CN116325157A - Nitride-based semiconductor IC chip and manufacturing method thereof - Google Patents
Nitride-based semiconductor IC chip and manufacturing method thereof Download PDFInfo
- Publication number
- CN116325157A CN116325157A CN202280004808.XA CN202280004808A CN116325157A CN 116325157 A CN116325157 A CN 116325157A CN 202280004808 A CN202280004808 A CN 202280004808A CN 116325157 A CN116325157 A CN 116325157A
- Authority
- CN
- China
- Prior art keywords
- temperature sensor
- nitride
- region
- based semiconductor
- transistor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract 39
- 150000004767 nitrides Chemical class 0.000 title claims abstract 36
- 238000004519 manufacturing process Methods 0.000 title claims 2
- 238000002955 isolation Methods 0.000 claims abstract 3
- 230000005533 two-dimensional electron gas Effects 0.000 claims abstract 3
- 238000000034 method Methods 0.000 claims 11
- 239000000758 substrate Substances 0.000 claims 5
- 229910002601 GaN Inorganic materials 0.000 claims 4
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 claims 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims 2
- RNQKDQAVIXDKAG-UHFFFAOYSA-N aluminum gallium Chemical compound [Al].[Ga] RNQKDQAVIXDKAG-UHFFFAOYSA-N 0.000 claims 2
- 229910052751 metal Inorganic materials 0.000 claims 2
- 239000002184 metal Substances 0.000 claims 2
- 238000000059 patterning Methods 0.000 claims 2
- 229910052710 silicon Inorganic materials 0.000 claims 2
- 239000010703 silicon Substances 0.000 claims 2
- 239000010936 titanium Substances 0.000 claims 2
- 229910052719 titanium Inorganic materials 0.000 claims 2
- 238000005259 measurement Methods 0.000 abstract 1
- 230000035945 sensitivity Effects 0.000 abstract 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/40—FETs having zero-dimensional [0D], one-dimensional [1D] or two-dimensional [2D] charge carrier gas channels
- H10D30/47—FETs having zero-dimensional [0D], one-dimensional [1D] or two-dimensional [2D] charge carrier gas channels having 2D charge carrier gas channels, e.g. nanoribbon FETs or high electron mobility transistors [HEMT]
- H10D30/471—High electron mobility transistors [HEMT] or high hole mobility transistors [HHMT]
- H10D30/475—High electron mobility transistors [HEMT] or high hole mobility transistors [HHMT] having wider bandgap layer formed on top of lower bandgap active layer, e.g. undoped barrier HEMTs such as i-AlGaN/GaN HEMTs
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01K—MEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
- G01K7/00—Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
- G01K7/16—Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01K—MEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
- G01K7/00—Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
- G01K7/16—Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements
- G01K7/18—Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a linear resistance, e.g. platinum resistance thermometer
- G01K7/186—Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a linear resistance, e.g. platinum resistance thermometer using microstructures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/58—Structural electrical arrangements for semiconductor devices not otherwise provided for, e.g. in combination with batteries
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/40—FETs having zero-dimensional [0D], one-dimensional [1D] or two-dimensional [2D] charge carrier gas channels
- H10D30/47—FETs having zero-dimensional [0D], one-dimensional [1D] or two-dimensional [2D] charge carrier gas channels having 2D charge carrier gas channels, e.g. nanoribbon FETs or high electron mobility transistors [HEMT]
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D84/00—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
- H10D84/01—Manufacture or treatment
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D84/00—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
- H10D84/01—Manufacture or treatment
- H10D84/02—Manufacture or treatment characterised by using material-based technologies
- H10D84/05—Manufacture or treatment characterised by using material-based technologies using Group III-V technology
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D84/00—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
- H10D84/80—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of at least one component covered by groups H10D12/00 or H10D30/00, e.g. integration of IGFETs
- H10D84/811—Combinations of field-effect devices and one or more diodes, capacitors or resistors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/28—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
- H01L23/31—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
- H01L23/3157—Partial encapsulation or coating
- H01L23/3171—Partial encapsulation or coating the coating being directly applied to the semiconductor body, e.g. passivation layer
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/48—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
- H01L23/482—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of lead-in layers inseparably applied to the semiconductor body (electrodes)
- H01L23/4824—Pads with extended contours, e.g. grid structure, branch structure, finger structure
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/10—Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
- H10D62/17—Semiconductor regions connected to electrodes not carrying current to be rectified, amplified or switched, e.g. channel regions
- H10D62/343—Gate regions of field-effect devices having PN junction gates
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/80—Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials
- H10D62/85—Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials being Group III-V materials, e.g. GaAs
- H10D62/8503—Nitride Group III-V materials, e.g. AlN or GaN
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D64/00—Electrodes of devices having potential barriers
- H10D64/20—Electrodes characterised by their shapes, relative sizes or dispositions
- H10D64/23—Electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. sources, drains, anodes or cathodes
- H10D64/251—Source or drain electrodes for field-effect devices
- H10D64/257—Source or drain electrodes for field-effect devices for lateral devices wherein the source or drain electrodes are characterised by top-view geometrical layouts, e.g. interdigitated, semi-circular, annular or L-shaped electrodes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D84/00—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
- H10D84/40—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of at least one component covered by groups H10D12/00 or H10D30/00 with at least one component covered by groups H10D10/00 or H10D18/00, e.g. integration of IGFETs with BJTs
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Junction Field-Effect Transistors (AREA)
Abstract
一种氮化物基半导体集成电路(IC)芯片(100),其包含至少一个晶体管(Q)和被配置成用于感测所述晶体管(Q)的温度的温度传感器(T)。所述晶体管(Q)和所述温度传感器(T)形成于具有二维电子气体(2DEG)层的堆叠式半导体结构上,所述2DEG层由一个或多个隔离区(52)划分成用于形成所述晶体管(Q)的一个或多个晶体管区(53)和用于形成所述温度传感器(T)的一个或多个温度传感器区(54)。所述2DEG层具有相对较高的电阻温度系数,其可提供电阻随温度的显著变化。所得温度传感器(T)具有高温灵敏度,且因此可放宽对测量设备的精度的要求且提供高测量准确度。
A nitride-based semiconductor integrated circuit (IC) chip (100) comprising at least one transistor (Q) and a temperature sensor (T) configured to sense the temperature of the transistor (Q). The transistor (Q) and the temperature sensor (T) are formed on a stacked semiconductor structure having a two-dimensional electron gas (2DEG) layer divided by one or more isolation regions (52) for One or more transistor regions (53) for forming said transistor (Q) and one or more temperature sensor regions (54) for forming said temperature sensor (T). The 2DEG layer has a relatively high temperature coefficient of resistance, which can provide a significant change in resistance with temperature. The resulting temperature sensor (T) has high temperature sensitivity and thus can relax the requirements on the accuracy of the measuring equipment and provide high measurement accuracy.
Description
技术领域technical field
本发明大体上涉及氮化物基半导体集成电路(IC)芯片。更具体地说,本发明涉及具有温度感测能力的氮化物基半导体。The present invention generally relates to nitride-based semiconductor integrated circuit (IC) chips. More specifically, the present invention relates to nitride-based semiconductors with temperature sensing capabilities.
背景技术Background technique
由于低功率损耗和快速开关转换,诸如氮化镓(GaN)之类的宽带隙材料已广泛用于高频电能转换系统。相较于硅金属氧化物半导体场效应晶体管(MOSFET),GaN高电子迁移率晶体管(HEMT)在高功率和高频率应用中具有更好的品质因数和更具前景的性能。氮化物基HEMT利用具有不同带隙的两种氮化物基材料之间的异质结界面以形成量子阱状结构,所述量子阱状结构容纳二维电子气体(2DEG)区,从而满足高功率/频率装置的需求。除了HEMT之外,具有异质结构的装置的实例进一步包含异质结双极晶体管(HBT)、异质结场效应晶体管(HFET)和调制掺杂FET(MODFET)。Wide bandgap materials such as gallium nitride (GaN) have been widely used in high frequency power conversion systems due to low power loss and fast switching transitions. Compared to silicon metal oxide semiconductor field effect transistors (MOSFETs), GaN high electron mobility transistors (HEMTs) have a better figure of merit and more promising performance in high power and high frequency applications. Nitride-based HEMTs utilize a heterojunction interface between two nitride-based materials with different bandgaps to form a quantum well-like structure that accommodates a two-dimensional electron gas (2DEG) region to satisfy high power /frequency device needs. In addition to HEMTs, examples of devices with heterostructures further include heterojunction bipolar transistors (HBTs), heterojunction field effect transistors (HFETs), and modulation doped FETs (MODFETs).
常规地,可通过形成从晶体管的栅极电极延伸的一对端子来监测晶体管的温度,以测量栅极电极的电阻随温度的变化。栅极电极通常由氮化钛(TiN)制成,其具有约400ppm/K的相对较低的电阻温度系数(TCR)和约30Ω/sq的小薄层电阻。电阻随温度的变化不足以达到所需的测量准确度。此外,来自栅极的泄漏电流将影响测量准确度。为了解决这些问题,一种方法为将金属(例如,铂(Pt))沉积在栅极电极上的介电层之上,以形成围绕栅极电极的环形热敏电阻以用于温度感测。然而,此类方法需要额外的掩模和制造步骤,这增加了成本和生产提前期。另一方法为在晶体管的源极之间形成金属(例如,铝(Al))温度传感器。然而,此类方法需要更复杂的路由设计。Conventionally, the temperature of a transistor can be monitored by forming a pair of terminals extending from the gate electrode of the transistor to measure the change in resistance of the gate electrode with temperature. The gate electrode is usually made of titanium nitride (TiN), which has a relatively low temperature coefficient of resistance (TCR) of about 400 ppm/K and a small sheet resistance of about 30Ω/sq. The change in resistance with temperature is not sufficient to achieve the required measurement accuracy. Additionally, leakage current from the gate will affect measurement accuracy. To address these issues, one approach is to deposit a metal, such as platinum (Pt), over a dielectric layer on the gate electrode to form a ring-shaped thermistor around the gate electrode for temperature sensing. However, such methods require additional masking and fabrication steps, which increase cost and production lead time. Another approach is to form a metal (eg, aluminum (Al)) temperature sensor between the sources of the transistors. However, such methods require more complex routing designs.
发明内容Contents of the invention
根据本公开的一个方面,提供一种氮化物基半导体集成电路(IC)芯片,其包含至少一个晶体管和被配置成用于感测晶体管的温度的温度传感器。晶体管和温度传感器形成于堆叠式半导体结构上,所述堆叠式半导体结果包含:衬底;第一氮化物基半导体层,其安置于衬底上方;及第二氮化物基半导体层,其安置于第一氮化物基半导体层上方且其带隙大于第一氮化物基半导体层的带隙,使得邻近于第一氮化物基半导体层与第二氮化物基半导体层之间的异质结形成二维电子气体(2DEG)层;其中所述2DEG层由一个或多个隔离区划分成用于形成晶体管的晶体管区和用于形成温度传感器的一个或多个温度传感器区;并且其中所述温度传感器包含:温度感测主体,其包括用于连接一个或多个温度传感器区以形成温度感测主体的一个或多个桥接器;第一温度感测电极,其电连接到温度感测主体的第一末端;及第二温度感测电极,其电连接到温度感测主体的第二末端;其中所述晶体管包含:至少一对漏极电极和源极电极,其安置于第二氮化物基半导体层上方;及至少一个栅极结构,其安置于所述至少一对漏极电极和源极电极之间;并且其中第一温度感测电极和第二温度感测电极通过使用于形成漏极电极和源极电极的毯覆式金属层图案化而形成。According to an aspect of the present disclosure, there is provided a nitride-based semiconductor integrated circuit (IC) chip including at least one transistor and a temperature sensor configured to sense a temperature of the transistor. The transistor and the temperature sensor are formed on a stacked semiconductor structure comprising: a substrate; a first nitride-based semiconductor layer disposed over the substrate; and a second nitride-based semiconductor layer disposed on the above the first nitride-based semiconductor layer and having a bandgap greater than that of the first nitride-based semiconductor layer, such that two adjacent heterojunctions are formed between the first nitride-based semiconductor layer and the second nitride-based semiconductor layer. a two-dimensional electron gas (2DEG) layer; wherein the 2DEG layer is divided by one or more isolation regions into a transistor region for forming a transistor and one or more temperature sensor regions for forming a temperature sensor; and wherein the temperature sensor comprises : a temperature sensing body comprising one or more bridges for connecting one or more temperature sensor regions to form a temperature sensing body; a first temperature sensing electrode electrically connected to the first temperature sensing body end; and a second temperature sensing electrode electrically connected to the second end of the temperature sensing body; wherein the transistor includes: at least one pair of drain electrode and source electrode disposed on the second nitride-based semiconductor layer above; and at least one gate structure disposed between the at least one pair of drain electrodes and source electrodes; and wherein the first temperature sensing electrode and the second temperature sensing electrode are used to form the drain electrode and the The blanket metal layer of the source electrode is patterned.
氮化物基2DEG层具有约9000ppm/K的相对较高的电阻温度系数和大于600Ω/sq的高薄层电阻,这可提供电阻随温度的显著变化。所得2DEG温度传感器具有高温灵敏度,且因此可放宽对测量设备的精度的要求且提供高测量准确度。此外,由于2DEG温度传感器元件通过欧姆金属或2DEG层自身互连,这将不影响装置自身的布线。与现有解决方案相比,更容易优化导通电阻和电流均匀性。The nitride-based 2DEG layer has a relatively high temperature coefficient of resistance of about 9000 ppm/K and a high sheet resistance of greater than 600 Ω/sq, which can provide a significant change in resistance with temperature. The resulting 2DEG temperature sensor has high temperature sensitivity and thus can relax the requirement on the precision of the measurement equipment and provide high measurement accuracy. Furthermore, since the 2DEG temperature sensor elements are interconnected by ohmic metal or the 2DEG layer itself, this will not affect the wiring of the device itself. It is easier to optimize on-resistance and current uniformity than existing solutions.
附图说明Description of drawings
通过参考附图从以下详细描述可以容易地理解本公开的各方面。图示可能未必按比例绘制。也就是说,为了论述的清楚起见,各种特征的尺寸可任意增大或减小。由于制造工艺和公差,本公开中的工艺再现与实际设备之间可存在区别。可在整个图式和具体实施方式中使用共同参考标号来指示相同或类似组件。Aspects of the present disclosure can be readily understood from the following detailed description by referring to the accompanying drawings. Illustrations may not necessarily be drawn to scale. That is, the dimensions of the various features may be arbitrarily increased or decreased for clarity of discussion. Due to manufacturing processes and tolerances, differences may exist between the process reproductions in this disclosure and the actual device. Common reference numbers may be used throughout the drawings and detailed description to refer to the same or similar components.
图1A和1B描绘根据本发明的各种实施例的氮化物基半导体芯片的结构;1A and 1B depict the structure of a nitride-based semiconductor chip according to various embodiments of the present invention;
图2A和2B描绘根据本发明的一个实施例的氮化物基半导体芯片的结构;2A and 2B depict the structure of a nitride-based semiconductor chip according to one embodiment of the present invention;
图3A和3B描绘根据本发明的另一实施例的氮化物基半导体芯片的结构;3A and 3B depict the structure of a nitride-based semiconductor chip according to another embodiment of the present invention;
图4A和4B描绘根据本发明的另一实施例的氮化物基半导体芯片的结构;4A and 4B depict the structure of a nitride-based semiconductor chip according to another embodiment of the present invention;
图5A和5B描绘根据本发明的另一实施例的氮化物基半导体芯片500的结构;且5A and 5B depict the structure of a nitride-based
图6A到6D描绘根据本发明的用于制造半导体芯片的方法的不同阶段。6A to 6D depict different stages of a method for manufacturing a semiconductor chip according to the invention.
具体实施方式Detailed ways
在以下描述中,将阐述本公开的优选实例作为应被视为说明性而非限制性的实施例。可省略特定细节以免使本公开模糊不清;然而,编写本公开是为了使所属领域的技术人员能够在不进行不当实验的情况下实践本文中的教示。In the following description, preferred examples of the present disclosure will be set forth as embodiments which should be considered as illustrative rather than restrictive. Certain details may be omitted so as not to obscure the disclosure; however, this disclosure has been written to enable one skilled in the art to practice the teachings herein without undue experimentation.
图1A和1B描绘根据本发明的各种实施例的氮化物基半导体芯片100的结构。图1A为半导体芯片100的部分布局,其展示了一些元件之中的关系,且图1B为沿图1A中的线A-A'截取的横截面图。1A and 1B depict the structure of a nitride-based
参看图1A和1B,半导体芯片100可包含晶体管Q和被配置成用于感测晶体管Q的温度的温度传感器T。晶体管Q和温度传感器T可形成于堆叠式半导体结构上,所述堆叠式半导体结构至少包含:衬底102;安置于衬底102上方的第一氮化物基半导体层104;及安置于第一氮化物基半导体层104上方的第二氮化物基半导体层106。Referring to FIGS. 1A and 1B , a
选择氮化物基半导体层104和106的示例性材料以使得氮化物基半导体层106的带隙(即,禁带宽度)大于氮化物基半导体层104的带隙,这会使其电子亲和势彼此不同并且在其间形成异质结。举例来说,当氮化物基半导体层104为带隙大约为3.4eV的未掺杂GaN层时,氮化物基半导体层106可选择为带隙大约为4.0eV的AlGaN层。由此,氮化物基半导体层104和106可分别充当沟道层和势垒层。在沟道层与势垒层之间的接合界面处产生三角阱电势,使得电子在三角阱电势中积聚,由此邻近于异质结产生二维电子气体(2DEG)区。因此,多通道开关装置可用于包含一个或多个GaN基高电子迁移率晶体管(HEMT)。Exemplary materials for the nitride-based
衬底102可为半导体衬底。衬底102的示例性材料可包含例如但不限于Si、p掺杂Si、n掺杂Si、SiC、GaN、蓝宝石或其它合适的半导体材料。The
氮化物基半导体层104的示例性材料可包含例如但不限于氮化物或III-V族化合物,例如GaN、AlN、InN、InxAlyGa(1-x-y)N(其中x+y≤1)、AlyGa(1-y)N(其中y≤1)。氮化物基半导体层104的示例性结构可包含例如但不限于多层结构、超晶格结构和组成梯度结构。Exemplary materials of the nitride-based
氮化物基半导体层106的示例性材料可包含例如但不限于氮化物或III-V族化合物,如GaN、AlN、InN、InxAlyGa(1-x-y)N(其中x+y≤1)、AlyGa(1-y)N(其中y≤1)。Exemplary materials of the nitride-based
在一些实施例中,半导体芯片100可进一步包含缓冲层和成核层(未图示),或其组合。缓冲层和成核层可安置于衬底102与氮化物基半导体层104之间。缓冲层和成核层可被配置成减少衬底102与氮化物基半导体层104之间的晶格和热失配,由此解决因失配/差异而导致的缺陷。缓冲层可包含III-V化合物。III-V化合物可包含例如但不限于铝、镓、铟、氮或其组合。因此,缓冲层的示例性材料还可包含例如但不限于GaN、AlN、AlGaN、InAlGaN或其组合。成核层的示例性材料可包含例如但不限于AlN或其合金中的任一个。In some embodiments, the
晶体管Q和温度传感器T可通过形成于2DEG区中的一个或多个隔离区52彼此隔离。具体地说,2DEG区可由一个或多个隔离区52划分成用于形成晶体管Q的一个或多个晶体管区53和用于形成温度传感器T的一个或多个温度传感器区54。Transistor Q and temperature sensor T may be isolated from each other by one or
一个或多个晶体管区53可以具有M个行和N个列的阵列进行布置,其中M和N为正整数。One or
晶体管Q可进一步包含安置于堆叠式半导体结构上/之上/上方的多个栅极结构110和多个源极/漏极(S/D)电极116。S/D电极116中的每一个可取决于装置设计而充当源极电极或漏极电极。S/D电极116可位于对应栅极结构110的两个相对侧处,但可使用其它配置,特别是当装置中采用多个源极、漏极或栅极电极时。栅极结构110中的每一个可被布置成使得栅极结构110中的每一个位于至少两个S/D电极116之间。Transistor Q may further include a plurality of
在示例性图示中,对于晶体管中的每一个,邻近的S/D电极116关于其间的栅极结构110对称。在一些实施例中,邻近的S/D电极116可任选地关于其间的栅极结构110不对称。也就是说,S/D电极116中的一个相比于S/D电极116中的另一个可更接近栅极结构110。In the exemplary illustration, for each of the transistors, adjacent S/
在一些实施例中,栅极结构110中的每一个可包含可任选的栅极半导体层和栅极金属层。栅极半导体层和栅极金属层堆叠于氮化物基半导体层106上。栅极半导体层处于氮化物基半导体层106与栅极金属层之间。栅极半导体层和栅极金属层可形成肖特基势垒(Schottky barrier)。在一些实施例中,晶体管Q可进一步包含p型掺杂III-V化合物半导体层与栅极金属层之间的可任选的介电层(未图示)。In some embodiments, each of the
具体地说,栅极半导体层可为p型掺杂III-V化合物半导体层。p型掺杂III-V化合物半导体层可与氮化物基半导体层106产生至少一个p-n结以耗尽2DEG区,使得2DEG区的对应于在对应栅极结构110下方的位置的至少一个区段具有与2DEG区的其余部分不同的特性(例如,不同电子浓度)并且因此被阻塞。由于此类机构,晶体管Q可具有用于形成增强型装置的常关特性,所述增强型装置在其栅极电极处于大致零偏压时处于常关状态。换句话说,当没有电压施加到栅极电极或施加到栅极电极的电压小于阈值电压(即,在栅极结构110下方形成反型层所需的最小电压)时,保持栅极结构110下方的2DEG区的区段被阻塞,且因此没有电流从其穿过。此外,通过提供p型掺杂III-V化合物半导体层,栅极泄漏电流减小,且实现断开状态期间阈值电压的增大。Specifically, the gate semiconductor layer may be a p-type doped III-V compound semiconductor layer. The p-type doped III-V compound semiconductor layer may create at least one p-n junction with the nitride-based
在一些实施例中,可省略p型掺杂III-V化合物半导体层,使得晶体管Q为耗尽型装置,这意味着晶体管Q在零栅极-源极电压下处于常开状态。In some embodiments, the p-type doped III-V compound semiconductor layer may be omitted such that transistor Q is a depletion device, meaning that transistor Q is normally on at zero gate-source voltage.
p型掺杂III-V化合物半导体层的示例性材料可包含例如但不限于p掺杂III-V族氮化物半导体材料,例如p型GaN、p型AlGaN、p型InN、p型AlInN、p型InGaN、p型AlInGaN,或其组合。在一些实施例中,通过使用例如Be、Mg、Zn、Cd和Mg等p型杂质来实现p掺杂材料。Exemplary materials for p-type doped III-V compound semiconductor layers may include, for example but not limited to, p-doped III-V group nitride semiconductor materials such as p-type GaN, p-type AlGaN, p-type InN, p-type AlInN, p-type type InGaN, p-type AlInGaN, or a combination thereof. In some embodiments, the p-doped material is achieved by using p-type impurities such as Be, Mg, Zn, Cd, and Mg.
在一些实施例中,栅极电极可包含金属或金属化合物。栅极电极可形成为单个层,或具有相同或不同组成的多个层。金属或金属化合物的示例性材料可包含例如但不限于W、Au、Pd、Ti、Ta、Co、Ni、Pt、Mo、TiN、TaN、Si、其金属合金或化合物,或其它金属化合物。在一些实施例中,栅极电极的示例性材料可包含例如但不限于氮化物、氧化物、硅化物、掺杂半导体或其组合。In some embodiments, the gate electrode may comprise a metal or a metal compound. The gate electrode can be formed as a single layer, or as multiple layers of the same or different compositions. Exemplary materials of metals or metal compounds may include, for example but not limited to, W, Au, Pd, Ti, Ta, Co, Ni, Pt, Mo, TiN, TaN, Si, metal alloys or compounds thereof, or other metal compounds. In some embodiments, exemplary materials for the gate electrode may include, for example but not limited to, nitrides, oxides, silicides, doped semiconductors, or combinations thereof.
在一些实施例中,可任选的介电层可由单层或多层的介电材料形成。示例性介电材料可包含例如但不限于一个或多个氧化物层、SiOx层、SiNx层、高k介电材料(例如,HfO2、Al2O3、TiO2、HfZrO、Ta2O3、HfSiO4、ZrO2、ZrSiO2等)或其组合。In some embodiments, the optional dielectric layer may be formed from a single layer or multiple layers of dielectric material. Exemplary dielectric materials may include, for example, without limitation, one or more oxide layers, SiOx layers, SiNx layers, high-k dielectric materials (e.g., HfO2 , Al2O3 , TiO2 , HfZrO, Ta2 O 3 , HfSiO 4 , ZrO 2 , ZrSiO 2 , etc.) or combinations thereof.
在一些实施例中,S/D电极116可包含例如但不限于金属、合金、掺杂半导体材料(例如掺杂结晶硅)、例如硅化物和氮化物的化合物、其它导体材料或其组合。S/D电极116的示例性材料可包含例如但不限于Ti、AlSi、TiN,或其组合。S/D电极116可为单个层,或具有相同或不同组成的多个层。在一些实施例中,S/D电极116可与氮化物基半导体层106形成欧姆接触。欧姆接触可通过将Ti、Al或其它合适的材料应用于S/D电极116来实现。在一些实施例中,S/D电极116中的每一个由至少一个共形层和导电填充物形成。共形层可包覆导电填充物。共形层的示例性材料例如但不限于Ti、Ta、TiN、Al、Au、AlSi、Ni、Pt或其组合。导电填充物的示例性材料可包含例如但不限于AlSi、AlCu或其组合。In some embodiments, S/
温度传感器T可包含:温度感测主体550,其包括温度传感器区54;第一温度感测电极551,其安置于温度感测主体550的第一末端处;及第二温度感测电极552,其安置于温度感测主体550的第二末端处。The temperature sensor T may include: a
由于温度感测主体550由氮化物基2DEG区形成,因此其可具有约为9000ppm/K的相对较高的电阻温度系数,这可提供电阻随温度的显著变化。Since the
在存在多于一个温度传感器区54的情况下,温度感测主体550可进一步包括用于串联连接温度传感器区54以形成温度感测主体550的桥接器(未图示)。在一些实施例中,桥接器可为形成于2DEG区中的导电条带线,使得温度感测主体550可充当单片2DEG电阻器。在一些实施例中,桥接器可为形成于堆叠式半导体结构上方的金属条带线,例如形成于氮化物基半导体层106上。In case there is more than one
第一温度感测电极551和第二温度感测电极552可形成于堆叠式半导体结构上方。在一些实施例中,第一温度感测电极551和第二温度感测电极552可形成于氮化物基半导体层106上。The first
在一些实施例中,第一温度感测电极551和第二温度感测电极552可包含例如但不限于金属、合金、掺杂半导体材料(例如掺杂结晶硅)、化合物(例如硅化物和氮化物)、其它导体材料或其组合。第一温度感测电极551和第二温度感测电极552的示例性材料可包含例如但不限于Ti、AlSi、TiN或其组合。第一温度感测电极551和第二温度感测电极552可为单个层,或具有相同或不同组成的多个层。在一些实施例中,第一温度感测电极551和第二温度感测电极552可与氮化物基半导体层106形成欧姆接触。欧姆接触可通过将Ti、Al或其它合适的材料施加到第一温度感测电极551和第二温度感测电极552来实现。在一些实施例中,第一温度感测电极551和第二温度感测电极552中的每一个由至少一个共形层和导电填充物形成。共形层可包覆导电填充物。共形层的示例性材料例如但不限于Ti、Ta、TiN、Al、Au、AlSi、Ni、Pt或其组合。导电填充物的示例性材料可包含例如但不限于AlSi、AlCu或其组合。In some embodiments, the first
在一些实施例中,第一温度感测电极和第二温度感测电极以及S/D电极116通过使安置于氮化物基半导体层106上的同一毯覆式金属层图案化而形成。In some embodiments, the first and second temperature sensing electrodes and the S/
图2A和2B描绘根据本发明的一个实施例的氮化物基半导体芯片200的结构。图2A为半导体芯片200的部分布局,其展示了一些元件之中的关系,且图2B为沿图2A中的线A-A'截取的横截面图。氮化物基半导体芯片200的堆叠式半导体结构可类似于氮化物基半导体芯片100的堆叠式半导体结构。为了简洁起见,图2A和2B中的相同或类似元件被给定与图1A和1B相同的参考标号且将不进一步详细描述。2A and 2B depict the structure of a nitride-based
参看图2A和2B,氮化物基半导体芯片200可包含晶体管Q2和被配置成用于感测晶体管Q2的温度的温度传感器T2。晶体管Q2可包含晶体管区的2×1阵列,所述晶体管区包括晶体管区2531和晶体管区2532。晶体管区2531和2532可彼此竖直对准且水平地间隔开。Referring to FIGS. 2A and 2B , the nitride-based
温度传感器T2可具有包含温度传感器区254的温度感测主体2550。温度传感器区254可与晶体管区2531、2532竖直对准且定位于晶体管区2531与晶体管区2532之间。The temperature sensor T2 may have a
温度传感器T2可进一步包含安置于温度感测主体2550的第一末端处的第一温度感测电极2551和安置于温度感测主体2550的第二末端处的第二温度感测电极2552。具体地说,第一温度感测电极2551电连接到温度传感器区254的第一末端,且第二温度感测电极2552电连接到温度传感器区254的第二末端。The temperature sensor T2 may further include a first
图3A和3B描绘根据本发明的另一实施例的氮化物基半导体芯片300的结构。图3A为半导体芯片300的部分布局,其展示了一些元件之中的关系,且图3B为沿图3A中的线A-A'截取的横截面图。氮化物基半导体芯片300的堆叠式半导体结构类似于氮化物基半导体芯片100的堆叠式半导体结构。为了简洁起见,图3A和3B中的相同或类似元件被给定与图1A和1B相同的参考标号且将不进一步详细描述。3A and 3B depict the structure of a nitride-based
参看图3A和3B,氮化物基半导体芯片300可包含晶体管Q3和被配置成用于感测晶体管Q3的温度的温度传感器T3。晶体管Q3可包含晶体管区3531和3532的1×2阵列。晶体管区3531和3532可彼此水平对准且竖直地间隔开。Referring to FIGS. 3A and 3B , the nitride-based
温度传感器T3可具有温度感测主体3550,其包含温度传感器区3541、温度传感器区3542、温度传感器区3543和温度传感器区3544。温度传感器区3541、3542可彼此水平对准且竖直地间隔开。温度传感器区3543、3544可彼此水平对准且竖直地间隔开。温度传感器区3541、3544均可与晶体管区3532竖直对准且分别定位于晶体管区3532的两个相对侧处。温度传感器区3542、3543均可与晶体管区3531竖直对准且分别定位于晶体管区3531的两个相对侧处。The temperature sensor T3 may have a
温度感测主体3550可进一步包含竖直桥接器3561,其电连接温度传感器区3541的第二末端和温度传感器区3542的第一末端。温度感测主体3550可进一步包含水平桥接器3562,其电连接温度传感器区3542的第二末端和温度传感器区3543的第一末端。温度感测主体3550可进一步包含竖直桥接器3563,其电连接温度传感器区3543的第二末端和温度传感器区3544的第一末端。The
温度传感器T3可进一步包含安置于温度感测主体3550的第一末端处的第一温度感测电极3551和安置于温度感测主体3550的第二末端处的第二温度感测电极3552。具体地说,第一温度感测电极3551电连接到温度传感器区3541的第一末端,且第二温度感测电极3552电连接到温度传感器区3544的第二末端。The temperature sensor T3 may further include a first
图4A和4B描绘根据本发明的另一实施例的氮化物基半导体芯片400的结构。图4A为半导体芯片400的部分布局,其展示了一些元件之中的关系,且图4B为沿图4A中的线A-A'截取的横截面图。氮化物基半导体芯片400的堆叠式半导体结构类似于氮化物基半导体芯片100的堆叠式半导体结构。为了简洁起见,图4A和4B中的相同或类似元件被给定与图1A和1B相同的参考标号且将不进一步详细描述。4A and 4B depict the structure of a nitride-based
参看图4A和4B,半导体芯片400可包括晶体管Q4和温度传感器T4。晶体管Q4可包含晶体管区4531和4532的1×2阵列。晶体管区4531和4532可彼此水平对准且竖直地间隔开。4A and 4B, the
温度传感器T4可具有温度感测主体4550,其包含温度传感器区4541、温度传感器区4542、温度传感器区4543和温度传感器区4544。温度传感器区4541、4542均可与晶体管区4531竖直对准且分别定位于晶体管区4531的两个相对侧处。温度传感器区4543、4544均可与晶体管区4532竖直对准且分别定位于晶体管区4532的两个相对侧处。温度传感器区4541、4543可彼此水平对准且竖直地间隔开。温度传感器区4542、4544可彼此水平对准且竖直地间隔开。The temperature sensor T4 may have a
温度感测主体4550可进一步包含水平桥接器4561,其电连接温度传感器区4541的第二末端和温度传感器区4542的第一末端。温度感测主体4550可进一步包含水平桥接器4562,其电连接温度传感器区4542的第二末端和温度传感器区4543的第一末端。温度感测主体4550可进一步包含水平桥接器4563,其电连接温度传感器区4543的第二末端和温度传感器区4544的第一末端。The
温度传感器T4可进一步包含安置于温度感测主体4550的第一末端处的第一温度感测电极4551和安置于温度感测主体4550的第二末端处的第二温度感测电极4552。具体地说,第一温度感测电极4551电连接到温度传感器区4541的第一末端,且第二温度感测电极4552电连接到温度传感器区4544的第二末端。The temperature sensor T4 may further include a first
图5A和5B描绘根据本发明的另一实施例的氮化物基半导体芯片500的结构。图5A为半导体芯片500的部分布局,其展示了一些元件之中的关系,且图5B为沿图5A中的线A-A'截取的横截面图。氮化物基半导体芯片500的堆叠式半导体结构类似于氮化物基半导体芯片100的堆叠式半导体结构。为了简洁起见,图5A和5B中的相同或类似元件被给定与图1A和1B相同的参考标号且将不进一步详细描述。5A and 5B depict the structure of a nitride-based
参看图5A和5B,半导体芯片500可包括晶体管Q5和温度传感器T5。晶体管Q5可包含晶体管区553_mn的M×N阵列,其中m=1、…、M且n=1、…、N。5A and 5B, a
温度传感器T5可具有温度感测主体5550,其包含温度传感器区554_pq的P×Q阵列,其中p=1、…、P且q=1、…、Q。P为等于M的整数,且Q为比N小1的整数。也就是说,P=M且Q=N-1。优选地,N为偶数,且Q为奇数。Temperature sensor T5 may have a
温度传感器区的每一行可与晶体管区的对应一行竖直对准,且每一温度传感器区可定位于两个邻近的晶体管区之间。Each row of temperature sensor regions can be vertically aligned with a corresponding row of transistor regions, and each temperature sensor region can be positioned between two adjacent transistor regions.
温度感测主体5550可进一步包含水平桥接器556H_r,其用于连接同一行内的所有温度传感器区,其中r=1、…、R且R为水平桥接器的总数目。温度感测主体4550可进一步包含竖直桥接器556V_s,其用于提供温度传感器区的邻近行之间的连接,其中s=1、…、S且S为竖直桥接器的总数目。The
温度传感器T5可进一步包含安置于温度感测主体5550的第一末端处的第一温度感测电极5551和安置于温度感测主体5550的第二末端处的第二温度感测电极5552。具体地说,第一温度感测电极5551电连接到温度传感器区554_11的第一末端(即,p=1且q=1),且第二温度感测电极5552电连接到温度传感器区554_PQ的第二末端(即,p=P且q=Q)。The temperature sensor T5 may further include a first
图6A到6D中展示了用于制造根据本发明的半导体芯片的方法的不同阶段,并且在下文中描述。在下文中,沉积技术可包含例如但不限于原子层沉积(ALD)、物理气相沉积(PVD)、化学气相沉积(CVD)、金属有机CVD(MOCVD)、等离子体增强型CVD(PECVD)、低压力CVD(LPCVD)、等离子体辅助气相沉积、外延生长或其它合适的工艺。用于形成用作平面化层的钝化层的工艺通常包含化学机械抛光(CMP)工艺。用于形成导电通孔的工艺通常包含在钝化层中形成通孔并且用导电材料填充通孔。用于形成导电迹线的工艺通常包含光刻、曝光和显影、蚀刻、其它合适的工艺或其组合。The different stages of a method for manufacturing a semiconductor chip according to the invention are illustrated in FIGS. 6A to 6D and described below. Hereinafter, deposition techniques may include, for example but not limited to, atomic layer deposition (ALD), physical vapor deposition (PVD), chemical vapor deposition (CVD), metal organic CVD (MOCVD), plasma enhanced CVD (PECVD), low pressure CVD (LPCVD), plasma assisted vapor deposition, epitaxial growth, or other suitable processes. The process for forming the passivation layer used as a planarization layer typically includes a chemical mechanical polishing (CMP) process. Processes for forming conductive vias typically include forming vias in a passivation layer and filling the vias with a conductive material. Processes for forming conductive traces typically include photolithography, exposure and development, etching, other suitable processes, or combinations thereof.
参看图6A,提供一种衬底102(典型厚度为约0.7到1.2mm)。Referring to Figure 6A, a substrate 102 (typically about 0.7 to 1.2 mm thick) is provided.
参看图6B,接着可使用上述沉积技术在衬底102上形成两个氮化物基半导体层104和106。氮化物基半导体层104充当初级电流通道,并且氮化物基半导体层106充当势垒层。因此,邻近于氮化物基半导体层104与氮化物基半导体层106之间的异质结界面形成2DEG区。氮化物基半导体层104和106的形成可包含沉积厚度通常为约0.01μm至约0.5μm的GaN或InGaN材料层以形成导电区,以及沉积由AlGaN组成的材料层,其中Al分数(即Al含量,使得Al分数加上Ga分数等于1)在约0.1至约1.0的范围内,并且厚度在约0.01μm至约0.03μm的范围内以形成势垒层。Referring to FIG. 6B , two nitride-based semiconductor layers 104 and 106 may then be formed on the
参看图6C,隔离区52形成于氮化物基半导体层104和106中。隔离区52可通过植入氮(N)以使势垒层106的晶格结构断裂以防止形成2DEG而形成。Referring to FIG. 6C ,
参看图6D,接着在氮化物基半导体层106之上形成一个或多个栅极结构110、S/D电极116和一对温度感测电极551、552。栅极结构110可例如通过将p型GaN材料沉积在氮化物基半导体层106的表面上、利用p型GaN材料蚀刻栅极结构110以及在GaN材料之上形成例如钽(Ta)、钛(Ti)、氮化钛(TiN)、钨(W)或硅化钨(WSi2)等耐火金属接触点而形成。应理解,还可使用用于提供栅极结构110的其它已知方法和材料。温度感测电极551、552和S/D电极116可由任何已知的欧姆接触金属(例如Ti和/或Al)连同诸如Ni、Au、Ti或TiN之类的封盖金属形成。金属层和栅极层的厚度各自优选地为约0.01μm至约1.0μm,并且接着在高温(例如,800℃)下退火达60秒。Referring to FIG. 6D , one or
应理解,接着可沉积并蚀刻钝化层和路由(导电)层以在温度感测电极551/552、栅极结构110和具有外部电路的电极116之间形成连接。It should be understood that passivation and routing (conductive) layers may then be deposited and etched to form connections between the
选择和描述实施例是为了最好地解释本发明的原理及其实际应用,由此使得所属领域的其他技术人员能够理解本发明的各种实施例以及适合于所预期的特定用途的各种修改。虽然本文中公开的方法已参考按特定次序执行的特定操作加以描述,但应理解,可在不脱离本公开的教示的情况下组合、细分或重新排序这些操作以形成等效方法。因此,除非在本文中具体指示,否则操作的次序及分组并非限制性的。虽然本文中公开的设备已参考特定结构、形状、材料、物质组成和关系等等加以描述,但这些描述和说明并非限制性的。可进行修改以将特定情形适用于本公开的目标、精神和范围。所有此类修改意图在所附权利要求书的范围内。The embodiment was chosen and described in order to best explain the principles of the invention and its practical application, thereby enabling others skilled in the art to understand the invention for various embodiments and with various modifications as are suited to the particular use contemplated . Although methods disclosed herein have been described with reference to certain operations performed in a particular order, it should be understood that such operations may be combined, subdivided, or reordered to form equivalent methods without departing from the teachings of the disclosure. Accordingly, the order and grouping of operations is not limiting unless specifically indicated herein. Although the devices disclosed herein have been described with reference to specific structures, shapes, materials, compositions of matter and relationships, etc., such descriptions and illustrations are not limiting. Modifications may be made to adapt a particular situation to the aim, spirit and scope of the disclosure. All such modifications are intended to be within the scope of the appended claims.
Claims (20)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2022/093103 WO2023220872A1 (en) | 2022-05-16 | 2022-05-16 | Nitride-based semiconductor ic chip and method for manufacturing thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN116325157A true CN116325157A (en) | 2023-06-23 |
Family
ID=86785557
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202280004808.XA Pending CN116325157A (en) | 2022-05-16 | 2022-05-16 | Nitride-based semiconductor IC chip and manufacturing method thereof |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN116325157A (en) |
WO (1) | WO2023220872A1 (en) |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8076699B2 (en) * | 2008-04-02 | 2011-12-13 | The Hong Kong Univ. Of Science And Technology | Integrated HEMT and lateral field-effect rectifier combinations, methods, and systems |
JP6263498B2 (en) * | 2015-05-21 | 2018-01-17 | 株式会社豊田中央研究所 | Semiconductor device and manufacturing method thereof |
CN108538866B (en) * | 2018-06-13 | 2024-04-26 | 中山大学 | A sensor for in-situ detection of the operating temperature of GaN-based power devices in a high-temperature environment and a preparation method thereof |
CN111123064B (en) * | 2020-04-01 | 2020-06-19 | 中国科学院苏州纳米技术与纳米仿生研究所 | GaN power device and reliability test method thereof |
CN113793870A (en) * | 2021-11-16 | 2021-12-14 | 深圳市时代速信科技有限公司 | Semiconductor device and preparation method thereof |
-
2022
- 2022-05-16 WO PCT/CN2022/093103 patent/WO2023220872A1/en unknown
- 2022-05-16 CN CN202280004808.XA patent/CN116325157A/en active Pending
Also Published As
Publication number | Publication date |
---|---|
WO2023220872A1 (en) | 2023-11-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20150179741A1 (en) | Semiconductor device | |
US11742418B2 (en) | Semiconductor device | |
US11557669B2 (en) | Semiconductor device and fabricating method thereof | |
US12074159B2 (en) | Nitride-based semiconductor bidirectional switching device and method for manufacturing the same | |
JP5055773B2 (en) | Semiconductor element | |
CN114556561B (en) | Nitride-based semiconductor IC chip and method for manufacturing the same | |
CN114402442B (en) | Nitride-based semiconductor device and method for manufacturing the same | |
US20230317840A1 (en) | Hemt and method of fabricating the same | |
CN116325157A (en) | Nitride-based semiconductor IC chip and manufacturing method thereof | |
CN117981087A (en) | Gallium nitride semiconductor device with reduced leakage current and method for manufacturing the same | |
CN115769379B (en) | Nitride-based electronic device with wafer-level dynamic on-resistance monitoring capability | |
CN115812253B (en) | Nitride-based semiconductor device and method of manufacturing the same | |
CN115997287B (en) | Nitride-based semiconductor IC chip and method for manufacturing the same | |
US12211835B2 (en) | Group III-V IC with different sheet resistance 2-DEG resistors | |
CN118202469A (en) | Nitride-based semiconductor device and method of manufacturing the same | |
TW202345402A (en) | Semiconductor device | |
CN118613917A (en) | Semiconductor device and method for manufacturing the same | |
CN118103990A (en) | Nitride-based semiconductor device and method of manufacturing the same | |
CN118525357A (en) | Nitride-based semiconductor device and method of manufacturing the same | |
CN118160098A (en) | Nitride-based semiconductor device and method for manufacturing the same | |
CN118511216A (en) | Nitride-based semiconductor device and method for manufacturing the same | |
CN115939204A (en) | Nitride semiconductor device and method for manufacturing the same | |
JP2009044035A (en) | Field effect semiconductor device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |