CN116332591B - A kind of basalt fiber reinforced concrete and preparation method thereof - Google Patents
A kind of basalt fiber reinforced concrete and preparation method thereof Download PDFInfo
- Publication number
- CN116332591B CN116332591B CN202310153743.1A CN202310153743A CN116332591B CN 116332591 B CN116332591 B CN 116332591B CN 202310153743 A CN202310153743 A CN 202310153743A CN 116332591 B CN116332591 B CN 116332591B
- Authority
- CN
- China
- Prior art keywords
- parts
- basalt fiber
- concrete
- stirring
- water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229920002748 Basalt fiber Polymers 0.000 title claims abstract description 110
- 239000011210 fiber-reinforced concrete Substances 0.000 title claims abstract description 30
- 238000002360 preparation method Methods 0.000 title claims abstract description 17
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 41
- 239000003638 chemical reducing agent Substances 0.000 claims abstract description 21
- 239000004568 cement Substances 0.000 claims abstract description 17
- 239000010881 fly ash Substances 0.000 claims abstract description 16
- 239000004576 sand Substances 0.000 claims abstract description 16
- 239000002956 ash Substances 0.000 claims abstract description 12
- 239000002994 raw material Substances 0.000 claims abstract description 7
- 238000003756 stirring Methods 0.000 claims description 45
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 claims description 30
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 claims description 18
- 238000010438 heat treatment Methods 0.000 claims description 16
- 238000000034 method Methods 0.000 claims description 14
- 239000000203 mixture Substances 0.000 claims description 13
- GVGUFUZHNYFZLC-UHFFFAOYSA-N dodecyl benzenesulfonate;sodium Chemical compound [Na].CCCCCCCCCCCCOS(=O)(=O)C1=CC=CC=C1 GVGUFUZHNYFZLC-UHFFFAOYSA-N 0.000 claims description 10
- 229940080264 sodium dodecylbenzenesulfonate Drugs 0.000 claims description 10
- 239000011780 sodium chloride Substances 0.000 claims description 9
- 238000001035 drying Methods 0.000 claims description 8
- 238000009210 therapy by ultrasound Methods 0.000 claims description 8
- 239000002253 acid Substances 0.000 claims description 5
- 238000002156 mixing Methods 0.000 claims description 5
- 230000001965 increasing effect Effects 0.000 claims description 4
- 239000004567 concrete Substances 0.000 abstract description 57
- 239000000835 fiber Substances 0.000 abstract description 11
- 230000000052 comparative effect Effects 0.000 description 11
- 230000008569 process Effects 0.000 description 9
- 239000000463 material Substances 0.000 description 7
- 239000006185 dispersion Substances 0.000 description 6
- 238000005336 cracking Methods 0.000 description 4
- 230000002776 aggregation Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 241000283216 Phocidae Species 0.000 description 2
- 239000011398 Portland cement Substances 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- 238000005054 agglomeration Methods 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000004094 surface-active agent Substances 0.000 description 2
- 238000010998 test method Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 238000009736 wetting Methods 0.000 description 2
- 206010004542 Bezoar Diseases 0.000 description 1
- 101001047650 Rhyparobia maderae Leucokinin-3 Proteins 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 239000002969 artificial stone Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000004566 building material Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 239000002612 dispersion medium Substances 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 238000005065 mining Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 150000004760 silicates Chemical class 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 238000013517 stratification Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 239000008399 tap water Substances 0.000 description 1
- 235000020679 tap water Nutrition 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B28/00—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
- C04B28/02—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
- C04B28/04—Portland cements
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2201/00—Mortars, concrete or artificial stone characterised by specific physical values
- C04B2201/50—Mortars, concrete or artificial stone characterised by specific physical values for the mechanical strength
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
- Y02W30/91—Use of waste materials as fillers for mortars or concrete
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Curing Cements, Concrete, And Artificial Stone (AREA)
Abstract
Description
技术领域Technical Field
本发明属于混凝土技术领域,尤其涉及一种玄武岩纤维增强混凝土及其制备方法。The invention belongs to the technical field of concrete, and in particular relates to basalt fiber reinforced concrete and a preparation method thereof.
背景技术Background Art
普通水泥混凝土是一种三相混凝土,它是由胶凝材料、颗粒状骨料、水,必要时加入外加剂和掺合料,按混凝土配合比设计及试验验证的配合比配制,经搅拌均匀、密实成型、养护硬化而成的一种人工石材。混凝土在外部荷载或环境因素(温度和湿度)作用下会产生变形。混凝土的抗拉强度低、变形性能差,难以避免混凝土变形引起结构裂缝的产生。随着混凝土强度的不断提高,其脆性表现也越加明显。因此减少混凝土变形裂缝、增强其韧性成了目前提高混凝土性能的研究焦点之一。Ordinary cement concrete is a three-phase concrete. It is made of cementitious materials, granular aggregates, water, and admixtures and admixtures when necessary. It is prepared according to the concrete mix design and test verification, and is mixed evenly, compacted, and cured to form an artificial stone. Concrete will deform under the action of external loads or environmental factors (temperature and humidity). Concrete has low tensile strength and poor deformation performance, and it is difficult to avoid the occurrence of structural cracks caused by concrete deformation. As the strength of concrete continues to increase, its brittleness becomes more and more obvious. Therefore, reducing concrete deformation cracks and enhancing its toughness has become one of the current research focuses on improving concrete performance.
玄武岩纤维是由单组分玄武岩矿物原料经熔制拉丝制成,当量直径7-15μm。玄武岩纤维表面光滑,稳定性比较好,同时柔韧性也较优良,可作为增韧材料应用于水泥基复合材料。将玄武岩纤维加入到混凝土中,能够增加材料的韧性,增强混凝土的性能。然而刚出厂的玄武岩纤维为束集状态,不能直接加入混凝土搅拌机中拌合,否则会导致玄武岩纤维在混凝土中分散不均,使得纤维在混凝土内凝聚成团,极大地限制了混凝土力学性能和耐久性的提升。Basalt fiber is made of single-component basalt mineral raw materials through melting and drawing, with an equivalent diameter of 7-15μm. Basalt fiber has a smooth surface, good stability, and excellent flexibility. It can be used as a toughening material in cement-based composite materials. Adding basalt fiber to concrete can increase the toughness of the material and enhance the performance of concrete. However, the basalt fiber just produced is in a bundled state and cannot be directly added to the concrete mixer for mixing. Otherwise, it will cause uneven dispersion of basalt fiber in concrete, causing the fiber to clump in the concrete, greatly limiting the improvement of concrete mechanical properties and durability.
发明内容Summary of the invention
为解决上述技术问题,本发明提出了一种玄武岩纤维增强混凝土及其制备方法。In order to solve the above technical problems, the present invention provides a basalt fiber reinforced concrete and a preparation method thereof.
为实现上述目的,本发明提供了一种玄武岩纤维增强混凝土,按照重量份数计,包括以下原料:To achieve the above object, the present invention provides a basalt fiber reinforced concrete, which comprises the following raw materials in parts by weight:
粉煤灰80-90份、火山灰25-30份、水泥240-260份、改性玄武岩纤维10-20份、鹅卵石300-480份、河砂200-260份、减水剂8-20份以及水130-150份。80-90 parts of fly ash, 25-30 parts of volcanic ash, 240-260 parts of cement, 10-20 parts of modified basalt fiber, 300-480 parts of pebbles, 200-260 parts of river sand, 8-20 parts of water reducer and 130-150 parts of water.
进一步地,所述玄武岩纤维增强混凝土,按照重量份数计,包括以下原料:Furthermore, the basalt fiber reinforced concrete comprises the following raw materials in parts by weight:
粉煤灰80-85份、火山灰25-28份、水泥240-250份、改性玄武岩纤维10-15份、鹅卵石350-420份、河砂220-240份、减水剂8-15份以及水130-140份。80-85 parts of fly ash, 25-28 parts of volcanic ash, 240-250 parts of cement, 10-15 parts of modified basalt fiber, 350-420 parts of pebbles, 220-240 parts of river sand, 8-15 parts of water reducer and 130-140 parts of water.
进一步地,粉煤灰为Ⅰ级粉煤灰,水泥为42.5级普通硅酸盐水泥,鹅卵石粒径为10-20mm,河砂为细度模数为2.5-3.0mm的天然河砂。Furthermore, the fly ash is Class I fly ash, the cement is Class 42.5 ordinary Portland cement, the pebble particle size is 10-20 mm, and the river sand is natural river sand with a fineness modulus of 2.5-3.0 mm.
在本发明的玄武岩纤维增强混凝土中,水泥可以保证混凝土的早期强度;粉煤灰在增加混凝土密实度的同时,还可以保证混凝土的后期强度;火山灰除了可以增加混凝土的密实度外,还可以改善混凝土的工作性,亦可以提供部分后期强度;改性玄武岩纤维具有良好的耐温性能,可在-269~700℃范围内连续工作,有优良的耐酸、耐碱和耐腐蚀性能,抗拉强度和极限应变率高,弹性模量大,可以增加混凝土的结构强度和抗龟裂效果,并且同属硅酸盐系列,与水泥基混凝土相容性好,在搅拌过程中,能够较好地分散均匀。In the basalt fiber reinforced concrete of the present invention, cement can ensure the early strength of concrete; fly ash can increase the density of concrete and ensure the later strength of concrete; volcanic ash can not only increase the density of concrete, but also improve the workability of concrete and provide some later strength; modified basalt fiber has good temperature resistance, can work continuously in the range of -269 to 700°C, has excellent acid resistance, alkali resistance and corrosion resistance, high tensile strength and ultimate strain rate, large elastic modulus, can increase the structural strength and anti-cracking effect of concrete, and belongs to the silicate series, has good compatibility with cement-based concrete, and can be well dispersed during the mixing process.
进一步地,改性玄武岩纤维的制备方法如下:Furthermore, the preparation method of the modified basalt fiber is as follows:
a、将玄武岩纤维置于氯化钠溶液中,加热至50-70℃保温3-5min,再加热至90-100℃,保温1-3min,得到溶液A,在加热过程中将装有氯化钠溶液的装置密封;a. Place basalt fiber in sodium chloride solution, heat to 50-70°C for 3-5 minutes, then heat to 90-100°C for 1-3 minutes to obtain solution A. During the heating process, seal the device containing sodium chloride solution;
b、在所述溶液A中加入十二烷基苯磺酸钠和二甲基甲酰胺,进行超声处理,超声处理的同时进行搅拌,取出玄武岩纤维,干燥,得到改性玄武岩纤维。b. Adding sodium dodecylbenzene sulfonate and dimethylformamide to the solution A, performing ultrasonic treatment while stirring, taking out the basalt fiber, and drying to obtain modified basalt fiber.
本发明采用氯化钠溶液处理玄武岩纤维,增加了玄武岩纤维表面活化能,结合热处理过程,进一步使得活化能得到提高,有利于提高后续玄武岩纤维与十二烷基苯磺酸钠和二甲基甲酰胺的结合能力。在与十二烷基苯磺酸钠和二甲基甲酰胺的结合过程中,超声可以降低分散体系中玄武岩纤维的聚集,促进玄武岩纤维的有效分散,防止絮状或者毛球状聚集纤维的产生,玄武岩纤维可以与二者的活性基团形成氢键或共价键,在玄武岩纤维表面摊铺并形成连续的新面层,修补、填充、包裹玄武岩纤维表面的缺陷,并在一定程度上软化玄武岩纤维,降低在与混凝土混合搅拌过程中的玄武岩纤维损失。The present invention uses sodium chloride solution to treat basalt fiber, thereby increasing the activation energy of the basalt fiber surface, and in combination with the heat treatment process, further improving the activation energy, which is beneficial to improving the subsequent binding ability of the basalt fiber with sodium dodecylbenzene sulfonate and dimethylformamide. In the process of combining with sodium dodecylbenzene sulfonate and dimethylformamide, ultrasound can reduce the aggregation of basalt fiber in the dispersion system, promote the effective dispersion of basalt fiber, and prevent the generation of flocculent or hair ball-shaped aggregated fibers. The basalt fiber can form hydrogen bonds or covalent bonds with the active groups of the two, spread on the surface of the basalt fiber and form a continuous new surface layer, repair, fill, and wrap the defects on the surface of the basalt fiber, and soften the basalt fiber to a certain extent, thereby reducing the loss of basalt fiber in the process of mixing with concrete.
进一步地,在改性玄武岩纤维的制备方法中,步骤a中,玄武岩纤维的长度为3-20mm,直径为15±2μm。此长度的玄武岩纤维可以有效抑制混凝土的开裂,增加混凝土的粘结性能,同时能够有效提高混凝土的力学性能,例如抗压、劈裂抗拉、抗折性能等。除此之外,还可以增加混凝土的耐久性。Furthermore, in the preparation method of the modified basalt fiber, in step a, the length of the basalt fiber is 3-20 mm and the diameter is 15±2 μm. Basalt fibers of this length can effectively inhibit the cracking of concrete, increase the bonding performance of concrete, and effectively improve the mechanical properties of concrete, such as compression resistance, splitting tensile strength, flexural strength, etc. In addition, the durability of concrete can also be increased.
进一步地,步骤a中,所述氯化钠溶液的质量分数为10-20%;Furthermore, in step a, the mass fraction of the sodium chloride solution is 10-20%;
以1-3℃/min的升温速率升温至50-70℃,以3-5℃/min的升温速率升温至90-100℃。The temperature was raised to 50-70°C at a rate of 1-3°C/min, and then raised to 90-100°C at a rate of 3-5°C/min.
进一步地,步骤b中,十二烷基苯磺酸钠与所述溶液A的质量体积比为(3-5)g∶100mL;二甲基甲酰胺与所述溶液A的体积比为0.5-1.5∶10。Furthermore, in step b, the mass volume ratio of sodium dodecylbenzene sulfonate to the solution A is (3-5) g:100 mL; and the volume ratio of dimethylformamide to the solution A is 0.5-1.5:10.
进一步地,步骤b中,搅拌速率为100-150r/min。Furthermore, in step b, the stirring rate is 100-150 r/min.
进一步地,步骤b中,超声功率为250-300W。Furthermore, in step b, the ultrasonic power is 250-300W.
进一步地,所述减水剂为聚羧酸类高性能减水剂,其减水率≥25%。Furthermore, the water reducing agent is a polycarboxylic acid high performance water reducing agent, and its water reducing rate is ≥25%.
一种所述玄武岩纤维增强混凝土的制备方法,包括以下步骤:A method for preparing the basalt fiber reinforced concrete comprises the following steps:
(1)将鹅卵石、河砂、粉煤灰、火山灰和水泥混合,搅拌均匀,得到混合料;(1) mixing pebbles, river sand, fly ash, volcanic ash and cement, and stirring evenly to obtain a mixture;
(2)在所述混合料中加入改性玄武岩纤维,搅拌均匀,加入减水剂和水,继续搅拌均匀,得到玄武岩纤维增强混凝土。(2) Adding modified basalt fiber to the mixture, stirring evenly, adding a water reducer and water, and continuing to stir evenly to obtain basalt fiber reinforced concrete.
进一步地,步骤(2)中,加入改性玄武岩纤维后,搅拌速率为800-900r/min;加入减水剂和水后,搅拌指的是先慢速搅拌再快速搅拌;慢速搅拌时间为10-15min,转速为300-500r/min;快速搅拌时间为3-5min,转速为700-850r/min。玄武岩纤维在形成分散体的过程可分为润湿、扩散和稳定三个过程,即纤维束中的空气被溶液取代的润湿过程。被润湿的纤维束或者单纤维的表面活性物质被分散介质取代,形成纤维-水-纤维的界面相互排斥扩散的过程,当玄武岩纤维用于混凝土时,由于固体建材、纤维、水形成的湿态混凝土是一个非稳态分散体,这种非稳态过程会随着时间的延长,发生不均匀的变化,影响混凝土的性能,为了避免这种影响,本发明采用先慢速搅拌再快速搅拌的过程,避免了在纤维重力、表面活性物质和水分的析出作用下,造成的分散相的聚结分层现象,很好地改善了玄武岩纤维与混凝土基体的粘结性能,促进了混凝土强度的提高。Furthermore, in step (2), after adding the modified basalt fiber, the stirring rate is 800-900r/min; after adding the water reducer and water, the stirring refers to first slow stirring and then fast stirring; the slow stirring time is 10-15min, the speed is 300-500r/min; the fast stirring time is 3-5min, the speed is 700-850r/min. The process of basalt fiber forming a dispersion can be divided into three processes: wetting, diffusion and stabilization, that is, the wetting process in which the air in the fiber bundle is replaced by the solution. The surfactant of the wetted fiber bundle or single fiber is replaced by the dispersion medium, forming a process of mutual repulsion and diffusion at the fiber-water-fiber interface. When basalt fiber is used in concrete, the wet concrete formed by solid building materials, fibers and water is a non-stable dispersion. This non-stable process will undergo uneven changes over time, affecting the performance of the concrete. In order to avoid this effect, the present invention adopts a process of first slow stirring and then fast stirring, avoiding the agglomeration and stratification of the dispersed phase caused by the gravity of the fibers, the precipitation of surfactants and water, thereby greatly improving the bonding performance between the basalt fiber and the concrete matrix and promoting the improvement of the concrete strength.
与现有技术相比,本发明具有如下优点和技术效果:Compared with the prior art, the present invention has the following advantages and technical effects:
(1)本发明在将玄武岩纤维加入混凝土之前,对玄武岩纤维进行了改性处理,避免了玄武岩纤维在混凝土中分散不均,混凝土纤维在混凝土内部凝聚成团的问题,提高了混凝土的力学性能的和耐久性。(1) The present invention modifies the basalt fibers before adding them to concrete, thereby avoiding the problem of uneven dispersion of the basalt fibers in the concrete and agglomeration of the concrete fibers inside the concrete, thereby improving the mechanical properties and durability of the concrete.
(2)本发明制备的玄武岩纤维增强混凝土28d抗压强度≥46.5MPa、56d抗压强度≥51.2MPa,解决了玄武岩纤维增强混凝土后期强度低的问题,提高了混凝土的耐久性。(2) The basalt fiber reinforced concrete prepared by the present invention has a 28d compressive strength of ≥46.5MPa and a 56d compressive strength of ≥51.2MPa, which solves the problem of low late strength of basalt fiber reinforced concrete and improves the durability of concrete.
(3)本发明制备的玄武岩纤维增强混凝土28d劈裂强度≥4.0MPa、抗裂等级达到L-Ⅲ级,解决了玄武岩纤维混凝土易开裂的问题。(3) The basalt fiber reinforced concrete prepared by the present invention has a 28d splitting strength of ≥4.0 MPa and a crack resistance grade of L-III, which solves the problem of easy cracking of basalt fiber concrete.
具体实施方式DETAILED DESCRIPTION
现详细说明本发明的多种示例性实施方式,该详细说明不应认为是对本发明的限制,而应理解为是对本发明的某些方面、特性和实施方案的更详细的描述。Various exemplary embodiments of the present invention will now be described in detail. This detailed description should not be considered as limiting the present invention, but should be understood as a more detailed description of certain aspects, features, and embodiments of the present invention.
应理解本发明中所述的术语仅仅是为描述特别的实施方式,并非用于限制本发明。另外,对于本发明中的数值范围,应理解为还具体公开了该范围的上限和下限之间的每个中间值。在任何陈述值或陈述范围内的中间值,以及任何其他陈述值或在所述范围内的中间值之间的每个较小的范围也包括在本发明内。这些较小范围的上限和下限可独立地包括或排除在范围内。It should be understood that the terms described in the present invention are only for describing special embodiments and are not intended to limit the present invention. In addition, for the numerical range in the present invention, it should be understood that each intermediate value between the upper and lower limits of the scope is also specifically disclosed. The intermediate value in any stated value or stated range, and each smaller range between any other stated value or intermediate value in the described range is also included in the present invention. The upper and lower limits of these smaller ranges can be independently included or excluded in the scope.
除非另有说明,否则本文使用的所有技术和科学术语具有本发明所述领域的常规技术人员通常理解的相同含义。虽然本发明仅描述了优选的方法和材料,但是在本发明的实施或测试中也可以使用与本文所述相似或等同的任何方法和材料。本说明书中提到的所有文献通过引用并入,用以公开和描述与所述文献相关的方法和/或材料。在与任何并入的文献冲突时,以本说明书的内容为准。Unless otherwise indicated, all technical and scientific terms used herein have the same meanings as those generally understood by those skilled in the art. Although the present invention describes only preferred methods and materials, any methods and materials similar or equivalent to those described herein may also be used in the implementation or testing of the present invention. All documents mentioned in this specification are incorporated by reference to disclose and describe the methods and/or materials associated with the documents. In the event of a conflict with any incorporated document, the content of this specification shall prevail.
在不背离本发明的范围或精神的情况下,可对本发明说明书的具体实施方式做多种改进和变化,这对本领域技术人员而言是显而易见的。由本发明的说明书得到的其他实施方式对技术人员而言是显而易见得的。本发明说明书和实施例仅是示例性的。It will be apparent to those skilled in the art that various modifications and variations may be made to the specific embodiments of the present invention description without departing from the scope or spirit of the present invention. Other embodiments derived from the present invention description will be apparent to those skilled in the art. The present invention description and examples are exemplary only.
关于本文中所使用的“包含”、“包括”、“具有”、“含有”等等,均为开放性的用语,即意指包含但不限于。The words “include,” “including,” “have,” “contain,” etc. used in this document are open-ended terms, meaning including but not limited to.
本发明的室温指的是25±2℃。The room temperature in the present invention refers to 25±2°C.
本发明实施例中,各原料均可通过购买得到,其中,粉煤灰为国电合力热电公司Ⅰ级粉煤灰;水泥为购自湖南鑫鼎力新材料科技有限公司的P.O 42.5级普通硅酸盐水泥;鹅卵石粒径为10-20mm;河砂为购自湖南某采砂厂细度模数为2.5-3.0mm的天然河砂;减水剂为购自武汉三源特种建材有限责任公司的ROCK-280型聚羧酸高性能减水剂;水为自来水;玄武岩纤维购自湖南邦贝玄武岩有限公司,其单纤维拉伸强度为2.25×103MPa。In the embodiment of the present invention, each raw material can be purchased, wherein the fly ash is Grade I fly ash of Guodian Heli Thermal Power Company; the cement is PO 42.5 grade ordinary Portland cement purchased from Hunan Xindingli New Material Technology Co., Ltd.; the particle size of the pebbles is 10-20 mm; the river sand is natural river sand with a fineness modulus of 2.5-3.0 mm purchased from a sand mining plant in Hunan; the water reducer is ROCK-280 type polycarboxylic acid high-performance water reducer purchased from Wuhan Sanyuan Special Building Materials Co., Ltd.; the water is tap water; the basalt fiber is purchased from Hunan Bangbei Basalt Co., Ltd., and its single fiber tensile strength is 2.25×10 3 MPa.
实施例1Example 1
改性玄武岩纤维的制备:Preparation of modified basalt fiber:
a、在烧杯中加入100mL氯化钠溶液(质量分数为15%),在其中加入5g玄武岩纤维(长度10mm,直径为15±2μm),从室温以2℃/min的升温速率加热至60℃保温4min,再以4℃/min的升温速率加热至95℃,保温2min,得到溶液A,在加热过程中将烧杯密封;a. Add 100 mL of sodium chloride solution (mass fraction 15%) into a beaker, add 5 g of basalt fiber (length 10 mm, diameter 15±2 μm), heat from room temperature to 60°C at a heating rate of 2°C/min for 4 min, then heat to 95°C at a heating rate of 4°C/min, and keep warm for 2 min to obtain solution A. Seal the beaker during the heating process;
b、在溶液A中加入3g十二烷基苯磺酸钠和5mL二甲基甲酰胺,进行超声处理,超声功率为280W,超声处理的同时进行搅拌,搅拌速率为120r/min,取出玄武岩纤维,干燥,得到改性玄武岩纤维。b. Add 3 g of sodium dodecylbenzene sulfonate and 5 mL of dimethylformamide to solution A, perform ultrasonic treatment, the ultrasonic power is 280 W, stir while performing ultrasonic treatment, the stirring rate is 120 r/min, take out the basalt fiber, dry it, and obtain modified basalt fiber.
玄武岩纤维增强混凝土的制备方法如下:The preparation method of basalt fiber reinforced concrete is as follows:
(1)将350份鹅卵石、240份河砂、85份粉煤灰、28份火山灰和250份水泥混合,搅拌均匀,得到混合料;(1) 350 parts of pebbles, 240 parts of river sand, 85 parts of fly ash, 28 parts of volcanic ash and 250 parts of cement are mixed and stirred uniformly to obtain a mixture;
(2)在所述混合料中加入15份改性玄武岩纤维,以850r/min的速率搅拌3min,加入15份减水剂(ROCK-280型聚羧酸高性能减水剂,下同)和140份水,先以400r/min的速率慢速搅拌12min,再以750r/min的速率快速搅拌4min,得到玄武岩纤维增强混凝土。(2) Add 15 parts of modified basalt fiber to the mixture, stir at a rate of 850 r/min for 3 min, add 15 parts of water reducer (ROCK-280 polycarboxylic acid high performance water reducer, the same below) and 140 parts of water, first slowly stir at a rate of 400 r/min for 12 min, and then quickly stir at a rate of 750 r/min for 4 min to obtain basalt fiber reinforced concrete.
取本实施例制备得到的玄武岩纤维增强混凝土任意5处样品,分别称量,再将所取样品放入鼓风干燥箱内进行干燥处理,烘干后称量其质量,最后得到这五处样品中玄武岩纤维占单样品总质量的质量分数分别为:1.30%、1.29%、1.26%、1.31%、1.28%,可见玄武岩纤维在混凝土中分散较为均匀。Take any five samples of the basalt fiber reinforced concrete prepared in this embodiment, weigh them respectively, put the samples into a blast drying oven for drying, weigh them after drying, and finally obtain the mass fractions of basalt fiber in the five samples in the total mass of the single sample: 1.30%, 1.29%, 1.26%, 1.31%, and 1.28%, respectively. It can be seen that the basalt fiber is dispersed more evenly in the concrete.
实施例2Example 2
改性玄武岩纤维的制备:Preparation of modified basalt fiber:
a、在烧杯中加入100mL氯化钠溶液(质量分数为15%),在其中加入5g玄武岩纤维(长度10mm,直径为15±2μm),从室温以3℃/min的升温速率加热至70℃保温3min,再以5℃/min的升温速率加热至100℃,保温1min,得到溶液A,在加热过程中将烧杯密封;a. Add 100 mL of sodium chloride solution (mass fraction 15%) into a beaker, add 5 g of basalt fiber (length 10 mm, diameter 15±2 μm), heat from room temperature to 70°C at a heating rate of 3°C/min for 3 min, then heat to 100°C at a heating rate of 5°C/min, and keep warm for 1 min to obtain solution A. Seal the beaker during the heating process;
b、在溶液A中加入5g十二烷基苯磺酸钠和15mL二甲基甲酰胺,进行超声处理,超声功率为300W,超声处理的同时进行搅拌,搅拌速率为100r/min,取出玄武岩纤维,干燥,得到改性玄武岩纤维。b. Add 5 g of sodium dodecylbenzene sulfonate and 15 mL of dimethylformamide to solution A, perform ultrasonic treatment, the ultrasonic power is 300 W, stir while performing ultrasonic treatment, the stirring rate is 100 r/min, take out the basalt fiber, dry it, and obtain modified basalt fiber.
玄武岩纤维增强混凝土的制备方法如下:The preparation method of basalt fiber reinforced concrete is as follows:
(1)将420份鹅卵石、220份河砂、90份粉煤灰、25份火山灰和240份水泥混合,搅拌均匀,得到混合料;(1) 420 parts of pebbles, 220 parts of river sand, 90 parts of fly ash, 25 parts of volcanic ash and 240 parts of cement are mixed and stirred uniformly to obtain a mixture;
(2)在所述混合料中加入10份改性玄武岩纤维,以800r/min的速率搅拌3min,加入20份减水剂和130份水,先以300r/min的速率慢速搅拌15min,再以700r/min的速率快速搅拌5min,得到玄武岩纤维增强混凝土。(2) Add 10 parts of modified basalt fiber to the mixture, stir at a rate of 800 r/min for 3 min, add 20 parts of water reducer and 130 parts of water, first slowly stir at a rate of 300 r/min for 15 min, and then quickly stir at a rate of 700 r/min for 5 min to obtain basalt fiber reinforced concrete.
实施例3Example 3
改性玄武岩纤维的制备:Preparation of modified basalt fiber:
a、在烧杯中加入100mL氯化钠溶液(质量分数为20%),在其中加入5g玄武岩纤维(长度20mm,直径为15±2μm),从室温以1℃/min的升温速率加热至50℃保温5min,再以3℃/min的升温速率加热至90℃,保温3min,得到溶液A,在加热过程中将烧杯密封;a. Add 100 mL of sodium chloride solution (mass fraction 20%) into a beaker, add 5 g of basalt fiber (length 20 mm, diameter 15±2 μm), heat from room temperature to 50°C at a heating rate of 1°C/min for 5 min, then heat to 90°C at a heating rate of 3°C/min, and keep warm for 3 min to obtain solution A. Seal the beaker during the heating process;
b、在溶液A中加入3g十二烷基苯磺酸钠和10mL二甲基甲酰胺,进行超声处理,超声功率为250W,超声处理的同时进行搅拌,搅拌速率为150r/min,取出玄武岩纤维,干燥,得到改性玄武岩纤维。b. Add 3 g of sodium dodecylbenzene sulfonate and 10 mL of dimethylformamide to solution A, perform ultrasonic treatment, the ultrasonic power is 250 W, stir while performing ultrasonic treatment, the stirring rate is 150 r/min, take out the basalt fiber, dry it, and obtain modified basalt fiber.
玄武岩纤维增强混凝土的制备方法如下:The preparation method of basalt fiber reinforced concrete is as follows:
(1)将480份鹅卵石、200份河砂、80份粉煤灰、25份火山灰和260份水泥混合,搅拌均匀,得到混合料;(1) 480 parts of pebbles, 200 parts of river sand, 80 parts of fly ash, 25 parts of volcanic ash and 260 parts of cement were mixed and stirred uniformly to obtain a mixture;
(2)在所述混合料中加入20份改性玄武岩纤维,以800r/min的速率搅拌3min,加入8份减水剂和130份水,先以500r/min的速率慢速搅拌10min,再以850r/min的速率快速搅拌3min,得到玄武岩纤维增强混凝土。(2) Add 20 parts of modified basalt fiber to the mixture, stir at a rate of 800 r/min for 3 min, add 8 parts of water reducer and 130 parts of water, first slowly stir at a rate of 500 r/min for 10 min, and then quickly stir at a rate of 850 r/min for 3 min to obtain basalt fiber reinforced concrete.
实施例4Example 4
改性玄武岩纤维的制备方法同实施例1。The preparation method of modified basalt fiber is the same as that in Example 1.
玄武岩纤维增强混凝土的制备方法如下:The preparation method of basalt fiber reinforced concrete is as follows:
(1)将300份鹅卵石、250份河砂、85份粉煤灰、30份火山灰和240份水泥混合,搅拌均匀,得到混合料;(1) 300 parts of pebbles, 250 parts of river sand, 85 parts of fly ash, 30 parts of volcanic ash and 240 parts of cement are mixed and stirred uniformly to obtain a mixture;
(2)在所述混合料中加入10份改性玄武岩纤维,以850r/min的速率搅拌3min,加入15份减水剂和150份水,先以400r/min的速率慢速搅拌12min,再以700r/min的速率快速搅拌3min,得到玄武岩纤维增强混凝土。(2) Add 10 parts of modified basalt fiber to the mixture, stir at a rate of 850 r/min for 3 min, add 15 parts of water reducer and 150 parts of water, first slowly stir at a rate of 400 r/min for 12 min, and then quickly stir at a rate of 700 r/min for 3 min to obtain basalt fiber reinforced concrete.
对比例1Comparative Example 1
同实施例1,不同之处仅在于直接加入等量的玄武岩纤维。The same as Example 1, except that an equal amount of basalt fibers is directly added.
取本对比例制备得到的玄武岩纤维增强混凝土任意5处样品,分别称量,再将所取样品放入鼓风干燥箱内进行干燥处理,烘干后称量其质量,最后得到这五处样品中玄武岩纤维占单样品总质量的质量分数分别为:1.28%、0.12%、0.00%、0.25%、0.31%,可见玄武岩纤维在混凝土中分散不均匀。Take any 5 samples of the basalt fiber reinforced concrete prepared in this comparative example, weigh them separately, put the samples into a blast drying oven for drying, weigh their masses after drying, and finally obtain the mass fractions of basalt fiber in the five samples in the total mass of the single sample: 1.28%, 0.12%, 0.00%, 0.25%, and 0.31%, respectively. It can be seen that the basalt fiber is unevenly dispersed in the concrete.
对比例2Comparative Example 2
同实施例1,不同之处仅在于改性玄武岩纤维的制备如下:The same as Example 1, except that the modified basalt fiber is prepared as follows:
将5g玄武岩纤维(长度10mm,直径为15±2μm)与3g十二烷基苯磺酸钠、5mL二甲基甲酰胺混合,进行超声处理,超声功率为280W,超声处理的同时进行搅拌,搅拌速率为120r/min,取出玄武岩纤维,干燥,得到改性玄武岩纤维。5 g of basalt fiber (length 10 mm, diameter 15±2 μm) was mixed with 3 g of sodium dodecylbenzene sulfonate and 5 mL of dimethylformamide, and ultrasonically treated at an ultrasonic power of 280 W. Stirring was performed while ultrasonically treating at a stirring rate of 120 r/min. The basalt fiber was taken out and dried to obtain modified basalt fiber.
对比例3Comparative Example 3
同实施例1,不同之处仅在于改性玄武岩纤维的制备如下:The same as Example 1, except that the modified basalt fiber is prepared as follows:
在烧杯中加入100mL氯化钠溶液(质量分数为15%),在其中加入5g玄武岩纤维(长度10mm,直径为15±2μm),从室温以2℃/min的升温速率加热至60℃保温4min,再以4℃/min的升温速率加热至95℃,保温2min,在加热过程中将烧杯密封,得到溶液A,取出玄武岩纤维,干燥,得到改性玄武岩纤维。Add 100 mL of sodium chloride solution (mass fraction of 15%) into a beaker, add 5 g of basalt fiber (length 10 mm, diameter 15±2 μm), heat from room temperature to 60°C at a heating rate of 2°C/min and keep warm for 4 minutes, then heat to 95°C at a heating rate of 4°C/min and keep warm for 2 minutes. During the heating process, seal the beaker to obtain solution A, take out the basalt fiber, and dry it to obtain modified basalt fiber.
对比例4Comparative Example 4
同实施例1,不同之处仅在于在玄武岩纤维增强混凝土的制备方法中,加入减水剂和水后,直接以750r/min的速率搅拌16min。The same as Example 1, except that in the preparation method of basalt fiber reinforced concrete, after adding the water reducer and water, stirring is directly performed at a speed of 750 r/min for 16 min.
按照GB/T 50081《普通混凝土力学性能试验方法标准》测试各实施例和各对比例玄武岩纤维增强混凝土的抗压强度、抗折强度、劈裂强度和弹性模量,依据GB-50010-《混凝土结构设计规范》评定抗裂等级,按照GB/T 50082《普通混凝土长期性能和耐久性能试验方法标准》测试抗裂等级,结果见表1。表1中的对比例5同实施例1,不同之处仅在于未加入改性玄武岩纤维。The compressive strength, flexural strength, splitting strength and elastic modulus of the basalt fiber reinforced concrete of each embodiment and each comparative example were tested according to GB/T 50081 "Standard for Test Methods of Mechanical Properties of Ordinary Concrete", the crack resistance grade was evaluated according to GB-50010- "Code for Design of Concrete Structures", and the crack resistance grade was tested according to GB/T 50082 "Standard for Test Methods of Long-term Performance and Durability of Ordinary Concrete", and the results are shown in Table 1. Comparative Example 5 in Table 1 is the same as Example 1, except that no modified basalt fiber is added.
表1Table 1
由表1可知,实施例1-4的混凝土在28d抗压强度、28d抗折强度、28d劈裂强度、28d弹性模量及抗裂等级技术指标均可满足要求,且克服了玄武岩纤维混凝土后期强度低和易开裂的缺陷。对比例1的混凝土在28d抗压强度、28d抗折强度、28d弹性模量及抗裂等级技术指标可满足要求,但28d劈裂强度不能满足要求,且对比例1在加入玄武岩纤维之后的56d抗压强度低于对比例5混凝土的56d抗压强度,证实了玄武岩纤维的添加会降低混凝土的后期抗压强度;对比例5的混凝土在28d抗压强度、28d抗折强度、28d劈裂强度及抗裂等级技术指标不满足要求。As can be seen from Table 1, the concrete of Examples 1-4 can meet the requirements in terms of 28d compressive strength, 28d flexural strength, 28d splitting strength, 28d elastic modulus and crack resistance grade technical indicators, and overcome the defects of low late strength and easy cracking of basalt fiber concrete. The concrete of Comparative Example 1 can meet the requirements in terms of 28d compressive strength, 28d flexural strength, 28d elastic modulus and crack resistance grade technical indicators, but the 28d splitting strength cannot meet the requirements, and the 56d compressive strength of Comparative Example 1 after adding basalt fiber is lower than the 56d compressive strength of the concrete of Comparative Example 5, which confirms that the addition of basalt fiber will reduce the late compressive strength of concrete; the concrete of Comparative Example 5 does not meet the requirements in terms of 28d compressive strength, 28d flexural strength, 28d splitting strength and crack resistance grade technical indicators.
以上,仅为本申请较佳的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应该以权利要求的保护范围为准。The above are only preferred specific implementations of the present application, but the protection scope of the present application is not limited thereto. Any changes or substitutions that can be easily thought of by any technician familiar with the technical field within the technical scope disclosed in the present application should be included in the protection scope of the present application. Therefore, the protection scope of the present application should be based on the protection scope of the claims.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310153743.1A CN116332591B (en) | 2023-02-23 | 2023-02-23 | A kind of basalt fiber reinforced concrete and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310153743.1A CN116332591B (en) | 2023-02-23 | 2023-02-23 | A kind of basalt fiber reinforced concrete and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN116332591A CN116332591A (en) | 2023-06-27 |
CN116332591B true CN116332591B (en) | 2024-10-01 |
Family
ID=86875566
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202310153743.1A Active CN116332591B (en) | 2023-02-23 | 2023-02-23 | A kind of basalt fiber reinforced concrete and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN116332591B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN119143461B (en) * | 2024-11-13 | 2025-01-24 | 山东正珩新材料科技有限责任公司 | Preparation process of basalt fiber toughened solid waste-based hypersulfated cement material |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107200516A (en) * | 2017-06-02 | 2017-09-26 | 吉林建筑大学 | A kind of treated basalt fiber enhancing scoria light aggregate concrete and preparation method |
CN109095832A (en) * | 2017-07-13 | 2018-12-28 | 中交武汉港湾工程设计研究院有限公司 | A kind of high-performance volcanic ash machine-made sand concrete |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108947398A (en) * | 2018-08-10 | 2018-12-07 | 苏州郎旭志远科技有限公司 | A kind of foamed concrete and preparation method thereof |
CN112159168B (en) * | 2020-09-02 | 2022-08-30 | 中铁大桥局第七工程有限公司 | C35 basalt fiber concrete for abutment and preparation method thereof |
CN114828602B (en) * | 2022-02-25 | 2024-05-07 | 山东大学 | Preparation and application of silicon dioxide coated zinc oxide/cobalt tetroxide hollow fibers |
CN114772964A (en) * | 2022-04-15 | 2022-07-22 | 东南大学 | Preparation method of surface-modified flocculent basalt fiber for improving asphalt adhesion performance |
CN114933452B (en) * | 2022-05-24 | 2022-12-09 | 绍兴上虞南方普银混凝土有限公司 | Low-shrinkage commercial concrete and preparation method thereof |
-
2023
- 2023-02-23 CN CN202310153743.1A patent/CN116332591B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107200516A (en) * | 2017-06-02 | 2017-09-26 | 吉林建筑大学 | A kind of treated basalt fiber enhancing scoria light aggregate concrete and preparation method |
CN109095832A (en) * | 2017-07-13 | 2018-12-28 | 中交武汉港湾工程设计研究院有限公司 | A kind of high-performance volcanic ash machine-made sand concrete |
Also Published As
Publication number | Publication date |
---|---|
CN116332591A (en) | 2023-06-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103288392B (en) | Fiber-toughened cement emulsified asphalt-based mixture and preparation method thereof | |
CN104671706B (en) | A kind of flexible compound silicate heat-protective coatings and preparation method | |
CN105174768A (en) | Nanometer cellulose fiber reinforced cement-based material | |
CN107200516A (en) | A kind of treated basalt fiber enhancing scoria light aggregate concrete and preparation method | |
CN105776976A (en) | Modified fiber toughened cement-based material and preparation method thereof | |
CN110054456A (en) | A kind of cement base surface material with high-temperature damage self-repair function | |
CN101234861B (en) | Method for preparing nano modified concrete complex mineral blending material | |
CN116332591B (en) | A kind of basalt fiber reinforced concrete and preparation method thereof | |
CN106242442A (en) | Preparation method of fiber-reinforced high-damping polymer concrete | |
CN119912222B (en) | An economical, green, low-carbon, ultra-high performance concrete | |
CN116789411A (en) | High-strength compression-resistant anti-cracking lightweight aggregate concrete and preparation method thereof | |
CN116199460A (en) | High-crack-resistance wear-resistant cement and preparation method thereof | |
CN115677296A (en) | Basalt-polyvinyl alcohol hybrid fiber reinforced cement concrete and preparation method thereof | |
CN114315197B (en) | A kind of fiber concrete interface modifier and modification method | |
CN117819926B (en) | Potassium titanate whisker reinforced ultra-high performance recycled concrete and preparation method thereof | |
CN115872694B (en) | Ultra-high performance concrete of modified multiwall carbon nanotube and preparation method thereof | |
CN118619626A (en) | A kind of crack-resistant concrete and preparation method thereof | |
CN117843312A (en) | A kind of high crack resistance concrete and preparation method thereof | |
CN116199469B (en) | Method for improving setting strength of organic material and cement prepared by method | |
CN114907050B (en) | Mineral admixture and preparation method thereof | |
CN112110697A (en) | A method for improving the dynamic properties of concrete by applying multi-scale fiber structures | |
CN117088650A (en) | Ultrahigh-toughness geopolymer composite material and preparation method thereof | |
CN117447131A (en) | Fatigue-resistant high-strength wind-electricity grouting material, and preparation method and application thereof | |
CN117024071A (en) | UHPC material and production process thereof | |
CN116444197A (en) | A functional carbon reduction additive for reducing concrete carbon emissions and its preparation method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |