[go: up one dir, main page]

CN116301081B - Speed control method, device, equipment and medium of inertia test equipment - Google Patents

Speed control method, device, equipment and medium of inertia test equipment Download PDF

Info

Publication number
CN116301081B
CN116301081B CN202310553056.9A CN202310553056A CN116301081B CN 116301081 B CN116301081 B CN 116301081B CN 202310553056 A CN202310553056 A CN 202310553056A CN 116301081 B CN116301081 B CN 116301081B
Authority
CN
China
Prior art keywords
angular velocity
control
actual
target
disturbance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202310553056.9A
Other languages
Chinese (zh)
Other versions
CN116301081A (en
Inventor
王常虹
黄谷
王振桓
曾庆双
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology Shenzhen
Original Assignee
Shenrui Technology Beijing Co ltd
Harbin Institute of Technology Shenzhen
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenrui Technology Beijing Co ltd, Harbin Institute of Technology Shenzhen filed Critical Shenrui Technology Beijing Co ltd
Priority to CN202310553056.9A priority Critical patent/CN116301081B/en
Publication of CN116301081A publication Critical patent/CN116301081A/en
Application granted granted Critical
Publication of CN116301081B publication Critical patent/CN116301081B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D13/00Control of linear speed; Control of angular speed; Control of acceleration or deceleration, e.g. of a prime mover
    • G05D13/62Control of linear speed; Control of angular speed; Control of acceleration or deceleration, e.g. of a prime mover characterised by the use of electric means, e.g. use of a tachometric dynamo, use of a transducer converting an electric value into a displacement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/10Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
    • G01C21/12Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
    • G01C21/16Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Feedback Control In General (AREA)

Abstract

本发明提供一种惯性测试设备的速率控制方法、装置、设备及介质,涉及自动控制技术领域,该方法包括:获取目标角速度变化曲线;根据目标角速度变化曲线得到电压控制模块的前馈控制量;根据目标角速度变化曲线和实际角速度信号得到实际误差,并对实际误差进行非线性比例控制得到非线性比例控制量;将实际控制电压和实际角速度信号输入预设的降阶状态观测器中,得到观测扰动;基于观测扰动得到扰动补偿控制量;将前馈控制量、非线性比例控制量和扰动补偿控制量输入电压控制模块中,得到目标控制电压;触发角速度驱动模块根据目标控制电压、力矩系数和观测扰动实现对角速度的控制。其可解决自抗扰控制算法控制精度难以满足惯性测试设备要求的问题。

The present invention provides a rate control method, device, equipment and medium of inertial testing equipment, and relates to the technical field of automatic control. The method includes: acquiring a target angular velocity change curve; obtaining a feedforward control amount of a voltage control module according to the target angular velocity change curve; The actual error is obtained according to the target angular velocity change curve and the actual angular velocity signal, and the nonlinear proportional control is performed on the actual error to obtain the nonlinear proportional control amount; the actual control voltage and the actual angular velocity signal are input into the preset reduced-order state observer to obtain the observed Disturbance; Obtain the disturbance compensation control quantity based on the observed disturbance; input the feedforward control quantity, nonlinear proportional control quantity and disturbance compensation control quantity into the voltage control module to obtain the target control voltage; trigger the angular velocity drive module according to the target control voltage, torque coefficient and Observe the disturbance to control the angular velocity. It can solve the problem that the control accuracy of the active disturbance rejection control algorithm is difficult to meet the requirements of the inertial test equipment.

Description

一种惯性测试设备的速率控制方法、装置、设备及介质A rate control method, device, equipment and medium for inertial test equipment

技术领域Technical Field

本发明涉及自动控制技术领域,尤其涉及一种惯性测试设备的速率控制方法、装置、设备及介质。The present invention relates to the field of automatic control technology, and in particular to a rate control method, device, equipment and medium for inertial testing equipment.

背景技术Background Art

惯性技术是通过感知运动体在惯性空间的角运动、线运动,进而获取运动体的姿态、速度和位置等信息的重要测量技术,在航空、航海、军事等领域都有着非常重要的地位。惯性测试设备是应用于惯性产品设计开发、制造、测试以及使用等全过程的关键设备。惯性测试设备的精度需要高于惯性产品的精度,而提高惯性测试设备精度的方法除了提升硬件性能外,也需要设计合适的、先进的控制方法以充分达到硬件设备所支持的极限精度。Inertial technology is an important measurement technology that senses the angular motion and linear motion of a moving body in inertial space, and then obtains information such as the posture, speed and position of the moving body. It plays a very important role in the fields of aviation, navigation, military, etc. Inertial test equipment is a key equipment used in the entire process of inertial product design, development, manufacturing, testing and use. The accuracy of inertial test equipment needs to be higher than that of inertial products. In addition to improving hardware performance, the method of improving the accuracy of inertial test equipment also requires the design of appropriate and advanced control methods to fully achieve the ultimate accuracy supported by the hardware equipment.

高精度惯性设备应用中,常需要实现速率精确、快速的控制。以PID控制算法为代表的传统线性控制方法难以同时满足高精度和高动态的转速控制需求,之后提出的自抗扰控制算法(Active Disturbance Rejection Control,ADRC)解决了传统PID控制中快速性和超调量的矛盾。但自抗扰控制仍旧存在一些问题,自抗扰控制算法的控制精度难以满足一些惯性测试设备的要求,并且在参考信号快速变化时,力矩系数会对转速的控制精度造成较大影响。In high-precision inertial equipment applications, it is often necessary to achieve accurate and fast rate control. Traditional linear control methods represented by PID control algorithms are difficult to simultaneously meet the requirements of high-precision and high-dynamic speed control. The Active Disturbance Rejection Control (ADRC) algorithm proposed later solves the contradiction between rapidity and overshoot in traditional PID control. However, there are still some problems with ADRC. The control accuracy of the ADRC algorithm is difficult to meet the requirements of some inertial test equipment, and when the reference signal changes rapidly, the torque coefficient will have a greater impact on the speed control accuracy.

发明内容Summary of the invention

有鉴于此,本发明提供一种惯性测试设备的速率控制方法、装置、设备及介质,至少部分解决现有技术中存在的自抗扰控制算法的控制精度难以满足一些惯性测试设备的要求,并且在参考信号快速变化时,力矩系数会对转速的控制精度造成较大影响问题。In view of this, the present invention provides a rate control method, device, equipment and medium for inertial testing equipment, which at least partially solves the problem that the control accuracy of the self-disturbance rejection control algorithm in the prior art is difficult to meet the requirements of some inertial testing equipment, and when the reference signal changes rapidly, the torque coefficient will have a significant impact on the control accuracy of the rotational speed.

第一方面,本申请提供一种惯性测试设备的速率控制方法,该方法包括:In a first aspect, the present application provides a rate control method for an inertial testing device, the method comprising:

获取目标角速度变化曲线;Obtain target angular velocity change curve;

根据所述目标角速度变化曲线得到电压控制模块的前馈控制量,其中,所述电压控制模块用于输出目标控制电压,以控制角速度驱动模块对角速度进行控制;Obtaining a feedforward control amount of a voltage control module according to the target angular velocity variation curve, wherein the voltage control module is used to output a target control voltage to control an angular velocity driving module to control the angular velocity;

获取所述角速度驱动模块输入的实际控制电压和输出的实际角速度信号;Acquiring an actual control voltage inputted by the angular velocity driving module and an actual angular velocity signal outputted by the angular velocity driving module;

根据所述目标角速度变化曲线和所述实际角速度信号得到实际误差,并对所述实际误差进行非线性比例控制得到非线性比例控制量;Obtaining an actual error according to the target angular velocity variation curve and the actual angular velocity signal, and performing nonlinear proportional control on the actual error to obtain a nonlinear proportional control amount;

将所述实际控制电压和所述实际角速度信号输入预设的降阶状态观测器中,得到观测扰动;Inputting the actual control voltage and the actual angular velocity signal into a preset reduced-order state observer to obtain an observed disturbance;

基于所述观测扰动得到扰动补偿控制量;Obtaining a disturbance compensation control amount based on the observed disturbance;

将所述前馈控制量、所述非线性比例控制量和所述扰动补偿控制量输入所述电压控制模块中,得到所述目标控制电压;Inputting the feedforward control amount, the nonlinear proportional control amount and the disturbance compensation control amount into the voltage control module to obtain the target control voltage;

触发所述角速度驱动模块根据所述目标控制电压、力矩系数和实际扰动实现对角速度的控制,其中,根据预先设定的辨识算法进行辨识估计得到所述力矩系数。The angular velocity driving module is triggered to control the angular velocity according to the target control voltage, the torque coefficient and the actual disturbance, wherein the torque coefficient is obtained by identification and estimation according to a preset identification algorithm.

可选的,根据所述目标角速度变化曲线得到电压控制模块的前馈控制量,包括:Optionally, obtaining a feedforward control amount of a voltage control module according to the target angular velocity variation curve includes:

对所述目标角速度变化曲线进行非线性滤波,并求得所述非线性滤波后的目标角速度变化曲线的微分信号;Performing nonlinear filtering on the target angular velocity variation curve, and obtaining a differential signal of the target angular velocity variation curve after the nonlinear filtering;

基于下述公式确定所述前馈控制量:The feedforward control amount is determined based on the following formula:

其中,所述为所述前馈控制量,所述为所述力矩系数,所述为所述微分信号,所述为第一可调参数,所述J为转动惯量。Among them, the is the feedforward control quantity, is the moment coefficient, the is the differential signal, the is the first adjustable parameter, and J is the moment of inertia.

可选的,获取所述角速度驱动模块输入的实际控制电压和输出的实际角速度信号,包括:Optionally, obtaining the actual control voltage input to the angular velocity driving module and the actual angular velocity signal output therefrom includes:

获取位置传感器获取到的转角位置信号,对所述转角位置信号进行差分计算得到所述实际角速度信号。The rotation angle position signal obtained by the position sensor is obtained, and the actual angular velocity signal is obtained by performing differential calculation on the rotation angle position signal.

可选的,将所述实际控制电压和所述实际角速度信号输入预设的降阶状态观测器中,得到观测扰动,包括:Optionally, inputting the actual control voltage and the actual angular velocity signal into a preset reduced-order state observer to obtain an observed disturbance includes:

根据如下公式建立所述预设的降阶状态观测器:The preset reduced-order state observer is established according to the following formula:

其中,所述为第二可调参数,所述为第三可调参数,所述为第四可调参数,所述为第五可调参数,所述h为采样间隔,所述为观测角速度信号与所述实际角速度信号的差值,所述为所述降阶状态观测器输出的转速变量,所述为所述实际角速度信号,所述为观测扰动,所述Sat为饱和函数,所述为预设扰动观测限制量,所述函数为负半轴取值为正半轴的中心对称的次幂函数,公式如下:Among them, the is the second adjustable parameter, is the third adjustable parameter, is the fourth adjustable parameter, is the fifth adjustable parameter, h is the sampling interval, is the difference between the observed angular velocity signal and the actual angular velocity signal, is the speed variable output by the reduced-order state observer, is the actual angular velocity signal, is the observed disturbance, Sat is the saturation function, is the preset disturbance observation limit, The function is symmetric about the center of the positive semi-axis. The power function has the following formula:

.

可选的,根据所述目标角速度变化曲线和所述实际角速度信号得到实际误差,并对所述实际误差进行非线性比例控制得到非线性比例控制量,包括:Optionally, obtaining an actual error according to the target angular velocity change curve and the actual angular velocity signal, and performing nonlinear proportional control on the actual error to obtain a nonlinear proportional control amount includes:

根据如下公式确定所述非线性比例控制量:The nonlinear proportional control amount is determined according to the following formula:

其中,所述为所述非线性比例控制量,所述为第六可调参数,所述为第七可调参数,所述为非线性滤波后的目标角速度变化曲线。Among them, the is the nonlinear proportional control quantity, is the sixth adjustable parameter, The seventh adjustable parameter is It is the target angular velocity change curve after nonlinear filtering.

可选的,基于所述观测扰动得到扰动补偿控制量,包括:Optionally, obtaining a disturbance compensation control amount based on the observed disturbance includes:

其中,所述为所述扰动补偿控制量。Among them, the is the disturbance compensation control quantity.

可选的,所述角速度驱动模块根据所述目标控制电压、力矩系数和实际扰动实现对角速度的控制,包括:Optionally, the angular velocity driving module controls the angular velocity according to the target control voltage, the torque coefficient and the actual disturbance, including:

根据以下公式实现对角速度的控制:The angular velocity is controlled according to the following formula:

其中,所述为控制后的角速度,所述为所述目标控制电压,所述为所述实际扰动。Among them, the is the angular velocity after control, is the target control voltage, the is the actual disturbance.

第二方面,本申请提供一种惯性测试设备的速率控制装置,该装置包括:In a second aspect, the present application provides a rate control device for an inertial testing device, the device comprising:

第一获取模块,用于获取目标角速度变化曲线;A first acquisition module is used to acquire a target angular velocity variation curve;

前馈控制量确定模块,用于根据所述目标角速度变化曲线得到电压控制模块的前馈控制量,其中,所述电压控制模块用于输出目标控制电压,以控制角速度驱动模块对角速度进行控制;A feedforward control amount determination module, used for obtaining a feedforward control amount of a voltage control module according to the target angular velocity variation curve, wherein the voltage control module is used for outputting a target control voltage to control the angular velocity driving module to control the angular velocity;

第二获取模块,用于获取所述角速度驱动模块输入的实际控制电压和输出的实际角速度信号;A second acquisition module is used to acquire an actual control voltage input and an actual angular velocity signal output by the angular velocity driving module;

非线性比例控制量确定模块,用于根据所述目标角速度变化曲线和所述实际角速度信号得到实际误差,并对所述实际误差进行非线性比例控制得到非线性比例控制量;a nonlinear proportional control amount determination module, configured to obtain an actual error according to the target angular velocity variation curve and the actual angular velocity signal, and perform nonlinear proportional control on the actual error to obtain a nonlinear proportional control amount;

观测扰动确定模块,用于将所述实际控制电压和所述实际角速度信号输入预设的降阶状态观测器中,得到观测扰动;An observed disturbance determination module, used for inputting the actual control voltage and the actual angular velocity signal into a preset reduced-order state observer to obtain an observed disturbance;

扰动补偿控制量确定模块,用于基于所述观测扰动得到扰动补偿控制量;A disturbance compensation control amount determination module, used to obtain a disturbance compensation control amount based on the observed disturbance;

目标控制电压确定模块,用于将所述前馈控制量、所述非线性比例控制量和所述扰动补偿控制量输入所述电压控制模块中,得到所述目标控制电压;a target control voltage determination module, used for inputting the feedforward control amount, the nonlinear proportional control amount and the disturbance compensation control amount into the voltage control module to obtain the target control voltage;

角速度控制模块,用于触发所述角速度驱动模块根据所述目标控制电压、力矩系数和实际扰动实现对角速度的控制,其中,根据预先设定的辨识算法进行辨识估计得到所述力矩系数。The angular velocity control module is used to trigger the angular velocity driving module to control the angular velocity according to the target control voltage, the torque coefficient and the actual disturbance, wherein the torque coefficient is obtained by identification and estimation according to a preset identification algorithm.

第三方面,本申请提供一种惯性测试设备的速率控制设备,包括:至少一个处理器和至少一个存储器;In a third aspect, the present application provides a rate control device for an inertial test device, comprising: at least one processor and at least one memory;

其中,所述存储器存储有程序代码,当所述程序代码被所述处理器执行时,使得所述处理器执行下列过程:The memory stores program codes, and when the program codes are executed by the processor, the processor performs the following process:

获取目标角速度变化曲线;Obtain target angular velocity change curve;

根据所述目标角速度变化曲线得到电压控制模块的前馈控制量,其中,所述电压控制模块用于输出目标控制电压,以控制角速度驱动模块对角速度进行控制;Obtaining a feedforward control amount of a voltage control module according to the target angular velocity variation curve, wherein the voltage control module is used to output a target control voltage to control an angular velocity driving module to control the angular velocity;

获取所述角速度驱动模块输入的实际控制电压和输出的实际角速度信号;Acquiring an actual control voltage inputted by the angular velocity driving module and an actual angular velocity signal outputted by the angular velocity driving module;

根据所述目标角速度变化曲线和所述实际角速度信号得到实际误差,并对所述实际误差进行非线性比例控制得到非线性比例控制量;Obtaining an actual error according to the target angular velocity variation curve and the actual angular velocity signal, and performing nonlinear proportional control on the actual error to obtain a nonlinear proportional control amount;

将所述实际控制电压和所述实际角速度信号输入预设的降阶状态观测器中,得到观测扰动;Inputting the actual control voltage and the actual angular velocity signal into a preset reduced-order state observer to obtain an observed disturbance;

基于所述观测扰动得到扰动补偿控制量;Obtaining a disturbance compensation control amount based on the observed disturbance;

将所述前馈控制量、所述非线性比例控制量和所述扰动补偿控制量输入所述电压控制模块中,得到所述目标控制电压;Inputting the feedforward control amount, the nonlinear proportional control amount and the disturbance compensation control amount into the voltage control module to obtain the target control voltage;

触发所述角速度驱动模块根据所述目标控制电压、力矩系数和所述观测扰动实现对角速度的控制,其中,根据预先设定的辨识算法进行辨识估计得到所述力矩系数。The angular velocity driving module is triggered to control the angular velocity according to the target control voltage, the torque coefficient and the observed disturbance, wherein the torque coefficient is obtained by identification and estimation according to a preset identification algorithm.

第四方面,本申请还提供一种计算机存储介质,其上存储有计算机程序,该程序被处理器执行时实现第一方面所述任意一种惯性测试设备的速率控制方法的步骤。In a fourth aspect, the present application further provides a computer storage medium having a computer program stored thereon, which, when executed by a processor, implements the steps of any one of the rate control methods for inertial testing equipment described in the first aspect.

第五方面,本申请还提供一种提供计算机程序产品,包括计算机程序,所述计算机程序包括程序指令,当所述程序指令被电子设备执行时,使所述电子设备执行上述任意一种惯性测试设备的速率控制方法。In a fifth aspect, the present application further provides a computer program product, including a computer program, wherein the computer program includes program instructions, and when the program instructions are executed by an electronic device, the electronic device executes any one of the above-mentioned rate control methods for inertial testing equipment.

另外,第二方面至第五方面中任一种实现方式所带来的技术效果可参见第一方面中不同实现方式所带来的技术效果,此处不再赘述。In addition, the technical effects brought about by any implementation method in the second to fifth aspects can refer to the technical effects brought about by different implementation methods in the first aspect, and will not be repeated here.

利用本发明提供的一种惯性测试设备的速率控制方法、装置、设备及介质,具有以下有益效果:The rate control method, device, equipment and medium of an inertial test device provided by the present invention have the following beneficial effects:

本申请提供的一种惯性测试设备的速率控制方法、装置、设备及介质,通过对目标角速度变化曲线进行前馈控制,能够很好的提高电压控制模块和角速度驱动模块的动态响应,提高角速度控制的精度;将传统自抗扰控制中的扩张状态观测器进行降阶并优化,提升了扰动的抑制能力,由于目标角速度快速变化时,力矩系数会对转速的控制精度造成较大影响,针对该问题本申请设计了辨识方法对力矩系数进行实时估计,进一步提升了控制精度。The present application provides a rate control method, device, equipment and medium for inertial test equipment. By performing feedforward control on the target angular velocity change curve, the dynamic response of the voltage control module and the angular velocity drive module can be greatly improved, and the accuracy of angular velocity control can be improved. The extended state observer in the traditional active disturbance rejection control is reduced in order and optimized, thereby improving the disturbance suppression capability. Since the torque coefficient will have a great influence on the control accuracy of the rotation speed when the target angular velocity changes rapidly, the present application designs an identification method to estimate the torque coefficient in real time to further improve the control accuracy.

附图说明BRIEF DESCRIPTION OF THE DRAWINGS

为了更清楚地说明本发明实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。In order to more clearly illustrate the technical solutions of the embodiments of the present invention, the drawings required for use in the embodiments will be briefly introduced below. Obviously, the drawings described below are only some embodiments of the present invention. For ordinary technicians in this field, other drawings can be obtained based on these drawings without paying creative work.

图1为本申请实施例提供的一种惯性测试设备的速率控制方法示意图;FIG1 is a schematic diagram of a rate control method for an inertial testing device provided in an embodiment of the present application;

图2为本申请实施例提供的一种单轴转速伺服系统模型示意图;Figure 2 is a schematic diagram of a single-axis speed servo system model provided in an embodiment of the present application;

图3为本申请实施例提供的一种惯性测试设备的速率控制方法示意图;FIG3 is a schematic diagram of a rate control method for an inertial testing device provided in an embodiment of the present application;

图4为本申请实施例提供的一种非线性滤波后的参考信号示意图;FIG4 is a schematic diagram of a reference signal after nonlinear filtering provided in an embodiment of the present application;

图5为本申请实施例提供的一种力矩系数的辨识曲线示意图;FIG5 is a schematic diagram of an identification curve of a torque coefficient provided in an embodiment of the present application;

图6为本申请实施例提供的一种扰动观测值变化示意图;FIG6 is a schematic diagram of a disturbance observation value change provided in an embodiment of the present application;

图7为本申请实施例提供的一种控制转速变化示意图;FIG7 is a schematic diagram of a speed control variation provided by an embodiment of the present application;

图8为本申请实施例提供的一种控制转速误差示意图;Figure 8 is a schematic diagram of a speed control error provided in an embodiment of the present application;

图9为本申请实施例提供的一种惯性测试设备的速率控制装置示意图;FIG9 is a schematic diagram of a rate control device of an inertial testing device provided in an embodiment of the present application;

图10为本申请实施例提供的一种惯性测试设备的速率控制设备示意图。FIG. 10 is a schematic diagram of a rate control device of an inertial testing device provided in an embodiment of the present application.

具体实施方式DETAILED DESCRIPTION

下面结合附图对本发明实施例进行详细描述。The embodiments of the present invention are described in detail below with reference to the accompanying drawings.

需说明的是,在不冲突的情况下,以下实施例及实施例中的特征可以相互组合;并且,基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。It should be noted that the following embodiments and features in the embodiments may be combined with each other in the absence of conflict; and, based on the embodiments in the present disclosure, all other embodiments obtained by ordinary technicians in the field without making any creative work are within the scope of protection of the present disclosure.

需要说明的是,下文描述在所附权利要求书的范围内的实施例的各种方面。应显而易见,本文中所描述的方面可体现于广泛多种形式中,且本文中所描述的任何特定结构及/或功能仅为说明性的。基于本公开,所属领域的技术人员应了解,本文中所描述的一个方面可与任何其它方面独立地实施,且可以各种方式组合这些方面中的两者或两者以上。举例来说,可使用本文中所阐述的任何数目个方面来实施设备及/或实践方法。另外,可使用除了本文中所阐述的方面中的一或多者之外的其它结构及/或功能性实施此设备及/或实践此方法。It should be noted that various aspects of the embodiments within the scope of the appended claims are described below. It should be apparent that the aspects described herein may be embodied in a wide variety of forms, and any specific structure and/or function described herein is merely illustrative. Based on the present disclosure, it should be understood by those skilled in the art that an aspect described herein may be implemented independently of any other aspect, and two or more of these aspects may be combined in various ways. For example, any number of aspects described herein may be used to implement the device and/or practice the method. In addition, other structures and/or functionalities other than one or more of the aspects described herein may be used to implement this device and/or practice this method.

惯性技术是通过感知运动体在惯性空间的角运动、线运动,进而获取运动体的姿态、速度和位置等信息的重要测量技术,在航空、航海、军事等领域都有着非常重要的地位。惯性测试设备是应用于惯性产品设计开发、制造、测试以及使用等全过程的关键设备。惯性测试设备的精度需要高于惯性产品的精度,而提高惯性测试设备精度的方法除了提升硬件性能外,也需要设计合适的、先进的控制方法以充分达到硬件设备所支持的极限精度。Inertial technology is an important measurement technology that senses the angular motion and linear motion of a moving body in inertial space, and then obtains information such as the posture, speed and position of the moving body. It plays a very important role in the fields of aviation, navigation, military, etc. Inertial test equipment is a key equipment used in the entire process of inertial product design, development, manufacturing, testing and use. The accuracy of inertial test equipment needs to be higher than that of inertial products. In addition to improving hardware performance, the method of improving the accuracy of inertial test equipment also requires the design of appropriate and advanced control methods to fully achieve the ultimate accuracy supported by the hardware equipment.

高精度惯性设备应用中,常需要实现速率精确、快速的控制。以PID控制算法为代表的传统线性控制方法难以同时满足高精度和高动态的转速控制需求,之后提出的自抗扰控制算法(Active Disturbance Rejection Control,ADRC)解决了传统PID控制中快速性和超调量的矛盾。但自抗扰控制仍旧存在一些问题,自抗扰控制算法的控制精度难以满足一些惯性测试设备的要求,并且在参考信号快速变化时,力矩系数会对转速的控制精度造成较大影响。In the application of high-precision inertial equipment, it is often necessary to achieve accurate and fast rate control. Traditional linear control methods represented by PID control algorithms are difficult to simultaneously meet the requirements of high-precision and high-dynamic speed control. The Active Disturbance Rejection Control (ADRC) algorithm proposed later solves the contradiction between rapidity and overshoot in traditional PID control. However, there are still some problems with ADRC. The control accuracy of the ADRC algorithm is difficult to meet the requirements of some inertial test equipment, and when the reference signal changes rapidly, the torque coefficient will have a greater impact on the speed control accuracy.

基于此,本申请提供一种惯性测试设备的速率控制方法,对自抗扰控制方法进行了改进。对于高精度惯性测试设备的速率控制,在高精度光栅传感器的应用下,可以将原始的自抗扰控制方法中的扩张状态观测器进行降阶简化以提高对扰动的跟踪速度;将原本针对位置的过渡过程安排改为针对转速的过渡过程安排;为提高对给定转速曲线的跟踪性能,设计了前馈环节提高跟踪速度;自抗扰控制虽然对系统参数具有一定鲁棒性,但在参考信号快速变化时,力矩系数仍然会对转速的控制精度造成较大影响,针对该问题设计了辨识方法对力矩系数进行实时估计。Based on this, the present application provides a rate control method for inertial test equipment, which improves the self-disturbance rejection control method. For the rate control of high-precision inertial test equipment, with the application of high-precision grating sensors, the extended state observer in the original self-disturbance rejection control method can be simplified to improve the tracking speed of disturbances; the original transition process arrangement for position is changed to a transition process arrangement for speed; in order to improve the tracking performance of a given speed curve, a feedforward link is designed to improve the tracking speed; although the self-disturbance rejection control has a certain robustness to the system parameters, when the reference signal changes rapidly, the torque coefficient will still have a greater impact on the control accuracy of the speed. To address this problem, an identification method is designed to estimate the torque coefficient in real time.

如图1所示为本申请提供的一种惯性测试设备的速率控制方法,其包括:As shown in FIG1 , a rate control method for an inertial test device provided by the present application includes:

步骤S101,获取目标角速度变化曲线;Step S101, obtaining a target angular velocity variation curve;

需要说明的是,本申请提出一种惯性测试设备的速率控制方法,可以但不限于用于高精度惯性测试设备的速率控制方法,需要根据预先给出的参考信号控制高精度惯性测试设备的角速度,使高精度惯性测试设备的角速度能够按照预先给出的参考信号进行变化。这里预先给出的参考信号也即目标角速度变化曲线。目标角速度变化曲线由本领域技术人员给出,具体变化过程也由本领域技术人员进行控制,这里不做限定。It should be noted that the present application proposes a rate control method for inertial testing equipment, which can be used for, but is not limited to, a rate control method for high-precision inertial testing equipment. It is necessary to control the angular velocity of the high-precision inertial testing equipment according to a pre-given reference signal, so that the angular velocity of the high-precision inertial testing equipment can be changed according to the pre-given reference signal. The pre-given reference signal here is also the target angular velocity change curve. The target angular velocity change curve is given by those skilled in the art, and the specific change process is also controlled by those skilled in the art, which is not limited here.

步骤S102,根据所述目标角速度变化曲线得到电压控制模块的前馈控制量,其中,所述电压控制模块用于输出目标控制电压,以控制角速度驱动模块对角速度进行控制;Step S102, obtaining a feedforward control amount of a voltage control module according to the target angular velocity variation curve, wherein the voltage control module is used to output a target control voltage to control an angular velocity driving module to control the angular velocity;

需要说明的是,这里将电压控制模块和角速度驱动模块的集合称为速率控制系统,电压控制模块需要根据目标角速度变化曲线,当前电压控制模块的实际输出电压,角速度驱动模块输出的实际角速度信号和总扰动,确定控制角速度驱动模块的目标输出电压,以使角速度驱动模块根据目标输出电压实现对角速度的控制。这里的总扰动为速率控制系统模型误差和外部扰动的统一。下面将一一介绍电压控制模块用于输出目标控制电压,以控制角速度驱动模块对角速度进行控制的过程。It should be noted that the combination of the voltage control module and the angular velocity drive module is referred to as a rate control system. The voltage control module needs to determine the target output voltage of the angular velocity drive module based on the target angular velocity change curve, the actual output voltage of the current voltage control module, the actual angular velocity signal output by the angular velocity drive module, and the total disturbance, so that the angular velocity drive module can control the angular velocity according to the target output voltage. The total disturbance here is the unity of the rate control system model error and the external disturbance. The following will introduce the process of the voltage control module being used to output the target control voltage to control the angular velocity drive module to control the angular velocity.

具体的,前馈控制在已知参考信号微分的情况下可以提高系统动态响应,这里根据所述目标角速度变化曲线得到电压控制模块的前馈控制量的具体过程如下:Specifically, feedforward control can improve the dynamic response of the system when the differential of the reference signal is known. Here, the specific process of obtaining the feedforward control amount of the voltage control module according to the target angular velocity change curve is as follows:

对所述目标角速度变化曲线进行非线性滤波,并求得所述非线性滤波后的目标角速度变化曲线的微分信号;基于下述公式确定所述前馈控制量:The target angular velocity change curve is subjected to nonlinear filtering, and a differential signal of the target angular velocity change curve after the nonlinear filtering is obtained; and the feedforward control amount is determined based on the following formula:

(1) (1)

其中,为前馈控制量,为力矩系数,为微分信号,为第一可调参数,J为转动惯量。in, is the feedforward control quantity, is the torque coefficient, is the differential signal, is the first adjustable parameter, and J is the moment of inertia.

需要说明的是,速率控制系统能够承受的最大加速度为:It should be noted that the maximum acceleration that the rate control system can withstand is:

(2) (2)

其中,为速率控制系统中控制电压限值。故需要对输入的参考信号进行滤波,使其最大加速度小于系统加速度上限;并给出滤波后信号的微分用于计算前馈控制量。具体计算方式如下:in, It is the control voltage limit in the rate control system. Therefore, it is necessary to filter the input reference signal so that its maximum acceleration is less than the upper limit of the system acceleration. ; and give the differential of the filtered signal to calculate the feedforward control quantity. The specific calculation method is as follows:

(3) (3)

其中,为参考信号,为滤波后的参考信号,为速度因子。滤波后,参考信号的最大变化率不大于,并能无相位幅值差地跟踪,并给出滤波后的参考信号的微分in, is the reference signal, is the reference signal after filtering, is the speed factor. After filtering, the maximum change rate of the reference signal is no greater than , and can track without phase amplitude difference, and give the differential of the filtered reference signal .

不考虑扰动,则系统拉普拉斯变换后的方程为:Without considering the disturbance, the Laplace transformed equation of the system is:

(4) (4)

对给定的参考信号,代入并整理有:For a given reference signal , substituting and sorting:

(5) (5)

步骤S103,获取所述角速度驱动模块输入的实际控制电压和输出的实际角速度信号;Step S103, obtaining the actual control voltage inputted by the angular velocity driving module and the actual angular velocity signal outputted by the angular velocity driving module;

本申请实施例中的观测扰动需要根据预设的降阶状态观测器得到的,而预设的降阶状态观测器的输入为实际控制电压和实际角速度信号,因此这里需要提前获取角速度驱动模块输入的实际控制电压和输出的实际角速度信号。其中,实际控制电压可以直接得到,实际角速度信号需要根据位置传感器获取到的转角位置信号,将转角位置信号进行差分计算得到实际角速度信号,具体实施方式如下所示:The observed disturbance in the embodiment of the present application needs to be obtained according to the preset reduced-order state observer, and the input of the preset reduced-order state observer is the actual control voltage and the actual angular velocity signal, so it is necessary to obtain the actual control voltage input by the angular velocity drive module and the actual angular velocity signal output in advance. Among them, the actual control voltage can be obtained directly, and the actual angular velocity signal needs to be obtained according to the angular position signal obtained by the position sensor, and the angular position signal is differentially calculated to obtain the actual angular velocity signal. The specific implementation method is as follows:

位置传感器采用高精度光栅,且经过谐波误差补偿,可认为足够精确,故直接通过差分计算角速度:The position sensor uses a high-precision grating, and after harmonic error compensation, it can be considered accurate enough, so the angular velocity is calculated directly by difference:

(6) (6)

其中,为转角位置,由高精度光栅测量获得。为采样间隔。in, is the angular position, which is obtained by high-precision grating measurement. is the sampling interval.

步骤S104,根据所述目标角速度变化曲线和所述实际角速度信号得到实际误差,并对所述实际误差进行非线性比例控制得到非线性比例控制量;Step S104, obtaining an actual error according to the target angular velocity variation curve and the actual angular velocity signal, and performing nonlinear proportional control on the actual error to obtain a nonlinear proportional control amount;

本申请实施例中,反馈控制量包括非线性比例控制量和扰动补偿控制量。扰动补偿控制可以取代传统PID控制的积分作用使控制系统无静差,同时避免积分控制引入相位滞后的影响,故只需要对误差进行非线性比例控制,下面给出非线性比例控制量的具体计算步骤:In the embodiment of the present application, the feedback control quantity includes a nonlinear proportional control quantity and a disturbance compensation control quantity. The disturbance compensation control can replace the integral effect of the traditional PID control to make the control system free of static error, while avoiding the influence of phase lag introduced by the integral control. Therefore, only the error needs to be nonlinearly proportionally controlled. The specific calculation steps of the nonlinear proportional control quantity are given below:

(7) (7)

为所述非线性比例控制量,为第六可调参数,为第七可调参数,为非线性滤波后的目标角速度变化曲线。 is the nonlinear proportional control quantity, is the sixth adjustable parameter, is the seventh adjustable parameter, It is the target angular velocity change curve after nonlinear filtering.

步骤S105,将所述实际控制电压和所述实际角速度信号输入预设的降阶状态观测器中,得到观测扰动;Step S105, inputting the actual control voltage and the actual angular velocity signal into a preset reduced-order state observer to obtain an observed disturbance;

需要说明的是,现有的扩展状态观测器(Extended State Observer,ESO)多了一个状态变量(代表位置),在本发明的应用环境中可以降阶简化状态观测器,提高响应速度,减少需要整定的参数数量。根据如下公式建立所述预设的降阶状态观测器:It should be noted that the existing Extended State Observer (ESO) has an additional state variable (representing the position). In the application environment of the present invention, the state observer can be simplified by reducing the order, improving the response speed and reducing the number of parameters that need to be adjusted. The preset reduced-order state observer is established according to the following formula:

(8) (8)

其中,所述为第二可调参数,所述为第三可调参数,所述为第四可调参数,所述为第五可调参数,所述h为采样间隔,所述为观测角速度信号与所述实际角速度信号的差值,所述为所述降阶状态观测器输出的转速变量,这里根据实际测量噪声情况可选择取代差分信号用作转速输出;所述为所述实际角速度信号,所述为观测扰动,所述Sat为饱和函数,所述为预设扰动观测限制量,所述函数为负半轴取值为正半轴的中心对称的次幂函数,并在零点附近宽度区间线性化,具体公式如下: Among them, the is the second adjustable parameter, is the third adjustable parameter, is the fourth adjustable parameter, is the fifth adjustable parameter, h is the sampling interval, is the difference between the observed angular velocity signal and the actual angular velocity signal, is the speed variable output by the reduced-order state observer, which can be used as the speed output instead of the differential signal according to the actual measurement noise situation; is the actual angular velocity signal, is the observed disturbance, Sat is the saturation function, is the preset disturbance observation limit, The function is symmetric about the center of the positive semi-axis. Power function, and near zero The width interval is linearized, and the specific formula is as follows:

(9) (9)

函数为饱和函数,参数对观测扰动值起限幅作用,具体如下: The function is a saturation function, parameter It has a limiting effect on the observed disturbance value, as follows:

(10) (10)

步骤S106,基于所述观测扰动得到扰动补偿控制量;Step S106, obtaining a disturbance compensation control amount based on the observed disturbance;

基于所述观测扰动得到扰动补偿控制量,包括:Obtaining a disturbance compensation control amount based on the observed disturbance includes:

(11) (11)

其中,所述为所述扰动补偿控制量。Among them, the is the disturbance compensation control quantity.

步骤S107,将所述前馈控制量、所述非线性比例控制量和所述扰动补偿控制量输入所述电压控制模块中,得到所述目标控制电压;Step S107, inputting the feedforward control amount, the nonlinear proportional control amount and the disturbance compensation control amount into the voltage control module to obtain the target control voltage;

上述已经求得前馈控制量、非线性比例控制量和扰动补偿控制量,根据前馈控制量、非线性比例控制量和扰动补偿控制量确定目标控制电压的公式如下:The feedforward control amount, nonlinear proportional control amount and disturbance compensation control amount have been obtained above. The formula for determining the target control voltage based on the feedforward control amount, nonlinear proportional control amount and disturbance compensation control amount is as follows:

(12) (12)

步骤S108,触发所述角速度驱动模块根据所述目标控制电压、力矩系数和实际扰动实现对角速度的控制,其中,根据预先设定的辨识算法进行辨识估计得到所述力矩系数。Step S108, triggering the angular velocity driving module to control the angular velocity according to the target control voltage, the torque coefficient and the actual disturbance, wherein the torque coefficient is obtained by identification and estimation according to a preset identification algorithm.

需要说明的是,本申请实施例的速率控制系统也叫单轴转速伺服系统模型,伺服电机(servo motor)是指在伺服系统中控制机械元件运转的发动机,是一种补助马达间接变速装置。伺服电机可使控制速度,位置精度非常准确,可以将电压信号转化为转矩和转速以驱动控制对象。伺服电机转子转速受输入信号控制,并能快速反应,在自动控制系统中,用作执行元件,且具有机电时间常数小、线性度高等特性,可把所收到的电信号转换成电动机轴上的角位移或角速度输出。分为直流和交流伺服电动机两大类,其主要特点是,当信号电压为零时无自转现象,转速随着转矩的增加而匀速下降。本申请实施例给出单轴转速伺服系统模型示意图,如图2所示。It should be noted that the rate control system of the embodiment of the present application is also called a single-axis speed servo system model. The servo motor refers to an engine that controls the operation of mechanical elements in the servo system, and is an auxiliary motor indirect speed change device. The servo motor can control the speed and position accuracy very accurately, and can convert the voltage signal into torque and speed to drive the control object. The rotor speed of the servo motor is controlled by the input signal and can respond quickly. In the automatic control system, it is used as an actuator and has the characteristics of small electromechanical time constant and high linearity. It can convert the received electrical signal into angular displacement or angular velocity output on the motor shaft. It is divided into two categories: DC and AC servo motors. Its main characteristics are that there is no self-rotation when the signal voltage is zero, and the speed decreases uniformly with the increase of torque. The embodiment of the present application gives a schematic diagram of the single-axis speed servo system model, as shown in Figure 2.

速率控制系统采用永磁同步电机作为驱动装置,永磁同步电机定子三相绕组的电压平衡方程可表示为:The speed control system uses a permanent magnet synchronous motor as a driving device. The voltage balance equation of the three-phase stator winding of the permanent magnet synchronous motor can be expressed as:

(13) (13)

式中:相绕组相电压, Where: for Phase winding phase voltage, ;

为三相绕组相电阻; is the phase resistance of the three-phase winding;

相绕组相电流, for Phase winding phase current, ;

相绕组上的磁链,上加点表示该参数的导数。 for The flux linkage on the phase winding, ; The dot indicates the derivative of the parameter.

电磁转矩为:The electromagnetic torque is:

(14) (14)

其中,为电机极对数。in, is the number of motor pole pairs.

可见在定子三相坐标下,电机的电磁转矩数学方程式复杂且存在耦合,出于实际控制的需要,通过Clark变换及Park变换将在转子d-q坐标系中建立电压平衡方程如下:It can be seen that under the three-phase coordinates of the stator, the mathematical equation of the electromagnetic torque of the motor is complex and coupled. For the needs of actual control, the voltage balance equation is established in the rotor d-q coordinate system through Clark transformation and Park transformation as follows:

(15) (15)

其中,为变换后直轴电流,为变换后直轴磁链。为变换后交轴电流,为变换后交轴磁链。变换后两轴电阻。in, is the direct-axis current after transformation, is the direct-axis magnetic flux after transformation. is the quadrature-axis current after transformation, is the cross-axis flux after transformation. The resistance of the two axes after transformation.

电磁转矩可由下式计算:The electromagnetic torque can be calculated by the following formula:

(16) (16)

其中,为永磁体在定子侧的磁链,为等效d轴、q轴为电感。in, is the flux linkage of the permanent magnet on the stator side, is the equivalent d-axis and q -axis is the inductance.

通过控制器内置电流环控制并令,电流环带宽足够大可认为不影响控制效果,则电磁转矩方程可简化为下式:Controlled by the controller's built-in current loop , And order , the current loop bandwidth is large enough to be considered not to affect the control effect, then the electromagnetic torque equation can be simplified to the following formula:

(17) (17)

正比于控制电压,故有: Proportional to control voltage , so we have:

(18) (18)

即控制电压与电磁力矩可视为正比关系,为力矩系数。Control voltage With electromagnetic torque It can be regarded as a proportional relationship. is the torque coefficient.

根据牛顿第二定律,有:According to Newton's second law, we have:

(19) (19)

其中,转动惯量,为角速度,为电磁转矩,为惯性测试设备实际的外界扰动。in, Moment of inertia, is the angular velocity, is the electromagnetic torque, It is the actual external disturbance of the inertial test equipment.

除此之外,本申请实施例还设计了辨识方法对力矩系数进行实时估计。具体如下所示:In addition, the embodiment of the present application also designs an identification method to estimate the torque coefficient in real time. The details are as follows:

考虑线性方程:Consider the linear equation:

(20) (20)

其中,为系统输出,为信息矩阵,为系统参数,为噪声。其对应代价函数为最小值的带遗忘因子的递推最小二乘算法为:in, is the system output, is the information matrix, is the system parameter, is noise. Its corresponding cost function The recursive least squares algorithm with the forgetting factor for the minimum value is:

(21) (twenty one)

其中,为遗忘因子,为足够大的实数。in, For the forgetting factor, , is a sufficiently large real number.

将式(18) 代入式(19)并离散化可得:Substituting formula (18) into formula (19) and discretizing it, we can obtain:

(22) (twenty two)

其中,为采样间隔。in, is the sampling interval.

同理有:Similarly, there are:

(23) (twenty three)

采样间隔足够短,可视为内,对式(10)、(11)整理可得:The sampling interval is short enough to be considered By rearranging equations (10) and (11), we can obtain:

(24) (twenty four)

,即可根据上式辨识得到力矩系数。make , , , the torque coefficient can be identified according to the above formula.

本申请实施例提供的一种惯性测试设备的速率控制方法的框图如图3所示,图3中参考信号也就是目标角速度变化曲线,通过如图3所示的惯性测试设备的速率控制方法,能够很好的对角速度进行高精度控制。A block diagram of a rate control method for an inertial testing device provided in an embodiment of the present application is shown in FIG3 . The reference signal in FIG3 is the target angular velocity change curve. Through the rate control method for the inertial testing device shown in FIG3 , the angular velocity can be well controlled with high precision.

本申请实施例还给出仿真示例,如下所示:The present application also provides a simulation example, as shown below:

机电伺服系统参数为:采样步长,转动惯量,力矩系数,电机最大转矩。系统初始状态均为0。期望跟踪曲线为The parameters of the electromechanical servo system are: sampling step , moment of inertia , torque coefficient , maximum motor torque The initial state of the system is 0. The expected tracking curve is .

施加扰动:为均值为0、方差为1的标准白噪声。为近似实际系统特性,控制电压输出后加入带宽500Hz的一阶低通滤波器为电流环简化模型。Apply a perturbation: , is a standard white noise with a mean of 0 and a variance of 1. To approximate the actual system characteristics, a first-order low-pass filter with a bandwidth of 500 Hz is added after the control voltage output as a simplified current loop model.

系统可提供最大加速度,取速度因子经非线性滤波安排过渡过程,如图4所示。可见参考信号经滤波后,以的斜率接近期望跟踪曲线,并可以无相位差、无幅值衰减地跟踪期望的正弦信号,并提供微分信号用以计算前馈控制量。The system can provide maximum acceleration , take the speed factor The transition process is arranged by nonlinear filtering, as shown in Figure 4. It can be seen that after the reference signal is filtered, The slope of the control signal is close to the expected tracking curve, and the desired sinusoidal signal can be tracked without phase difference and amplitude attenuation, and a differential signal can be provided to calculate the feedforward control amount.

取遗忘因子,力矩系数的辨识曲线如图5所示。Forgetting Factor , torque coefficient The identification curve is shown in Figure 5.

,扰动观测值如图6所示。可见观测器很好的跟踪了变化的扰动,在t=5的时刻对扰动的阶跃变化也进行了很好的跟踪。Pick , , , the disturbance observation value is shown in Figure 6. It can be seen that the observer tracks the changing disturbance very well, and also tracks the step change of the disturbance very well at the moment t=5.

,控制转速如图7所示,转速误差如图8所示。可见控制转速超调量极小且无静差,对正弦变化也能良好跟踪。对比良好整定的PID控制(相同参考信号,,其中积分仅在时起作用)可见,本方法超调明显更小,过渡过程明显更短;在对常值扰动及噪声扰动均有良好抑制能力同时,本方法对于快速变化的参考信号具有显著的动态跟踪性能。Pick , , , the control speed is shown in Figure 7, and the speed error is shown in Figure 8. It can be seen that the control speed overshoot is very small and there is no static error, and it can also track the sinusoidal changes well. Compared with the well-tuned PID control (same reference signal, , , , where the integral is only It can be seen that the overshoot of this method is significantly smaller and the transition process is significantly shorter; while having good suppression capabilities for both constant value disturbances and noise disturbances, this method has significant dynamic tracking performance for rapidly changing reference signals.

以上对本发明实施例中一种惯性测试设备的速率控制方法进行说明,以下对执行惯性测试设备的速率控制方法的装置进行说明。The above is a description of a rate control method for an inertia test device in an embodiment of the present invention. The following is a description of an apparatus for executing the rate control method for an inertia test device.

请参阅图9,本发明实施例提供的一种惯性测试设备的速率控制装置,包括:Please refer to FIG9 , a rate control device of an inertia testing device provided by an embodiment of the present invention includes:

第一获取模块901,用于获取目标角速度变化曲线;The first acquisition module 901 is used to acquire a target angular velocity variation curve;

前馈控制量确定模块902,用于根据所述目标角速度变化曲线得到电压控制模块的前馈控制量,其中,所述电压控制模块用于输出目标控制电压,以控制角速度驱动模块对角速度进行控制;A feedforward control amount determination module 902 is used to obtain a feedforward control amount of a voltage control module according to the target angular velocity change curve, wherein the voltage control module is used to output a target control voltage to control the angular velocity driving module to control the angular velocity;

第二获取模块903,用于获取所述角速度驱动模块输入的实际控制电压和输出的实际角速度信号;A second acquisition module 903 is used to acquire the actual control voltage input and the actual angular velocity signal output by the angular velocity driving module;

非线性比例控制量确定模块904,用于根据所述目标角速度变化曲线和所述实际角速度信号得到实际误差,并对所述实际误差进行非线性比例控制得到非线性比例控制量;A nonlinear proportional control amount determination module 904 is used to obtain an actual error according to the target angular velocity change curve and the actual angular velocity signal, and perform nonlinear proportional control on the actual error to obtain a nonlinear proportional control amount;

观测扰动确定模块905,用于将所述实际控制电压和所述实际角速度信号输入预设的降阶状态观测器中,得到观测扰动;An observed disturbance determination module 905 is used to input the actual control voltage and the actual angular velocity signal into a preset reduced-order state observer to obtain an observed disturbance;

扰动补偿控制量确定模块906,用于基于所述观测扰动得到扰动补偿控制量;A disturbance compensation control amount determination module 906, configured to obtain a disturbance compensation control amount based on the observed disturbance;

目标控制电压确定模块907,用于将所述前馈控制量、所述非线性比例控制量和所述扰动补偿控制量输入所述电压控制模块中,得到所述目标控制电压;A target control voltage determination module 907, configured to input the feedforward control variable, the nonlinear proportional control variable and the disturbance compensation control variable into the voltage control module to obtain the target control voltage;

角速度控制模块908,用于触发所述角速度驱动模块根据所述目标控制电压、力矩系数和实际扰动实现对角速度的控制,其中,根据预先设定的辨识算法进行辨识估计得到所述力矩系数。The angular velocity control module 908 is used to trigger the angular velocity driving module to control the angular velocity according to the target control voltage, the torque coefficient and the actual disturbance, wherein the torque coefficient is obtained by identification and estimation according to a preset identification algorithm.

可选的,前馈控制量确定模块902,具体用于:Optionally, the feedforward control amount determination module 902 is specifically used to:

对所述目标角速度变化曲线进行非线性滤波,并求得所述非线性滤波后的目标角速度变化曲线的微分信号;Performing nonlinear filtering on the target angular velocity variation curve, and obtaining a differential signal of the target angular velocity variation curve after the nonlinear filtering;

基于下述公式确定所述前馈控制量:The feedforward control amount is determined based on the following formula:

其中,所述为所述前馈控制量,所述为所述力矩系数,所述为所述微分信号,所述为第一可调参数,所述J为转动惯量。Among them, the is the feedforward control quantity, is the moment coefficient, the is the differential signal, the is the first adjustable parameter, and J is the moment of inertia.

可选的,第二获取模块903,具体用于:Optionally, the second acquisition module 903 is specifically configured to:

获取位置传感器获取到的转角位置信号,对所述转角位置信号进行差分计算得到所述实际角速度信号。The rotation angle position signal obtained by the position sensor is obtained, and the actual angular velocity signal is obtained by performing differential calculation on the rotation angle position signal.

可选的,观测扰动确定模块905,具体用于:Optionally, the observed disturbance determination module 905 is specifically configured to:

根据如下公式建立所述预设的降阶状态观测器:The preset reduced-order state observer is established according to the following formula:

其中,所述为第二可调参数,所述为第三可调参数,所述为第四可调参数,所述为第五可调参数,所述h为采样间隔,所述为观测角速度信号与所述实际角速度信号的差值,所述为所述降阶状态观测器输出的转速变量,所述为所述实际角速度信号,所述为观测扰动,所述Sat为饱和函数,所述为预设扰动观测限制量,所述函数为负半轴取值为正半轴的中心对称的次幂函数,具体公式如下:Among them, the is the second adjustable parameter, is the third adjustable parameter, is the fourth adjustable parameter, is the fifth adjustable parameter, h is the sampling interval, is the difference between the observed angular velocity signal and the actual angular velocity signal, is the speed variable output by the reduced-order state observer, is the actual angular velocity signal, is the observed disturbance, Sat is the saturation function, is the preset disturbance observation limit, The function is symmetric about the center of the positive semi-axis. The power function, the specific formula is as follows:

.

可选的,非线性比例控制量确定模块904,具体用于:Optionally, the nonlinear proportional control amount determination module 904 is specifically used for:

根据如下公式确定所述非线性比例控制量:The nonlinear proportional control amount is determined according to the following formula:

其中,所述为所述非线性比例控制量,所述为第六可调参数,所述为第七可调参数,所述为非线性滤波后的目标角速度变化曲线。Among them, the is the nonlinear proportional control quantity, is the sixth adjustable parameter, The seventh adjustable parameter is It is the target angular velocity change curve after nonlinear filtering.

可选的,扰动补偿控制量确定模块906,具体用于Optionally, the disturbance compensation control amount determination module 906 is specifically used to

其中,所述为所述扰动补偿控制量。Among them, the is the disturbance compensation control quantity.

可选的,角速度控制模块908,具体用于:Optionally, the angular velocity control module 908 is specifically configured to:

根据以下公式实现对角速度的控制:The angular velocity is controlled according to the following formula:

其中,所述为控制后的角速度,所述为所述目标控制电压,所述为所述实际扰动。Among them, the is the angular velocity after control, is the target control voltage, the is the actual disturbance.

上面从模块化功能实体的角度对本申请实施例中的一种惯性测试设备的速率控制装置进行了描述,下面从硬件处理的角度对本申请实施例中的一种惯性测试设备的速率控制设备进行描述。The rate control device of an inertial test device in an embodiment of the present application is described above from the perspective of modular functional entities. The rate control device of an inertial test device in an embodiment of the present application is described below from the perspective of hardware processing.

请参阅图10,本申请实施例中一种惯性测试设备的速率控制设备,至少一个处理器1001和至少一个存储器1002,以及总线系统1009;Please refer to FIG. 10 , which shows a rate control device of an inertial test device in an embodiment of the present application, including at least one processor 1001 and at least one memory 1002 , and a bus system 1009 ;

其中,所述存储器存储有程序代码,当所述程序代码被所述处理器执行时,使得所述处理器执行下列过程:The memory stores program codes, and when the program codes are executed by the processor, the processor performs the following process:

获取目标角速度变化曲线;Obtain target angular velocity change curve;

根据所述目标角速度变化曲线得到电压控制模块的前馈控制量,其中,所述电压控制模块用于输出目标控制电压,以控制角速度驱动模块对角速度进行控制;Obtaining a feedforward control amount of a voltage control module according to the target angular velocity variation curve, wherein the voltage control module is used to output a target control voltage to control an angular velocity driving module to control the angular velocity;

获取所述角速度驱动模块输入的实际控制电压和输出的实际角速度信号;Acquiring an actual control voltage inputted by the angular velocity driving module and an actual angular velocity signal outputted by the angular velocity driving module;

根据所述目标角速度变化曲线和所述实际角速度信号得到实际误差,并对所述实际误差进行非线性比例控制得到非线性比例控制量;Obtaining an actual error according to the target angular velocity variation curve and the actual angular velocity signal, and performing nonlinear proportional control on the actual error to obtain a nonlinear proportional control amount;

将所述实际控制电压和所述实际角速度信号输入预设的降阶状态观测器中,得到观测扰动;Inputting the actual control voltage and the actual angular velocity signal into a preset reduced-order state observer to obtain an observed disturbance;

基于所述观测扰动得到扰动补偿控制量;Obtaining a disturbance compensation control amount based on the observed disturbance;

将所述前馈控制量、所述非线性比例控制量和所述扰动补偿控制量输入所述电压控制模块中,得到所述目标控制电压;Inputting the feedforward control amount, the nonlinear proportional control amount and the disturbance compensation control amount into the voltage control module to obtain the target control voltage;

触发所述角速度驱动模块根据所述目标控制电压、力矩系数和实际扰动实现对角速度的控制,其中,根据预先设定的辨识算法进行辨识估计得到所述力矩系数。The angular velocity driving module is triggered to control the angular velocity according to the target control voltage, the torque coefficient and the actual disturbance, wherein the torque coefficient is obtained by identification and estimation according to a preset identification algorithm.

图10是本申请实施例提供的一种惯性测试设备的速率控制设备示意图,该设备1000可因配置或性能不同而产生比较大的差异,可以包括一个或一个以上处理器(英文全称:central processing units,英文简称:CPU)1001(例如,一个或一个以上处理器)和存储器1002,一个或一个以上存储应用程序1004或数据1005的存储介质1003(例如一个或一个以上海量存储设备)。其中,存储器1002和存储介质1003可以是短暂存储或持久存储。存储在存储介质1003的程序可以包括一个或一个以上模块(图示没标出),每个模块可以包括对信息处理装置中的一系列指令操作。更进一步地,处理器1001可以设置为与存储介质1003通信,在设备1000上执行存储介质1003中的一系列指令操作。FIG10 is a schematic diagram of a rate control device of an inertial test device provided in an embodiment of the present application. The device 1000 may have relatively large differences due to different configurations or performances, and may include one or more processors (full name in English: central processing units, abbreviated in English: CPU) 1001 (for example, one or more processors) and a memory 1002, and one or more storage media 1003 (for example, one or more mass storage devices) storing application programs 1004 or data 1005. Among them, the memory 1002 and the storage medium 1003 can be short-term storage or permanent storage. The program stored in the storage medium 1003 may include one or more modules (not shown in the figure), and each module may include a series of instruction operations in the information processing device. Furthermore, the processor 1001 may be configured to communicate with the storage medium 1003 and execute a series of instruction operations in the storage medium 1003 on the device 1000.

设备1000还可以包括一个或一个以上有线或无线网络接口1007,一个或一个以上输入输出接口1008,和/或,一个或一个以上操作系统1006,例如Windows Server,Mac OSX,Unix,Linux,FreeBSD等。The device 1000 may also include one or more wired or wireless network interfaces 1007, one or more input and output interfaces 1008, and/or one or more operating systems 1006, such as Windows Server, Mac OSX, Unix, Linux, FreeBSD, etc.

以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求的保护范围为准。The above is only a specific embodiment of the present invention, but the protection scope of the present invention is not limited thereto. Any changes or substitutions that can be easily thought of by a person skilled in the art within the technical scope disclosed by the present invention should be included in the protection scope of the present invention. Therefore, the protection scope of the present invention shall be subject to the protection scope of the claims.

Claims (9)

1.一种惯性测试设备的速率控制方法,其特征在于,包括:1. A rate control method for an inertial test device, comprising: 获取目标角速度变化曲线;Obtain target angular velocity change curve; 根据所述目标角速度变化曲线得到电压控制模块的前馈控制量,其中,所述电压控制模块用于输出目标控制电压,以控制角速度驱动模块对角速度进行控制;Obtaining a feedforward control amount of a voltage control module according to the target angular velocity variation curve, wherein the voltage control module is used to output a target control voltage to control an angular velocity driving module to control the angular velocity; 获取所述角速度驱动模块输入的实际控制电压和输出的实际角速度信号;Acquiring an actual control voltage inputted by the angular velocity driving module and an actual angular velocity signal outputted by the angular velocity driving module; 根据所述目标角速度变化曲线和所述实际角速度信号得到实际误差,并对所述实际误差进行非线性比例控制得到非线性比例控制量;Obtaining an actual error according to the target angular velocity variation curve and the actual angular velocity signal, and performing nonlinear proportional control on the actual error to obtain a nonlinear proportional control amount; 将所述实际控制电压和所述实际角速度信号输入预设的降阶状态观测器中,得到观测扰动;Inputting the actual control voltage and the actual angular velocity signal into a preset reduced-order state observer to obtain an observed disturbance; 基于所述观测扰动得到扰动补偿控制量;Obtaining a disturbance compensation control amount based on the observed disturbance; 将所述前馈控制量、所述非线性比例控制量和所述扰动补偿控制量输入所述电压控制模块中,得到所述目标控制电压;Inputting the feedforward control amount, the nonlinear proportional control amount and the disturbance compensation control amount into the voltage control module to obtain the target control voltage; 触发所述角速度驱动模块根据所述目标控制电压、力矩系数和实际扰动实现对角速度的控制,其中,根据预先设定的辨识算法进行辨识估计得到所述力矩系数;Triggering the angular velocity driving module to control the angular velocity according to the target control voltage, the torque coefficient and the actual disturbance, wherein the torque coefficient is obtained by identification and estimation according to a preset identification algorithm; 其中,所述的根据所述目标角速度变化曲线得到电压控制模块的前馈控制量,包括:Wherein, the feedforward control amount of the voltage control module is obtained according to the target angular velocity change curve, including: 对所述目标角速度变化曲线进行非线性滤波,并求得所述非线性滤波后的目标角速度变化曲线的微分信号;Performing nonlinear filtering on the target angular velocity variation curve, and obtaining a differential signal of the target angular velocity variation curve after the nonlinear filtering; 基于下述公式确定所述前馈控制量:The feedforward control amount is determined based on the following formula: 其中,所述为所述前馈控制量,所述为所述力矩系数,所述为所述微分信号,所述为第一可调参数,所述J为转动惯量。Among them, the is the feedforward control quantity, is the moment coefficient, the is the differential signal, the is the first adjustable parameter, and J is the moment of inertia. 2.根据权利要求1所述的方法,其特征在于,所述的获取所述角速度驱动模块输入的实际控制电压和输出的实际角速度信号,包括:2. The method according to claim 1, characterized in that the step of obtaining the actual control voltage inputted by the angular velocity driving module and the actual angular velocity signal outputted by the angular velocity driving module comprises: 获取位置传感器获取到的转角位置信号,对所述转角位置信号进行差分计算得到所述实际角速度信号。The rotation angle position signal obtained by the position sensor is obtained, and the actual angular velocity signal is obtained by performing differential calculation on the rotation angle position signal. 3.根据权利要求1所述的方法,其特征在于,所述的将所述实际控制电压和所述实际角速度信号输入预设的降阶状态观测器中,得到观测扰动,包括:3. The method according to claim 1, characterized in that the step of inputting the actual control voltage and the actual angular velocity signal into a preset reduced-order state observer to obtain an observed disturbance comprises: 根据如下公式建立所述预设的降阶状态观测器:The preset reduced-order state observer is established according to the following formula: 其中,所述为第二可调参数,所述为第三可调参数,所述为第四可调参数,所述h为采样间隔,所述为观测角速度信号与所述实际角速度信号的差值,所述为所述降阶状态观测器输出的转速变量,所述为所述实际角速度信号,所述为观测扰动,所述为第k个时刻的实际控制电压,所述Sat为饱和函数,所述为预设扰动观测限制量,所述函数为负半轴取值为正半轴的中心对称的次幂函数,公式如下:Among them, the is the second adjustable parameter, is the third adjustable parameter, is the fourth adjustable parameter, h is the sampling interval, is the difference between the observed angular velocity signal and the actual angular velocity signal, is the speed variable output by the reduced-order state observer, is the actual angular velocity signal, To observe the disturbance, is the actual control voltage at the kth moment, Sat is the saturation function, is the preset disturbance observation limit, The function is symmetric about the center of the positive semi-axis. The power function has the following formula: . 4.根据权利要求3所述的方法,其特征在于,所述的根据所述目标角速度变化曲线和所述实际角速度信号得到实际误差,并对所述实际误差进行非线性比例控制得到非线性比例控制量,包括:4. The method according to claim 3, characterized in that the actual error is obtained according to the target angular velocity change curve and the actual angular velocity signal, and the nonlinear proportional control is performed on the actual error to obtain the nonlinear proportional control amount, comprising: 根据如下公式确定所述非线性比例控制量:The nonlinear proportional control amount is determined according to the following formula: 其中,所述为所述非线性比例控制量,所述为第五可调参数,所述为第六可调参数,所述为非线性滤波后的目标角速度变化曲线。Among them, the is the nonlinear proportional control quantity, is the fifth adjustable parameter, is the sixth adjustable parameter, It is the target angular velocity change curve after nonlinear filtering. 5.根据权利要求4所述的方法,其特征在于,所述的基于所述观测扰动得到扰动补偿控制量,包括:5. The method according to claim 4, characterized in that the obtaining of the disturbance compensation control amount based on the observed disturbance comprises: 其中,所述为所述扰动补偿控制量。Among them, the is the disturbance compensation control quantity. 6.根据权利要求5所述的方法,其特征在于,触发所述角速度驱动模块根据所述目标控制电压、力矩系数和实际扰动实现对角速度的控制,包括:6. The method according to claim 5, characterized in that triggering the angular velocity driving module to control the angular velocity according to the target control voltage, torque coefficient and actual disturbance comprises: 根据以下公式实现对角速度的控制:The angular velocity is controlled according to the following formula: 其中,所述为控制后的角速度,所述为所述目标控制电压,所述为所述实际扰动。Among them, the is the angular velocity after control, is the target control voltage, the is the actual disturbance. 7.一种惯性测试设备的速率控制装置,其特征在于,该装置包括:7. A rate control device for an inertial test device, characterized in that the device comprises: 第一获取模块,用于获取目标角速度变化曲线;A first acquisition module is used to acquire a target angular velocity variation curve; 前馈控制量确定模块,用于根据所述目标角速度变化曲线得到电压控制模块的前馈控制量,其中,所述电压控制模块用于输出目标控制电压,以控制角速度驱动模块对角速度进行控制;A feedforward control amount determination module, used for obtaining a feedforward control amount of a voltage control module according to the target angular velocity variation curve, wherein the voltage control module is used for outputting a target control voltage to control the angular velocity driving module to control the angular velocity; 第二获取模块,用于获取所述角速度驱动模块输入的实际控制电压和输出的实际角速度信号;A second acquisition module is used to acquire an actual control voltage input and an actual angular velocity signal output by the angular velocity driving module; 非线性比例控制量确定模块,用于根据所述目标角速度变化曲线和所述实际角速度信号得到实际误差,并对所述实际误差进行非线性比例控制得到非线性比例控制量;a nonlinear proportional control amount determination module, configured to obtain an actual error according to the target angular velocity variation curve and the actual angular velocity signal, and perform nonlinear proportional control on the actual error to obtain a nonlinear proportional control amount; 观测扰动确定模块,用于将所述实际控制电压和所述实际角速度信号输入预设的降阶状态观测器中,得到观测扰动;An observed disturbance determination module, used for inputting the actual control voltage and the actual angular velocity signal into a preset reduced-order state observer to obtain an observed disturbance; 扰动补偿控制量确定模块,用于基于所述观测扰动得到扰动补偿控制量;A disturbance compensation control amount determination module, used to obtain a disturbance compensation control amount based on the observed disturbance; 目标控制电压确定模块,用于将所述前馈控制量、所述非线性比例控制量和所述扰动补偿控制量输入所述电压控制模块中,得到所述目标控制电压;a target control voltage determination module, used for inputting the feedforward control amount, the nonlinear proportional control amount and the disturbance compensation control amount into the voltage control module to obtain the target control voltage; 角速度控制模块,用于触发所述角速度驱动模块根据所述目标控制电压、力矩系数和实际扰动实现对角速度的控制,其中,根据预先设定的辨识算法进行辨识估计得到所述力矩系数;An angular velocity control module, used for triggering the angular velocity driving module to control the angular velocity according to the target control voltage, the torque coefficient and the actual disturbance, wherein the torque coefficient is obtained by identification and estimation according to a preset identification algorithm; 其中,所述前馈控制量确定模块,具体用于对所述目标角速度变化曲线进行非线性滤波,并求得所述非线性滤波后的目标角速度变化曲线的微分信号;The feedforward control amount determination module is specifically used to perform nonlinear filtering on the target angular velocity change curve, and obtain a differential signal of the target angular velocity change curve after the nonlinear filtering; 基于下述公式确定所述前馈控制量:The feedforward control amount is determined based on the following formula: 其中,所述为所述前馈控制量,所述为所述力矩系数,所述为所述微分信号,所述为第一可调参数,所述J为转动惯量。Among them, the is the feedforward control quantity, is the moment coefficient, the is the differential signal, the is the first adjustable parameter, and J is the moment of inertia. 8.一种惯性测试设备的速率控制设备,其特征在于,包括:处理器和存储器,其中,所述存储器用于存储程序;8. A rate control device for an inertial test device, comprising: a processor and a memory, wherein the memory is used to store a program; 所述处理器用于执行所述存储器中的程序,使得计算机执行如权利要求1至6中任一项所述的惯性测试设备的速率控制方法。The processor is configured to execute the program in the memory so that the computer executes the rate control method of the inertial test device according to any one of claims 1 to 6. 9.一种计算机可读存储介质,其特征在于,包括计算机程序指令,当其在计算机上运行时,使得计算机执行如权利要求1至6中任一项所述的惯性测试设备的速率控制方法。9 . A computer-readable storage medium, characterized by comprising computer program instructions, which, when executed on a computer, enable the computer to execute the rate control method of the inertial test equipment according to any one of claims 1 to 6 .
CN202310553056.9A 2023-05-17 2023-05-17 Speed control method, device, equipment and medium of inertia test equipment Active CN116301081B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310553056.9A CN116301081B (en) 2023-05-17 2023-05-17 Speed control method, device, equipment and medium of inertia test equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310553056.9A CN116301081B (en) 2023-05-17 2023-05-17 Speed control method, device, equipment and medium of inertia test equipment

Publications (2)

Publication Number Publication Date
CN116301081A CN116301081A (en) 2023-06-23
CN116301081B true CN116301081B (en) 2023-08-04

Family

ID=86794497

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310553056.9A Active CN116301081B (en) 2023-05-17 2023-05-17 Speed control method, device, equipment and medium of inertia test equipment

Country Status (1)

Country Link
CN (1) CN116301081B (en)

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5526254A (en) * 1992-06-05 1996-06-11 Fujitsu Limited Simulation method and apparatus for manipulator apparatus, simulation and control method and apparatus for manipulator apparatus, and control method and apparatus for manipulator apparatus
CN101299148A (en) * 2008-05-12 2008-11-05 中国航空工业第一集团公司北京航空精密机械研究所 Three-axis accurate angular motion control method
CN102374038A (en) * 2011-09-06 2012-03-14 天津大学 VVT (Variable Valve Timing) control method capable of combining self-learning feed-forward and active anti-interference feedback
CN102830622A (en) * 2012-09-05 2012-12-19 北京理工大学 Auto-disturbance-rejection automatic flight control method for four-rotor aircraft
CN103312255A (en) * 2013-06-18 2013-09-18 山东大学(威海) Method and device for controlling speed of permanent-magnet synchronous motor
CN104635492A (en) * 2014-12-19 2015-05-20 中国科学院长春光学精密机械与物理研究所 Parametric adaptive feed-forward control method of guide head stabilizing platform
CN105159083A (en) * 2015-09-06 2015-12-16 北京航空航天大学 High-precision friction compensation control method of double-frame magnetic levitation CMG frame system
CN107783422A (en) * 2017-10-20 2018-03-09 西北机电工程研究所 Using the gun laying systems stabilisation control method of inertial navigation
CN108098799A (en) * 2016-11-25 2018-06-01 株式会社东芝 Robert controller, robot control method and pick device
JP2019021036A (en) * 2017-07-18 2019-02-07 三菱重工業株式会社 Movement locus molding device, abnormality diagnostic system, movement locus molding method and program
CN112207825A (en) * 2020-09-28 2021-01-12 杭州云深处科技有限公司 Control method and device for bionic jumping action of quadruped robot, electronic equipment and computer readable medium
CN113515142A (en) * 2020-04-10 2021-10-19 北京三快在线科技有限公司 Unmanned aerial vehicle trajectory tracking control method and device, unmanned aerial vehicle and storage medium
CN114312196A (en) * 2021-11-30 2022-04-12 农业农村部南京农业机械化研究所 A Pendulum Suspension Control Method and Its Parameter Measurement Method Based on Model Compensation
CN115562378A (en) * 2022-12-05 2023-01-03 中国科学院长春光学精密机械与物理研究所 A photoelectric stabilized platform, angular velocity compensation method, and storage medium
WO2023035706A1 (en) * 2021-09-07 2023-03-16 北京国家新能源汽车技术创新中心有限公司 Permanent magnet synchronous motor compensation control method and system
CN115981167A (en) * 2023-03-21 2023-04-18 天津大学 disturbance suppression system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10661825B2 (en) * 2017-03-16 2020-05-26 Nsk Ltd. Electric power steering apparatus
US10340828B2 (en) * 2017-04-27 2019-07-02 Steering Solutions Ip Holding Corporation Disturbance observer for permanent magnet direct current machines

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5526254A (en) * 1992-06-05 1996-06-11 Fujitsu Limited Simulation method and apparatus for manipulator apparatus, simulation and control method and apparatus for manipulator apparatus, and control method and apparatus for manipulator apparatus
CN101299148A (en) * 2008-05-12 2008-11-05 中国航空工业第一集团公司北京航空精密机械研究所 Three-axis accurate angular motion control method
CN102374038A (en) * 2011-09-06 2012-03-14 天津大学 VVT (Variable Valve Timing) control method capable of combining self-learning feed-forward and active anti-interference feedback
CN102830622A (en) * 2012-09-05 2012-12-19 北京理工大学 Auto-disturbance-rejection automatic flight control method for four-rotor aircraft
CN103312255A (en) * 2013-06-18 2013-09-18 山东大学(威海) Method and device for controlling speed of permanent-magnet synchronous motor
CN104635492A (en) * 2014-12-19 2015-05-20 中国科学院长春光学精密机械与物理研究所 Parametric adaptive feed-forward control method of guide head stabilizing platform
CN105159083A (en) * 2015-09-06 2015-12-16 北京航空航天大学 High-precision friction compensation control method of double-frame magnetic levitation CMG frame system
CN108098799A (en) * 2016-11-25 2018-06-01 株式会社东芝 Robert controller, robot control method and pick device
JP2019021036A (en) * 2017-07-18 2019-02-07 三菱重工業株式会社 Movement locus molding device, abnormality diagnostic system, movement locus molding method and program
CN107783422A (en) * 2017-10-20 2018-03-09 西北机电工程研究所 Using the gun laying systems stabilisation control method of inertial navigation
CN113515142A (en) * 2020-04-10 2021-10-19 北京三快在线科技有限公司 Unmanned aerial vehicle trajectory tracking control method and device, unmanned aerial vehicle and storage medium
CN112207825A (en) * 2020-09-28 2021-01-12 杭州云深处科技有限公司 Control method and device for bionic jumping action of quadruped robot, electronic equipment and computer readable medium
WO2023035706A1 (en) * 2021-09-07 2023-03-16 北京国家新能源汽车技术创新中心有限公司 Permanent magnet synchronous motor compensation control method and system
CN114312196A (en) * 2021-11-30 2022-04-12 农业农村部南京农业机械化研究所 A Pendulum Suspension Control Method and Its Parameter Measurement Method Based on Model Compensation
CN115562378A (en) * 2022-12-05 2023-01-03 中国科学院长春光学精密机械与物理研究所 A photoelectric stabilized platform, angular velocity compensation method, and storage medium
CN115981167A (en) * 2023-03-21 2023-04-18 天津大学 disturbance suppression system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
控制力矩陀螺框架系统高精度复合控制研究;徐向波 等;载人航天;第18卷(第5期);19-23 *

Also Published As

Publication number Publication date
CN116301081A (en) 2023-06-23

Similar Documents

Publication Publication Date Title
Jones et al. A state observer for the permanent-magnet synchronous motor
CN107425769B (en) Active disturbance rejection control method and system for permanent magnet synchronous motor speed control system
CN104052363B (en) Automate motor control
JP2763832B2 (en) Control device and method for plant including unknown dynamics
US5296794A (en) State observer for the permanent-magnet synchronous motor
CN112688599B (en) Composite control method for improving anti-interference capability of brushless direct current motor
CN112394637B (en) A collaborative robot control method based on active disturbance rejection control technology
CN113078865B (en) Built-in permanent magnet synchronous motor sensorless control method
CN116301081B (en) Speed control method, device, equipment and medium of inertia test equipment
CN115051600A (en) Tracking control method for servo system of brushless direct current motor
CN108429501B (en) Method for observing load disturbance of permanent magnet synchronous motor
CN108521246A (en) Method and device for predictive control of current of single current sensor of permanent magnet synchronous motor
CN113131818B (en) Hall sensor installation error identification method, device and motor control system
Hasegawa et al. Robot joint angle control based on Self Resonance Cancellation using double encoders
CN118381392A (en) Permanent magnet synchronous motor control method, device, equipment and computer program product
Zhao et al. Robust adaptive speed control of disturbed brushless direct current motor
CN114679098A (en) Feedforward compensation method, device, computer equipment and medium for permanent magnet synchronous motor
Jones et al. A state observer for the permanent-magnet synchronous motor
CN117519322B (en) A dynamic bandwidth active disturbance rejection control method for aviation electromechanical actuators
Zhang et al. Research on the identification of the moment of inertia of PMSM for industrial robots
Zheng et al. Novel position controller for PMSM based on state feedback and load torque feed-forward
Haider et al. Kalman filter based state estimation for linearized twin rotor system
Huang et al. A broad-band and low-distortion excitation generation method for low-frequency angular vibration calibration
Navarrete et al. Discrete-time modeling and control of PMSM
CN110798113A (en) A permanent magnet synchronous motor phase compensator

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20250119

Address after: 150001 No. 92 West straight street, Nangang District, Heilongjiang, Harbin

Patentee after: HARBIN INSTITUTE OF TECHNOLOGY

Country or region after: China

Address before: 100089 293, 3 / F, block D, building 24, yard 68, Beiqing Road, Haidian District, Beijing

Patentee before: SHENRUI TECHNOLOGY (BEIJING) CO.,LTD.

Country or region before: China

Patentee before: HARBIN INSTITUTE OF TECHNOLOGY

TR01 Transfer of patent right