这具有第二通道部分可以根据从主型材到最终型材的材料转变水平来优化的优点。This has the advantage that the second channel portion can be optimized according to the level of material transition from the main profile to the final profile.
根据一示例,所述旋转模具配置为在形成型材产品之前根据最大允许压力和/或,在最终型材的形成过程中改变形状,其中,所述反向轴承构造成在成型型材产品之前根据最大允许压力在成型型材产品的成型过程中改变形状。According to an example, the rotating mold is configured to change shape according to a maximum allowable pressure prior to forming the profile product and/or during the formation of the final profile, wherein the counter bearing is configured to Pressure changes shape during the forming process of a formed profile product.
这具有进一步的优点,即所述旋转模具可以配置为由于生产过程中的热量和压力而从启动程序到稳态操作条件改变形状,从而给出最终型材的预测形状。这具有进一步的优点,即反向轴承可以配置为在生产过程中由于热量和压力而改变形状,以类似的方式给出最终型材的预测形状。This has the further advantage that the rotating mold can be configured to change shape from the start-up procedure to steady state operating conditions due to heat and pressure during production, giving a predicted shape of the final profile. This has the further advantage that the counter bearing can be configured to change shape due to heat and pressure during production, in a similar way to give the predicted shape of the final profile.
根据一示例,第一通道部分包括呈顶部预轴承和相对的底部预轴承形式的侧壁。顶部预轴承在高度方向上布置在相对的底部预轴承之上,而且有利地定位在第一通道部分过渡到第二通道部分的位置中或至少在其附近。这里的一个优点是可以优化顶部预轴承和/或底部预轴承以将特定的主型材截面几何形状释放到第二通道部分中。According to an example, the first channel portion comprises side walls in the form of a top pre-bearing and an opposite bottom pre-bearing. The top pre-bearing is arranged above the opposite bottom pre-bearing in height direction and is advantageously positioned in or at least near the point where the first channel part transitions into the second channel part. An advantage here is that the top pre-bearing and/or the bottom pre-bearing can be optimized to release a specific main profile section geometry into the second channel part.
根据一示例,顶部预轴承和/或底部预轴承也可以以与所述旋转模具和/或反向轴承类似的方式配置,以从启动过程到稳态改变形式操作。According to an example, the top pre-bearing and/or the bottom pre-bearing may also be configured in a similar manner to said rotating mold and/or counter-bearing to operate in a changing mode from the start-up process to the steady state.
根据一示例,第二通道部分中的最大压力以及因此的最小距离取决于第一通道部分中的材料的总供给速率、材料的类型以及材料进入第二通道部分时的温度。According to an example, the maximum pressure and thus the minimum distance in the second channel part depends on the total feed rate of the material in the first channel part, the type of material and the temperature at which the material enters the second channel part.
这具有可以根据制造速度和材料优化第二通道部分的优点。This has the advantage that the second channel section can be optimized in terms of manufacturing speed and material.
根据一示例,由所述旋转模具在最小距离的位置处施加的最大允许压力取决于第二通道部分中的材料和反向轴承之间的摩擦力。According to an example, the maximum allowable pressure exerted by said rotating mold at the position of the smallest distance depends on the friction between the material in the second channel part and the counter bearing.
这具有以下优点,最终型材中的图案可以根据由于摩擦而从第二通道部分中的反向轴承施加的剪切应力来优化。This has the advantage that the pattern in the final profile can be optimized according to the shear stress exerted from the counter bearing in the second channel part due to friction.
根据一示例,第二通道部分的截面积被配置成关于最终型材冷却至具有最终高度的型材产品的收缩效应来确定尺寸。According to an example, the cross-sectional area of the second channel portion is configured to be dimensioned with respect to the shrinkage effect of the final profile cooling to the profile product having the final height.
根据一示例,所述旋转模具中的图案被配置成关于最终型材冷却到型材产品的收缩效应来确定尺寸。According to an example, the pattern in said rotating mold is configured to be dimensioned with respect to the effect of shrinkage of the final profile on cooling to the profile product.
根据一示例,所述旋转模具配置有具有至少一个凹痕的图案,其中每个凹痕包括取决于旋转模具的半径的脱模角、最终型材中的预期图案、反向轴承的构造和最终型材的行进速度,以获得预期型材产品。由于材料被压入空腔,凹痕中的释放角相对于在最终型材中产生的相应高度中的释放角布置。由于旋转模具旋转,考虑到旋转和释放角度会影响最终型材中凸起从凹痕中释放时的凸起形状,因此可以将凹痕布置成与型材产品中的形状不同的形状在生产方向上。According to an example, the rotary mold is configured with a pattern of at least one indentation, wherein each indentation comprises a draft angle depending on the radius of the rotary mold, the desired pattern in the final profile, the configuration of the counter bearing and the final profile The travel speed to obtain the expected profile products. As the material is pressed into the cavity, the relief angle in the indentation is arranged relative to the relief angle in the corresponding height produced in the final profile. Since the rotary die rotates, the dimples can be arranged in a shape different from that in the profile product, considering that the rotation and release angles affect the shape of the protrusions in the final profile when they are released from the dimples in the production direction.
这样做的优点是,最终型材中的图案可以根据旋转模具中图案的设计进行优化。The advantage of this is that the pattern in the final profile can be optimized based on the design of the pattern in the rotary mold.
根据一示例,所述装置被配置为在反向轴承和最终型材之间供给摩擦材料和/或被配置为在旋转模具和最终型材之间供给摩擦材料。这里的优点是,摩擦片可用于限定并因此预测第一和/或第二通道部分中的任何一个中的材料之间的摩擦。摩擦材料可以是固体、液体或气体并且可以以任何合适的方式引入到装置中。例如,摩擦材料可以通过经由布置成连接到第一通道部分和/或第二通道部分的单独通道将材料供给到旋转模具和/或反向轴承来引入。摩擦材料可替代地在旋转模具旋转进入第二通道部分之前被引入旋转模具,即摩擦材料与旋转模具一起移动到第二通道部分中的材料。摩擦材料可替代地在进入第一通道部分之前被引入到材料中,即摩擦材料与待挤压和/或拉挤的材料一起行进。如果摩擦材料是固体,可以作为片材或允许摩擦片限定第一和/或第二通道部分中的任何材料之间的摩擦的任何合适形式引入。如果摩擦材料是液体,则可以根据上述示例中的任何一个或组合通过滴加或注入液体来引入,但不限于示例。如果摩擦材料是气体,则可以根据上述示例中的任何一个或组合通过注入气体来引入,但不限于这些示例。According to an example, the device is configured to supply friction material between the counter bearing and the final profile and/or is configured to supply friction material between the rotating mold and the final profile. An advantage here is that the friction sheet can be used to define and thus predict the friction between materials in either of the first and/or second channel parts. The friction material may be solid, liquid or gas and may be introduced into the device in any suitable manner. For example, the friction material may be introduced by feeding the material to the rotating mold and/or the counter bearing via separate channels arranged to connect to the first channel portion and/or the second channel portion. The friction material may alternatively be introduced into the rotating mold before the rotating mold is rotated into the second channel part, ie the friction material is moved into the second channel part together with the material of the rotating mold. The friction material may alternatively be introduced into the material before entering the first channel part, ie the friction material travels together with the material to be extruded and/or pultruded. If the friction material is solid, it may be introduced as a sheet or in any suitable form that allows the friction sheet to define friction between any material in the first and/or second channel portions. If the friction material is a liquid, it may be introduced by dripping or injecting the liquid according to any one or combination of the above examples, but not limited to the examples. If the friction material is a gas, it may be introduced by injecting gas according to any one or combination of the above examples, but is not limited to these examples.
被供给到装置中以形成型材产品的材料可以是一种均质材料的形式,或者是两种或更多种材料混合和/或分层的混合物形式。这些材料可以不同的比例混合,并且可以混合成均匀的混合物或材料内具有梯度的混合物。一种材料可以是固体而另一种材料可以是可塑的,例如石钻头和橡胶。所述材料也可以是包含二层或更多层相同或不同材料的层状材料。所述材料可包括一串或多串固体材料,贯穿整个挤压或拉挤工艺,例如电线或其他加固材料。The material fed into the device to form the profiled product may be in the form of one homogeneous material, or a mixture of two or more materials mixed and/or layered. These materials can be mixed in different proportions and can be mixed into a homogeneous mixture or a mixture with a gradient within the material. One material can be solid and the other malleable, such as stone bits and rubber. The material may also be a layered material comprising two or more layers of the same or different materials. The material may include one or more strings of solid material throughout the extrusion or pultrusion process, such as wire or other reinforcing material.
根据一示例,第一通道部分的宽度至少沿其长度的一部分并且至少沿其高度的一部分小于旋转模具的二个相对侧壁之间的距离。因此,第一通道部分的宽度应至少小于第二通道部分中相对的第一和第二通道部分侧壁之间的距离。第一通道部分和第二通道部分之间的宽度差异取决于第一侧部分和第二侧部分的特征以及旋转模具与相应的相对的第一通道部分侧壁和第二通道部分侧壁之间的公差。第一通道部分的宽度应小于相对的第一和第二通道部分侧壁之间的距离减去公差之和的距离,即,旋转模具侧壁与第二通道部分中相应的相对的第一和第二通道部分侧壁之间的间隙的总和。如果第一侧部和第二侧部包括凸缘部,参见下面的进一步解释,则第一通道部分的宽度至少沿其长度的一部分并且至少沿其高度的一部分小于二个凸缘部分之间的距离。According to an example, the width of the first channel portion is smaller than the distance between two opposite side walls of the rotary mould, at least along a part of its length and at least along a part of its height. Therefore, the width of the first channel portion should be at least smaller than the distance between opposing first and second channel portion side walls in the second channel portion. The width difference between the first channel portion and the second channel portion depends on the characteristics of the first side portion and the second side portion and the distance between the rotating mold and the corresponding opposing first and second channel portion side walls tolerance. The width of the first channel section should be less than the distance between the opposing first and second channel section side walls minus the sum of the tolerances, i.e. the distance between the rotating mold side wall and the corresponding opposing first and second channel sections in the second channel section. The sum of the gaps between the side walls of the second channel section. If the first side portion and the second side portion comprise flange portions, see further explanation below, the width of the first channel portion is smaller than the distance between the two flange portions at least along a part of its length and at least along a part of its height. distance.
这里的优点是,由于第一和第二通道部分的几何差异,实现了与第一和第二外边缘部分相关的局部压力降低。The advantage here is that, due to the geometrical difference of the first and second channel parts, a local pressure reduction is achieved in relation to the first and second outer edge parts.
根据一示例,由于第一通道部分和第二通道部分的几何差异以及第一通道部分下游与第一和/或第二侧部分相关的尾流效应,在第一和/或第二侧部分实现局部压力降低。According to an example, due to the geometrical difference between the first channel part and the second channel part and the wake effect associated with the first and/or second side part downstream of the first channel part, the first and/or second side part achieves Local pressure is reduced.
根据一示例,第一通道部分包括在宽度方向上延伸的第三侧部,其中第三侧部相对于第一侧部布置成使得待挤压材料中的压力在连接到第一侧部时小于在连接到第一侧部时的压力连接到第三侧部分,和/或;According to an example, the first channel portion comprises a third side extending in width direction, wherein the third side is arranged relative to the first side such that the pressure in the material to be extruded is less than when connected to the first side pressure connection to the third side portion when connected to the first side portion, and/or;
其中,第一通道部分包括沿宽度方向延伸的第四侧部,其中,第四侧部相对于第二侧部布置成使得与第二侧部连接的待挤压材料中的压力小于与第四侧部连接的压力。优点是第三和第四侧部分产生尾流效应,因此局部压力在第三和第四侧部分下游降低,这进一步降低旋转模具的第一和第二侧部分中的局部压力。Wherein, the first channel portion comprises a fourth side portion extending in the width direction, wherein the fourth side portion is arranged relative to the second side portion such that the pressure in the material to be extruded connected to the second side portion is lower than that of the fourth side portion. Pressure on side connections. The advantage is that the third and fourth side parts create a wake effect, so the local pressure drops downstream of the third and fourth side parts, which further reduces the local pressure in the first and second side parts of the rotating mould.
根据一示例,第一通道部分包括连接到第三和/或第四侧部的背风装置,所述背风装置布置成在垂直于宽度方向的高度方向上减小第一通道部分的空间。According to an example, the first channel part comprises a leeward means connected to the third and/or fourth side part, said leeward means being arranged to reduce the space of the first channel part in a height direction perpendicular to the width direction.
根据一示例,第一通道部分包括连接到第三和/或第四侧部的背风装置,所述背风装置布置成减小第一通道部分在宽度方向上的空间。所述背风装置的组合也是可能的。According to an example, the first channel part comprises a leeward means connected to the third and/or fourth side part, said leeward means being arranged to reduce the space of the first channel part in the width direction. Combinations of said leeward devices are also possible.
根据一示例,所述背风装置是面向直通通道的高度。凸起可以在第一通道段中自上而下设置,也可以沿着第一通道段的顶部到底部的距离设置为一部分或几部分。背风装置有利地定位成与旋转模具的第一侧部和第二侧部连接。According to an example, the leeward device is facing the height of the through passage. The protrusions can be arranged in the first channel section from top to bottom, or can be arranged in one or more parts along the distance from the top to the bottom of the first channel section. The leeward means are advantageously positioned in connection with the first side and the second side of the rotary mould.
所述背风装置的优点是第三和第四侧部进一步降低了与旋转模具的第一和第二侧部中的凹部和/或凸缘部相关的局部压力,见下文。An advantage of said leeward arrangement is that the third and fourth sides further reduce the local pressures associated with recesses and/or flanges in the first and second sides of the rotating mould, see below.
根据一示例,第二通道部分相对于第一通道部分布置,在旋转模具的圆周表面的径向最外部分和通道部分中的反向轴承之间具有预定的第二距离小于在与径向一致的高度方向上截取的第一通道部分的最远分开部分之间的预定第一距离,和/或其中:According to an example, the second channel part is arranged relative to the first channel part with a predetermined second distance between the radially outermost part of the circumferential surface of the rotating mold and the counter bearing in the channel part less than in the radial direction The predetermined first distance between the furthest separated parts of the first channel part intercepted in the height direction of , and/or wherein:
第二通道部分相对于第一通道部分布置,在宽度方向上通道部分的最内部最窄部分之间具有预定的第四距离大于在第一通道部分的出口区处沿宽度方向截取的第一通道部分中的侧壁之间的预定第三距离。The second channel portion is arranged relative to the first channel portion with a predetermined fourth distance between innermost and narrowest portions of the channel portions in the width direction greater than the first channel taken in the width direction at the exit region of the first channel portion A predetermined third distance between sidewalls in the section.
优点是,由于第二通道部分较宽,较窄的第一通道部分在第一通道部分的下游产生尾流效应,并且连接到旋转模具的第一和第二侧部分。The advantage is that, due to the wider second channel section, the narrower first channel section creates a wake effect downstream of the first channel section and is connected to the first and second side sections of the rotating mould.
根据一示例,外周表面包括纹理部分。整个外周表面可以是纹理化的,但作为替代,可以仅一部分是纹理化的。According to an example, the peripheral surface includes a textured portion. The entire peripheral surface may be textured, but alternatively only a portion may be textured.
根据一示例,外周表面是无纹理的或具有微观图案,该微观图案仅在型材产品上留下人眼可见或不可见的极小印记。According to an example, the peripheral surface is untextured or has a microscopic pattern which leaves only very small marks on the profiled product, visible or invisible to the human eye.
根据一示例,通道部分包括与上述第一旋转模具相对布置的第二旋转模具。第二旋转模具可以代替整个反向轴承,也可以是静态反向轴承的一部分。第二旋转模具可以与上述第一旋转模具类似的方式布置,以在型材产品的两侧形成相同或不同的图案。第二旋转模具可包括凹陷和/或凸缘部分,其可布置成与第一旋转模具的凹陷和/或凸缘部分协作。According to an example, the channel portion comprises a second rotary mold arranged opposite to the above-mentioned first rotary mold. The second rotating die can replace the entire counter bearing, or it can be a part of the static counter bearing. The second rotary die can be arranged in a similar manner to the first rotary die described above to form the same or different patterns on both sides of the profile product. The second rotary mold may comprise recessed and/or flanged portions which may be arranged to cooperate with recessed and/or flanged portions of the first rotary mold.
根据一示例,通道部分包括与第一旋转模具成一定角度布置的第三旋转模具。所述旋转模具完全或部分地替换相对的第一或第二通道部分侧壁。第三旋转模具可以仅与第一旋转模具布置在一起或者与第一和第二旋转模具布置在一起。According to an example, the channel portion comprises a third rotary mold arranged at an angle to the first rotary mold. The rotary mold completely or partially replaces the opposing first or second channel portion sidewall. The third rotary mold may be arranged with only the first rotary mold or with the first and second rotary molds.
根据一示例,通道部分包括与第三旋转模具相对设置的第四旋转模具。第三旋转模具可以仅与第一旋转模具布置在一起或与第一和第二旋转模具布置在一起,第三和/或第四旋转模具可以由与上述第一旋转模具类似的方式布置,以在型材产品的两侧形成相同或不同的图案。第二旋转模具可包括凹陷和/或凸缘部分,其可布置成与第一旋转模具的凹陷和/或凸缘部分协作。According to an example, the channel portion comprises a fourth rotary mold arranged opposite to the third rotary mold. The third rotary mold may be arranged with the first rotary mold only or together with the first and second rotary molds, and the third and/or fourth rotary mold may be arranged in a manner similar to the first rotary mold described above, to Form the same or different patterns on both sides of profile products. The second rotary mold may comprise recessed and/or flanged portions which may be arranged to cooperate with recessed and/or flanged portions of the first rotary mold.
根据一示例,二个或多个旋转模具同步。这具有以相同速度供给材料的优点。然而,也可以使用非同步旋转模具来产生摩擦和/或特殊图案和/或补偿材料差异,或者为了获得曲线型材,它遵循半径而不是旋转模具出口处的直线。According to an example, two or more rotating molds are synchronized. This has the advantage of feeding the material at the same speed. However, it is also possible to use non-synchronized rotating dies to create friction and/or special patterns and/or to compensate for material differences, or to obtain curved profiles which follow a radius instead of a straight line at the exit of the rotating die.
在所有上述示例中,可以使用纹理化和非纹理化旋转模具的组合。In all of the above examples, a combination of textured and non-textured rotary dies can be used.
本发明还涉及一种通过使用根据前述权利要求中任一项所述的装置来生产型材产品的方法,其中所述方法包括:The invention also relates to a method of producing a profile product by using a device according to any one of the preceding claims, wherein said method comprises:
将材料供给到所述第一通道部分,并将其形成为所述第一通道部分中的主型材,feeding material into said first channel part and forming it into a main profile in said first channel part,
将材料进一步供给到所述第二通道部分,并且将其形成为所述第二通道部分中的最终型材。Material is further fed to the second channel part and formed into the final profile in the second channel part.
将所述最终型材转换为所述型材产品。Converting said final profile into said profile product.
根据一示例,最终型材和/或型材产品被拉伸以实现图案中沿生产方向的相同距离,即,以实现图案中沿生产方向的凸起和/或凹陷之间的距离相等。According to an example, the final profile and/or profile product is stretched to achieve the same distance in the pattern in the production direction, ie to achieve an equal distance between the protrusions and/or depressions in the pattern in the production direction.
根据一示例,旋转模具上的图案中凹痕之间的距离小于型材产品上生产方向上对应图案中凹痕之间的距离,其中牵引和拉伸装置被配置为拉伸最终型材和/或型材产品,从而可以通过调整拉伸来实现型材上特征之间距离的高精度。According to an example, the distance between the indentations in the pattern on the rotating mold is smaller than the distance between the indentations in the corresponding pattern on the profile product in the production direction, wherein the traction and stretching means are configured to stretch the final profile and/or the profile product, which allows high precision of the distance between features on the profile by adjusting the stretch.
此外,挤压涉及一种工艺,其中通过压力将材料供给到第一通道部分中以在第一通道部分和第二通道部分中形成。拉挤成型涉及将要形成的材料进料到装置并拉过第一和第二通道部分的位置。应该注意的是,所述装置可以设置为纯粹用于挤压或纯粹用于拉挤或两者的组合。Furthermore, extrusion refers to a process in which material is fed into the first channel portion by pressure to be formed in the first channel portion and the second channel portion. Pultrusion involves where the material to be formed is fed into the device and pulled through first and second channel sections. It should be noted that the device can be configured purely for extrusion or purely for pultrusion or a combination of both.
此外,型材产品是指具有三个维度形式的产品,即长度、宽度和高度。型材产品在宽度和高度平面上截取的截面可能在整个长度上都相似,或者可能因长度位置不同而不同。截面可以具有任何合适的二维形状,例如圆形、椭圆形、椭圆形,即两侧、波浪形、三个或更多个侧面或其组合。一侧或多侧可以被图案化,即具有一种或多种图案的纹理。图案/纹理由旋转模具创建。In addition, profile products refer to products that have three dimensional forms, namely length, width and height. Sections taken in the width and height planes of profiled products may be similar throughout the length, or may vary by location along the length. The cross-section may have any suitable two-dimensional shape, such as circular, elliptical, elliptical, ie two-sided, undulating, three or more sides or combinations thereof. One or more sides may be patterned, ie textured with one or more patterns. The pattern/texture is created by rotating the die.
应当注意的是,本发明可以在权利要求的范围内变化,并且上文和下文描述的示例不应被视为对本发明的限制。It should be noted that the invention may vary within the scope of the claims and that the examples described above and below are not to be seen as limiting the invention.
例如,第一通道部分可以由静态壁沿周向界定或者可以布置有一个或多个动态壁,只要材料可以用根据本发明的装置挤压或拉挤。静态墙的优点是便宜且坚固。For example, the first channel portion may be circumferentially delimited by static walls or may be arranged with one or more dynamic walls, as long as the material can be extruded or pultruded with the device according to the invention. The advantage of static walls is that they are cheap and strong.
根据一示例,第一通道部分可以相对于第二通道居中布置。这具有进入第二通道的材料流均匀分布的优点。第一和第二侧部可以相对于第一通道部分居中布置,具有在旋转模具上具有均匀分布的压力降低的优点。According to an example, the first channel portion may be arranged centrally with respect to the second channel. This has the advantage of an even distribution of the flow of material entering the second channel. The first and second side portions can be arranged centrally with respect to the first channel portion, with the advantage of having an evenly distributed pressure drop over the rotating mould.
例如,所述装置可以包括多个并排布置的旋转装置,即所述旋转装置可以包括二个或更多个具有公共旋转轴的旋转装置。不同的旋转装置可以布置在单独的第二通道中或者可以布置在公共的单独通道中。不同的旋转装置可以具有相同或不同的纹理以在型材产品上产生相同或不同的图案。因此,型材产品可以包括一根或多根沿生产方向延伸并由不同旋转装置产生的内部型材。不同的股线可以在预定的分离线处分离成单独的产品,预定的分离线可以与不同旋转装置的分离重叠。然而,一个单独的旋转模具可以包括分离相似或不同图案的图案/纹理,使得成型产品包括沿着生产方向延伸的一股或多股内部成型。同样在这里,股线在成型产品中可以是可分离的。For example, the device may comprise a plurality of rotating devices arranged side by side, ie the rotating device may comprise two or more rotating devices having a common axis of rotation. The different rotary devices may be arranged in separate second channels or may be arranged in a common separate channel. Different swivels may have the same or different textures to produce the same or different patterns on the profiled product. Thus, the profile product can consist of one or more inner profiles extending in the production direction and produced by different rotating devices. The different strands can be separated into individual products at predetermined separation lines, which can overlap the separation of the different rotary devices. However, a single rotating mold may include patterns/textures that separate similar or different patterns such that the shaped product includes one or more strands of inner molding extending along the production direction. Here too, the strands can be separable in the shaped product.
根据一示例,旋转模具和/或反向轴承包括冷却装置,其在形成最终型材时冷却材料。这具有为型材产品的最佳材料特性实现材料的预定温度的优点。对于某些材料,挤压和/或拉挤时的材料温度对于型材产品的质量至关重要。由于材料与旋转模具和/或反向轴承之间的摩擦特性,温度也很重要。冷却装置例如可以布置成冷却回路的形式,其中气体或液体流体导体布置在旋转模具和/或反向轴承内;和/或冷却旋转模具和/或反向轴承的外部装置;和/或添加到旋转模具和/或反向轴承的液体或气态流体;或此类装置或任何其他合适的冷却装置的组合。According to an example, the rotating mold and/or the counter bearing comprise cooling means which cool the material while forming the final profile. This has the advantage of achieving a predetermined temperature of the material for optimum material properties of the profile product. For some materials, the temperature of the material during extrusion and/or pultrusion is critical to the quality of the profile product. Temperature is also important due to the frictional properties of the material with the rotating die and/or counter bearings. The cooling device can be arranged, for example, in the form of a cooling circuit, wherein a gaseous or liquid fluid conductor is arranged inside the rotating mold and/or the counter bearing; and/or an external device for cooling the rotating mold and/or the counter bearing; and/or added to the A liquid or gaseous fluid rotating the mold and/or counter bearings; or a combination of such devices or any other suitable cooling device.
根据一示例,旋转模具被配置为在表面上被冷却,使得旋转模具表面的温度低于挤压材料的预定允许温度。According to an example, the rotating die is configured to be cooled on the surface such that the temperature of the rotating die surface is lower than a predetermined allowable temperature of the extruded material.
根据一示例,旋转模具在表面上被冷却,使得旋转模具表面的温度比材料的玻璃化转变温度或熔化温度低至少10摄氏度。According to an example, the rotating mold is cooled on the surface such that the temperature of the surface of the rotating mold is at least 10 degrees Celsius lower than the glass transition temperature or melting temperature of the material.
根据一示例,旋转模具在表面上被冷却,使得旋转模具表面的温度比材料的玻璃化转变温度或熔化温度低至少50摄氏度,从而能够实现更高的挤压速度。According to an example, the rotating die is cooled on the surface such that the temperature of the rotating die surface is at least 50 degrees Celsius below the glass transition or melting temperature of the material, enabling higher extrusion speeds.
所述装置可进一步布置用于与连接到第一通道部分的一个或多个入口通道共挤压和/或共挤压。因此,一种或多种材料可以经由一个通道被供给到第一通道部分,但是两种或更多种材料可以经由一个入口通道或多个通道入口被供给到第一通道部分。多个入口通道的数量可以与材料的数量相同,或者如果二种或更多种材料经由一个入口通道供给,则多个入口通道的数量可以少于材料的数量。The device may further be arranged for co-extrusion and/or co-extrusion with one or more inlet channels connected to the first channel part. Thus, one or more materials may be fed to the first channel part via one channel, but two or more materials may be fed to the first channel part via one inlet channel or channel inlets. The number of inlet channels may be the same as the number of materials, or the number of inlet channels may be less than the number of materials if two or more materials are fed via one inlet channel.
可以通过一个入口通道或多个通道入口将二种或更多种材料进料到第一通道部分和/或第二通道部分。多个入口通道的数量可以与材料的数量相同或更多,或者如果二种或更多种材料经由一个入口通道供给,则多个入口通道的数量可以少于材料的数量。Two or more materials may be fed to the first channel section and/or the second channel section through an inlet channel or channel inlets. The number of inlet channels may be the same or greater than the number of materials, or the number of inlet channels may be less than the number of materials if two or more materials are fed via one inlet channel.
本发明还涉及一种共挤压装置和/或挤压装置,其包括根据上述内容的挤压和/或拉挤装置。共挤压装置和/或挤压装置包括至少二个直接或间接连接到第二通道部分的入口通道,其中,所述至少二个入口通道中的每一个被配置成在第二通道部分上游预定距离处供给一种或多种材料,或者连接到至少二个入口通道的接合点,连接到第一通道部分过渡到第二通道部分的地方。The invention also relates to a coextrusion and/or extrusion device comprising an extrusion and/or pultrusion device according to the above. The coextrusion device and/or the extrusion device comprises at least two inlet channels directly or indirectly connected to the second channel part, wherein each of the at least two inlet channels is configured to be predetermined upstream of the second channel part The distance supplies one or more materials, or is connected to the junction of at least two inlet channels, to where the first channel portion transitions to the second channel portion.
一优点是共挤压和/或上挤压允许制造分层型材产品和/或具有不同材料的型材产品和/或具有嵌入周围材料中的芯的型材产品,例如,电线、齿形带等。An advantage is that co-extrusion and/or up-extrusion allow the manufacture of layered profile products and/or profile products with different materials and/or profile products with a core embedded in surrounding material, eg wires, toothed belts etc.
根据一示例,根据以上示例中的任一个的装置包括牵引和拉伸装置设置在第二通道部分的下游,并且被配置为在离开第二通道部分时沿生产方向牵引材料以将最终型材转变为型材产品。According to an example, the device according to any of the above examples comprises a pulling and stretching device arranged downstream of the second channel part and configured to draw the material in the production direction on leaving the second channel part to transform the final profile into Profile products.
根据一例子,旋转模具上图案中凹痕之间的距离小于型材产品生产方向上相应图案中凸起之间的距离,其中,牵引和拉伸装置用于对最终型材和/或型材产品进行拉伸,从而通过调整拉伸实现型材特征间距的高精度。旋转模具中凹痕之间的距离取自旋转方向,即沿旋转方向的外周表面。According to an example, the distance between the indentations in the pattern on the rotating die is smaller than the distance between the protrusions in the corresponding pattern in the production direction of the profile product, wherein the pulling and stretching means are used to pull the final profile and/or profile product Stretch, so that high precision of profile feature spacing can be achieved by adjusting the stretch. The distance between the dents in the rotating die is taken from the direction of rotation, that is, the outer peripheral surface along the direction of rotation.
一优点是牵引和拉伸装置可以在最终型材过渡到型材产品期间动态地拉伸材料,例如为了在型材产品的生产方向上获得等距图案。牵引和拉伸装置还可用于在最终产品从最终产品到型材产品的过渡过程中在宽度和/或高度方向上引导最终产品以控制弯曲。An advantage is that the pulling and stretching device can dynamically stretch the material during the transition from the final profile to the profile product, for example in order to obtain an equidistant pattern in the production direction of the profile product. Pulling and stretching devices can also be used to guide the end product in width and/or height direction to control bending during the transition of the end product from end product to profile product.
牵引和拉伸装置可以是任何类型的装置,其包括用于夹持材料的装置和用于牵引的装置。根据一示例,牵引和拉伸装置包括用于控制施加到材料上的牵引力的控制装置。控制装置可以包括一个或多个传感器和/或可以连接到一个或多个传感器,该传感器在从最终型材到型材产品的转变期间监督最终型材和/或材料的状态。传感器包括用于向控制装置发送模拟和/或数字信息的装置。所述信息涉及材料的状态,并且控制装置被配置为处理该信息以控制牵引和拉伸装置。The pulling and stretching means may be any type of means including means for gripping material and means for pulling. According to an example, the pulling and stretching device comprises control means for controlling the pulling force applied to the material. The control means may comprise and/or may be connected to one or more sensors which monitor the status of the final profile and/or material during the transition from the final profile to the profile product. The sensors include means for sending analog and/or digital information to the control means. Said information relates to the state of the material, and the control means are configured to process this information to control the pulling and stretching means.
这使得型材的三维纵向特征之间的距离具有良好的精度,例如小齿轮齿条中的齿,使得拉伸型材成为可能,从而使小齿轮齿条或齿形带中的齿之间的高等距精度成为可能。This allows good precision in the distances between three-dimensional longitudinal features of the profile, such as the teeth in a pinion rack, and makes it possible to stretch the profile to allow high equidistance between teeth in a pinion rack or toothed belt precision is possible.
这也使得设计旋转模具成为可能,从而导致在拉伸之前故意使三维特征之间的距离稍短的型材产品,并为拉伸/拉动校准提供空间。This also makes it possible to design rotary dies, resulting in profile products with intentionally slightly shorter distances between 3D features prior to stretching, and to provide room for stretching/pull calibration.
附图说明Description of drawings
下面将结合一些附图描述本发明,其中:The present invention will be described below in conjunction with some accompanying drawings, wherein:
图1示意性地示出了根据本发明的一示例的装置沿图2中的截面A-A从下方观察的剖视图。Fig. 1 schematically shows a cross-sectional view of a device according to an example of the present invention viewed from below along section A-A in Fig. 2 .
图2示意性地示出了根据本发明的装置的截面立体侧视图。Figure 2 schematically shows a cross-sectional perspective side view of the device according to the invention.
图2A示意性地显示了与图2类似的视图,但包括处理过的材料。Figure 2A schematically shows a view similar to Figure 2, but including treated material.
图2B示意性地示出了根据一示例的沿图1中的截面B-B的侧视图。Fig. 2B schematically shows a side view along section B-B in Fig. 1 according to an example.
图2C示意性地示出了根据一示例的沿图1中的截面B-B的侧视图。Fig. 2C schematically shows a side view along section B-B in Fig. 1 according to an example.
图2D示意性地示出了根据一示例的沿图1中的截面B-B的侧视图。Fig. 2D schematically shows a side view along section B-B in Fig. 1 according to an example.
图3A示意性地示出了根据一示例的旋转模具的前视图。Fig. 3A schematically shows a front view of a rotary mold according to an example.
图3B示意性地示出了根据一示例的旋转模具的立体图。Fig. 3B schematically illustrates a perspective view of a rotary mold according to an example.
图4示意性地示出了旋转模具的增强部分和图2B-2D中任一个中的最终型材。Figure 4 schematically shows the reinforced portion of the rotary mold and the final profile in any of Figures 2B-2D.
图4A示意性地示出了图4中最终型材的增强部分。FIG. 4A schematically shows a reinforced portion of the final profile in FIG. 4 .
图4B示意性地示出了图4中旋转模具的增强部分。FIG. 4B schematically shows the reinforced part of the rotary mold in FIG. 4 .
图5示意性地示出了根据本发明的一示例的装置的截面侧视图。Fig. 5 schematically shows a cross-sectional side view of a device according to an example of the present invention.
图6示意性地示出了根据本发明的一示例的装置的立体后视图和出口。Fig. 6 schematically shows a perspective rear view and an outlet of a device according to an example of the present invention.
图7示意性地示出了根据一示例在图5的第一截面中截取的主型材的截面和在图5的第二截面中截取的最终型材的截面。Fig. 7 schematically shows a section of the main profile taken in the first section of Fig. 5 and a section of the final profile taken in the second section of Fig. 5 according to an example.
图8示意性地示出了当旋转模具已经压印了当旋转模具没有在最终型材中压印图案时,最终型材中的图案和图5的第二截面中截取的最终型材的第二截面。Figure 8 schematically shows the pattern in the final profile and the second section of the final profile taken in the second section of Figure 5 when the rotary mold has imprinted and when the rotary mold has not imprinted the pattern in the final profile.
图9示意性地示出了包括三个旋转模具的旋转模具组件的后视图和出口。Figure 9 schematically shows a rear view and exit of a rotary die assembly comprising three rotary dies.
图10示意性地显示了根据图9的元件的立体图。FIG. 10 schematically shows a perspective view of the element according to FIG. 9 .
图11示意性地示出了包括四个旋转模具的旋转模具组件的后视图和出口。Figure 11 schematically shows a rear view and exit of a rotary die assembly comprising four rotary dies.
图12示意性地示出了根据图11的组件的立体图。FIG. 12 schematically shows a perspective view of the assembly according to FIG. 11 .
图13-18示意性地显示了包括根据图1-12中任一的装置的共挤压装置和/或挤压装置。Figures 13-18 schematically show a coextrusion device and/or an extrusion device comprising a device according to any of Figures 1-12.
图13示意性地显示了根据一示例的共挤压装置和/或挤压装置的截面侧视图。Fig. 13 schematically shows a cross-sectional side view of a coextrusion device and/or extrusion device according to an example.
图14示意性地显示了根据一示例的共挤压装置和/或挤压装置的立体图。Fig. 14 schematically shows a perspective view of a coextrusion device and/or extrusion device according to an example.
图15示意性地显示了根据一示例的共挤压装置和/或挤压装置的截面侧视图。Fig. 15 schematically shows a cross-sectional side view of a coextrusion device and/or extrusion device according to an example.
图16示意性地显示了根据一示例的共挤压装置和/或挤压装置的截面侧视图,其中该装置包括二个相对的旋转模具。Figure 16 schematically shows a cross-sectional side view of a coextrusion and/or extrusion device comprising two opposing rotating dies according to an example.
图17示意性地显示了根据包括一个旋转模具的一示例的共挤压装置和/或挤压装置的截面侧视图。Figure 17 schematically shows a cross-sectional side view of a coextrusion device and/or extrusion device according to an example comprising a rotating die.
图18示意性地显示了其中第一入口通道输送线等形式的连续固体材料以及在第一和第二通道部分中被挤压或拉挤的材料的示例。Figure 18 schematically shows an example where the first inlet channel conveys a continuous solid material in the form of a line or the like and the material is extruded or pultruded in the first and second channel sections.
图19示意性地示出了使用根据结合图1-18所描述的装置生产型材产品的方法的流程图。Fig. 19 schematically shows a flow chart of a method for producing a profile product using the apparatus according to that described in connection with Figs. 1-18.
具体实施方式Detailed ways
下面将结合多个附图描述本发明。在所有附图中相同的特征将用相同的数字表示。The invention will be described below with reference to a number of figures. Like features will be represented by like numerals throughout the drawings.
此处,带入口的前视图和带出口的后视图用作读者在生产方向方面的方向,其中待加工的材料被插入入口,型材产品在装置内成型后经出口离开装置。Here, the front view with the inlet and the rear view with the outlet serve as an orientation for the reader in terms of the production direction, where the material to be processed is inserted into the inlet and the profiled product exits the device through the outlet after being formed in the device.
在一些图中,生产方向用指向生产方向的箭头表示为PD。In some figures, the production direction is indicated as PD with an arrow pointing in the production direction.
图1示意性地显示了根据本发明的一示例的装置沿图2中的截面A-A,即在高度方向Z的下方的视图,而且图2示意性地显示了图1中的装置的截面立体图。图1和图2显示了用于在型材产品2的生产方向Y上挤压或拉挤成型的挤压或拉挤成型装置1、1a,参见图2A-2D和图4、4A、4B、7和8,由可塑性变形材料和/或粘塑性材料制成。Fig. 1 schematically shows a view of a device according to an example of the present invention along section A-A in Fig. 2, ie below the height direction Z, and Fig. 2 schematically shows a cross-sectional perspective view of the device in Fig. 1 . Figures 1 and 2 show an extrusion or
所述装置包括:The devices include:
旋转模具3,沿径向R方向和宽度方向X延伸,具有二个相对的第一和第二侧壁5、6以及在它们之间的沿宽度方向X延伸的外周表面4,其中旋转模具3包括连接到第一侧壁5的第一侧部23和连接到第二侧壁6的第二侧部25以及在第一和第二侧部23、25之间延伸的中间部分22;及A
具有与生产方向Y重叠的纵向Y、高度方向Z和垂直于高度方向Z的宽度方向X的型材限定区7,包括直通通道8,其包括第一通道部分9,随后是参考生产方向在第一通道部分9下游的第二通道部分10,其中所述旋转模具3可围绕延伸穿过生产方向Y的轴线旋转,并且布置成允许外周表面4在旋转模具3旋转的同时在材料通过型材限定区7供给时,将压力施加到材料的表面上,其中;A profile-defining
第一通道部分9由一个或多个壁11沿周向界定,The
其中,in,
第二通道部分10在沿周向界定为:The
旋转模具3的外周表面4,及rotating the outer
通道部分13包含,
如图2所示的反向轴承14,与旋转模具3相对,并且The counter bearing 14 shown in Figure 2 is opposite to the
在旋转模具3和反向轴承14之间的相对的第一和第二通道部分侧壁15、16。Opposite first and second channel
根据一示例性实施例,图1、2、2A-2D示意性地显示了第一通道部分9被配置为将材料变形为主型材36,其具有取决于材料的预定进给速率的最大高度H1和第一通道部分9中具有第一最大高度D1的最小截面积。当主型材36离开第一通道部分9时,第二通道部分10被配置为通过旋转模具3将材料进一步变形为具有最小高度H2的最终型材37,旋转模具3被配置为在主型材36上施加增加的压力抵靠反向轴承14。其中旋转模具3被配置为旋转模具3和反向轴承14之间的最小距离D2取决于旋转模具3在该最小距离D2的位置处施加的最大允许压力,其中最大允许压力对应于主型材36和最终型材37的最大高度差,并且取决于旋转模具3的外周表面4中的图案38。According to an exemplary embodiment, Figures 1, 2, 2A-2D schematically show that the
这里的优点是最大负载在第一和第二通道部分中都受到控制,这使得有可能根据待处理的材料和处理速度来设计挤压和/或拉挤装置。根据要处理的材料控制最大负载可以实现高质量输出的生产率并降低风险,例如由于材料承受的应力过大而破裂。The advantage here is that the maximum load is controlled in both the first and the second channel section, which makes it possible to design the extrusion and/or pultrusion device according to the material to be processed and the processing speed. Controlling the maximum load according to the material to be processed enables productivity of high-quality output and reduces risks, such as cracking due to excessive stress on the material.
图2A示意性地显示了与图2类似的视图,并且材料在第一通道部分9中形成为主型材36,然后直接在第二通道部分10中形成最终型材37。图2A还显示,由于在第二通道部分10中主型材36上的进一步压力,最终型材37具有小于主型材36的高度H2的高度H1。图2A还显示,由于从最终型材37冷却到产品型材2时收缩,产品型材2的高度H3小于最终型材36的高度H1。在图2A中,旋转模具没有如图2B-2D所示的凹痕38。将图2B-2D与图2A进行比较,可以看出图2A中的旋转模具3,如图2B所示,正在旋转,使得旋转模具3的将材料压靠在反向轴承14上的部分没有凹痕38,并且因此对材料施加最大压力。FIG. 2A schematically shows a view similar to FIG. 2 and the material is formed into the
图2B示意性地示出了沿图1中B-B截面的侧视图并且类似于图2A,但是转动装置转动,使得转动模具3压靠材料抵靠反向轴承14的部分不包括凹痕38。图2C和2D显示了与图2B类似的装置1、1a,但是旋转模具3旋转使得具有底部44的凹痕38面向所述反向轴承14。FIG. 2B schematically shows a side view along section B-B in FIG. 1 and is similar to FIG. 2A , but the turning device is turned so that the part of the turning
图2B示意性地示出了初始区A,其中材料被装置(未示出)压入第一通道部分9,或者通过装置(未示出)在生产方向上施加外部压力,即挤压,和/或通过在生产方向PD上拖动材料的装置(未示出)将材料拖动通过第一通道9,即拉挤成型。装置的区A包括漏斗形开口43,其中材料从具有比第一通道部分9更大的截面的初始形状改变形状。然而,开口的形状可以根据材料、温度和挤压材料的装置而变化。Figure 2B schematically shows an initial zone A, in which the material is pressed into the
图2B示意性地示出了紧接在区A之后布置的区B,其中区B对应于第一通道部分9,其中主型材36的形成是由于当材料移动通过第一通道部分9时从第一通道部分9中的侧壁11施加在材料上的压力导致材料改变形状。Figure 2B schematically shows a zone B arranged immediately after zone A, wherein zone B corresponds to the
图2B示意性地示出了紧接在区B之后布置的区C,其中区C对应于第二通道部分10,其中最终型材36的形成是由于当材料移动通过第二通道部分9时至少从第二通道部分10中的旋转模具3和相对的反向轴承14施加在材料上的压力而导致材料改变形状。Figure 2B schematically shows a zone C arranged immediately after zone B, wherein zone C corresponds to the
图2B示意性地显示了直接布置在区C之后的区D,其中区D对应于第二通道部分10之后的生产线部分并且材料开始冷却并且最终型材36由于温度下降而收缩而开始改变形状。在区D中,最终型材37可以采用各种生产措施以获得所需的材料特性。例如,冷却、加热、拉伸、压缩等,以将最终的型材37变成具有所需材料特性的型材产品2。Figure 2B shows schematically a zone D arranged directly after zone C, where zone D corresponds to the part of the production line after the
D区的长度取决于材料特性和D区材料周围的工作环境。材料特性例如散热量和待冷却材料的质量。如较薄的材料比较厚的材料冷却得更快。工作环境是指例如环境温度和湿度。如与凉爽的环境相比,温暖的环境会减慢冷却过程。The length of the D zone depends on the material properties and the working environment around the D zone material. Material properties such as heat dissipation and mass of the material to be cooled. For example, thinner material cools faster than thicker material. The working environment refers to, for example, ambient temperature and humidity. For example, a warm environment slows down the cooling process compared to a cool environment.
图2B示意性地示出了布置在区D之后的区E,其中区E对应于生产线的一部分,其中材料已经冷却到预定温度,该预定温度表示建立产品型材的最终形状的温度并且其中没有或无穷小形式的变化将继续。图2B显示型材产品在区E中的高度H3小于最终型材37的高度H2。以相同的方式,由于冷却,最终型材37的图案39已收缩为区E中的图案40。Figure 2B schematically shows a zone E arranged after zone D, wherein zone E corresponds to a part of the production line in which the material has been cooled to a predetermined temperature representing the temperature at which the final shape of the product profile is established and in which there is no or Variations in infinitesimal forms will continue. FIG. 2B shows that the height H3 of the profile product in zone E is smaller than the height H2 of the
图2B示出了一示例,其中根据以上任何示例的装置1、1a包括牵引和拉伸装置54布置在第二通道部分10的下游并且配置为在离开第二通道部分10时沿生产方向PD牵引材料以将最终型材37转变为型材产品2。FIG. 2B shows an example in which a
一优点是牵引和拉伸装置可以在最终型材过渡到型材产品期间动态地拉伸材料,例如为了在型材产品的生产方向上获得等距图案。牵引和拉伸装置还可用于在最终产品从最终产品过渡到型材产品期间在宽度和/或高度方向上引导最终产品以控制弯曲。An advantage is that the pulling and stretching device can dynamically stretch the material during the transition from the final profile to the profile product, for example in order to obtain an equidistant pattern in the production direction of the profile product. Pulling and stretching devices can also be used to guide the end product in width and/or height direction to control bowing during the transition of the end product from end product to profile product.
根据一示例,旋转模具3上的图案38中的凹痕38之间的距离小于型材产品2上沿生产方向的对应图案38中的凸起40之间的距离,其中,牵引及拉伸装置54用于拉伸最终型材37和/或型材产品2,从而通过调整拉伸实现型材特征间距的高精度。According to an example, the distance between the
牵引和拉伸装置可以是任何类型的装置,其包括用于夹持材料的装置和用于牵拉的装置。根据一示例,牵引和拉伸装置包括用于控制施加到材料上的拉力的控制装置55。控制装置55可以包括一个或多个传感器和/或可以连接到一个或多个传感器56,所述传感器56在其从最终型材到型材产品的转变期间监督最终型材和/或材料的状态。传感器包括用于向控制装置发送模拟和/或数字信息的装置。所述信息涉及材料的状态,并且控制装置被配置为处理该信息以控制牵引和拉伸装置。在图2B中,旋转模具3和/或反向轴承14包括冷却装置57,其在形成最终型材37时冷却材料。这具有为型材产品的最佳材料特性实现材料的预定温度的优点。对于某些材料,挤压和/或拉挤时的材料温度对于型材产品的质量至关重要。由于材料与旋转模具和/或反向轴承之间的摩擦特性,温度也很重要。冷却装置例如可以布置成冷却回路的形式,其中气体或液体流体导体布置在旋转模具和/或反向轴承内;和/或冷却旋转模具和/或反向轴承的外部装置;和/或添加到旋转模具和/或反向轴承的液体或气态流体;或此类装置或任何其他合适的冷却装置的组合。应当注意的是,旋转模具3可以配置为在没有图2B中的冷却装置57的情况下运行,例如所示的图2C-2D。The pulling and stretching device may be any type of device including devices for gripping material and devices for pulling. According to an example, the pulling and stretching device comprises control means 55 for controlling the tension applied to the material. The control means 55 may comprise one or more sensors and/or may be connected to one or
根据一示例,旋转模具3配置为在表面上被冷却,使得旋转模具表面的温度低于挤压材料的预定允许温度。According to an example, the
根据一示例,旋转模具在表面上被冷却,使得旋转模具表面的温度比材料的玻璃化转变温度或熔化温度低至少10摄氏度。According to an example, the rotating mold is cooled on the surface such that the temperature of the surface of the rotating mold is at least 10 degrees Celsius lower than the glass transition temperature or melting temperature of the material.
根据一示例,旋转模具在表面上被冷却,使得旋转模具表面的温度比材料的玻璃化转变温度或熔化温度低至少50摄氏度,从而能够实现更高的挤压速度。According to an example, the rotating die is cooled on the surface such that the temperature of the rotating die surface is at least 50 degrees Celsius below the glass transition or melting temperature of the material, enabling higher extrusion speeds.
图2B-2D示意性地示出旋转模具3包括图案38,所述图案38包括在外周表面4中的至少一个凹痕38。在图2B-2D中,图案38包括4个凹痕,但凹痕的数量在这里只是一个说明性的例子,并且在预定设计中在旋转模具上展开的图案中可以有更多或更少的凹痕,这取决于所需的型材产品2的特征。凹痕可以具有任何合适的形状,例如椭圆形、圆形、多边形或这些形状或其他形状的混合。凹痕38在凹痕的最大深度处具有底部44并且凹痕可具有不同或相似的深度。在凹痕38之间,旋转模具包括当面对反向轴承14时旋转模具3和反向轴承14之间具有最小距离D2的部分。当面对所述反向轴承时,底部44和反向轴承14之间具有最大距离的凹痕38在旋转模具3和反向轴承14之间形成最大距离D22,参见图2C和2D。2B-2D schematically show that the
根据一示例,在第二截面17中外周表面4与反向轴承14之间在高度方向Z上的最小距离D2小于在第一截面12中在高度方向上的最大距离D1。According to an example, the minimum distance D2 in the height direction Z between the
图2C和2D示意性地示出了与图2B相同的侧视图,具有如上所述的区,但是旋转模具3旋转使得一个缺口38面向所述反向轴承14。FIGS. 2C and 2D schematically show the same side view as FIG. 2B , with the zones as described above, but with the
图2C和2D示意性地示出旋转模具3配置在凹痕38的底部44和反向轴承14之间的最大距离D22处,取决于旋转模具在最大距离D22的位置施加的最小允许压力,以实现凹痕38中材料的塑性变形。2C and 2D schematically show that the
图2B-2D示意性地显示,旋转模具3中的模型38被配置成关于冷却到型材产品2的最终型材37的收缩效应来确定尺寸。FIGS. 2B-2D show schematically that the
需要注意的是,旋转模具3中的图案38可以布置成如果布置图案38,则装置1、1a同时呈现最小距离D2和最大距离D22,使得凹痕位于外周表面4中,外周表面4的周围部分,至少在宽度方向X上,在面对反向轴承14时不包括凹痕。作为替代方案,图案38包括在宽度方向X上散布的多个凹痕38,它们之间的非凹痕部分同时面向所述反向轴承14。这里,旋转模具3在至少短的时间间隔期间在非凹痕部分中由于最小距离D2而施加最大压力并且在凹痕部分由于最小距离D22而施加最小压力。最大压力和最小压力的设计选择进一步允许根据材料从主型材到最终型材的优化形式变化,使得凹痕中的材料填充凹痕并变形,同时旋转模具的最外部之间的材料在径向方向上不超过材料和/或设计允许挤压和/或拉挤装置的最大压力。还应注意的是,由于凹痕内外之间的初始压力差,一些材料表现出允许容易填充凹痕的特性。当凹痕被填满时,在短时间内实现了关于压差的稳态条件。在这种稳态条件下,材料中的压力是平衡的并且压力差被最小化。对于一些材料,在凹痕面向反向轴承并且凹痕被填充的那部分操作期间,凹痕和周围的非凹痕部分中的压力可以相等或基本相等。It should be noted that the
还应该注意的是,旋转模具在凹痕38之间的圆周距离可以不同于成品型材产品中给出的圆周距离,如果它围绕旋转模具卷起,允许补偿和调整特征之间的距离,例如通过在挤压后拉伸最终型材来获得成品型材产品的高精度。It should also be noted that the circumferential distance between the
图2C示意性地示出了第一通道部分9中的壁11的顶部41,以下也称为预轴承41,布置有当凹痕38朝向反向轴承14时,在Z方向上的高度水平高于凹痕38的底部44的最大高度水平。图2D示意性地示出当凹痕38朝向反向轴承14时,第一通道部分9中的壁11的顶部41被布置在Z方向上低于凹痕38的底部44的最大高度水平的高度水平。顶部41的高度水平可以根据材料和旋转模具3中的图案38以及材料如何改变形状以通过塑性变形填充凹痕38而变化。FIG. 2C schematically shows that the top 41 of the
图2A、2B、2C、及至2D示意性地示出第一通道部分9包括形式为顶部预轴承41和相对的底部预轴承42的侧壁11。顶部预轴承41布置在相对的底部预轴承之上42在高度方向Z。2A , 2B, 2C and to 2D schematically show that the
根据一示例,第二通道部分10的截面积A1被配置成关于最终型材37冷却至具有最终高度H3的型材产品2的收缩效应来确定尺寸。According to an example, the cross-sectional area A1 of the
根据一示例性实施例,图1示意性地示出第一通道部分9的宽度D3至少沿其长度的一部分并且至少沿其高度的一部分小于二个相对侧之间的距离D4旋转模具3的壁5、6。因此,第一通道部分9的宽度应至少小于第二通道部分10中相对的第一和第二通道部分侧壁15、16之间的距离。第一通道部分9和第二通道部分10之间的宽度差异取决于第一和第二侧部分23、25的特征以及旋转模具3与相应的相对的第一和第二通道部分侧壁15、16之间的差。第一通道部分9的宽度D3应该小于距离D4,距离D4是相对的第一和第二通道部分侧壁15、16之间的距离减去公差之和,即,旋转模具侧壁5、6与第二通道部分10中相应的相对的第一和第二通道部分侧壁15、16之间的间隙的总和。如果第一侧部和第二侧部包括凸缘部18、19,参见下面的进一步解释,则第一通道部分9的宽度D3至少沿其长度的一部分并且至少沿其高度的一部分为小于二个凸缘部分18、19之间的距离D4。According to an exemplary embodiment, FIG. 1 schematically shows that the width D3 of the
一优点是,由于第一和第二通道部分9、10的几何差异,实现了与第一和第二外边缘部分5、6相关的局部压力降低。局部减压降低了材料的流速,这消除了第一侧壁5与第一和第一通道部分侧壁15之间;第二侧壁6与第二通道部侧壁16之间的泄漏问题。这将在下面进一步解释,并结合其他漏电保护策略进行解释。图1显示了一额外的示例,图5显示了另一个漏电保护策略示例。可以组合不同的示例,这将在下面进一步解释。An advantage is that, due to the geometrical difference of the first and
应当注意的是,旋转模具3可以是圆柱形或非圆柱形,并且取决于型材产品的所需型材而定有纹理或无纹理。It should be noted that the
根据图3A和3B所示的一示例,在形成型材产品2之前,旋转模具3可以配置成在最终型材37的形成过程中根据最大允许压力改变形状。在图3A和3B中,旋转模具3的圆周表面4的至少中间部分22是凸形的,以便允许至少由于稳态生产期间的力和温度而弯曲,使得预测的图案39可以在稳态操作期间在最终配置文件37中实现。此处,稳态操作是指启动程序后的稳定操作条件。According to an example shown in FIGS. 3A and 3B , prior to forming the
根据一示例(未示出),反向轴承14构造成在成型型材2之前根据最大允许压力在成型型材2期间改变形状。根据一示例(未示出),顶部预轴承41和/或底部预轴承42也可以以类似的方式配置以从启动过程改变为稳态运行。According to an example (not shown), the counter bearing 14 is configured to change shape during the forming of the
根据图4、4A和4B所示的一示例,旋转模具3配置有图案38,所述图案38具有至少一个带底部44的凹痕38,其中,与最终型材37中的图案39中的相应高度的释放角a1相比,每个凹痕38包括释放角a2。脱模角a1和a2取决于旋转模具3的半径、最终型材37中的预期图案39、反向轴承的构造和最终型材37的行进速度。然而,a1大于a2取决于旋转模具3的半径和旋转模具3中的图案38的类型。According to an example shown in FIGS. 4 , 4A and 4B , the
图4、4A和4B显示图案38中的凹痕38在径向方向R上从凹痕38的底部44到旋转模具3的外周表面4中的凹痕定界部分具有高度D23,或者称为深度。图2B中的高度D23加上距离D2等于图2C和2D中的最大距离D22,因此与在凹痕38中实现材料塑性变形的最小允许压力有关。图4A进一步显示最终型材中的图案39具有高度H4的高度,其对应于凹痕38的底部40与旋转模具3的圆周最外部之间的深度D23。4, 4A and 4B show that the
在图1中,第一侧部23包括沿径向方向R延伸的第一凸缘部18,其延伸超过中部22的至少一部分的径向延伸,并且其中第二侧部25包括沿径向方向延伸的第二凸缘部19,其延伸范围超过至少一部分中部22的径向延伸范围。In FIG. 1 , the
第一凸缘部分18和第二凸缘部分19布置成防止材料在朝向相对的第一和第二通道部分侧壁15、16的方向上在旋转模具3外部移动。The first flange portion 18 and the second flange portion 19 are arranged to prevent movement of material outside the
至少在图2B-2D、4、4A和4B中示出的旋转模具3可以布置成没有凸缘部分。The
图5示意性地显示了根据本发明的一示例性实施例的装置的截面侧视图,并且图6示意性地显示了图5中的装置的后视图和出口。在图5中,一个或多个壁11在第一通道部分9的端部限定第一截面12,并且其中第二通道部分10在圆周表面之间的距离的位置限定第二截面174并且反向轴承14最小,其中第一通道部分9的几何形状不同于第二通道部分10,使得通过第一通道部分9的材料在进入第二通道部分10时改变形状。Fig. 5 schematically shows a cross-sectional side view of a device according to an exemplary embodiment of the invention, and Fig. 6 schematically shows a rear view and an outlet of the device in Fig. 5 . In Fig. 5, one or
图7示意性地示出了根据一示例在图5的第一截面12中截取的主型材36的截面和在图5的第二截面17中截取的最终型材37的截面;FIG. 7 schematically shows a section of the
还参考图1-2D,图7示意性地示出了当使用非纹理化旋转模具时的主型材36和最终型材37的截面,即没有具有如上所述的凹痕38的图案38。Referring also to Figures 1-2D, Figure 7 schematically shows a cross-section of a
图8示意性地显示当旋转模具3已经压印时,主型材36在图5的第一截面12中截取的截面和最终型材37在图5的第二截面17中截取的第一截面最终型材的图案39,以及当旋转模具3没有在最终型材中压印图案39时,在图5的第二截面17中截取的最终型材37的第二截面;Figure 8 shows schematically the first section of the
还参考图1-2D,图8示意性地示出了当使用有纹理的旋转模具时,即具有带有如上所述的凹痕38的图案38的主型材36和最终型材37的截面。旋转模具中的图案38在最终型材中产生对应的相反图案39,即,当旋转模具3中的图案38包括凹痕38时,它导致对应的相反图案39包括最终型材37中的凸起39。在图8中,当最终型材具有由凹痕38引起的升高39时,最终型材37的截面表示为37a。在图8中,当最终型材缺少由凹痕38之间的空间中的旋转模具3的外周表面4引起的凸起39时,最终型材37的截面被表示为37b。Referring also to Figures 1-2D, Figure 8 schematically shows a cross-section of a
参考图1-2D以及图7和8,主型材36具有对应于第一截面12的第一截面积几何形状A1,而且其中最终型材37具有由第二截面17限定的第二截面几何形状A2,其中第一截面几何形状A1在任何给定的可比位置不同于第二截面几何形状A2,其中第二通道部分10中的最大压力和最小距离D2取决于主型材36的截面几何形状A1和最终型材37的截面几何形状A2的差异。Referring to FIGS. 1-2D and FIGS. 7 and 8 , the
图5显示壁11是静止的并且在第一通道部分9的末端限定第一截面12并且其中,第二通道部分10在圆周表面4与反向轴承14之间的距离D2最小的位置处限定第二截面17,并且其中第一通道部分9的几何形状不同于第二通道部分10,使得通过第一通道部分9的材料在进入第二通道部分10时改变形状。Figure 5 shows that the
所述第二截面17中外周表面4与反向轴承14在高度方向Z上的最小距离D2小于第一截面12中高度方向上的最大距离D1。这具有迫使材料改变形式并开始沿不同方向流动的优点,这取决于旋转模具3的形状和形式以及与旋转模具3相对的反向轴承14的形状和形式。The minimum distance D2 in the height direction Z between the outer
由于第一通道段9和第二通道段10的几何差异,第二通道部分10中的压力增加或保持到这样的水平,即材料将足够快地转变以饱和第二通道部分,包括旋转模具的印记。Due to the geometrical differences in the
图7和8中的主型材36和最终型材37的几何变化与上面和下面讨论的所有示例相关。应当注意的是,第一通道部分9和第二通道部分10可以形成为具有不同的截面几何形状,例如椭圆形、圆形、多边形、波浪形或一种或多种形状的组合。The geometric variations of the
参考图1-2D,第二通道部分10有利地相对于第一通道部分9以预定的第二距离D2布置,如图5所示,在旋转模具3的外周表面4的径向最外部分和通道部分13中的反向轴承14小于预定的第一距离D1,如图5所示,第一通道部分9沿与径向一致的高度方向Z截取的最远部分之间;1-2D, the
和/或其中:and/or where:
第二通道部分10相对于第一通道部分9以预定的第四距离D4布置,如图1所示,在宽度方向X上通道部分13的最里面的最窄部分之间大于预定的第三距离D3,如图1所示,在第一通道的出口区处沿宽度方向X截取的第一通道部分的侧壁之间。The
这种高度和宽度的变化迫使材料重新形成,并且较窄的第一通道部分在进入通道部分时给出局部降低的压力,因为第一和第二侧部分在尾流中,即在第一通道中的侧壁后面。This change in height and width forces the material to reform and the narrower first channel part gives a locally reduced pressure on entering the channel part because the first and second side parts are in the wake, i.e. in the first channel behind the side walls in the
此外,参考图1,第一和第二侧壁5、6相对于第一和第二通道部分侧壁15、16定位,使得第一和第二侧壁5、6可旋转地连接到第一和第二通道部分侧壁15、16,公差根据产品材料和第一和第二通道部分9、10之间的几何关系设置。Furthermore, referring to FIG. 1 , the first and
所述外周表面4可包括纹理部分30,其可覆盖除环形凹陷部分以外的所有旋转模具,或者第一侧部4包括在第一凸缘部18和纹理部30之间延伸的非纹理部31,以及第二侧部25包括位于第二凸缘部19与纹理部30之间的非纹理部32。The outer
非纹理部分31、32有利地具有小于纹理部分30的压印深度的半径的半径,特别是在环形凹部19部分中。The
然而,根据一示例(未示出),圆周表面4可以是无纹理的但具有光滑表面或微图案表面。无纹理的旋转模具可以具有圆柱形或波浪形的形状。However, according to an example (not shown), the
图9示意性地示出了包括三个旋转模具3、33、34的旋转模具3的组件的后视图和出口,并且图10示意性地示出了根据图9的组件的立体图。参考图1、5和6,通道部分13包括与第一旋转模具3相对布置的第二旋转模具33,以替代图1、5和6中的反向轴承14。第二旋转33模具可以整体替换反向轴承14或者可以是静止反向轴承14(未示出)的一部分。第二旋转模具33可以与上述第一旋转模具3类似的方式布置,以在型材产品的两侧形成相同或不同的图案。第二旋转模具33可包括环形凹部和/或凸缘部分,其可布置成与第一旋转模具3的环形凹部29和/或凸缘部分18、19配合。FIG. 9 schematically shows a rear view and outlet of an assembly of a
根据图9和10所示的一示例,通道部分13(如图1、5和6所示)包括与第一旋转模具成一定角度布置的第三旋转模具34。所述旋转模具完全或部分地替换相对的第一或第二通道部分侧壁15、16。第三旋转模具34可以仅与第一旋转模具布置在一起或者与第一和第二旋转模具布置在一起。因此,可以在没有第三旋转模具34的情况下组装具有第一旋转模具3和第二相对旋转模具33的上述布置。According to an example shown in FIGS. 9 and 10 , the channel portion 13 (shown in FIGS. 1 , 5 and 6 ) comprises a third
图11示意性地显示了包括四个旋转模具的旋转模具组件的后视图和出口,并且其中图12示意性地显示了根据图19的组件的立体图。图11和12显示通道部分13(如图1、5和6所示)包括与第三旋转模具34相对布置的第四旋转模具35。第四旋转模具34可以作为替代仅与第一旋转模具3布置在一起或与第一和第二旋转模具3、33布置在一起。FIG. 11 schematically shows a rear view and outlet of a rotary mold assembly comprising four rotary molds, and wherein FIG. 12 schematically shows a perspective view of the assembly according to FIG. 19 . FIGS. 11 and 12 show that the channel portion 13 (as shown in FIGS. 1 , 5 and 6 ) includes a fourth
第三和/或第四旋转模具34、35可以与上述第一旋转模具3类似的方式布置,以在型材产品的两侧形成相同或不同的图案。第三和/或第四旋转模具34、35可包括环形凹部和/或凸缘部分,其可布置成与第一旋转模具3的环形凹部29和/或凸缘部分18、19配合。The third and/or fourth rotary dies 34, 35 may be arranged in a similar manner to the first rotary die 3 described above to form the same or different patterns on both sides of the profiled product. The third and/or fourth
根据一示例,二个或多个旋转模具是同步的。这具有以相同速度进给材料的优点。然而,也可以使用非同步旋转模具以产生摩擦和/或特殊图案和/或补偿材料差异。According to an example, two or more rotating molds are synchronized. This has the advantage of feeding the material at the same speed. However, it is also possible to use asynchronously rotating dies to create friction and/or special patterns and/or to compensate for material differences.
所述装置可以设置有纹理和非纹理旋转模具3;33;34;35的组合。The device may be provided with a combination of textured and non-textured
图13-19示意性地显示了包括根据上述任一实例的挤压和/或拉挤装置1的共挤压装置1a和/或挤压装置1a,其中所述装置1a包括至少二入口通道45、46、47直接或间接连接到所述第二通道部分10,其中至少二个入口通道45、46、47中的每一个被配置为在第二通道部分10上游的预定距离处供给一种或多种材料,或者连接到至少二个入口通道45、46、47的接合点,连接到第一通道部分9过渡到第二通道部分10的地方。13-19 schematically show a coextrusion device 1a and/or an extrusion device 1a comprising an extrusion and/or
这里,共挤压是指至少二个材料流一起加工并形成主型材然后加工成最终型材,或者至少二个材料流一起加工并形成最终型材。在这里,挤压是指至少二个材料流通过一起加工并形成主型材然后进入最终型材而以分层方式定位的位置,或者通过在结合点处将至少二个材料流汇集到主型材中,然后将至少二个材料流一起加工并形成在第二通道部分10中的最终型材中。Here, co-extrusion means that at least two material streams are processed together and form a main profile and then processed into a final profile, or at least two material streams are processed together and form a final profile. Extrusion here means a location where at least two streams of material are positioned in a layered manner by being processed together and forming the main profile and then entering the final profile, or by bringing at least two streams of material into the main profile at a joint point, At least two streams of material are then processed together and formed into the final profile in the
图13示意性地示出了根据本发明的装置1、1a、1a的截面侧视图。图13显示型材限定区7包括为第一通道部分9的形式的第一入口通道45和第三通道部分46的形式的第二入口通道46连接到第二通道部分10上游的型材限定区7,用于将附加材料供给到第二通道部分10,以利用来自第一通道部分9的材料形成层叠型材产品2。Fig. 13 schematically shows a cross-sectional side view of a
根据一示例,第三通道部分46是类似于第一通道部分9的挤压或拉挤通道,其被布置成加工材料。根据一示例,第三通道部分46是第三通道部分46被配置为用于将材料输送到型材限定区7的输送单元。According to an example, the
图14示意性地显示了根据本发明的装置的立体图,图15示意性地显示了根据本发明的装置的截面侧视图。图13-15以不同的方式显示了装置1、1a、1a包括如上所述的一个旋转装置3和经由第一和第三通道部分9、46聚集在一起的二股材料流。Figure 14 schematically shows a perspective view of the device according to the invention, and Figure 15 schematically shows a cross-sectional side view of the device according to the invention. FIGS. 13-15 show in different ways the
图16示意性地示出了根据本发明的装置的截面侧视图,其中所述装置包括二个相对的旋转模具3、33。图16进一步显示装置1、1a包括为第一通道部分的形式的第一入口通道45和第三通道部分46的形式的第二入口通道46连接到第二通道部分10上游的型材限定区7,用于将附加材料供给到第二通道部分10,以利用来自第一通道部分9的材料形成层叠型材产品2。图16进一步显示所述装置包括第四通道部分47形式的第三入口通道47,用于将第三材料供给到型材限定区7。Figure 16 schematically shows a cross-sectional side view of the device according to the invention, wherein said device comprises two opposing rotating
根据一示例,第四通道部分47是类似于第一通道部分9的挤压或拉挤通道,其被布置成加工材料。根据一示例,第四通道部分47是第四通道部分,其被配置为用于将材料输送到型材限定区7的输送单元。According to an example, the
图17示意性地示出了根据本发明的装置1的截面侧视图,其包括一旋转模具3和第一、第三和第四通道部分9、44、45,根据与图16相关的讨论内容,用于将三种不同的材料供给到型材限定区7。Figure 17 schematically shows a cross-sectional side view of a
应当注意的是,在图13-17中,第一入口通道45可以是第一通道部分9或将材料输送到第一通道部分9的入口通道45。It should be noted that in FIGS. 13-17 the
图17显示了一例子,其中第一入口通道45输送固体材料50,例如将电线等连接到第一通道部分9,以及其中第二和第三入口通道46、47在第一通道部分9和第二通道部分10中引入一种或多种待挤压或拉挤的材料。一种或多种材料可层叠在固体材料上或可围绕固体材料。Figure 17 shows an example where the
图18示意性地示出了第一入口通道45传送线等形式的连续固体材料的示例,以及在第一和第二通道部分9、10中被挤压或拉挤的材料。在图18中,布置了第一入口通道45和第二入口通道46,使得来自第二入口通道46的材料围绕固体材料50并包埋固体材料50。在图18中,第二入口通道46包括在第一通道部分9上游的加压室51,用于在固体材料50周围形成材料。加压室51包括界定加压室的后壁52。第二入口通道46包括通向加压室51的进料通道53,用于将材料进料到室51。后壁52包括第一入口通道45,其输送固体材料50并且充当腔室中的材料通过第一入口通道45泄漏的止挡件。在此,加压意味着第二入口通道46中的材料受到压力,因为材料被迫进入第二入口通道46并以与上文关于第一通道部分9所述的类似方式变形。在图18中,第一和第二通道部分9、10以与上述类似的方式使材料塑性变形。塑性变形也可以发生在加压室中,但不限于这种变形。因此,加压室中的材料可以形成为包围固体材料而不发生塑性变形。Figure 18 schematically shows an example of a continuous solid material in the form of a
参考图13-19,不同的材料在第二通道部分10之前聚集在一起,然后如上所述在第二通道部分中加工。本发明不限于三入口通道45、46、47或三通道部分9、46、47,而是更多的入口通道和通道部分是可能的,以便制造在不同层中具有相同或不同材料的型材产品。Referring to Figures 13-19, the different materials are brought together prior to the
根据前述示例中的任一个,被供给到装置中以形成型材产品的材料是一种均质材料或者二种或更多种材料混合和/或分层的混合物。这些材料可以不同的比例混合,并且可以混合成均匀的混合物或材料内具有梯度的混合物。一种材料可以是固体而另一种材料可以是可塑的,例如石钻头和橡胶。所述材料也可以是包含二层或更多层相同或不同材料的层状材料。所述材料可包括一串或多串固体材料,贯穿整个挤压或拉挤工艺,例如被可变形材料包围的金属丝或其他增强材料。According to any of the preceding examples, the material fed into the device to form the profiled product is one homogeneous material or a mixture of two or more materials mixed and/or layered. These materials can be mixed in different proportions and can be mixed into a homogeneous mixture or a mixture with a gradient within the material. One material can be solid and the other malleable, such as stone bits and rubber. The material may also be a layered material comprising two or more layers of the same or different materials. The material may comprise one or more strings of solid material throughout the extrusion or pultrusion process, such as wire or other reinforcement material surrounded by deformable material.
这里,固体材料是指在型材限定区中不发生任何变形的材料。固体材料示例的非详尽清单是;可弯曲的金属丝、坚硬的棒状元件、金属网和/或织物和/或复合材料和/或其他合适的材料,此类固体材料的组合等。Here, solid material means a material that does not undergo any deformation in the defined regions of the profile. A non-exhaustive list of examples of solid materials are; bendable wires, rigid rod elements, metal meshes and/or fabrics and/or composites and/or other suitable materials, combinations of such solid materials, and the like.
根据一示例,旋转模具3在最小距离D2的位置处施加的最大允许压力取决于材料与第二通道部分10中的反向轴承14之间的摩擦力。According to an example, the maximum allowable pressure exerted by the rotating
根据一示例,装置1、1a被配置成在反向轴承14和最终型材37之间供给摩擦材料48和/或被配置成在旋转模具3和最终型材37之间供给摩擦材料48。According to an example, the
根据一示例,摩擦材料48至少在装置启动期间由第一和/或第二和/或第三入口通道45、46、47输送,以便控制与旋转模具3和/或反向轴承14相关的摩擦。根据一示例,摩擦材料18在部分或整个制造过程中由第一和/或第二和/或第三入口通道45、46、47输送,以便控制与旋转模具3和/或反向轴承14相关的摩擦。According to an example,
根据一示例,摩擦材料48被直接供给至旋转模具3,使得摩擦材料随着旋转模具从第二通道部分10之前的位置旋转到第二通道部分。图2A示意性地示出了装置1、1a包括将摩擦材料48供给到旋转模具3的外部摩擦材料48供给所述装置49。如上所述,摩擦材料18供给所述装置49可以是第一、第二或第三入口通道45、46、47中的任一个(未示出)。此外,摩擦材料48可为固体材料、液体或气体或其组合。According to an example, the
本发明不限于上述示例,而是可以在所附权利要求的范围内变化。例如,第二通道部分10中的最大压力和最小距离D2取决于第一通道部分9中材料的总进给速率、材料类型和材料进入第二通道部分10时的温度。The invention is not limited to the examples described above but may vary within the scope of the appended claims. For example, the maximum pressure and the minimum distance D2 in the
图19示意性地示出了使用根据结合图1-18描述的装置生产型材产品的方法的流程图,其中所述方法包括:Figure 19 schematically shows a flow chart of a method of producing a profile product using the apparatus described in conjunction with Figures 1-18, wherein the method comprises:
方框101所示步骤,Steps shown in
将材料供给到第一通道部分9,并且将其形成为第一通道部分9中的主型材36,feeding material into the
以及方框102所示的步骤,and the steps shown in
将材料并因此将主型材36进一步供给到第二通道部分10,并在第二通道部分10中相同的形成,The material and thus the
以及方框103中的步骤,and the steps in
将最终型材37转换为型材产品2。Convert
根据一示例,所述方法进一步包括方框104中的步骤,According to an example, the method further comprises the step in
拉伸最终型材37和/或型材产品2以沿生产方向在图案中实现相同的距离,即沿生产方向在图案40中的凸起和/或凹陷之间实现相等的距离。The
根据一实例,旋转模具上的图案中凹痕之间的距离小于型材产品上生产方向上对应图案中凹痕之间的距离,其中,牵引和拉伸装置用于拉伸最终型材和/或型材产品,从而通过调整拉伸实现型材特征之间距离的高精度。According to an example, the distance between the indentations in the pattern on the rotating mold is smaller than the distance between the indentations in the corresponding pattern on the profile product in the production direction, wherein the traction and stretching means are used to stretch the final profile and/or the profile products, thereby achieving high precision in the distances between profile features by adjusting the stretch.
Claims (20)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SE2051216A SE2051216A1 (en) | 2020-10-20 | 2020-10-20 | An extrusion and/or pultrusion device and method for forming plastically deformable and/or viscoplastic material |
SE2051216-6 | 2020-10-20 | ||
PCT/EP2021/078185 WO2022084106A1 (en) | 2020-10-20 | 2021-10-12 | An extrusion and/or pultrusion device and method |
Publications (1)
Publication Number | Publication Date |
---|---|
CN116367937A true CN116367937A (en) | 2023-06-30 |
Family
ID=78232340
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202180071746.XA Pending CN116367937A (en) | 2020-10-20 | 2021-10-12 | Extrusion and/or pultrusion apparatus and method |
Country Status (7)
Country | Link |
---|---|
US (1) | US20230382035A1 (en) |
EP (1) | EP4232216B1 (en) |
JP (1) | JP2023550579A (en) |
KR (1) | KR20230091139A (en) |
CN (1) | CN116367937A (en) |
SE (1) | SE2051216A1 (en) |
WO (1) | WO2022084106A1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SE2051217A1 (en) * | 2020-10-20 | 2021-10-12 | Reliefed Ab | An extrusion and/or pultrusion device and method for forming material with elastic properties |
SE545779C2 (en) * | 2021-08-31 | 2024-01-09 | Reliefed Ab | Energy storage device comprising an electrode product manufactured by an extrusion device and vehicle comprising the energy storage device |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1735498A (en) * | 2003-01-14 | 2006-02-15 | 株式会社普利司通 | Method and device for forming groove line in sheet-like member |
US20060099289A1 (en) * | 2002-06-17 | 2006-05-11 | Mikio Fukumura | Foam forming die and method of manufacturing foam-formed article using the die |
CN108193071A (en) * | 2018-02-07 | 2018-06-22 | 山东建筑大学 | A kind of continuously extruded preparation method of the renewable porous nano composite material of titanium-based |
CN111788061A (en) * | 2018-02-02 | 2020-10-16 | 特瑞堡密封型材瑞典有限公司 | Method and device for producing an elastic profile with longitudinally repeated transverse projections |
Family Cites Families (40)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2892212A (en) * | 1955-04-05 | 1959-06-30 | Us Rubber Co | Extrusion apparatus |
US3394431A (en) * | 1964-09-15 | 1968-07-30 | George S. Nalle Jr. | Apparatus for extruding plastic mesh, lace or net fabrics |
US3635631A (en) * | 1970-06-10 | 1972-01-18 | Du Pont | Continuous molding of thermoplastic resin |
US3782872A (en) * | 1972-03-15 | 1974-01-01 | G Nalle | Apparatus for extruding woven plastic mesh |
US3869304A (en) * | 1972-11-20 | 1975-03-04 | Uniroyal Inc | Fabric coating by extrusion die-calendering apparatus and method |
US4497619A (en) * | 1983-01-18 | 1985-02-05 | Anatoliy Popow | Continuous molding apparatus |
US4631161A (en) * | 1983-01-18 | 1986-12-23 | Anatoliy Popow | Continuous molding method |
US4820466A (en) * | 1985-01-31 | 1989-04-11 | Zachariades Anagnostis E | Process for obtaining ultra-high modulus products |
US4950151A (en) * | 1985-01-31 | 1990-08-21 | Zachariades Anagnostic E | Rolling die for producing high modulus products |
DE3806387A1 (en) * | 1988-02-29 | 1989-09-07 | Troester Maschf Paul | METHOD AND DEVICE FOR PROCESSING ELASTOMERIC MEASURES, ESPECIALLY PLASTIC, RUBBER AND THEIR MIXTURES |
US5030079A (en) * | 1989-10-27 | 1991-07-09 | The Goodyear Tire & Rubber Company | Roller die extrusion and calendering apparatus |
US5186960A (en) * | 1990-11-07 | 1993-02-16 | Walsh Jr Thomas J | Low pressure 3D extrusion |
DE4035476C2 (en) * | 1990-11-08 | 1996-10-17 | Troester Maschf Paul | Extruder-calender combination |
FR2700291A1 (en) * | 1993-01-08 | 1994-07-13 | Michelin & Cie | Extrusion apparatus and extrusion method for raw rubber mixtures. |
JPH0716643A (en) * | 1993-07-05 | 1995-01-20 | Toyo Kanetsu Kk | Aluminum material forming method and forming apparatus |
SE504300C2 (en) * | 1995-10-06 | 1996-12-23 | Mark Lars Jansson | Process for continuous production of profiles and apparatus for carrying out the process |
US5904884A (en) * | 1997-06-26 | 1999-05-18 | Decoma International Inc. | Method of forming automotive trim strip from extruded thermoplastic materials |
DE59811522D1 (en) * | 1997-12-05 | 2004-07-08 | Roehm Gmbh | METHOD FOR PRODUCING SURFACE-HARDENED, "FILM-INSERT-MOLDING" PROCEDURES HANDHELD, BOTH HIGH GLOSSY, NON-BODILY PMMA FILMS |
DE10126124A1 (en) * | 2000-06-01 | 2001-12-06 | Sumitomo Chemical Co | Extruder for production of continuous plastic sheet has gas sealing blocks around the nozzle outlet and take-off rolls |
WO2002042053A2 (en) * | 2000-11-27 | 2002-05-30 | Societe De Technologie Michelin | Extruding device for making a rubber-mixture based product |
US7186110B2 (en) * | 2004-09-17 | 2007-03-06 | Francis Chung Hwa Pan | Apparatus of making wedged plates |
US20100307663A1 (en) * | 2007-09-18 | 2010-12-09 | Toyo Tire & Rubber Co., Ltd. | Rubber strip material extrusion apparatus and rubber strip material extrusion method |
JP5339350B2 (en) * | 2009-01-23 | 2013-11-13 | サンアロマー株式会社 | Crystalline resin film or sheet manufacturing method and manufacturing apparatus |
FR2968592B1 (en) * | 2010-12-13 | 2013-01-11 | Michelin Soc Tech | METHOD FOR MANUFACTURING PNEUMATIC BLANK USING A TABLECLOTH COMPRISING TWO GUMES |
US8414284B2 (en) * | 2011-01-04 | 2013-04-09 | The Goodyear Tire & Rubber Company | Extruder and roller-die combination |
CN104010515B (en) * | 2011-02-24 | 2017-05-10 | 呼瓦基有限责任公司 | System and method for extruding parts having microstructures |
US20130126543A1 (en) * | 2011-11-22 | 2013-05-23 | Timothy H. Bohrer | Sheet with multiple thickness and methods for forming same |
TW201347954A (en) * | 2012-05-23 | 2013-12-01 | Hon Hai Prec Ind Co Ltd | Manufacturing device and method for optical film |
FR3001654B1 (en) * | 2013-02-01 | 2015-06-19 | Michelin & Cie | APPARATUS AND METHOD FOR EXTRUDING ELASTOMER MIXTURE |
US9649792B2 (en) * | 2013-10-15 | 2017-05-16 | Velcro BVBA | Forming longitudinally pleated products |
KR102272976B1 (en) * | 2013-12-12 | 2021-07-06 | 쓰리엠 이노베이티브 프로퍼티즈 캄파니 | Method of making polymeric multilayer films |
SE539862C2 (en) * | 2015-07-04 | 2017-12-27 | Arsizio Ab | Device and method of extrusion with opposite rotating means |
JP6814709B2 (en) * | 2017-08-10 | 2021-01-20 | 株式会社神戸製鋼所 | Screw extruder with roll |
SE543401C2 (en) * | 2019-05-06 | 2021-01-05 | Reliefed Ab | An extrusion and/or pultrusion device and method |
SE543926C2 (en) * | 2019-05-06 | 2021-09-28 | Reliefed Ab | An extrusion and/or pultrusion device and method |
SE543730C2 (en) * | 2019-05-06 | 2021-07-06 | Reliefed Ab | An extrusion and/or pultrusion device and method |
SE543400C2 (en) * | 2019-05-06 | 2021-01-05 | Reliefed Ab | An extrusion and/or pultrusion device and method |
SE543402C2 (en) * | 2019-05-06 | 2021-01-05 | Reliefed Ab | An extrusion and/or pultrusion device and method |
SE2051218A1 (en) * | 2020-10-20 | 2021-11-02 | Reliefed Ab | An extrusion and/or pultrusion device and method |
SE2051217A1 (en) * | 2020-10-20 | 2021-10-12 | Reliefed Ab | An extrusion and/or pultrusion device and method for forming material with elastic properties |
-
2020
- 2020-10-20 SE SE2051216A patent/SE2051216A1/en unknown
-
2021
- 2021-10-12 KR KR1020237017001A patent/KR20230091139A/en active Pending
- 2021-10-12 WO PCT/EP2021/078185 patent/WO2022084106A1/en active Application Filing
- 2021-10-12 US US18/032,362 patent/US20230382035A1/en active Pending
- 2021-10-12 JP JP2023524407A patent/JP2023550579A/en active Pending
- 2021-10-12 CN CN202180071746.XA patent/CN116367937A/en active Pending
- 2021-10-12 EP EP21794120.2A patent/EP4232216B1/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060099289A1 (en) * | 2002-06-17 | 2006-05-11 | Mikio Fukumura | Foam forming die and method of manufacturing foam-formed article using the die |
CN1735498A (en) * | 2003-01-14 | 2006-02-15 | 株式会社普利司通 | Method and device for forming groove line in sheet-like member |
CN111788061A (en) * | 2018-02-02 | 2020-10-16 | 特瑞堡密封型材瑞典有限公司 | Method and device for producing an elastic profile with longitudinally repeated transverse projections |
CN108193071A (en) * | 2018-02-07 | 2018-06-22 | 山东建筑大学 | A kind of continuously extruded preparation method of the renewable porous nano composite material of titanium-based |
Also Published As
Publication number | Publication date |
---|---|
WO2022084106A1 (en) | 2022-04-28 |
SE544100C2 (en) | 2021-12-21 |
US20230382035A1 (en) | 2023-11-30 |
EP4232216A1 (en) | 2023-08-30 |
EP4232216C0 (en) | 2024-08-07 |
KR20230091139A (en) | 2023-06-22 |
SE2051216A1 (en) | 2021-12-21 |
EP4232216B1 (en) | 2024-08-07 |
JP2023550579A (en) | 2023-12-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN116457178A (en) | Extrusion and/or pultrusion apparatus and method | |
CN116390843A (en) | Extrusion and/or pultrusion apparatus and method | |
CN107848182B (en) | Extrusion of profiles using opposing rotary dies | |
CN116367937A (en) | Extrusion and/or pultrusion apparatus and method | |
JP7358505B2 (en) | Extrusion and/or pultrusion devices and methods | |
CN114173949A (en) | Extrusion and/or pultrusion apparatus and method | |
JP5566949B2 (en) | Sheet forming roll and sheet forming method | |
Chen et al. | Optimization of the coathanger manifold via computer simulation and an orthogonal array method | |
CN114173948A (en) | Extrusion and/or pultrusion apparatus and method | |
JP5520584B2 (en) | Sheet forming roll and sheet forming method | |
TWI616245B (en) | Extrusion device and method for manufacturing variable curvature extrusion | |
KR101957805B1 (en) | Continuous shear deformation device of metal sheets | |
US20250091247A1 (en) | A production method, and a ceramic product obtained by such method | |
CN104487227A (en) | Method for forming long sheets from plasticized material and apparatus for carrying out the method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |