CN116320901A - Sound field control system and method thereof - Google Patents
Sound field control system and method thereof Download PDFInfo
- Publication number
- CN116320901A CN116320901A CN202310543695.7A CN202310543695A CN116320901A CN 116320901 A CN116320901 A CN 116320901A CN 202310543695 A CN202310543695 A CN 202310543695A CN 116320901 A CN116320901 A CN 116320901A
- Authority
- CN
- China
- Prior art keywords
- sound field
- module
- signal
- field control
- digital
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 34
- 230000005236 sound signal Effects 0.000 claims abstract description 77
- 230000003111 delayed effect Effects 0.000 claims abstract description 12
- 230000001105 regulatory effect Effects 0.000 claims abstract description 12
- 238000005192 partition Methods 0.000 claims description 35
- 239000013307 optical fiber Substances 0.000 claims description 10
- 230000001934 delay Effects 0.000 claims description 2
- 230000006978 adaptation Effects 0.000 abstract description 5
- 230000001276 controlling effect Effects 0.000 abstract 2
- 238000010586 diagram Methods 0.000 description 19
- 238000001228 spectrum Methods 0.000 description 11
- 230000000694 effects Effects 0.000 description 6
- 238000000638 solvent extraction Methods 0.000 description 6
- 238000002604 ultrasonography Methods 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 5
- 238000003491 array Methods 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000003044 adaptive effect Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 230000008676 import Effects 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R3/00—Circuits for transducers, loudspeakers or microphones
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R2430/00—Signal processing covered by H04R, not provided for in its groups
- H04R2430/03—Synergistic effects of band splitting and sub-band processing
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02D—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
- Y02D30/00—Reducing energy consumption in communication networks
- Y02D30/70—Reducing energy consumption in communication networks in wireless communication networks
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Acoustics & Sound (AREA)
- Signal Processing (AREA)
- Circuit For Audible Band Transducer (AREA)
Abstract
Description
技术领域technical field
本申请涉及声场调控技术领域,尤其涉及一种声场调控系统及其方法。The present application relates to the technical field of sound field control, in particular to a sound field control system and method thereof.
背景技术Background technique
基于超声的定向传播特性以及在空气中非线性自解调效应,衍生了可听声定向传播技术,即将可听声波调制到超声载波上,进而产生具有高度指向性的可听声。Based on the directional propagation characteristics of ultrasound and the nonlinear self-demodulation effect in the air, the audible sound directional propagation technology is derived, that is, the audible sound wave is modulated onto the ultrasonic carrier to generate highly directional audible sound.
在上述技术的实现过程中,发现采用现有技术进行定向可听声场实现时,其声场指向可调性差,对于既定的定向可听声系统,其可听声主瓣范围仅取决于超声阵列的装配位置,其指向角度无法进行调控,即便是具备追踪可听声受众的应用也仅仅是利用机械结构件的转动,通过改变超声阵列的装配角度以实现指向性的调节,其灵活性以及应用场景受限。During the implementation of the above technologies, it was found that when the existing technology is used to realize the directional audible sound field, the direction of the sound field is poorly adjustable. For a given directional audible sound system, the range of the main lobe of the audible sound depends only on the ultrasonic array The assembly position and its pointing angle cannot be adjusted. Even the application that has the ability to track the audience of audible sound only uses the rotation of the mechanical structural parts to adjust the directivity by changing the assembly angle of the ultrasonic array. Its flexibility and application scenarios restricted.
发明内容Contents of the invention
本申请的目的在于提供一种声场调控系统及其方法,能够提升声场调控的灵活性及场景适配的多样性。The purpose of the present application is to provide a sound field control system and method thereof, which can improve the flexibility of sound field control and the diversity of scene adaptation.
本申请的一个方面提供一种声场调控系统。所述声场调控系统包括音频输入模块、模拟调制模块、声场调控模块以及超声阵列,所述音频输入模块用于接收外部输入的数字音频信号,并将所述数字音频信号进行解码并转换成模拟音频信号;所述模拟调制模块用于将所述模拟音频信号进行调制并输出数字已调信号至所述声场调控模块;所述声场调控模块用于接收所述数字已调信号,并根据所述超声阵列中各阵元的坐标信息以及指定的声场出射角度,对所述数字已调信号进行数字延时以实现声场调控;所述超声阵列用于接收所述声场调控模块的输出信号并按照所述声场出射角度将延时后的数字已调信号进行出射以产生指定声场。One aspect of the present application provides a sound field regulation system. The sound field control system includes an audio input module, an analog modulation module, a sound field control module and an ultrasonic array, and the audio input module is used to receive an externally input digital audio signal, decode the digital audio signal and convert it into an analog audio signal; the analog modulation module is used to modulate the analog audio signal and output a digital modulated signal to the sound field control module; the sound field control module is used to receive the digital modulated signal, and according to the ultrasonic The coordinate information of each array element in the array and the specified sound field emission angle are digitally delayed on the digitally modulated signal to realize the sound field control; the ultrasonic array is used to receive the output signal of the sound field control module and follow the The sound field emission angle emits the delayed digital modulated signal to generate a specified sound field.
进一步地,所述声场调控系统还包括驱动模块,所述驱动模块用于对所述声场调控模块的输出信号进行放大后输出至所述超声阵列。Further, the sound field control system further includes a driving module, which is used to amplify the output signal of the sound field control module and output it to the ultrasonic array.
进一步地,所述驱动模块包括多通道门驱动电路,所述多通道门驱动电路分别用于对所述超声阵列中的各阵元进行独立驱动。Further, the driving module includes a multi-channel gate driving circuit, and the multi-channel gate driving circuit is respectively used to independently drive each array element in the ultrasonic array.
进一步地,所述音频输入模块用于接收多路所述数字音频信号,所述声场出射角度包括多个,所述声场调控模块包括中央处理器及数字延时模块,所述中央处理器用于将所述超声阵列中的各阵元划分为多个阵元分区,并将多路所述数字音频信号与所述多个阵元分区进行对应;所述数字延时模块用于根据所述多个阵元分区及多个所述声场出射角度来计算得到所述多个阵元分区对应的延时参数。Further, the audio input module is used to receive multiple channels of digital audio signals, and the sound field output angle includes multiple, and the sound field control module includes a central processing unit and a digital delay module, and the central processing unit is used to convert Each array element in the ultrasonic array is divided into multiple array element partitions, and multiple channels of the digital audio signal are associated with the multiple array element partitions; the digital delay module is used to The array element partition and the multiple sound field emission angles are used to calculate the delay parameters corresponding to the multiple array element partitions.
进一步地,所述音频输入模块具有多个音频输入接口,所述音频输入模块通过所述多个音频输入接口来分别接收多路所述数字音频信号。Further, the audio input module has a plurality of audio input interfaces, and the audio input module respectively receives multiple channels of the digital audio signals through the plurality of audio input interfaces.
进一步地,所述音频输入模块具有一个或多个音频输入接口。Further, the audio input module has one or more audio input interfaces.
进一步地,所述一个或多个音频输入接口包括蓝牙、光纤接口、同轴接口和USB接口中的一个或多个。Further, the one or more audio input interfaces include one or more of Bluetooth, optical fiber interface, coaxial interface and USB interface.
进一步地,所述模拟调制模块的载波信号的频率由所述超声阵列中的阵元的中心频率决定。Further, the frequency of the carrier signal of the analog modulation module is determined by the center frequency of the array elements in the ultrasonic array.
本申请的另一个方面提供一种声场调控方法。所述声场调控方法包括:接收外部输入的数字音频信号,并将所述数字音频信号进行解码并转换成模拟音频信号;将所述模拟音频信号进行调制并输出数字已调信号至声场调控模块;由所述声场调控模块接收所述数字已调信号,并根据超声阵列中各阵元的坐标信息以及指定的声场出射角度,对所述数字已调信号进行数字延时以实现声场调控;将所述声场调控模块的输出信号输出至所述超声阵列;以及由所述超声阵列按照所述声场出射角度将延时后的数字已调信号进行出射以产生指定声场。Another aspect of the present application provides a sound field regulation method. The sound field regulation method includes: receiving an externally input digital audio signal, decoding the digital audio signal and converting it into an analog audio signal; modulating the analog audio signal and outputting a digital modulated signal to the sound field regulation module; The digital modulated signal is received by the sound field control module, and according to the coordinate information of each array element in the ultrasonic array and the specified sound field exit angle, digitally delays the digital modulated signal to realize sound field control; The output signal of the sound field control module is output to the ultrasonic array; and the delayed digital modulated signal is emitted by the ultrasonic array according to the sound field emission angle to generate a specified sound field.
进一步地,所述声场调控方法还包括:将所述声场调控模块的输出信号经驱动模块放大后输出至所述超声阵列。Further, the sound field regulating method further includes: outputting the output signal of the sound field regulating module to the ultrasonic array after being amplified by a driving module.
进一步地,所述驱动模块包括多通道门驱动电路,所述将所述声场调控模块的输出信号经驱动模块放大后输出至所述超声阵列包括:将所述声场调控模块的输出信号由所述多通道门驱动电路进行放大后分别输出至所述超声阵列的各阵元。Further, the drive module includes a multi-channel gate drive circuit, and the amplifying the output signal of the sound field control module to the ultrasonic array after being amplified by the drive module includes: amplifying the output signal of the sound field control module by the The multi-channel gate drive circuit amplifies and outputs to each array element of the ultrasonic array respectively.
进一步地,所述接收外部输入的数字音频信号包括:接收外部输入的多路数字音频信号,所述声场出射角度包括多个,所述方法还包括:将所述超声阵列中的各阵元划分为多个阵元分区,并将所述多路数字音频信号与所述多个阵元分区进行对应;及根据所述多个阵元分区内的阵元坐标及多个所述声场出射角度来计算得到所述多个阵元分区对应的延时参数,其中,基于所述多个阵元分区对应的延时参数来对所述数字已调信号进行数字延时。Further, the receiving an externally input digital audio signal includes: receiving an externally input multi-channel digital audio signal, and the sound field emission angle includes multiple, and the method further includes: dividing each array element in the ultrasonic array into a plurality of array element partitions, and corresponding the multi-channel digital audio signal to the plurality of array element partitions; Delay parameters corresponding to the multiple array element partitions are calculated to obtain, wherein the digitally modulated signal is digitally delayed based on the delay parameters corresponding to the multiple array element partitions.
进一步地,所述接收外部输入的多路数字音频信号包括:分别通过多个音频输入接口来接收所述多路数字音频信号。Further, the receiving multiple channels of digital audio signals input from the outside includes: receiving the multiple channels of digital audio signals through multiple audio input interfaces respectively.
进一步地,所述多个音频输入接口包括蓝牙、光纤接口、同轴接口和USB接口中的多个。Further, the multiple audio input interfaces include Bluetooth, optical fiber interface, coaxial interface and USB interface.
进一步地,所述将所述模拟音频信号进行调制并输出数字已调信号包括:对所述模拟音频信号加直流偏置;及将加偏置后的模拟音频信号与双极性载波信号进行数值比较,以得到所述数字已调信号。Further, said modulating the analog audio signal and outputting the digital modulated signal includes: adding a DC bias to the analog audio signal; and numerically calculating the biased analog audio signal and the bipolar carrier signal comparison to obtain the digitally modulated signal.
进一步地,所述载波信号的频率由所述超声阵列中的阵元的中心频率决定。Further, the frequency of the carrier signal is determined by the center frequency of the elements in the ultrasonic array.
本申请实施例的声场调控系统及其方法至少能够取得以下有益技术效果中的一个或多个:The sound field control system and method thereof in the embodiments of the present application can at least achieve one or more of the following beneficial technical effects:
本申请能够实现对声场的可变指向调控,能够提升声场调控的灵活性及场景适配的多样性;This application can realize the variable direction control of the sound field, and can improve the flexibility of sound field control and the diversity of scene adaptation;
本申请具有声源灵活分区功能,并可对各声源的声场出射角度进行指定,能够根据各声源的阵元分区及其声场出射角度来对各声源经模拟调制后的数字已调信号进行数字延时,并将延时后的数字已调信号分发至对应的各超声阵元,产生指定的多路指向声场,从而解决了现有定向声场技术中存在的指向固定、出射声源唯一、适配超声阵列单一的技术问题。This application has the function of flexible partitioning of sound sources, and can specify the sound field emission angle of each sound source, and can adjust the digital modulated signal of each sound source after analog modulation according to the array element partition of each sound source and its sound field emission angle Carry out digital delay, and distribute the delayed digital modulated signal to the corresponding ultrasonic array elements to generate a specified multi-channel directional sound field, thus solving the problem of fixed direction and unique outgoing sound source in the existing directional
附图说明Description of drawings
图1为本申请一个实施例的声场调控系统的系统框图。FIG. 1 is a system block diagram of a sound field control system according to an embodiment of the present application.
图2为本申请一个实施例的声场调控系统的操作流程图。Fig. 2 is an operation flowchart of the sound field control system according to an embodiment of the present application.
图3为本申请一个实施例的三声源输入时的信号输入示意图。Fig. 3 is a schematic diagram of signal input when three sound sources are input according to an embodiment of the present application.
图4为本申请一个实施例的载波40kHz,调制0.5kHz正弦信号时的信号调制波形图。FIG. 4 is a signal modulation waveform diagram when a carrier wave of 40 kHz modulates a 0.5 kHz sinusoidal signal according to an embodiment of the present application.
图5为本申请一个实施例的载波40kHz,调制1kHz正弦信号时的信号调制波形图。FIG. 5 is a signal modulation waveform diagram when a 1 kHz sinusoidal signal is modulated with a carrier wave of 40 kHz according to an embodiment of the present application.
图6为本申请一个实施例的载波40kHz,调制2kHz正弦信号时的信号调制波形图。FIG. 6 is a signal modulation waveform diagram when a carrier wave of 40 kHz modulates a 2 kHz sinusoidal signal according to an embodiment of the present application.
图7为本申请一个实施例的模拟调制模块中调制0.5kHz正弦信号时已调信号的频谱图。FIG. 7 is a spectrum diagram of a modulated signal when a 0.5 kHz sinusoidal signal is modulated in an analog modulation module according to an embodiment of the present application.
图8为本申请一个实施例的模拟调制模块中调制1kHz正弦信号时已调信号的频谱图。FIG. 8 is a spectrum diagram of a modulated signal when a 1 kHz sinusoidal signal is modulated in an analog modulation module according to an embodiment of the present application.
图9为本申请一个实施例的模拟调制模块中调制2kHz正弦信号时已调信号的频谱图。FIG. 9 is a spectrum diagram of a modulated signal when a 2 kHz sinusoidal signal is modulated in an analog modulation module according to an embodiment of the present application.
图10为本申请一个实施例的三种声源的超声阵元分区划分示意图。Fig. 10 is a schematic diagram of partitioning ultrasonic array elements of three sound sources according to an embodiment of the present application.
图11为本申请一个实施例的声场调控方法的流程图。Fig. 11 is a flow chart of a method for regulating a sound field according to an embodiment of the present application.
具体实施方式Detailed ways
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施例并不代表与本申请相一致的所有实施例。相反,它们仅是与如所附权利要求书中所详述的、本申请的一些方面相一致的装置的例子。Reference will now be made in detail to the exemplary embodiments, examples of which are illustrated in the accompanying drawings. When the following description refers to the accompanying drawings, the same numerals in different drawings refer to the same or similar elements unless otherwise indicated. The embodiments described in the following exemplary embodiments do not represent all embodiments consistent with the present application. Rather, they are merely examples of means consistent with aspects of the present application as recited in the appended claims.
在本申请实施例使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请。除非另作定义,本申请实施例使用的技术术语或者科学术语应当为本申请所属领域内具有一般技能的人士所理解的通常意义。在本申请的说明书和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。The terms used in the embodiments of the present application are only for the purpose of describing specific embodiments, and are not intended to limit the present application. Unless otherwise defined, the technical terms or scientific terms used in the embodiments of the present application shall have the usual meanings understood by those skilled in the art to which the present application belongs. As used in the specification and appended claims of this application, the singular forms "a", "the" and "the" are also intended to include the plural forms unless the context clearly dictates otherwise. It should also be understood that the term "and/or" as used herein refers to and includes any and all possible combinations of one or more of the associated listed items.
本申请实施例提供了一种声场调控系统100。图1揭示了本申请一个实施例的声场调控系统100的系统框图。如图1所示,本申请一个实施例的声场调控系统100包括音频输入模块10、模拟调制模块20、声场调控模块30以及超声阵列50。音频输入模块10的输出端口连接有模拟调制模块20,模拟调制模块20的输出端口连接有声场调控模块30,声场调控模块30的输出端口连接至超声阵列50。The embodiment of the present application provides a sound
音频输入模块10可以用来接收外部输入的数字音频信号,并将数字音频信号进行解码并转换成模拟音频信号。模拟调制模块20可以将模拟音频信号进行调制并输出数字已调信号至声场调控模块30。声场调控模块30可以用来接收数字已调信号,并根据超声阵列50中各阵元的坐标信息以及指定的声场出射角度,对数字已调信号进行数字延时,从而可以实现声场调控。超声阵列50可以用来接收声场调控模块30的输出信号并按照声场出射角度将延时后的数字已调信号进行出射,从而可以产生指定声场。The
在一些实施例中,本申请的声场调控系统100还包括驱动模块40,其中,声场调控模块30的输出端口连接驱动模块40,驱动模块40的输出端口连接超声阵列50。驱动模块40可以用来对声场调控模块30输出的经声场调控算法处理的信号进行放大,以提升其驱动能力,进而驱动超声阵列50产生指定的声场。在一个实施例中,驱动模块40可以包括多通道门驱动电路,多通道门驱动电路可以分别用来对超声阵列50中的各阵元进行独立驱动。In some embodiments, the sound
音频输入模块10可以具有一个或多个音频输入接口。一个或多个音频输入接口例如可以包括但不限于蓝牙、光纤接口、同轴接口和USB接口等接口中的一个或多个。本申请中的音频输入接口支持常用的蓝牙、光纤、同轴和/或U盘在内的数字音频输入。The
在一个实施例中,本申请的音频输入模块10可以接收多路数字音频信号。在一个实施例中,本申请的音频输入模块10具有多个音频输入接口,音频输入模块10可以通过多个音频输入接口来同时接收包括蓝牙、光纤、同轴和/或U盘等在内的不同音频信号输入方式,接收不同设备发送的多路数字音频信号,并对多路数字音频信号分别解码并转换输出多路模拟音频信号。然后,该多路模拟音频信号被分别输出至模拟调制模块20。模拟调制模块20接收音频输入模块10输出的多路模拟音频信号,以模拟调制的方式,对各通道音频信号进行独立调制,并输出为数字已调信号,而后将调制后的各路数字已调信号输出至声场调控模块30。In one embodiment, the
本申请中的模拟调制模块20的载波信号频率由超声阵列50中的阵元的中心频率决定,因超声阵元通常具备较窄的带宽,为了获得较高能量,所以,选择阵元的中心频率来作为载波信号的频率。The frequency of the carrier signal of the
对于多路数字音频信号,相应地,指定的声场出射角度可以包括多个。继续参照图1所示,本申请的声场调控模块30可以包括中央处理器31及数字延时模块32。中央处理器31可以用来对超声阵列50进行灵活分区,将超声阵列50中的各阵元划分为多个阵元分区,并将多路数字音频信号与多个阵元分区分别进行对应。数字延时模块32可以根据多个阵元分区内的阵元坐标及多个声场出射角度来计算得到多个阵元分区对应的延时参数。可以根据多个阵元分区对应的延时参数来对模拟调制模块20调制后的多路数字已调信号进行数字延时计算及处理,从而实现对声场的指向性进行灵活调控。而后利用超声在空气中传播的自解调效应,最终实现了可变指向的可听声场调控,解决了现有技术的机械结构繁杂、声场指向可调性差的问题。For multiple channels of digital audio signals, correspondingly, the designated sound field emission angles may include multiple. Continuing to refer to FIG. 1 , the sound
本申请的声场调控模块30具备对超声阵列50进行声源分区的功能,即本申请可同时接收多路音频输入,然后灵活设置各声源对应的阵元分区,并逐一指定各声源的出射角度,解决了现有技术的出射声源唯一、声场空间浪费的问题。The sound
本申请的声场调控模块30支持超声阵列50各阵元的坐标导入,即本申请支持任意的阵列布局方式,解决了现有技术的超声阵列布局固定、应用场景受限的问题。The sound
下面将结合附图并以三声源输入、超声阵列50采用16×16超声阵元为例来详细介绍本申请的声场调控系统100的操作流程。The operation process of the sound
图2揭示了本申请一个具体实施例的声场调控系统100的操作流程图。本申请一个具体实施例的声场调控系统100主要包括四个关键步骤:一、音频输入,本实施例为三路音频输入;二、超声阵元坐标导入,本实施例为16乘以16且阵元间距1.5cm的方阵,本申请中的声场调控只与相对坐标相关,即能兼容不同用户的不同原点位置习惯;三、进行阵元分区,本实施例中是对音频输入的三路进行对应分区,分区方式无任何限制,即任意声源可指定任意位置的任意阵元划入本声源分区,也可屏蔽任意阵元,实现各声源对应阵元的任意布局方式以及任意组合;四、指定各声源指向角度。FIG. 2 discloses an operation flowchart of the sound
接下来,对本实施例进行详细的过程描述。Next, a detailed process description of this embodiment will be given.
首先,根据具体的音频输入设备,选择相应的音频输入接口。图3揭示了本实施例的三声源输入时的信号输入示意图。参照图3,本实施例中使用了蓝牙将2kHz音频信号发送至本申请的声场调控系统100,同时使用同轴、光纤接口分别将0.5kHz与1kHz音频信号发送至本申请的声场调控系统100,音频输入模块10中的音频解码芯片实现信号接收及解码,并分别转换成0.5kHz、1kHz、2kHz的三路独立的模拟音频信号,然后将三路模拟音频信号输出至模拟调制模块20进行信号调制。First, select the corresponding audio input interface according to the specific audio input device. Fig. 3 discloses a schematic diagram of signal input when three sound sources are input in this embodiment. Referring to FIG. 3 , in this embodiment, Bluetooth is used to send 2kHz audio signals to the sound
超声阵列50由中心频率为f的超声阵元组成,并支持256以内的任意阵元数的任意布局方式排列。本实施例中的超声阵列50使用的是中心频率为40kHz的超声发射器,本实施例中,模拟调制模块20中的三路独立的调制电路分别对声场调控系统100从三个声源解析得到的模拟音频信号进行调制,其中调制信号分别为0.5kHz、1kHz、2kHz的正弦波,载波信号都为40kHz的三角波。为了在已调信号的频谱获得40kHz的信号分量,模拟调制模块20首先需要对音频信号加直流偏置,然后将加偏置后的音频信号与双极性载波信号进行数值比较,从而得到数字已调信号。信号调制波形图参照图4、图5和图6所示,其中,图4揭示了本实施例的载波40kHz,调制0.5kHz正弦信号时的信号调制波形图;图5揭示了本实施例的载波40kHz,调制1kHz正弦信号时的信号调制波形图;图6揭示了本实施例的载波40kHz,调制2kHz正弦信号时的信号调制波形图。在图4至图6中,虚线为调制信号,实线为载波信号,本实施例的模拟调制模块20中使用了比较器,使得最终的数字已调信号只有0、1两个数字状态。本申请的模拟调制模块20在实现将音频信号的频谱搬移至超声阵元信号带宽内的同时,输出的已调信号为数字信号,从而便于后级的声场调控模块30能灵活控制各阵元的信号延时。The
图7揭示了本实施例的模拟调制模块20中调制0.5kHz正弦信号时已调信号的频谱图。参照图7,本实施例中已调信号频谱在超声阵元的带宽内分量为39.5kHz、40kHz、40.5kHz,由于空气非线性自解调效应,最终会产生0.5kHz的差频波,进而实现了对已调信号进行解调,得到从同轴接口传输过来的调制信号0.5kHz。FIG. 7 discloses the spectrum diagram of the modulated signal when the 0.5 kHz sinusoidal signal is modulated in the
图8揭示了本实施例的模拟调制模块20中调制1kHz正弦信号时已调信号的频谱图。参照图8,本实施例中已调信号频谱在超声阵元的带宽内分量为39kHz、40kHz、41kHz,由于空气非线性自解调效应,最终会产生1kHz的差频波,进而实现了对已调信号进行解调,得到从光纤接口传输过来的调制信号1kHz。FIG. 8 discloses the spectrum diagram of the modulated signal when the 1 kHz sinusoidal signal is modulated in the
图9揭示了本实施例的模拟调制模块20中调制2kHz正弦信号时已调信号的频谱图。参照图9,本实施例中已调信号频谱在超声阵元的带宽内分量为38kHz、40kHz、42kHz,由于空气非线性自解调效应,最终会产生2kHz的差频波,进而实现了对已调信号进行解调,得到通过蓝牙传输过来的调制信号2kHz。FIG. 9 discloses the spectrum diagram of the modulated signal when the 2 kHz sinusoidal signal is modulated in the
本申请具有声源灵活分区功能,即能将256阵元数的超声阵列50灵活划分功能区间。本实施例中,声源信号有三个,此时可通过中央处理器31对超声阵列50进行分区,选定各个声源对应的超声阵元。图10揭示了本申请一个实施例的三种声源的超声阵元分区划分示意图。参照图10,本实施例中,超声阵元的尺寸是1cm直径的圆,阵元间距为1.5cm,整体阵元布局为16乘以16的方阵,其中,同轴声源对应64阵的点线圆R1,光纤声源对应64阵的点划线圆R2,蓝牙声源对应128阵的实线圆R3。The present application has the function of flexible partitioning of sound sources, that is, the
指定各声源分区后,可对各声源的声场出射角度进行指定,中央处理器31会根据各声源分区内的阵元坐标和声场出射角度,对模拟调制模块20输出的三路数字信号自动进行数字延时计算,然后将处理后的数字信号分发至各阵元,并通过驱动电路驱动超声阵元,产生所指定的三路指向声场,即最终在相对于超声阵列50中线的指定指向角能分别听到500Hz、1kHz、2kHz音频信号。After specifying each sound source partition, the sound field emission angle of each sound source can be specified, and the
本实施例在操作过程中,可以灵活设置各声源对应的阵元分区,任意修改指定各声源的出射角度,具备极高的声场调控灵活性以及场景适配多样性。During the operation of this embodiment, it is possible to flexibly set the array element partitions corresponding to each sound source, arbitrarily modify and specify the emission angle of each sound source, and have extremely high flexibility in sound field regulation and diversity of scene adaptation.
本申请实施例的声场调控系统100例如可以为一种多声源可变指向的声场调控系统100,能够解决现有定向声场技术中存在的指向固定、出射声源唯一、适配超声阵列单一的技术问题。The sound
本申请实施例的声场调控系统100首先在对多声源音频信号分别进行模拟调制的同时,实现已调信号的数字化,然后采用各超声阵元独立受控的驱动方式,利用数字延时模块32将各声源的发射信号分发至各超声阵元,以实现声场的调控。The sound
本申请实施例的声场调控系统100中的数字延时模块32的参数支持自动配置,声场调控系统100通过导入各超声阵元的坐标信息以及声场指向角度计算各声源分区的数字延时参数,从而实现对声场进行可变指向调控。The parameters of the
本申请实施例还提供了一种声场调控方法。图11揭示了本申请一个实施例的声场调控方法的流程图。如图11所示,本申请一个实施例的声场调控方法可以包括步骤S1至步骤S5。The embodiment of the present application also provides a sound field control method. Fig. 11 discloses a flow chart of a method for regulating a sound field according to an embodiment of the present application. As shown in FIG. 11 , the sound field regulating method in one embodiment of the present application may include steps S1 to S5.
在步骤S1中,接收外部输入的数字音频信号,并将数字音频信号进行解码并转换成模拟音频信号。In step S1, an externally input digital audio signal is received, and the digital audio signal is decoded and converted into an analog audio signal.
在步骤S2中,将模拟音频信号进行调制并输出数字已调信号至声场调控模块30。In step S2, the analog audio signal is modulated and the digital modulated signal is output to the sound
在一个实施例中,可以对模拟音频信号加直流偏置,然后,将加偏置后的模拟音频信号与双极性载波信号进行数值比较,以得到数字已调信号。载波信号的频率由超声阵列50中的阵元的中心频率决定。In one embodiment, a DC bias can be added to the analog audio signal, and then a numerical comparison is performed between the biased analog audio signal and the bipolar carrier signal to obtain a digital modulated signal. The frequency of the carrier signal is determined by the center frequency of the elements in the
在步骤S3中,由声场调控模块30接收数字已调信号,并根据超声阵列50中各阵元的坐标信息以及指定的声场出射角度,对数字已调信号进行数字延时以实现声场调控。In step S3, the digital modulated signal is received by the sound
在步骤S4中,将声场调控模块30的输出信号输出至超声阵列50。In step S4 , the output signal of the sound
在步骤S5中,由超声阵列50按照声场出射角度将延时后的数字已调信号进行出射以产生指定声场。In step S5, the delayed digital modulated signal is emitted by the
在一些实施例中,本申请的声场调控方法还可以包括:将声场调控模块30的输出信号经驱动模块40放大后输出至超声阵列50。驱动模块40例如可以包括多通道门驱动电路,因此,可以将声场调控模块30的输出信号由多通道门驱动电路进行放大后分别输出至超声阵列50的各阵元,从而可以实现各超声阵元的独立驱动。In some embodiments, the sound field regulating method of the present application may further include: outputting the output signal of the sound
在一些实施例中,步骤S1的接收外部输入的数字音频信号可以包括:接收外部输入的多路数字音频信号。例如,可以分别通过多个音频输入接口来接收多路数字音频信号。多个音频输入接口例如可以包括但不限于蓝牙、光纤接口、同轴接口和USB接口等接口中的多个。In some embodiments, receiving an externally input digital audio signal in step S1 may include: receiving externally input multiple digital audio signals. For example, multiple channels of digital audio signals can be received through multiple audio input interfaces respectively. For example, the multiple audio input interfaces may include but not limited to multiple interfaces such as Bluetooth, optical fiber interface, coaxial interface, and USB interface.
相应地,指定的声场出射角度可以包括多个。因此,在这种情况下,本申请的声场调控方法还可以包括:将超声阵列50中的各阵元划分为多个阵元分区,并将多路数字音频信号与多个阵元分区进行对应;及根据多个阵元分区内的阵元坐标及多个声场出射角度来计算得到多个阵元分区对应的延时参数。其中,可以基于多个阵元分区对应的延时参数来对数字已调信号进行数字延时。Correspondingly, the specified sound field emission angles may include multiple ones. Therefore, in this case, the sound field control method of the present application may also include: dividing each array element in the
本申请实施例的声场调控方法能够实现对声场的可变指向调控,能够提升声场调控的灵活性及场景适配的多样性。The sound field control method of the embodiment of the present application can realize variable direction control of the sound field, and can improve the flexibility of sound field control and the diversity of scene adaptation.
以上对本申请实施例所提供的声场调控系统及其方法进行了详细的介绍。本文中应用了具体个例对本申请实施例的声场调控系统及其方法进行了阐述,以上实施例的说明只是用于帮助理解本申请的核心思想,并不用以限制本申请。应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请的精神和原理的前提下,还可以对本申请进行若干改进和修饰,这些改进和修饰也均应落入本申请所附权利要求书的保护范围内。The sound field control system and method thereof provided in the embodiments of the present application have been introduced in detail above. In this paper, specific examples are used to illustrate the sound field regulation system and method of the embodiments of the present application. The description of the above embodiments is only used to help understand the core idea of the present application, and is not intended to limit the present application. It should be pointed out that for those skilled in the art, without departing from the spirit and principle of the application, some improvements and modifications can also be made to the application, and these improvements and modifications should also fall into the scope of the appended documents of the application. within the scope of protection of the claims.
Claims (16)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310543695.7A CN116320901B (en) | 2023-05-15 | 2023-05-15 | Sound field control system and method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310543695.7A CN116320901B (en) | 2023-05-15 | 2023-05-15 | Sound field control system and method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN116320901A true CN116320901A (en) | 2023-06-23 |
CN116320901B CN116320901B (en) | 2023-08-29 |
Family
ID=86781825
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202310543695.7A Active CN116320901B (en) | 2023-05-15 | 2023-05-15 | Sound field control system and method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN116320901B (en) |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003059005A2 (en) * | 2002-01-08 | 2003-07-17 | 1... Limited | Digital loudspeaker system |
US20040151325A1 (en) * | 2001-03-27 | 2004-08-05 | Anthony Hooley | Method and apparatus to create a sound field |
SG111929A1 (en) * | 2002-01-25 | 2005-06-29 | Univ Nanyang | Steering of directional sound beams |
WO2012122132A1 (en) * | 2011-03-04 | 2012-09-13 | University Of Washington | Dynamic distribution of acoustic energy in a projected sound field and associated systems and methods |
EP2587836A1 (en) * | 2011-10-27 | 2013-05-01 | Suzhou Sonavox Electronics Co., Ltd. | A method and device of channel equalization and beam controlling for a digital speaker array system |
JP2014143480A (en) * | 2013-01-22 | 2014-08-07 | Murata Mfg Co Ltd | Ultra-directional speaker |
CN104683907A (en) * | 2015-01-26 | 2015-06-03 | 电子科技大学 | Directional transmission device |
WO2016107433A1 (en) * | 2014-12-31 | 2016-07-07 | 苏州上声电子有限公司 | Channel state selection method and device based on ternary coding |
US20170289722A1 (en) * | 2016-04-04 | 2017-10-05 | Pixie Dust Technologies, Inc. | System and method for generating spatial sound using ultrasound |
CN109361991A (en) * | 2018-12-13 | 2019-02-19 | 山东大学 | A multi-scene directional speaker system based on DSP platform and its operation method |
CN112216266A (en) * | 2020-10-20 | 2021-01-12 | 傅建玲 | Phase-control multi-channel sound wave directional transmitting method and system |
CN113630687A (en) * | 2021-07-23 | 2021-11-09 | 西安理工大学 | Phased parametric array-based infrasonic wave directional transmitting system and method |
CN115052231A (en) * | 2022-08-12 | 2022-09-13 | 湖北欧鑫科技有限公司 | Digitized vehicle-mounted personal follow-up ultrasonic directional sound field system |
-
2023
- 2023-05-15 CN CN202310543695.7A patent/CN116320901B/en active Active
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040151325A1 (en) * | 2001-03-27 | 2004-08-05 | Anthony Hooley | Method and apparatus to create a sound field |
WO2003059005A2 (en) * | 2002-01-08 | 2003-07-17 | 1... Limited | Digital loudspeaker system |
SG111929A1 (en) * | 2002-01-25 | 2005-06-29 | Univ Nanyang | Steering of directional sound beams |
WO2012122132A1 (en) * | 2011-03-04 | 2012-09-13 | University Of Washington | Dynamic distribution of acoustic energy in a projected sound field and associated systems and methods |
EP2587836A1 (en) * | 2011-10-27 | 2013-05-01 | Suzhou Sonavox Electronics Co., Ltd. | A method and device of channel equalization and beam controlling for a digital speaker array system |
JP2014143480A (en) * | 2013-01-22 | 2014-08-07 | Murata Mfg Co Ltd | Ultra-directional speaker |
WO2016107433A1 (en) * | 2014-12-31 | 2016-07-07 | 苏州上声电子有限公司 | Channel state selection method and device based on ternary coding |
CN104683907A (en) * | 2015-01-26 | 2015-06-03 | 电子科技大学 | Directional transmission device |
US20170289722A1 (en) * | 2016-04-04 | 2017-10-05 | Pixie Dust Technologies, Inc. | System and method for generating spatial sound using ultrasound |
CN109361991A (en) * | 2018-12-13 | 2019-02-19 | 山东大学 | A multi-scene directional speaker system based on DSP platform and its operation method |
CN112216266A (en) * | 2020-10-20 | 2021-01-12 | 傅建玲 | Phase-control multi-channel sound wave directional transmitting method and system |
CN113630687A (en) * | 2021-07-23 | 2021-11-09 | 西安理工大学 | Phased parametric array-based infrasonic wave directional transmitting system and method |
CN115052231A (en) * | 2022-08-12 | 2022-09-13 | 湖北欧鑫科技有限公司 | Digitized vehicle-mounted personal follow-up ultrasonic directional sound field system |
Non-Patent Citations (4)
Title |
---|
PDF NORIHISA TSUJITA 等: "Influence of listener\'s head in stereo reproduction using parametric loudspeakers", 《2016 IEEE INTERNATIONAL ULTRASONICS SYMPOSIUM 》 * |
朱荣钊;刘晶;刘文超;周艳玲;曾张帆;: "基于FPGA的声频定向扬声器系统的设计", 计算机测量与控制, no. 02 * |
赵洪亮;王婷婷;冯国金;孙轲;: "基于TMS320VC5509A的数字化指向性扬声器", 数据采集与处理, no. 06 * |
韩斌;吴亚锋;纪鸣;: "基于超声转换的音频信号定向传播", 计算机仿真, no. 10 * |
Also Published As
Publication number | Publication date |
---|---|
CN116320901B (en) | 2023-08-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7515719B2 (en) | Method and apparatus to create a sound field | |
EP1224037B1 (en) | Method and apparatus to direct sound using an array of output transducers | |
CN101971647B (en) | Sound system and method of operation therefor | |
US9544705B2 (en) | Sound system and method for capturing and reproducing sounds originating from a plurality of sound sources | |
US4618987A (en) | Large-area acoustic radiation system | |
CN104683907B (en) | A kind of directional transmissions device | |
WO2012122132A1 (en) | Dynamic distribution of acoustic energy in a projected sound field and associated systems and methods | |
AU2016293470B2 (en) | Synchronising an audio signal | |
US9210509B2 (en) | System and method for directional sound transmission with a linear array of exponentially spaced loudspeakers | |
CN116320901B (en) | Sound field control system and method thereof | |
US20120281858A1 (en) | METHOD AND APPARATUS FOR TRANSMISSION OF SOUND WAVES WITH HIGH LOCALIZATION of SOUND PRODUCTION | |
JP2014143480A (en) | Ultra-directional speaker | |
CN111816155A (en) | An expandable and beam-controllable directional acoustic wave transmitter | |
CN103338421A (en) | Method and device for carrying out area sound transmission by adopting acoustic frequency array | |
US8320580B2 (en) | System and method for directional sound transmission with a linear array of exponentially spaced loudspeakers | |
JP2002354575A (en) | Parametric multiway speaker system based on ultrasonic wave | |
GB2373956A (en) | Method and apparatus to create a sound field | |
JP2003235092A (en) | Directive loudspeaker | |
JP4525145B2 (en) | Acoustic device and method for controlling acoustic device | |
US10484765B2 (en) | Digital loudspeaker | |
CN101984555B (en) | Parametric array audio play system | |
JP2019506027A (en) | Audio system | |
WO2024212130A1 (en) | Dynamically determining volume balance in multi-channel audio systems | |
KR102132889B1 (en) | Acoustic control system for horizontal array type sound reproducing apparatus using wave field synthesis technology | |
EP4409928A1 (en) | An acoustic system and method for controlling acoustic energy emitted from a parametric acoustic transducer array |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |