[go: up one dir, main page]

CN116361629A - 一种磨机筒体振动信号特征降维方法及其系统 - Google Patents

一种磨机筒体振动信号特征降维方法及其系统 Download PDF

Info

Publication number
CN116361629A
CN116361629A CN202310171079.3A CN202310171079A CN116361629A CN 116361629 A CN116361629 A CN 116361629A CN 202310171079 A CN202310171079 A CN 202310171079A CN 116361629 A CN116361629 A CN 116361629A
Authority
CN
China
Prior art keywords
matrix
characteristic
sample
vibration signal
mill
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310171079.3A
Other languages
English (en)
Inventor
卢文海
阮华东
周文伟
严晓军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangxi Copper Co Ltd
Original Assignee
Jiangxi Copper Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangxi Copper Co Ltd filed Critical Jiangxi Copper Co Ltd
Priority to CN202310171079.3A priority Critical patent/CN116361629A/zh
Publication of CN116361629A publication Critical patent/CN116361629A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/21Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
    • G06F18/213Feature extraction, e.g. by transforming the feature space; Summarisation; Mappings, e.g. subspace methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/22Matching criteria, e.g. proximity measures
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/23Clustering techniques
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/24Classification techniques
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/24Classification techniques
    • G06F18/241Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
    • G06F18/2413Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches based on distances to training or reference patterns
    • G06F18/24133Distances to prototypes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/30Computing systems specially adapted for manufacturing

Landscapes

  • Engineering & Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Artificial Intelligence (AREA)
  • Evolutionary Biology (AREA)
  • Evolutionary Computation (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

本发明涉及一种自动化测量技术领域,涉及一种磨机筒体振动信号特征降维方法及其系统。该述方法包括以下步骤:首先采集磨机在欠负荷、正常、过负荷状态下筒体抛落区与冲击区的振动信号,并提取信号中的特征参数构成高维特征向量;然后引入集成矩阵距离测度准则至二阶张量局部保持投影算法中,计算出各样本之间的距离,并通过样本间距离建立融合样本类别信息的相似加权矩阵;最后运用振动信号特征降维算法对磨机筒体振动信号高维特征向量集进行降维。本发明解决了磨机筒体振动信号特征向量因维数过大且在特征降维过程中易造成信息丢失的问题,确保了类内样本与类间样本之间的相似度能够得到明显区分,对提高磨机负荷识别准确率具有重要价值和意义。

Description

一种磨机筒体振动信号特征降维方法及其系统
本发明涉及一种自动化测量技术领域,具体涉及一种基于振动信号特征降维算法的磨机筒体振动信号特征降维方法及其系统。
技术背景
信号的特征提取在机械设备负荷识别及工作状态参数预测环节中至关重要,其目的在于利用各种信号处理方法获得能够表征设备状态信息的特征量。但是,不同特征量构建的高维特征集为设备状态智能预测环节提供数据来源的同时,伴随着一系列待解决问题:一方面,高维特征集数据量庞大,其计算量降低了设备状态预测效率;另一方面,不同特征参数与状态信息之间的分辨率不同,如果不对原始高维特征集进行预处理,则不能突显出敏感特征对分类的优势,易导致识别精度下降。因此,在原始信号大部分本征信息不受破坏的前提下,对信号的高维特征集进行降维显得尤为重要。
传统的降维方法主要有主成分分析、多维尺度分析以及线性判别分析等,近年来兴起的流形学习方法被广泛运用于人脸识别、图像处理等领域的特征降维中,机械设备工作状态预测过程也逐渐选用此类方法进行特征降维。
但是,上述算法处理的对象均为一维向量形式的特征序列,在处理二维或更高维数据时,通常先将矩阵转换为向量形式,然后将高维向量投影到低维向量空间中,从而实现降维。然而,其易造成小样本问题出现,从而导致类内散度矩阵奇异,且算法计算量较大,识别精度低。
发明内容
针对现有技术的不足,本发明的目的在于提供一种新型磨机筒体振动信号特征降维方法。所述方法主要包括以下步骤:首先采集磨机在欠负荷、正常、过负荷状态下筒体抛落区与冲击区的振动信号,并提取信号中的特征参数构成高维特征向量;然后引入集成矩阵距离测度(AMDM)准则至二阶张量局部保持投影(STLPP)算法中,计算出各样本之间的距离,并通过样本间距离建立融合样本类别信息的相似加权矩阵;最后运用振动信号特征降维算法对磨机筒体振动信号高维特征向量集进行降维。
具体包括以下法具体包括以下步骤:
S1)采集磨机在所有工作状态下的振动信号,并提取采集的振动信号中的特征参数,构成高维特征向量数据样本集;
S2)计算出高维特征向量数据样本集中各样本之间的距离,并根据各个样本之间的间距离建立融合样本类别信息的相似加权矩阵;
S3)将S2)得到的相似加权矩阵运用振动信号特征降维算法,对振动信号中的高维特征向量集进行降维。
进一步,所述S1)的具体步骤为:
S1.1)采集磨机在所有工作状态下的筒体抛落区与冲击区的磨机筒体n个传感器获得的振动信号;
S1.2)对S1.1)采集振动信号进行预处理,并提取出振动信号中的m个时域、频域和熵值的特征参量;
S1.3)将S1.2)提取出的特征参量构成一个n×m维特征向量样本集,并将n×m维特征向量样本集以三阶张量X形式表达,X={X1,X2,...,XN},其中,n为传感器个数,m为特征参量个数,N为样本个数。
进一步,所述S1.1)中的所有工作状态包括欠负荷、正常和过负荷工作状态。
进一步,所述S1.2)中的时域、频域和熵值特征参量包括均值、方差、方根幅值、有效值、峰值、偏度指标、峭度指标、峰值因子、均值频率、标准偏差频率、频谱偏度、频谱峭度、重心频率、样本熵、模糊熵。
进一步,所述S2)的具体步骤为:
S2.1)将S1)采集的特征集训练样本张量X1作为输入,然后引入集成矩阵距离测度准则至二阶张量局部保持投影算法中,计算出各样本之间的距离;
S2.2)再将特征样本的类别监督信息yi∈[1,2,3]引入至AMDM准则中计算相识性加权矩阵,其中,1代表欠负荷工作状态、2代表正常工作状态、3代表过负荷工作状态。
进一步,所述S3)的具体步骤为:
S3.1)设有N个二阶张量表达形式的特征样本,其特征样本为X={X1,X2,...,XN}∈Rn×m,通过式(1)从而获得两个变换矩阵U∈Rn×n′及V∈Rm×m′(n′,m′<n,m)。
Figure BDA0004098360090000031
式中,|| ||F表示矩阵的Frobenius范数,即
Figure BDA0004098360090000032
Sij为近邻图G的权矩阵S中第i行第j列的元素;UT为矩阵U的转置向量;D为对角矩阵,Dij=∑jSij
S3.2)将S3.1)得到矩阵U和V通过式(2)迭代推导,计算出其广义特征向量,并求出最优矩阵U和V;
Figure BDA0004098360090000033
式中,
Figure BDA0004098360090000034
Figure BDA0004098360090000035
Figure BDA0004098360090000036
为单位向量;
S3.3)将高维特征样本投影至低维,即:Yi=UTXiV,其变换矩阵U与V的求解转变公式为:
Figure BDA0004098360090000041
式中,Yi=UTXiV与Yj=UTXjV之间距离使用AMDM准则进行计算,SSij,SSii表示特征样本集Xi与Xj间的近邻程度。
进一步,所述S3.2)中的最优变换矩阵U和V的具体求解步骤为:
①将矩阵U初始化定义为一单位矩阵,将其代入式(2)求出其广义特征向量;
②计算式(2)中的广义特征向量,求解出新矩阵U,从而使矩阵U得到更新;
③通过反复迭代表达式(2),当求解次数达到设定的迭代次数值时,则终止迭代,此时便可得到最优变换矩阵Ubest和Vbest
④根据公式
Figure BDA0004098360090000042
求解出高维特征样本集Xi的低维投影Yi
一种实现上述的磨机筒体振动信号特征降维处理方法的信息处理终端。
一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行如上述的磨机筒体振动信号特征降维处理方法。
本发明的另一目的是提供一种磨机筒体振动信号特征降维处理系统,所述系统包括:
采集单元,用于磨机在所有工作状态下的振动信号;
数据处理单元,用于提取振动信号中高维特征向量,并构成高维特征向量数据样本集;
数据融合单元,用于计算出高维特征向量数据样本集中各样本之间的距离,并根据各个样本之间的间距离建立融合样本类别信息的相似加权矩阵。
降维处理单元,用于根据相似加权矩阵运用振动信号特征降维算法处理映射为低维特征向量。
本发明的有益效果:与现有技术相比,本发明引入AMDM准则计算出二阶张量形式样本数据之间的距离,然后通过样本间距离构建融合样本类别信息的相似性加权矩阵计算方法,并将其运用于传统STLPP算法中,确保了类内样本与类间样本之间的相似度能够得到明显区分,在保留原有筒体振动信号中有用信息的同时,对其高维特征向量集进行降维。
附图说明
图1为本发明具体实施方式中降维方法的流程图;
图2为本发明具体实施方式中磨机筒体振动信号采集平台结构图;
图3为本发明具体实施方式中三种不同工作状态下两个传感器采集到的振动信号波形图;(a)欠负荷抛落区状态,(b)正常负荷抛落区状态(c)过负荷抛落区状态(d)欠负荷冲击区状态(e)正常负荷冲击区状态(f)过负荷冲击区状态;
图4为本发明具体实施方式中基于振动信号特征降维和STLPP算法的训练样本张降维后特征集的散点分布图;(g)振动信号特征降维(h)STLPP
图中 1-磨机筒体抛落区振动信号采集传感器 2-磨机筒体冲击区振动信号采集传感器。
具体实施方式
以下结合附图对本发明的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本发明,并不用于限制本发明。
如图1所示,为了实现上述目的,本发明实施方式提供一种新型磨机筒体振动信号特征降维方法的流程图(图1),由图1可知:
本发明的降维方法首先采集磨机在欠负荷、正常、过负荷状态下筒体抛落区与冲击区的振动信号,并提取信号中的特征参数构成高维特征向量;然后引入集成矩阵距离测度(AMDM)准则至二阶张量局部保持投影(STLPP)算法中,计算出各样本之间的距离,并通过样本间距离建立融合样本类别信息的相似加权矩阵;最后运用振动信号特征降维算法对磨机筒体振动信号高维特征向量集进行降维。
本发明的新型磨机筒体振动信号特征降维方法具体步骤如下:
步骤一:在磨机筒体抛落区和冲击区安装传感器,图2为磨机筒体振动信号采集平台结构图,通过磨机筒体抛落区振动信号采集传感器1和磨机筒体冲击区振动信号采集传感器2获取振动信号数据;
步骤二:使磨机在欠负荷、正常、过负荷工作状态下运行,并通过磨机筒体抛落区和冲击区两个传感器采集得到振动信号数据,其三种负荷状态下筒体抛落区与冲击区的振动信号如图3所示;
步骤三:提取其特征向量,构成一个以三阶张量形式表达的n×m×N维多传感器特征样本集X={X1,X2,...,XN},在该特征样本集中,每个传感器采集得到的振动信号特征用一个二阶张量来表示,即XN∈Rn×m,其中,n表示定位于球磨机筒体不同位置的加速度传感器的个数,m为从每个传感器采集到的信号中提取出的特征参量个数,N为样本个数;
步骤四:并从每种工作状态下各传感器振动信号中提取出100组数据样本。由于后续需要对降维特征集的分类性能进行评判,因此需要设定训练样本和测试样本,本实验中规定提取出100组特征样本中50组特征样本集作为球磨机负荷识别的训练样本,剩余50组则作为测试样本;
步骤五:针对不同负荷状态下采集得到的磨机筒体振动信号的样本数据,分别提取8个时域特征参量和5个频谱特征参量:均值、方差、方根幅值、有效值、峰值、偏度指标、峭度指标、峰值因子、均值频率、标准偏差频率、频谱偏度、频谱峭度、重心频率;两个熵值特征参量:样本熵、模糊熵。将以上15个特征参量作为特征约简的原始高维特征集,由此,可得到一个2×15×300维的特征集样本张量X,其中单个特征样本数据XN∈R2×15为来自球磨机筒体抛落区和冲击区两个加速度传感器采集到的信号的特征数据。y=[y1,y2,...,y300]T为特征样本类别标签列向量,其中,yi∈[1,2,3]。由于特征样本中50组作为训练样本,50组作为测试样本,因此该特征样本张量X中含有一个2×15×150维的训练样本张量X1及一个2×15×150维的测试样本张量X2
步骤六:将上述设定的特征集训练样本张量X1作为输入,并通过振动信号特征降维算法计算出二阶张量形式样本数据之间的距离,得到特征样本的低维映射。其具体计算过程为:
(1)设任意两个二阶张量的特征样本为A=(aih)n×m=(a1,...,ah,...,am)T与B=(bih)n×m=(b1,...,bh,...,bm)T,式中,
Figure BDA0004098360090000075
则运用AMDM准则求取样本间距离的公式为:
Figure BDA0004098360090000071
式中,p为可变量,p值为0<p≤1。
(2)将特征样本的类别信息引入至AMDM准则中计算相识性加权矩阵,其具体公式为:
Figure BDA0004098360090000072
式中,SSij表示相似性矩阵SS中第i行样本Xi与第j列样本Xj之间的相似度;Ci为特征样本Xi的类别标签;Cj为特征样本Xj的类别标签;m为惩罚系数。
(2)将样本矩阵距离及相似性加权矩阵计算上的改进运用于STLPP算法中,传统STLPP算法的计算过程为:设有N个二阶张量表达形式的特征样本,其特征样本为X={X1,X2,...,XN}∈Rn×m,STLPP算法目的在于,通过式(3),从而获得两个变换矩阵U∈Rn×n′及V∈Rm ×m(n′,m′<n,m)。
Figure BDA0004098360090000073
式中,|| ||F表示矩阵的Frobenius范数,即
Figure BDA0004098360090000074
Sij为近邻图G的权矩阵s中第ii行第j列的元素;D为对角矩阵,Dii=∑jSij
通过式(2)迭代推导,计算出其广义特征向量,并求出最优U和V。
Figure BDA0004098360090000081
式中,
Figure BDA0004098360090000082
Figure BDA0004098360090000083
Figure BDA0004098360090000084
为单位向量,λ为系数。
(4)将高维特征样本投影至低维,即:Yi=UTXiV,其变换矩阵U与V的求解转变公式为:
Figure BDA0004098360090000085
其中,投影张量空间里的两个投影点Yi=UTXiV与Yj=UTXjV之间距离使用AMDM准则进行计算,运用式(2)计算相似性加权矩阵中的各元素SSij,SSii表示特征样本集Xi与Xj间的近邻程度。
上述方法中的最优变换矩阵U和V的具体求解步骤为:
①将矩阵U初始化定义为一单位矩阵,将其代入表达式(2)中的上式,求解出其广义特征向量;
②计算式(2)中的广义特征向量,求解出新矩阵U,从而使矩阵U得到更新;
③通过反复迭代表达式(2),当求解次数达到设定的迭代次数值时,则终止迭代,此时便可得到最优变换矩阵Ubest和Vbest
④根据公式
Figure BDA0004098360090000086
求解出高维特征样本集Xi的低维投影Yi
步骤七:运用振动信号特征降维算法对球磨机筒体振动信号特征降维,得到的单个样本特征矩阵中的n=1、m=3。为了可视化表现出磨机筒体振动信号特征降维效果,将降维得到的样本张量Y1中的各特征样本数据矩阵向量化,从而得到基于振动信号特征降维算法降维后的三维散点分布效果如图4(g)所示,将基于传统STLPP算法的降维方法运用于同一训练样本张量X1中,其降维得到的低维投影样本张量Y1′的向量形式的三维散点图如图4(h)所示。
将图4(g)与图4(h)进行对比可知,图4(h)中运用传统STLPP算法降维后的特征样本集在不同类别的样本分布中存在的混合现象,即不同类别的样本特征集区分度不高;而运用振动信号特征降维算法降维后的特征样本集在不同类别中区分度较高,即同类样本相互之间分布紧凑,不同类样本之间具有明显分离。上述实验结果表明,基于振动信号特征降维算法的降维方法能够有效地将原始高维二阶张量形式的特征样本集投影至低维特征样本集中,且其分类性能明显优于传统的STLPP算法。
由于上述实验都是针对不同降维方法,从定性的角度衡量降维后特征集的聚类特性,引入特征聚类性能指标对各类算法的降维效果进行定量评价,即类内散度Sw、类间散度Sb以及类内-类间综合散度Ss。其计算公式为:
Figure BDA0004098360090000091
Figure BDA0004098360090000092
Figure BDA0004098360090000093
式中,C为特征类别的个数;N为样本总数,其中Ni表示第i类样本的总数;
Figure BDA0004098360090000095
为i类中的第j个特征样本值;/>
Figure BDA0004098360090000096
为第i类中特征样本值的平均值;/>
Figure BDA0004098360090000094
为所有类别中特征样本值的平均值。
由式(6)~式(8)可知,类内散度Sw表示在同一类别中,各个样本之间的平均聚集程度;类间散度Sb表示在不同类别中,各个样本之间的平均分离程度;类内-类间综合散度SS则表示Sw与Sb的综合评价结果,基于振动信号特征降维算法和基于传统STLPP算法降维后各特征集之间的聚类评价指标计算结果如表1所示。
表1基于振动信号特征降维算法和基于传统STLPP算法降维后各特征集之间的聚类评价指标计算结果:
Figure BDA0004098360090000101
由表1分析可知,运用基于振动信号特征降维的降维方法得到的样本特征集相比于传统STLPP算法降维后的样本特征集,其类内散度Sw更小、类间散度Sb较大,此外其聚类综合评价指标Ss的结果也明显更大,这表明,基于振动信号特征降维算法的球磨机筒体振动信号特征降维方法能够达到更好的聚类效果。
以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的一般技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。
如在说明书及权利要求书当中使用了某些词汇来指称特定组件。本领域技术人员应可理解,硬件制造商可能会用不同名词来称呼同一个组件。本说明书及权利要求书并不以名称的差异作为区分组件的方式,而是以组件在功能上的差异来作为区分的准则。如在通篇说明书及权利要求书当中所提及的“包含”、“包括”为一开放式用语,故应解释成“包含/包括但不限定于”。“大致”是指在可接收的误差范围内,本领域技术人员能够在一定误差范围内解决所述技术问题,基本达到所述技术效果。说明书后续描述为实施本申请的较佳实施方式,然所述描述乃以说明本申请的一般原则为目的,并非用以限定本申请的范围。本申请的保护范围当视所附权利要求书所界定者为准。
还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的商品或者系统不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种商品或者系统所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的商品或者系统中还存在另外的相同要素。
应当理解,本文中使用的术语“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
上述说明示出并描述了本申请的若干优选实施例,但如前所述,应当理解本申请并非局限于本文所披露的形式,不应看作是对其他实施例的排除,而可用于各种其他组合、修改和环境,并能够在本文所述申请构想范围内,通过上述教导或相关领域的技术或知识进行改动。而本领域人员所进行的改动和变化不脱离本申请的精神和范围,则都应在本申请所附权利要求书的保护范围内。

Claims (10)

1.一种磨机筒体振动信号特征降维处理方法,其特征在于,所述方法具体包括以下步骤:
S1)采集磨机在所有工作状态下的振动信号,并提取采集的振动信号中的特征参数,构成高维特征向量数据样本集;
S2)计算出高维特征向量数据样本集中各样本之间的距离,并根据各个样本之间的间距离建立融合样本类别信息的相似加权矩阵;
S3)将S2)得到的相似加权矩阵运用振动信号特征降维算法,对振动信号中的高维特征向量集进行降维。
2.根据权利要求1所述的处理方法,其特征在于,所述S1)的具体步骤为:
S1.1)采集磨机在所有工作状态下的筒体抛落区与冲击区的磨机筒体n个传感器获得的振动信号;
S1.2)对S1.1)采集振动信号进行预处理,并提取出振动信号中的m个时域、频域和熵值的特征参量;
S1.3)将S1.2)提取出的特征参量构成一个n×m维特征向量样本集,并将n×m维特征向量样本集以三阶张量X形式表达,X={X1,X2,...,XN},其中,n为传感器个数,m为特征参量个数,N为样本个数。
3.根据权利要求1所述的处理方法,其特征在于,所述S1.1)中的所有工作状态包括欠负荷、正常和过负荷工作状态。
4.根据权利要求2所述的处理方法,其特征在于,所述S1.2)中的时域、频域和熵值特征参量包括均值、方差、方根幅值、有效值、峰值、偏度指标、峭度指标、峰值因子、均值频率、标准偏差频率、频谱偏度、频谱峭度、重心频率、样本熵、模糊熵。
5.根据权利要求2所述的处理方法,其特征在于,所述S2)的具体步骤为:
S2.1)将S1)采集的特征集训练样本张量X1作为输入,然后引入集成矩阵距离测度准则至二阶张量局部保持投影算法中,计算出各样本之间的距离;
S2.2)再将特征样本的类别监督信息yi∈[1,2,3]引入至AMDM准则中计算相识性加权矩阵,其中,1代表欠负荷工作状态、2代表正常工作状态、3代表过负荷工作状态。
6.权利要求2所述的处理方法,其特征在于,所述S3)的具体步骤为:
S3.1)设有N个二阶张量表达形式的特征样本,其特征样本为
Figure FDA0004098360070000021
通过式(1)从而获得两个变换矩阵U∈Rn×n′及V∈Rm×m′(n′,m′<n,m)。
Figure FDA0004098360070000022
式中,||||F表示矩阵的Frobenius范数,即
Figure FDA0004098360070000023
Sij为近邻图G的权矩阵S中第i行第j列的元素;UT为矩阵U的转置向量;D为对角矩阵,Dii=∑jSij
S3.2)将S3.1)得到矩阵U和V通过式(2)迭代推导,计算出其广义特征向量,并求出最优矩阵U和V;
Figure FDA0004098360070000024
式中,
Figure FDA0004098360070000025
Figure FDA0004098360070000026
Figure FDA0004098360070000027
为单位向量;
S3.3)将高维特征样本投影至低维,即:Yi=UTXiV,其变换矩阵U与V的求解转变公式为:
Figure FDA0004098360070000028
式中,Yi=UTXiV与Yj=UTXjV之间距离使用AMDM准则进行计算,SSij,SSii表示特征样本集Xi与Xj间的近邻程度。
7.根据权利要求6所述的方法,其特征在于,所述S3.2)中的最优变换矩阵U和V的具体求解步骤为:
①将矩阵U初始化定义为一单位矩阵,将其代入式(2)求出其广义特征向量;
②计算式(2)中的广义特征向量,求解出新矩阵U,从而使矩阵U得到更新;
③通过反复迭代表达式(2),当求解次数达到设定的迭代次数值时,则终止迭代,此时便可得到最优变换矩阵Ubest和Vbest
④根据公式
Figure FDA0004098360070000031
求解出高维特征样本集Xi的低维投影Yi
8.一种实现如权利要求1-7任一项所述的磨机筒体振动信号特征降维处理方法的信息处理终端。
9.一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行如权利要求1-7任意一项所述的磨机筒体振动信号特征降维处理方法。
10.一种磨机筒体振动信号特征降维处理系统,其特征在于,所述系统包括:
采集单元,用于磨机在所有工作状态下的振动信号;
数据处理单元,用于提取振动信号中高维特征向量,并构成高维特征向量数据样本集;
数据融合单元,用于计算出高维特征向量数据样本集中各样本之间的距离,并根据各个样本之间的间距离建立融合样本类别信息的相似加权矩阵。
降维处理单元,用于根据相似加权矩阵运用振动信号特征降维算法处理映射为低维特征向量。
CN202310171079.3A 2023-02-27 2023-02-27 一种磨机筒体振动信号特征降维方法及其系统 Pending CN116361629A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310171079.3A CN116361629A (zh) 2023-02-27 2023-02-27 一种磨机筒体振动信号特征降维方法及其系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310171079.3A CN116361629A (zh) 2023-02-27 2023-02-27 一种磨机筒体振动信号特征降维方法及其系统

Publications (1)

Publication Number Publication Date
CN116361629A true CN116361629A (zh) 2023-06-30

Family

ID=86931950

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310171079.3A Pending CN116361629A (zh) 2023-02-27 2023-02-27 一种磨机筒体振动信号特征降维方法及其系统

Country Status (1)

Country Link
CN (1) CN116361629A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118245950A (zh) * 2024-05-20 2024-06-25 银河航天(北京)网络技术有限公司 用于卫星的火工品状态确定方法、装置及计算机程序产品

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118245950A (zh) * 2024-05-20 2024-06-25 银河航天(北京)网络技术有限公司 用于卫星的火工品状态确定方法、装置及计算机程序产品

Similar Documents

Publication Publication Date Title
CN106295124B (zh) 多种图像检测技术综合分析基因子图相似概率量的方法
CN108446582A (zh) 基于纹理特征和仿射传播聚类算法的高光谱图像分类方法
CN105224872A (zh) 一种基于神经网络聚类的用户异常行为检测方法
CN108536780B (zh) 一种基于触觉纹理特征的跨模态物体材质检索方法
CN102663447B (zh) 基于判别相关分析的跨媒体检索方法
CN106951914B (zh) 一种优化模糊鉴别向量提取的电子鼻鉴别食醋品种方法
CN109919241A (zh) 基于概率模型和深度学习的高光谱未知类别目标检测方法
CN114358207B (zh) 一种改进的k-means异常负荷检测方法及系统
CN111273288B (zh) 一种基于长短期记忆网络的雷达未知目标识别方法
CN107194314B (zh) 融合模糊2dpca和模糊2dlda的人脸识别方法
CN114037931B (zh) 一种自适应权重的多视图判别方法
CN110874576B (zh) 一种基于典型相关分析融合特征的行人再识别方法
CN109359525A (zh) 基于稀疏低秩的判别谱聚类的极化sar图像分类方法
WO2024131524A1 (zh) 一种基于食物图像分割的抑郁症膳食管理方法
CN116361629A (zh) 一种磨机筒体振动信号特征降维方法及其系统
CN110334777A (zh) 一种加权多视角无监督属性选择方法
CN116776245A (zh) 一种基于机器学习的三相逆变器设备故障诊断方法
CN112464977A (zh) 一种物体分类方法、计算机设备及存储介质
CN104573745A (zh) 基于磁共振成像的实蝇分类方法
CN105844299B (zh) 一种基于词袋模型的图像分类方法
CN108108758A (zh) 面向工业大数据的多层增量特征提取方法
CN111199209A (zh) 一种基于iwo-kfcm算法的轴承时频谱图识别方法
Hiremath et al. Face recognition using Eigenface approach
CN116720038A (zh) 一种列车门滚珠丝杠的故障诊断方法、设备和存储介质
CN104573746B (zh) 基于磁共振成像的实蝇种类识别方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination