CN116299888A - Optical interconnection device and manufacturing method thereof - Google Patents
Optical interconnection device and manufacturing method thereof Download PDFInfo
- Publication number
- CN116299888A CN116299888A CN202111529427.7A CN202111529427A CN116299888A CN 116299888 A CN116299888 A CN 116299888A CN 202111529427 A CN202111529427 A CN 202111529427A CN 116299888 A CN116299888 A CN 116299888A
- Authority
- CN
- China
- Prior art keywords
- optical
- electrical
- conversion unit
- chip
- electro
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/42—Coupling light guides with opto-electronic elements
- G02B6/4201—Packages, e.g. shape, construction, internal or external details
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/42—Coupling light guides with opto-electronic elements
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/42—Coupling light guides with opto-electronic elements
- G02B6/4201—Packages, e.g. shape, construction, internal or external details
- G02B6/4219—Mechanical fixtures for holding or positioning the elements relative to each other in the couplings; Alignment methods for the elements, e.g. measuring or observing methods especially used therefor
- G02B6/4236—Fixing or mounting methods of the aligned elements
- G02B6/424—Mounting of the optical light guide
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Optical Integrated Circuits (AREA)
- Optical Couplings Of Light Guides (AREA)
Abstract
本发明涉及芯片技术领域,提供了一种光互连装置及其制造方法。其中,所述光互连装置包括:多个电芯片,其包括第一电芯片和第二电芯片;第一光互连件,其具有多个光波导;其中,所述第一电芯片和所述第二电芯片通过所述第一光互连件的光波导实现通信连接。根据本发明的实施方式,多个电芯片通过光互连可以实现例如混合立方体网络通信互连拓扑结构或其它复杂的互连拓扑,同时对信息进行并行处理,芯片间具有紧密的信息互连,能够更好地满足人工智能算法对计算能力和带宽的要求。对比电互连,光互连带宽大、时延低、功耗小、集成度高和抗电磁干扰能力强。
The invention relates to the field of chip technology, and provides an optical interconnection device and a manufacturing method thereof. Wherein, the optical interconnection device includes: a plurality of electrical chips, which includes a first electrical chip and a second electrical chip; a first optical interconnection, which has a plurality of optical waveguides; wherein, the first electrical chip and The second electrical chip is communicatively connected through the optical waveguide of the first optical interconnect. According to the embodiment of the present invention, multiple electrical chips can implement, for example, a hybrid cube network communication interconnection topology or other complex interconnection topologies through optical interconnection, and simultaneously process information in parallel, with tight information interconnection between chips, It can better meet the computing power and bandwidth requirements of artificial intelligence algorithms. Compared with electrical interconnection, optical interconnection has large bandwidth, low delay, low power consumption, high integration and strong anti-electromagnetic interference ability.
Description
技术领域technical field
本发明涉及芯片技术领域,更为具体而言,涉及一种光互连装置及其制 造方法。The present invention relates to the field of chip technology, and more specifically, to an optical interconnection device and a manufacturing method thereof.
背景技术Background technique
超大规模集成电路技术已经成为支撑信息化社会发展演进的支柱。在信 息系统中广泛应用的各类芯片通常依赖于电芯片工艺制程的升级以实现其性 能提升和功耗优化。然而,随着芯片工艺逐步逼近物理极限,摩尔定律前进 的步伐正在放缓,进一步发展需要新的思路。传统的信息互连主要是通过铜 介质进行电子传导实现的,而电子信息传输速度和距离受限于电阻电容时间 常数以及电学损耗,导致所需铜线的直径随着传输速度和传输距离的增加而 显著增加,再加上电子信息通道之间的信号串扰制约了互连的能耗和带宽密 度。另一方面,芯片之间往往需要高速互连,例如随着人工智能领域的发 展,深度学习算法应用往往对计算芯片要求大量数据在计算单元和存储单元 之间存在高速通信。这使得传统的电互连的功耗和带宽密度成为更为严重的 问题,从而限制了更高性能人工智能芯片的开发。VLSI technology has become a pillar supporting the development and evolution of an information society. Various types of chips widely used in information systems usually rely on the upgrade of the electronic chip process to achieve performance improvement and power consumption optimization. However, as the chip technology is gradually approaching the physical limit, the pace of Moore's Law is slowing down, and further development requires new ideas. Traditional information interconnection is mainly realized by electronic conduction through copper medium, and the speed and distance of electronic information transmission are limited by the time constant of resistance and capacitance and electrical loss, resulting in the diameter of the required copper wire increasing with the transmission speed and transmission distance. The significant increase, coupled with signal crosstalk between electronic information channels constrains the power consumption and bandwidth density of interconnects. On the other hand, high-speed interconnections are often required between chips. For example, with the development of the field of artificial intelligence, the application of deep learning algorithms often requires high-speed communication between computing units and storage units for a large amount of data on computing chips. This makes the power consumption and bandwidth density of traditional electrical interconnects a more serious problem, thereby limiting the development of higher performance artificial intelligence chips.
发明内容Contents of the invention
本发明提供了一种光互连装置及其制造方法,以光互连件作为各芯片之 间互连介质,避免了电互连导致的各种缺陷。The present invention provides an optical interconnection device and a manufacturing method thereof. The optical interconnection is used as the interconnection medium between chips, which avoids various defects caused by electrical interconnection.
根据本发明的一方面,提供一种光互连装置,所述光互连装置包括:多 个电芯片,其包括第一电芯片和第二电芯片;第一光互连件,其具有多个光 波导;其中,所述第一电芯片和所述第二电芯片通过所述第一光互连件的光 波导实现通信连接。According to an aspect of the present invention, an optical interconnection device is provided, the optical interconnection device includes: a plurality of electrical chips, which include a first electrical chip and a second electrical chip; a first optical interconnection, which has a plurality of an optical waveguide; wherein, the first electrical chip and the second electrical chip are communicatively connected through the optical waveguide of the first optical interconnect.
在一些实施方式中,所述光互连装置还包括:电光转换单元,其与所述 第一电芯片连接,用于将所述第一电芯片的电信号承载的信息承载到光信号 中,所述光信号在所述第一光互连件的光波导中传输;光电转换单元,其与 所述第二电芯片连接,将接收的光信号转换为传输至所述第二电芯片的电信 号;其中,所述光信号从所述电光转换单元至所述光电转换单元的传输路径 包括:所述第一光互连件中的光波导。In some embodiments, the optical interconnection device further includes: an electro-optical conversion unit connected to the first electrical chip, configured to carry information carried by the electrical signal of the first electrical chip into an optical signal, The optical signal is transmitted in the optical waveguide of the first optical interconnection; the photoelectric conversion unit, which is connected to the second electrical chip, converts the received optical signal into an electrical signal transmitted to the second electrical chip signal; wherein, the transmission path of the optical signal from the electro-optical conversion unit to the photoelectric conversion unit includes: an optical waveguide in the first optical interconnection.
在一些实施方式中,所述第一光互连件设置在所述承载基板上;所述多 个电芯片设置在所述第一光互连件上;其中,所述第一光互连件包括光子集 成电路,所述光子集成电路包括所述多个光波导、所述电光转换单元,以及 所述光电转换单元。In some embodiments, the first optical interconnect is disposed on the carrier substrate; the plurality of electrical chips are disposed on the first optical interconnect; wherein the first optical interconnect A photonic integrated circuit is included, and the photonic integrated circuit includes the plurality of optical waveguides, the electro-optical conversion unit, and the photoelectric conversion unit.
在一些实施方式中,所述光互连装置还包括:多个光纤;和具有多个光 波导的第二光互连件,所述第二光互连件与所述第一光互连件通过所述多个 光纤互连;其中,所述光信号从所述电光转换单元至所述光电转换单元的传 输路径包括:先后经过所述第一光互连件中的光波导、所述多个光纤中的至 少一个、以及所述第二光互连件的光波导的传输路径。In some embodiments, the optical interconnection device further includes: a plurality of optical fibers; and a second optical interconnection having a plurality of optical waveguides, the second optical interconnection and the first optical interconnection The plurality of optical fibers are interconnected; wherein, the transmission path of the optical signal from the electro-optical conversion unit to the photoelectric conversion unit includes: successively passing through the optical waveguide in the first optical interconnection, the multiple At least one of the optical fibers and the transmission path of the optical waveguide of the second optical interconnection.
在一些实施方式中,所述第一光互连件和第二光互连件设置在所述承载 基板上;所述第一电芯片设置在所述第一光互连件上,所述第一光互连件包 括光子集成电路,所述光子集成电路包括所述多个光波导、所述电光转换单 元;所述第二电芯片设置在所述第二光互连件上所述第二光互连件包括光子 集成电路,所述第二光互连件的光子集成电路包括所述光电转换单元。In some embodiments, the first optical interconnection and the second optical interconnection are disposed on the carrier substrate; the first electrical chip is disposed on the first optical interconnection, and the first optical interconnection is disposed on the carrier substrate; An optical interconnection includes a photonic integrated circuit, and the photonic integrated circuit includes the plurality of optical waveguides and the electro-optic conversion unit; the second electrical chip is arranged on the second optical interconnection; the second The optical interconnect includes a photonic integrated circuit, and the photonic integrated circuit of the second optical interconnect includes the photoelectric conversion unit.
在一些实施方式中,所述第一光互连件的光子集成电路还包括介电层、 第一导电布线单元、第二导电布线单元;所述光子集成电路中的多个光波 导、所述电光转换单元以及所述光电转换单元被所述介电层所覆盖;所述第 一导电布线单元被配置为将所述电光转换单元电连接至所述第一电芯片;所 述第二导电布线单元被配置为将所述光电转换单元电连接至所述第二电芯 片;所述第一导电布线单元包括第一电连接结构,所述第一电连接结构穿过 至少部分所述介电层;所述第二导电布线单元包括第二电连接结构,所述第二电连接结构穿过至少部分所述介电层。In some embodiments, the photonic integrated circuit of the first optical interconnect further includes a dielectric layer, a first conductive wiring unit, and a second conductive wiring unit; multiple optical waveguides in the photonic integrated circuit, the The electro-optical conversion unit and the photoelectric conversion unit are covered by the dielectric layer; the first conductive wiring unit is configured to electrically connect the electro-optical conversion unit to the first electronic chip; the second conductive wiring The unit is configured to electrically connect the photoelectric conversion unit to the second electrical chip; the first conductive wiring unit includes a first electrical connection structure, and the first electrical connection structure passes through at least part of the dielectric layer ; The second conductive wiring unit includes a second electrical connection structure, and the second electrical connection structure passes through at least part of the dielectric layer.
在一些实施方式中,所述电光转换单元包括调制器阵列,其将所述第一 电芯片的电信号承载的信息调制到不同波长的光信号上并以波分复用的方式 进行传输;所述光电转换单元包括探测器阵列,其对接收的光信号进行波分 解复用并转化为向所述第二电芯片传输的电信号。In some implementations, the electro-optical conversion unit includes a modulator array, which modulates the information carried by the electrical signal of the first electrical chip into optical signals of different wavelengths and transmits them in a wavelength division multiplexing manner; The photoelectric conversion unit includes a detector array, which performs wave division multiplexing on the received optical signal and converts it into an electrical signal transmitted to the second electronic chip.
在一些实施方式中,所述调制器阵列包括多个微环调制器;和/或所述探 测器阵列包括多个微环滤波探测器。In some embodiments, the modulator array includes a plurality of microring modulators; and/or the detector array includes a plurality of microring filtered detectors.
在一些实施方式中,所述多个电芯片包括一个或多个小芯片。In some embodiments, the plurality of electrical chips includes one or more chiplets.
在一些实施方式中,在晶圆级封装过程中安装所述第一电芯片、第二电 芯片。In some embodiments, the first electrical chip and the second electrical chip are mounted during wafer level packaging.
根据本发明的一方面,提供一种光互连装置,所述光互连装置包括:第 一电芯片、第二电芯片;第一光互连件;所述第一电芯片、第二电芯片设置 于所述第一光互连件上;所述第一光互连件包括光子集成电路,所述光子集 成电路包括:多个光波导;第一电光转换单元,其与所述第一电芯片连接, 用于将所述第一电芯片的电信号承载的信息承载到第一光信号中;第一光电 转换单元,其与所述第二电芯片连接,用于将所述第一光信号转换为传输至 所述第二电芯片的电信号;第二电光转换单元,其与所述第二电芯片连接, 用于将所述第二电芯片的电信号承载的信息承载到第二光信号中;以及第二 光电转换单元,其与所述第一电芯片连接,用于将所述第二光信号转换为传 输至所述第一电芯片的电信号;其中,所述第一光信号从所述第一电光转换 单元至所述第一光电转换单元的传输路径包括:所述第一光互连件中的所述 多个光波导中的至少一个;其中,所述第二光信号从所述第二电光转换单元 至所述第二光电转换单元的传输路径包括:所述第一光互连件中的所述多个 光波导中的至少一个。According to one aspect of the present invention, an optical interconnection device is provided, the optical interconnection device includes: a first electrical chip, a second electrical chip; a first optical interconnection; the first electrical chip, the second electrical A chip is disposed on the first optical interconnection; the first optical interconnection includes a photonic integrated circuit, and the photonic integrated circuit includes: a plurality of optical waveguides; a first electro-optical conversion unit, which is connected to the first an electrical chip connection, for carrying the information carried by the electrical signal of the first electrical chip into the first optical signal; a first photoelectric conversion unit, which is connected with the second electrical chip, for connecting the first The optical signal is converted into an electrical signal transmitted to the second electrical chip; the second electrical-to-optical conversion unit is connected to the second electrical chip, and is used to carry the information carried by the electrical signal of the second electrical chip to the second electrical chip In the second optical signal; and a second photoelectric conversion unit, which is connected to the first electrical chip, and is used to convert the second optical signal into an electrical signal transmitted to the first electrical chip; wherein, the first electrical chip A transmission path of an optical signal from the first electro-optical conversion unit to the first photoelectric conversion unit includes: at least one of the plurality of optical waveguides in the first optical interconnection; wherein the first The transmission path of the second optical signal from the second electro-optical conversion unit to the second photoelectric conversion unit includes: at least one of the plurality of optical waveguides in the first optical interconnection.
在一些实施方式中,所述光互连装置还包括第二光互连件、第三电芯片 以及多个光纤,其中,所述第三电芯片设置于所述第二光互连件上,所述多 个光纤将所述第一光互连件及所述第二光互连件进行光学连接;所述第一光 互连件的光子集成电路还包括第三电光转换单元,其与所述第一电芯片连 接,用于将所述第一电芯片的电信号承载的信息承载到第三光信号;所述第 二光互连件包括光子集成电路,所述第二光互连件的光子集成电路包括多个 光波导,第三光电转换单元,其与所述第三电芯片连接,用于将所述第三光 信号转换为传输至所述第三电芯片的电信号;其中,所述第三光信号从所述 第三电光转换单元至所述第三光电转换单元的传输路径包括:所述第一光互 连件中的光波导、所述多个光纤中的至少一个光纤、所述第二光互连件中的 光波导。In some embodiments, the optical interconnection device further includes a second optical interconnection, a third electrical chip, and a plurality of optical fibers, wherein the third electrical chip is disposed on the second optical interconnection, The plurality of optical fibers optically connects the first optical interconnection and the second optical interconnection; the photonic integrated circuit of the first optical interconnection further includes a third electro-optical conversion unit, which is connected to the second optical interconnection The first electrical chip is connected to carry the information carried by the electrical signal of the first electrical chip to the third optical signal; the second optical interconnection includes a photonic integrated circuit, and the second optical interconnection The photonic integrated circuit includes a plurality of optical waveguides, a third photoelectric conversion unit connected to the third electrical chip, and used to convert the third optical signal into an electrical signal transmitted to the third electrical chip; wherein , the transmission path of the third optical signal from the third electro-optical conversion unit to the third photoelectric conversion unit includes: an optical waveguide in the first optical interconnection, at least one of the plurality of optical fibers an optical fiber, and an optical waveguide in the second optical interconnection.
在一些实施方式中,所述第一光互连件的光子集成电路还包括:介电 层、多个导电布线单元;所述介电层覆盖所述第一光互连件的光子集成电路 中的所述多个光波导、所述第一电光转换单元、所述第一光电转换单元、所 述第二电光转换单元、所述第二光电转换单元;所述多个导电布线单元中被 配置为将所述第一电光转换单元、所述第一光电转换单元、所述第二电光转 换单元、所述第二光电转换单元与对应的电芯片进行电连接;所述多个导电 布线单元包括多个电连接结构,所述多个电连接结构中的每一个均各自穿过 至少部分所述介电层。In some embodiments, the photonic integrated circuit of the first optical interconnection further includes: a dielectric layer and a plurality of conductive wiring units; the dielectric layer covers the photonic integrated circuit of the first optical interconnection The plurality of optical waveguides, the first electro-optical conversion unit, the first photoelectric conversion unit, the second electro-optic conversion unit, and the second photoelectric conversion unit; the plurality of conductive wiring units are configured In order to electrically connect the first electro-optical conversion unit, the first photoelectric conversion unit, the second electro-optic conversion unit, and the second photoelectric conversion unit with corresponding electrical chips; the plurality of conductive wiring units include A plurality of electrical connection structures each passing through at least part of the dielectric layer.
在一些实施方式中,所述第一电光转换单元、所述第二电光转换单元均 各自包括一个或多个光调制器、所述第一光电转换单元、所述第二光电转换 单元均各自包括一个或多个光电探测器。In some embodiments, the first electro-optical conversion unit and the second electro-optic conversion unit each include one or more optical modulators, and the first photoelectric conversion unit and the second photoelectric conversion unit each include one or more photodetectors.
在一些实施方式中,所述光调制器包括微环调制器;和/或所述光电探测 器包括微环滤波探测器。In some embodiments, the light modulator comprises a microring modulator; and/or the photodetector comprises a microring filtered detector.
在一些实施方式中,所述第一电芯片、第二电芯片、第三电芯片中包括 小芯片。In some embodiments, the first electrical chip, the second electrical chip, and the third electrical chip include chiplets.
根据本发明的一方面,提供一种光互连装置,包括:第一光互连件,包 括第一光子集成电路,所述第一光子集成电路包括第一多个电光转换单元, 第一多个光波导,以及第一多个光电转换单元;第二光互连件,包括第二光 子集成电路,所述第二光子集成电路包括第二多个电光转换单元,第二多个 光波导,以及第二多个光电转换单元;第一多个电芯片,设置于所述第一光 互连件上;第二多个电芯片,设置于所述第二光互连件上;所述第一多个电 光转换单元被配置为:使所述第一多个电芯片中的每一个对应至少一个电光 转换单元;所述第一多个光电转换单元被配置为:使所述第一多个电芯片中 的每一个对应至少一个光电转换单元;所述第一多个光波导被配置为:对于 所述第一多个电芯片中的任意两个电芯片,将其中的一个电芯片对应的一个 电光转换单元光学连接至另一个电芯片对应的一个光电转换单元,以使得所 述第一多个电芯片中的任意两个电芯片实现通信。According to an aspect of the present invention, an optical interconnection device is provided, including: a first optical interconnection, including a first photonic integrated circuit, the first photonic integrated circuit includes a first plurality of electro-optic conversion units, a first plurality an optical waveguide, and a first plurality of photoelectric conversion units; a second optical interconnect, comprising a second photonic integrated circuit, the second photonic integrated circuit comprising a second plurality of electro-optical conversion units, a second plurality of optical waveguides, and a second plurality of photoelectric conversion units; a first plurality of electrical chips disposed on the first optical interconnect; a second plurality of electrical chips disposed on the second optical interconnect; the first plurality of electrical chips disposed on the second optical interconnect; A plurality of electro-optical conversion units is configured such that each of the first plurality of electrical chips corresponds to at least one electro-optic conversion unit; the first plurality of photoelectric conversion units is configured such that the first plurality of Each of the electrical chips corresponds to at least one photoelectric conversion unit; the first plurality of optical waveguides is configured to: for any two electrical chips in the first plurality of electrical chips, one of the electrical chips corresponds to One electrical-to-optical conversion unit is optically connected to a corresponding photoelectric conversion unit of another electrical chip, so that any two electrical chips in the first plurality of electrical chips can communicate.
在一些实施方式中,所述第一光互连件与所述第二光互连件光学连接; 所述第一多个电芯片中的至少一个电芯片,通过所述第一光互连件以及所述 第二光互连件,与所述第二多个电芯片中的至少一个电芯片进行通信。In some embodiments, the first optical interconnection is optically connected to the second optical interconnection; at least one electrical chip in the first plurality of electrical chips passes through the first optical interconnection and the second optical interconnect in communication with at least one electrical chip of the second plurality of electrical chips.
在一些实施方式中,所述第一光互连件与所述第二光互连件通过多个光 纤或者多个光波导光学连接,以使得所述第一多个电芯片中的至少一个电芯 片,与所述第二多个电芯片中的至少一个电芯片进行通信。In some embodiments, the first optical interconnection is optically connected to the second optical interconnection through a plurality of optical fibers or a plurality of optical waveguides, so that at least one of the first plurality of electrical chips is electrically A chip in communication with at least one electrical chip of the second plurality of electrical chips.
在一些实施方式中,所述第一光子集成电路还包括:介电层、多个导电 布线单元;所述介电层覆盖所述第一光子集成电路中的所述多个光波导、所 述第一多个电光转换单元、所述第一多个光电转换单元;所述多个导电布线 单元中的每一个各自与所述第一多个电光转换单元中的每一个电连接,或者 与所述第一多个光电转换单元中的每一个进行电连接;所述多个导电布线单 元包括多个电连接结构,所述多个电连接结构中的每一个均各自穿过至少部 分所述介电层;以及所述多个导电布线单元电连接至所述第一多个电芯片,以将所述第一多个电光转换单元中的每一个电连接至对应的电芯片,或者将 所述第一多个光电转换单元中的每一个电连接至对应的电芯片。In some embodiments, the first photonic integrated circuit further includes: a dielectric layer and a plurality of conductive wiring units; the dielectric layer covers the plurality of optical waveguides in the first photonic integrated circuit, the The first plurality of electro-optical conversion units, the first plurality of photoelectric conversion units; each of the plurality of conductive wiring units is electrically connected to each of the first plurality of electro-optical conversion units, or is connected to the plurality of electrical-optical conversion units. Each of the first plurality of photoelectric conversion units is electrically connected; the plurality of conductive wiring units includes a plurality of electrical connection structures, and each of the plurality of electrical connection structures passes through at least part of the intervening an electrical layer; and the plurality of conductive wiring units are electrically connected to the first plurality of electrical chips, so as to electrically connect each of the first plurality of electro-optical conversion units to a corresponding electrical chip, or to connect the Each of the first plurality of photoelectric conversion units is electrically connected to a corresponding electrical chip.
根据本发明的一方面,提供一种光互连装置的制造方法,其特征在于, 包括:提供晶圆;在所述晶圆上形成多个光子集成电路;其中,所述多个光 子集成电路中的每一个可包括多个光波导,以及电光转换单元、光电转换单 元;在所述多个光子集成电路中的每一个上安装所需的至少一个电芯片;对 所述晶圆进行分割,得到多个独立的光互连装置。According to one aspect of the present invention, there is provided a method for manufacturing an optical interconnection device, which is characterized in that it includes: providing a wafer; forming a plurality of photonic integrated circuits on the wafer; wherein the plurality of photonic integrated circuits Each of them may include a plurality of optical waveguides, and an electro-optical conversion unit, a photoelectric conversion unit; installing at least one required electrical chip on each of the plurality of photonic integrated circuits; dividing the wafer, Multiple independent optical interconnection devices are obtained.
用光互连件连接电芯片,将不同电芯片上的信息加载在光波上,然后让 光在光互连件中高速穿梭,完成不同芯片之间的信息互连。对比电互连,光 互连带宽大、时延低、功耗小、集成密度高和抗电磁干扰能力强。而且芯片 上或芯片间光互连传输信息对距离不敏感,允许更多数据传递更远距离,使 得计算装置架构的设计具有更大的灵活度。因此,用光互连件连接的电芯片 不仅可以保持电芯片的高产率、低成本和快速产品迭代周期的优点,而且可 以解决小芯片间互连的功耗和带宽密度瓶颈。应用于人工智能芯片可以实现 更高的系统能效比。Connect electrical chips with optical interconnects, load the information on different electrical chips on light waves, and then allow light to shuttle at high speed in optical interconnects to complete the information interconnection between different chips. Compared with electrical interconnection, optical interconnection has large bandwidth, low delay, low power consumption, high integration density and strong anti-electromagnetic interference ability. Moreover, the optical interconnection transmission information on a chip or between chips is not sensitive to distance, allowing more data to be transmitted over longer distances, making the design of computing device architecture more flexible. Therefore, electrical chips connected by optical interconnects can not only maintain the advantages of high yield, low cost, and fast product iteration cycle of electrical chips, but also solve the power consumption and bandwidth density bottlenecks of interconnection between small chips. Applying to artificial intelligence chips can achieve higher system energy efficiency ratio.
相比于通过电导线进行电信号的传输,通过光波导进行光信号的传输, 可降低能量损耗、延迟、串扰等问题,有助于提高芯片之间的互连性能。本 发明尤其为小芯片(chiplet)的互连提供了一种方案。通过多个小芯片(Chiplet) 替代一个多功能的单个大芯片,可以突破芯片面积的物理瓶颈,是实现更高 性能芯片的一个重要途径。由于每个裸片的面积变小,单片晶圆上可摆放的 裸片数目增加从而可以提高良率和降低成本。同时,采用小芯片技术在提高 系统性能时可以灵活地只升级部分模块,因此可以加快系统升级的迭代周 期。另外,上述光互连件包括光子集成电路,集成化高,可直接适用于电信 号输入/输出的芯片之间的互连,且从而有利于芯片封装的小型化以及集成 化。Compared with the transmission of electrical signals through electrical wires, the transmission of optical signals through optical waveguides can reduce problems such as energy loss, delay, and crosstalk, and help improve the interconnection performance between chips. In particular, the present invention provides a solution for the interconnection of chiplets. Substituting multiple small chips (Chiplets) for a multifunctional single large chip can break through the physical bottleneck of the chip area, and is an important way to achieve higher performance chips. As the area of each die becomes smaller, the number of dies that can be placed on a single wafer increases, which can improve yield and reduce cost. At the same time, the use of small chip technology can flexibly upgrade only some modules when improving system performance, thus speeding up the iterative cycle of system upgrades. In addition, the above-mentioned optical interconnection includes a photonic integrated circuit, which is highly integrated and can be directly applied to the interconnection between chips for electrical signal input/output, and thus facilitates the miniaturization and integration of chip packaging.
进一步的,多个光互连件之间还可通过光学互连,使得不同光互连件上 设置的电芯片也能实现光学连接,使得光学的互连不限于同一个光互连件 上。Further, multiple optical interconnects can also be optically interconnected, so that electrical chips arranged on different optical interconnects can also realize optical connections, so that the optical interconnection is not limited to the same optical interconnect.
此外,调制器阵列采用高效率小面积的微环调制器阵列,探测器阵列采 用具有波分解复用功能的微环滤波探测器,从而可以在电芯片之间进行大量 的信息传输而不会受功耗和带宽密度的限制。通过排布调制器阵列和探测器 阵列在光互连件的位置,利用多个相同的电芯片和多个相同的光互连件可以 实现混合立方体网络通信互连拓扑结构或其它复杂的互连拓扑结构,可以让 多个电芯片同时对信息进行并行处理,并且电芯片之间具有紧密地信息互 连,能够更好地满足人工智能算法对计算能力和带宽的要求。对比现有的人工智能产品,本发明实施方式的光互连装置能集成更多的计算单元(芯片) 和存储单元(芯片),而且利用光互连能保证它们之间有机的信息互连,从 而提供更高的系统能效比。In addition, the modulator array uses a high-efficiency and small-area micro-ring modulator array, and the detector array uses a micro-ring filter detector with wave division multiplexing function, so that a large amount of information can be transmitted between electronic chips without being affected. Limitations on power consumption and bandwidth density. By arranging modulator arrays and detector arrays at the position of optical interconnects, multiple identical electrical chips and multiple identical optical interconnects can be used to implement hybrid cube network communication interconnection topologies or other complex interconnections The topological structure allows multiple electronic chips to process information in parallel at the same time, and the electronic chips have tight information interconnection, which can better meet the requirements of artificial intelligence algorithms for computing power and bandwidth. Compared with existing artificial intelligence products, the optical interconnection device of the embodiment of the present invention can integrate more computing units (chips) and storage units (chips), and the use of optical interconnection can ensure organic information interconnection between them, Thereby providing a higher system energy efficiency ratio.
本发明实施方式的各个方面、特征、优点等将在下文结合附图进行具体 描述。根据以下结合附图的具体描述,本发明的上述方面、特征、优点等将 会变得更加清楚。Various aspects, features, advantages, etc. of the embodiments of the present invention will be described in detail below with reference to the accompanying drawings. According to the following detailed description in conjunction with the accompanying drawings, the above-mentioned aspects, features, advantages, etc. of the present invention will become more clear.
附图说明Description of drawings
图1是示出根据本发明的示例性实施方式的光互连装置的结构示意图。FIG. 1 is a schematic structural view showing an optical interconnection device according to an exemplary embodiment of the present invention.
图2是示出图1所示的光互连装置的光互连示意图。FIG. 2 is a schematic diagram showing an optical interconnection of the optical interconnection device shown in FIG. 1 .
图3示出了图2所示的光互连装置中电芯片的连接拓扑结构。FIG. 3 shows a connection topology of electrical chips in the optical interconnection device shown in FIG. 2 .
图4是示出本发明实施方式示例性的一个电光转换单元中的调制器阵列 的结构示意图。Fig. 4 is a schematic structural diagram showing a modulator array in an exemplary electro-optic conversion unit according to an embodiment of the present invention.
图5是示出本发明实施方式示例性的一个光电转换单元中的探测器阵列 的结构示意图。Fig. 5 is a schematic diagram showing the structure of a detector array in an exemplary photoelectric conversion unit according to an embodiment of the present invention.
图6为本申请一实施例制造光子集成电路时相关结构的剖面示意图。FIG. 6 is a schematic cross-sectional view of a related structure when manufacturing a photonic integrated circuit according to an embodiment of the present application.
图7为本申请一实施例制造光子集成电路时相关结构的剖面示意图。FIG. 7 is a schematic cross-sectional view of a related structure when manufacturing a photonic integrated circuit according to an embodiment of the present application.
图8为本申请一实施例制造光子集成电路时相关结构的剖面示意图。FIG. 8 is a schematic cross-sectional view of a related structure when manufacturing a photonic integrated circuit according to an embodiment of the present application.
具体实施方式Detailed ways
为了便于理解本发明技术方案的各个方面、特征以及优点,下面结合附 图对本发明进行具体描述。应当理解,下述的各种实施方式只用于举例说 明,而非用于限制本发明的保护范围。In order to facilitate the understanding of various aspects, features and advantages of the technical solutions of the present invention, the present invention will be specifically described below in conjunction with the accompanying drawings. It should be understood that the various embodiments described below are only used for illustration, rather than for limiting the protection scope of the present invention.
在本文中提及的“包括”为一开放式用语,故应解释成“包括但不限定 于”。“大致”是指在可接收的误差范围内,本领域技术人员能够在一定误差 范围内解决所述技术问题,基本达到所述技术效果。The "including" mentioned in this article is an open term, so it should be interpreted as "including but not limited to". "Approximately" means that within an acceptable error range, those skilled in the art can solve the technical problem within a certain error range and basically achieve the technical effect.
此外,“连接”一词在此包含任何直接及间接的连接手段。因此,若文 中描述一第一装置连接于一第二装置,则代表所述第一装置可直接连接于所 述第二装置,或通过其它装置间接地连接至所述第二装置。In addition, the term "connected" herein includes any direct and indirect means of connection. Therefore, if it is described that a first device is connected to a second device, it means that the first device may be directly connected to the second device, or indirectly connected to the second device through other devices.
本文中的“第一”、“第二”等描述,是用于区分不同的设备、模块、结 构等,不代表先后顺序,也不限定“第一”和“第二”是不同的类型。此 外,在本申请的说明书、权利要求书及上述附图中描述的一些流程中,包含 了按照特定顺序出现的多个操作,这些操作可以不按照其在本文中出现的顺 序来执行或并行执行。操作的序号如101、102等,仅仅是用于区分各个不 同的操作,序号本身不代表任何的执行顺序。另外,这些流程可以包括更多 或更少的操作,并且这些操作可以按顺序执行或并行执行。The descriptions of "first" and "second" in this article are used to distinguish different devices, modules, structures, etc., and do not represent a sequence, nor do they limit that "first" and "second" are different types. In addition, some processes described in the specification, claims, and the above-mentioned drawings of the present application contain multiple operations that appear in a specific order, and these operations may not be performed in the order in which they appear herein or performed in parallel. . The serial numbers of operations, such as 101, 102, etc., are only used to distinguish different operations, and the serial numbers themselves do not represent any execution order. Additionally, these processes can include more or fewer operations, and these operations can be performed sequentially or in parallel.
在本发明的一种实施方式中,所述光互连装置包括多个电芯片和光互连 件,多个电芯片中的任意两个电芯片通过该光互连件进行信息交互即通信连 接。所述光互连件具有多个光波导,例如,所述光互连件可以采用光芯片实 现。所述多个电芯片包括任意的第一电芯片和第二电芯片,所述光互连装置 还包括电光转换单元和光电转换单元,其中,所述电光转换单元与所述第一 电芯片连接,用于将所述第一电芯片的电信号承载的信息承载到光信号中, 所述光信号在所述第一光互连件的光波导中传输;所述光电转换单元与所述 第二电芯片连接,将接收的光信号转换为传输至所述第二电芯片的电信号; 并且,所述光信号从所述电光转换单元至所述光电转换单元的传输路径包 括:所述第一光互连件中的光波导。在一些实施方式中,所述光互连件包括 所述电光转换单元和所述光电转换单元。所述电光转换单元包括调制器,该 调制器将所述第一电芯片的电信号承载的信息调制到光信号中,所述光信号 经由所述光互连件中的光波导传输至所述光电转换单元,所述光电转换单元 将所述光信号转换为电信号,该电信号被传输至所述第二电芯片。也就是 说,光信号从所述电光转换单元至所述光电转换单元的传输路径包括:所述 光互连件中的光波导。In one embodiment of the present invention, the optical interconnection device includes a plurality of electrical chips and an optical interconnection, and any two electrical chips in the plurality of electrical chips perform information exchange, that is, a communication connection, through the optical interconnection. The optical interconnection has a plurality of optical waveguides, for example, the optical interconnection can be implemented using an optical chip. The multiple electrical chips include any first electrical chip and second electrical chip, and the optical interconnection device further includes an electro-optical conversion unit and a photoelectric conversion unit, wherein the electrical-optical conversion unit is connected to the first electrical chip , for carrying the information carried by the electrical signal of the first electrical chip into an optical signal, and the optical signal is transmitted in the optical waveguide of the first optical interconnection; the photoelectric conversion unit and the second The two electrical chips are connected to convert the received optical signal into an electrical signal transmitted to the second electrical chip; and, the transmission path of the optical signal from the electro-optical conversion unit to the photoelectric conversion unit includes: the first An optical waveguide in an optical interconnect. In some embodiments, the optical interconnect includes the electro-optical conversion unit and the photoelectric conversion unit. The electro-optical conversion unit includes a modulator, which modulates the information carried by the electrical signal of the first electrical chip into an optical signal, and the optical signal is transmitted to the optical signal through the optical waveguide in the optical interconnection. a photoelectric conversion unit, the photoelectric conversion unit converts the optical signal into an electrical signal, and the electrical signal is transmitted to the second electrical chip. That is to say, the transmission path of the optical signal from the electro-optical conversion unit to the photoelectric conversion unit includes: the optical waveguide in the optical interconnection.
在本发明的另一种实施方式中,所述光互连装置包括多个电芯片和多个 光互连件,不同的光互连件经由光纤互连,所述光互连件上设有与光纤连接 的光耦合结构(例如光栅耦合器或端面耦合器)。位于或邻近同一光互连件 的任意两个电芯片通过该光互连件进行信号传输即通信连接,如上所述,在 此不再赘述。位于或邻近不同光互连件的任意两个电芯片通过相应的光互连 件和光纤进行信号传输。具体而言,所述多个光互连件包括第一光互连件和 第二光互连件,其分别具有多个光波导。所述多个电芯片包括任意的位于或邻近第一光互连件的第一电芯片和位于或邻近第二光互连件的第二电芯片。 所述第一光互连件包括与所述第一电芯片连接的电光转换单元,所述第二光 互连件包括与所述第二电芯片连接的光电转换单元,其中,所述电光转换单 元将所述第一电芯片的电信号承载的信息承载到光信号中,所述光信号经由 所述第一光互连件中的光波导传输至所述光纤,并经由所述光纤传输至所述 第二光互连件,然后经由所述第二光互连件的光波导传输至所述光电转换单 元,所述光电转换单元将所述光信号转换为电信号,该电信号被传输至所述第二电芯片。也就是说,光信号从所述电光转换单元至所述光电转换单元的 传输路径包括:先后经过所述第一光互连件中的光波导、所述光纤、以及所 述第二光互连件的光波导的传输路径。In another embodiment of the present invention, the optical interconnection device includes a plurality of electrical chips and a plurality of optical interconnections, and different optical interconnections are interconnected via optical fibers, and the optical interconnection is provided with An optical coupling structure (such as a grating coupler or an end-face coupler) connected to an optical fiber. Any two electrical chips located at or adjacent to the same optical interconnection perform signal transmission, that is, communication connection through the optical interconnection, as described above, and will not be repeated here. Any two electrical chips located at or adjacent to different optical interconnects perform signal transmission through corresponding optical interconnects and optical fibers. Specifically, the plurality of optical interconnects includes a first optical interconnect and a second optical interconnect, each having a plurality of optical waveguides. The plurality of electrical chips includes any of a first electrical chip located at or adjacent to the first optical interconnect and a second electrical chip located at or adjacent to the second optical interconnect. The first optical interconnection includes an electro-optical conversion unit connected to the first electrical chip, and the second optical interconnection includes a photoelectric conversion unit connected to the second electrical chip, wherein the electrical-optical conversion The unit carries the information carried by the electrical signal of the first electrical chip into an optical signal, and the optical signal is transmitted to the optical fiber through the optical waveguide in the first optical interconnection, and is transmitted to the optical fiber through the optical fiber. The second optical interconnection is then transmitted to the photoelectric conversion unit via the optical waveguide of the second optical interconnection, the photoelectric conversion unit converts the optical signal into an electrical signal, and the electrical signal is transmitted to the second electronic chip. That is to say, the transmission path of the optical signal from the electro-optical conversion unit to the photoelectric conversion unit includes: successively passing through the optical waveguide in the first optical interconnection, the optical fiber, and the second optical interconnection The transmission path of the optical waveguide of the component.
虽然以上实施方式以第一电芯片到第二电芯片进行光信号传输进行了说 明,但是,应当理解,从第二电芯片到第一电芯片的光信号传输也可以采用 同样的方式进行传输。也就是说,对于每一个电芯片,在相应的光互连件中 设有用于与另一个电芯片进行信号传输的电光转换单元和光电转换单元。Although the above embodiments have been described with the optical signal transmission from the first electrical chip to the second electrical chip, it should be understood that the optical signal transmission from the second electrical chip to the first electrical chip can also be transmitted in the same manner. That is to say, for each electrical chip, an electro-optical conversion unit and a photoelectric conversion unit for signal transmission with another electrical chip are provided in the corresponding optical interconnect.
需要说明的是,本发明对电芯片和光互连件的数量不做特别限定。在一 些实施方式中,2个或更多个电芯片通过1个光互连件进行相互通信。在另 一些实施方式中,2个或更多个电芯片通过2个或更多个光互连件进行相互 通信。It should be noted that the number of electrical chips and optical interconnects is not particularly limited in the present invention. In some embodiments, 2 or more electrical chips communicate with each other through 1 optical interconnect. In other embodiments, 2 or more electrical chips communicate with each other through 2 or more optical interconnects.
图1是示出根据本发明的示例性实施方式的光互连装置的结构示意图。 在本发明的一种示例性实施方式中,所述光互连装置包括承载基板100、光 互连件201、202以及多个电芯片,所述多个电芯片包括电芯片A、电芯片 B、电芯片C、电芯片D、电芯片E、电芯片F、电芯片G、以及电芯片H。FIG. 1 is a schematic structural view showing an optical interconnection device according to an exemplary embodiment of the present invention. In an exemplary embodiment of the present invention, the optical interconnection device includes a
在承载基板100上并排设置两个光互连件,分别为光互连件201和光互 连件202。在一些实施方式中,所述光互连件包括光子集成电路。Two optical interconnects are arranged side by side on the
在所述光互连件201上集成有四个电芯片,分别为电芯片A、电芯片 B、电芯片C、以及电芯片D。在所述光互连件202上集成有四个电芯片, 分别为电芯片E、电芯片F、电芯片G、以及电芯片H。同一光互连件上的 四块电芯片中的任意一个电芯片与其他三个电芯片通过该光互连件光互连, 同时与另一个光互连件上的一个电芯片光互连。图2示例性地示出了所述光 互连装置的光互连结构,以及与对应电芯片的位置。Four electrical chips are integrated on the
在具体实施方式中,光互连件包括光子集成电路,所述光子集成电路包 括多个光波导、电光转换单元和光电转换单元。在一些实施方式中,所述电 光转换单元包括一个或多个光调制器,多个调制器可构成调制器阵列。所述 光电转换单元包括一个或多个光电探测器,多个探测器可构成探测器阵列。 示例性的,调制器可基于电信号可对初始光进行调制,从而产生承载信息的 光信号,亦即,将电信号承载的信息承载到光信号中。In a specific embodiment, the optical interconnection includes a photonic integrated circuit including a plurality of optical waveguides, an electro-optical conversion unit, and an electrical-to-optical conversion unit. In some embodiments, the electro-optic conversion unit includes one or more optical modulators, and a plurality of modulators may constitute a modulator array. The photoelectric conversion unit includes one or more photodetectors, and a plurality of photodetectors can form a detector array. Exemplarily, the modulator can modulate the initial light based on the electrical signal, so as to generate an optical signal carrying information, that is, carry the information carried by the electrical signal into the optical signal.
在本示例性实施方式中,光互连件201、202各自的光子集成电路中设 置有多个电光转换单元、多个光电转换单元,各电光转换单元包括调制器阵 列、各光电转换单元包括探测器阵列,如图2所示。在示例性的实施方式 中,光互连件的光子集成电路还可包括多个导电布线单元(图2未示),各 调制器阵列、探测器阵列可通过它们对应的导电布线单元实现与电芯片的电 连接,从而获得来自电芯片的承载信息的电信号,或者将承载信息的电信号 发送给电芯片。In this exemplary embodiment, the respective photonic integrated circuits of the
在一些实施方式中,如图2所示,对于任意一个电芯片,其对应连接光 互连件中的四个调制器阵列(四个电光转换单元)和四个探测器阵列(四个 光电转换单元),在光互连件上对应的区域设置有电芯片(图2中电芯片 A~H所指向部分,即与图1对应的电芯片A~H)。以电芯片A为例,光互 连件中对应集成有调制器阵列M1、调制器阵列M2、调制器阵列M3、以及 调制器阵列M4,并且集成有探测器阵列D1、探测器阵列D2、探测器阵列 D3、以及探测器阵列D4。其中,调制器阵列M1通过光互连件201中的光 波导、耦合光纤阵列中的光纤、光互连件202中的光波导与光互连件202中 的对应于电芯片F的探测器阵列进行光通信,探测器阵列D1通过光互连件 201中的光波导、耦合光纤阵列中的光纤、光互连件202中的光波导与另一 光互连件202上的对应于电芯片F的调制器阵列进行光通信;调制器阵列 M2通过光互连件201中的光波导与该光互连件201上的对应于电芯片B的 探测器阵列进行光通信,探测器阵列D2通过光互连件201中的光波导与该 光互连件201上的对应于电芯片B的调制器阵列进行光通信;调制器阵列 M3通过光互连件201中的光波导与该光互连件201上的对应于电芯片C的 探测器阵列进行光通信,探测器阵列D3通过光互连件201中的光波导与该 光互连件201上的对应于电芯片C的调制器阵列进行光通信;调制器阵列M4 通过光互连件201中的光波导与该光互连件201上的对应于电芯片D的探测 器阵列进行光通信,探测器阵列D4通过光互连件201中的光波导与该光互 连件201上的对应于电芯片D的调制器阵列进行光通信。In some implementations, as shown in Figure 2, for any electrical chip, it corresponds to connect four modulator arrays (four electro-optical conversion units) and four detector arrays (four photoelectric conversion units) in the optical interconnect. unit), and electrical chips are arranged on the corresponding area on the optical interconnect (the parts pointed to by the electrical chips A-H in FIG. 2 , that is, the electrical chips A-H corresponding to FIG. 1 ). Taking the electronic chip A as an example, the optical interconnect is correspondingly integrated with a modulator array M1, a modulator array M2, a modulator array M3, and a modulator array M4, and a detector array D1, a detector array D2, and a detector array are integrated. Sensor array D3, and detector array D4. Wherein, the modulator array M1 passes through the optical waveguide in the
所述光互连件201、202还可包括诸如光栅耦合器或端面耦合器的光耦 合结构,用于将激光模块输出的多个波长激光耦合至光互连件中,并通过一 系列分束器将激光能量平均分配到不同电芯片下方的调制器阵列输入口。分 束器可以是例如宽波段分束器。以电芯片A为例,激光模块输出的多个波长 激光通过光耦合结构300耦合至光互连件201中,并经由一系列分束器400 将激光能量平均分配到光互连件201中与光调制器阵列M1、调制器阵列 M2、调制器阵列M3、调制器阵列M4分别连通的光波导中,从而经过相应 的光波导将分配的光信号输入到相应的调制器阵列。在一些实施方式中,可 以在设置激光器模块和相关的光学元件,将所述激光器模块发出的光耦合到 光互连件中的光波导中。可选的,光互连件201、202之间也可以通过多个 光波导进行光学连接。The
通过各调制器阵列将相应的电芯片上的信息调制到不同波长的光信号中 并以波分复用的方式进行传输,通过光互连件的光波导或者附加耦合光纤阵 列的光纤将所述调制的光信号传输到其他电芯片下方的探测器阵列,探测器 阵列对调制的信号进行波分解复用并接收转化为电信号,从而完成不同电芯 片间的信息传输。以电芯片A为例,调制器阵列M1将电芯片A处理输出的 信息加载到光信号中,该光信号依次通过光互连件201中的光波导、耦合光 纤阵列中的光纤、光互连件202中的光波导进行传输,并到达电芯片F下方 的一探测器阵列,该探测器阵列对接收的光信号进行波分解复用并接收转化 为电信号,该电信号输入到电芯片F中由电芯片F进行处理。调制器阵列 M2将电芯片A处理输出的信息加载到光信号中,该光信号通过光互连件 201中的光波导传输至电芯片B下方的一探测器阵列,该探测器阵列对接收 的光信号进行波分解复用并接收转化为电信号,该电信号输入到电芯片B中 由电芯片B进行处理。调制器阵列M3和调制器阵列M4进行与调制器阵列 M2类似的处理。并且,探测器阵列D1、探测器阵列D2、探测器阵列D4、 以及探测器阵列D4对发送至电芯片A的光信号也进行波分解复用并接收转 化为电信号的处理,并将所述电信号输入电芯片A进行处理。The information on the corresponding electrical chip is modulated into optical signals of different wavelengths by each modulator array and transmitted in a wavelength division multiplexing manner, and the optical waveguide of the optical interconnection or the optical fiber of the additional coupling optical fiber array The modulated optical signal is transmitted to the detector array under other electronic chips, and the detector array performs wave division and multiplexing on the modulated signal and converts it into an electrical signal, thereby completing the information transmission between different electronic chips. Taking electrical chip A as an example, the modulator array M1 loads the information processed and output by electrical chip A into an optical signal, and the optical signal sequentially passes through the optical waveguide in the
在示例性实施方式中,每块光互连件上的四个电芯片通过光信号进行近 邻和次近邻的互连,然后通过耦合光纤阵列与另外四个电芯片进行光互连, 最终构成混合立方体网络拓扑通信互连结构,如图3所示。该混合立方体网 络拓扑结构复用了两个光互连件和八个电芯片,提高了系统能效比。在一些 实施方式中,所述电芯片可以采用降低了尺寸的电芯片,从而降低了芯片设 计和加工成本,并且有效提高了芯片的良率。In an exemplary embodiment, the four electrical chips on each optical interconnect are connected to the nearest neighbor and the second nearest neighbor through optical signals, and then optically interconnected with the other four electrical chips through a coupling fiber array, finally forming a hybrid The cubic network topology communication interconnection structure is shown in Figure 3. The hybrid cube network topology multiplexes two optical interconnects and eight electrical chips, improving the energy efficiency of the system. In some embodiments, the electrical chip can use a reduced-sized electrical chip, thereby reducing chip design and processing costs, and effectively improving the yield rate of the chip.
图4示例性的示出了一个电光转换单元,其包括调制器阵列,在一些实 施方式中,所述调制器阵列包括多个微环调制器。如图4所示,调制器阵列 由一系列微环调制器401组成,该微环调制器401基于载流子耗尽效应,可 以支持高调制速率,该类型的波导结构在脊形波导不同区域进行掺杂,形成 横向或纵向的PN结结构(包括横向或纵向PN结)402。PN结工作在反偏 模式,当施加反偏电压后,PN结内的耗尽区增大,内建电场增强。耗尽区 内没有自由载流子,对应的环形波导403的折射率发生改变,导致其共振波 长发生平移,共振峰附近某一特定波长的强度会发生较大的改变,从而达到 强度调制的目的。微环调制器的尺寸小,功耗低,调制效率高。将来自电芯 片上的电信息数据调制时,可通过调节微环调制器上的加热电极404而对应 特定波长的载波,经调制的不同波长的光信号在光波导407上独立传播,实 现了多通道的波分复用的信号传输。其中,多个微环可对应多个不同的波 长。通过监测光探测器405检测器件性能是否正常用的,例如,如果光互连 件故障了,可以通过这些监测光探测器405进行分析。波导终端406可以是 不耦合到外界电芯片的虚设的光探测器,其可吸收波导末端的残余光能量, 使得不影响到其他光波导对光信号的传输。应指出,调制器阵列一词仅表示 照一定位置排列,在满足功能需求的基础上,阵列一词并不对各调制器排列 形式、排列规律等做特别限定,也不限定为是二维形式的阵列。Fig. 4 exemplarily shows an electro-optical conversion unit, which includes a modulator array, and in some embodiments, the modulator array includes a plurality of microring modulators. As shown in Figure 4, the modulator array is composed of a series of
图5示例性的示出了一个光电转换单元,其包括探测器阵列,在一些实 施方式中,如图5所示,所述探测器阵列包括多个微环滤波探测器501,微 环滤波探测器501包括加热电极502、环形波导503、信号光探测器504。通 过调节微环滤波探测器501上的加热电极502来调节环形波导503,从光波 导507中过滤出特定波长的光信号,下载到与电芯片耦合的信号光探测器 504上,实现光信号到电信号的转换。其中,多个微环可对应多个不同的波 长。并且,通过与光波导507、信号光探测器504连接的波导终端505来吸 收波导末端的残余光能量,使其不影响其他光波导的信号传输。应指出,探 测器阵列一词仅表示照一定位置排列,在满足功能需求的基础上,阵列一词 并不对各探测器排列形式、排列规律等做特别限定,也不限定为是二维形式 的阵列。Fig. 5 exemplarily shows a photoelectric conversion unit, which includes a detector array. In some embodiments, as shown in Fig. 5, the detector array includes a plurality of
在一些实施方式中,所述光互连装置的电芯片可以选自CPU、GPU、存 储器芯片等,可以包括数字电路,也可以包括模拟电路。In some embodiments, the electrical chip of the optical interconnection device can be selected from CPU, GPU, memory chip, etc., and can include digital circuits or analog circuits.
本发明示例性的实施方式提供一种光互连装置的制造方法,可用于制造 前述各实施方式中的光互连装置。该方法包括:An exemplary embodiment of the present invention provides a method for manufacturing an optical interconnection device, which can be used to manufacture the optical interconnection device in the above-mentioned embodiments. The method includes:
S601、提供晶圆。S601. Providing a wafer.
S602、在所述晶圆上形成多个光子集成电路。S602. Form a plurality of photonic integrated circuits on the wafer.
其中,所述多个光子集成电路中的每一个可包括多个光波导,以及电光 转换单元、光电转换单元,多个光波导可用于构成光波导单元,即光波导单 元包括多个光波导。所述多个光子集成电路中的每一个光子集成电路还可包 括多个导电布线单元,多个导电布线单元可将电光转换单元和/或光电转换单 元连接至对应的电芯片,以接收来自电芯片的待通信的电信号和/或向电芯片 发送用于通信的电信号。通常,多个光子集成电路形成于晶圆上的多个区 域,在后续步骤中,晶圆会被切割,以形成单独的光子集成电路,所述光子集成电路用于构成光互连件,即光互连件包括所述光子集成电路。Wherein, each of the plurality of photonic integrated circuits may include a plurality of optical waveguides, an electro-optical conversion unit, and a photoelectric conversion unit, and the plurality of optical waveguides may be used to form an optical waveguide unit, that is, the optical waveguide unit includes a plurality of optical waveguides. Each photonic integrated circuit in the plurality of photonic integrated circuits may further include a plurality of conductive wiring units, and the plurality of conductive wiring units may connect the electro-optic conversion unit and/or the photoelectric conversion unit to the corresponding electronic chip, so as to receive signals from The electrical signal of the chip to be communicated and/or the electrical signal used for communication is sent to the electrical chip. Typically, a plurality of photonic integrated circuits are formed in multiple regions on a wafer, and in a subsequent step, the wafer is diced to form individual photonic integrated circuits, which are used to form optical interconnects, i.e. An optical interconnect includes the photonic integrated circuit.
S603、在所述多个光子集成电路中的每一个上安装所需的至少一个电芯 片。例如,设置第一电芯片和第二电芯片,使所述第一电芯片与所述第一导 电布线单元电连接,所述第二电芯片与所述第二导电布线单元电连接,第一 电光转换单元通过第一导电布线单元接收所述第一电芯片的第一电信号,并 编码产生第一光信号;所述第一光电转换器用于将第一光信号转换为电信号 并传输给第二导电布线单元。S603. Install at least one required electrical chip on each of the plurality of photonic integrated circuits. For example, a first electric chip and a second electric chip are arranged so that the first electric chip is electrically connected to the first conductive wiring unit, the second electric chip is electrically connected to the second conductive wiring unit, and the first electric chip is electrically connected to the first conductive wiring unit. The electro-optical conversion unit receives the first electrical signal of the first electrical chip through the first conductive wiring unit, and encodes to generate a first optical signal; the first photoelectric converter is used to convert the first optical signal into an electrical signal and transmit it to The second conductive wiring unit.
S604、对所述晶圆进行分割,得到多个独立的光互连装置。S604. Divide the wafer to obtain multiple independent optical interconnection devices.
在一些实施例中,单个光互连装置中包括单个光子集成电路以及安装 (设置)在所述光子集成电路上的所述第一电芯片和所述第二电芯片。其 中,第一电芯片、第二电芯片能够通过第一导电布线单元、所述第一电光转 换单元、多个光波导中的至少一个光波导、第一光电转换单元以及所述第二 导电布线单元进行通信。独立的单个光互连装置中具体包括一个所述光子集 成电路。In some embodiments, a single photonic integrated circuit and said first electrical chip and said second electrical chip mounted (disposed) on said photonic integrated circuit are included in a single optical interconnection device. Wherein, the first electrical chip and the second electrical chip can pass through the first conductive wiring unit, the first electro-optic conversion unit, at least one optical waveguide among the plurality of optical waveguides, the first photoelectric conversion unit and the second conductive wiring unit to communicate. An independent single optical interconnection device specifically includes one photonic integrated circuit.
上述S601中,晶圆包括半导体层。在一实例中,上述晶圆可以是绝缘 体上半导体晶圆,例如:SOI(Silicon-On-Insulator,绝缘衬底上硅)晶圆。 如图6所示,绝缘体上半导体晶圆可包括:绝缘层602、形成在绝缘层602 上的半导体层603以及位于所述绝缘层602下方的背衬底层601。In the above S601, the wafer includes a semiconductor layer. In an example, the above-mentioned wafer may be a semiconductor-on-insulator wafer, such as an SOI (Silicon-On-Insulator, silicon-on-insulator) wafer. As shown in FIG. 6 , the semiconductor-on-insulator wafer may include: an insulating
上述S602中,可通过在半导体层603上进行图形化、沉积、掺杂等工 艺形成光子集成电路。In the above S602, a photonic integrated circuit can be formed by performing processes such as patterning, deposition, and doping on the
上述S603中,在一实例中,可通过键合或焊接等电连接方式将第一电 芯片电连接到第一导电布线单元上,将第二电芯片电连接到第二导电布线单 元上。In the above S603, in an example, the first electric chip can be electrically connected to the first conductive wiring unit by bonding or welding, and the second electric chip can be electrically connected to the second conductive wiring unit.
在一具体实例中,上述步骤S602中“在所述晶圆上形成多个光子集成 电路”,具体可采用如下步骤来实现:In a specific example, in the above-mentioned step S602, "forming a plurality of photonic integrated circuits on the wafer" can specifically be realized by the following steps:
S21、在所述晶圆上形成光波导单元、所述第一电光转换单元第一电光 转换单元和所述第一光电转换单元。S21. Form an optical waveguide unit, the first electro-optical conversion unit, and the first photoelectric conversion unit on the wafer.
S22、在形成有光波导单元、所述第一电光转换单元第一电光转换单元 和所述第一光电转换单元的晶圆上沉积介电层,以覆盖所述光波导单元、所 述第一电光转换单元、所述第一光电转换单元以及所述晶圆。S22. Deposit a dielectric layer on the wafer formed with the optical waveguide unit, the first electro-optical conversion unit, and the first photoelectric conversion unit, so as to cover the optical waveguide unit, the first electro-optical conversion unit, and the first electro-optical conversion unit. an electro-optical conversion unit, the first photoelectric conversion unit, and the wafer.
S23、在所述介电层中形成第一开孔和第二开孔。S23, forming a first opening and a second opening in the dielectric layer.
S24、在所述第一开孔中形成第一电连接结构以及在所述第二开孔中形 成第二电连接结构。S24. Form a first electrical connection structure in the first opening and form a second electrical connection structure in the second opening.
其中,所述第一导电布线单元包括所述第一电连接结构;所述第二导电 布线单元包括所述第二电连接结构。Wherein, the first conductive wiring unit includes the first electrical connection structure; the second conductive wiring unit includes the second electrical connection structure.
上述S21,如图6和图7所示,可对晶圆的半导体层603进行图形化得 到光波导单元103、第一电光转换单元104和第一光电转换单元105对应区 域。具体地,采用光刻和蚀刻技术,去除并不需要的材料,以进行图形化。 在一些实施例中,上述绝缘层可以作为刻蚀停止层。在一些实施方式中,所 述电光转换单元包括一个或多个调制器,多个调制器可构成调制器阵列。所 述光电转换单元包括一个或多个光电探测器,多个探测器可构成探测器阵列。作为简化,图7中仅示出了一个调制器、一个探测器。In the above S21, as shown in Fig. 6 and Fig. 7, the
上述S22中,如图8所示,在形成有所述光波导单元103、所述第一电 光转换单元104和所述第一光电转换单元105的晶圆上沉积介电层106,以 覆盖所述光波导单元103、所述第一电光转换单元104、所述第一光电转换 单元105以及所述晶圆。具体地,通过沉积,在光波导单元103、第一电光 转换单元104、第一光电转换单元105、绝缘层602上形成介电层106。上述 介电层的材料与绝缘层的材料可相同。In the above S22, as shown in FIG. 8, a
上述S23中,如图8所示,在所述介电层106中形成第一开孔和第二开 孔向。可采用刻蚀技术形成上述第一开孔和第二开孔,根据连接需要,第一 开孔、第二开孔的个数可以为一个或多个。In the above S23, as shown in FIG. 8 , a first opening and a second opening are formed in the
在一些实施例中,介电层106是多层结构,通过多个子介电层形成,在 介电层中可形成有多层导电层,导电层之间通过开孔中的导电材料连接。例 如先沉积形成第一子介电层,再形成第一导电层,然后再沉积形成第二子介 电层,再形成第二导电层然后形成第三子介电层,再形成第三导电层,然后 形成第四子介电层。其中,第一至第三导电层中,不同的导电层通过开孔中 的导电材料进行互连,各导电层可以为图案化的金属材料层。In some embodiments, the
上述S24中,如图8所示,可通过沉积导电材料,在所述第一开孔中形 成第一导电布线单元101的第一电连接结构101a以及在所述第二开孔中形成 第二导电布线单元102的第二电连接结构102a。所述第一电连接结构穿过至 少部分所述介电层106;所述第一电连接结构穿过至少部分所述介电层 106。In the above S24, as shown in FIG. 8, the first electrical connection structure 101a of the first
沉积导电材料后,可通过化学机械抛光或机械研磨的平坦化工艺以沿着 介电层的安装面去除过量的导电材料,从而使得第一电连接结构和第二电连 接结构与介电层的安装面齐平。After the conductive material is deposited, the excess conductive material can be removed along the mounting surface of the dielectric layer through a planarization process of chemical mechanical polishing or mechanical grinding, so that the first electrical connection structure and the second electrical connection structure and the dielectric layer The mounting surface is flush.
后续,在晶圆上的每一个光子集成电路上安装第一电芯片和第二电芯 片,具体地,在介电层106/光子集成电路的安装面上对应于每一个光子集成 电路的区域内安装第一电芯片和第二电芯片,也即在介电层106/光子集成电 路的安装面上对应于每一个光子集成电路的区域,将第一电芯片和第二电芯 片与该区域内的第一电连接结构和第二电连接结构进行电连接。Subsequently, install the first electrical chip and the second electrical chip on each photonic integrated circuit on the wafer, specifically, in the area corresponding to each photonic integrated circuit on the mounting surface of the
后续,还可在介电层106上形成密封剂,以掩埋或覆盖第一电芯片和第 二电芯片。之后,可固化并且可以平坦化密封剂。Subsequently, an encapsulant may also be formed on the
在一些实施方式中,可包括对背衬底层601减薄的工序。In some embodiments, a process of thinning the
在一些实施例中,S604可在S603之后执行,亦即,在对光子集成电路 晶圆进行分割前批量安装第一电芯片、第二电芯片,该种方式可以在晶圆级 制程中对第一电芯片、第二电芯片进行批量封装,此时,仅需制造光子集成 电路晶圆,无需将光子集成电路形成单个的芯片。In some embodiments, S604 can be performed after S603, that is, the first electrical chip and the second electrical chip are installed in batches before the photonic integrated circuit wafer is divided. The first electronic chip and the second electronic chip are packaged in batches. At this time, only the photonic integrated circuit wafer needs to be manufactured, and there is no need to form the photonic integrated circuit into a single chip.
另外,可选的,可先进行晶圆分割的工序,以先形成独立的光子集成电 路/独立的包含光子集成电路的光互连件,然后再进行第一电芯片和第二电芯 片的安装工序,即将所述第一电芯片、第二电芯片安装在所述独立的光子集 成电路上。In addition, optionally, the process of dividing the wafer can be carried out first, so as to form independent photonic integrated circuits/independent optical interconnects containing photonic integrated circuits, and then carry out the installation of the first electronic chip and the second electronic chip The process is to mount the first electrical chip and the second electrical chip on the independent photonic integrated circuit.
可选的,可对多个独立的光子集成电路进行一定程度的封装,以形成多 个独立的光子集成电路芯片(包括裸芯片),光子集成电路芯片作为光互连 的芯片,即光互连件可采用光子集成电路芯片。具体地,该方法,包括:Optionally, multiple independent photonic integrated circuits can be packaged to a certain extent to form multiple independent photonic integrated circuit chips (including bare chips), and the photonic integrated circuit chips are used as optical interconnect chips, that is, optical interconnect The components can use photonic integrated circuit chips. Specifically, the method includes:
S1001、提供晶圆。S1001. Providing a wafer.
S1002、在所述晶圆上形成多个光子集成电路。S1002. Form a plurality of photonic integrated circuits on the wafer.
其中,所述多个光子集成电路中的每一个包括第一导电布线单元、第二 导电布线单元、光波导单元以及第一电光转换单元和第一光电转换单元;所 述第一电光转换单元和所述第一光电转换单元分别耦合至所述光波导单元; 所述第一导电布线单元与所述第一电光转换单元电连接;所述第二导电布线 单元与所述第一光电转换单元电连接。Wherein, each of the plurality of photonic integrated circuits includes a first conductive wiring unit, a second conductive wiring unit, an optical waveguide unit, a first electro-optical conversion unit, and a first photoelectric conversion unit; the first electro-optical conversion unit and The first photoelectric conversion unit is respectively coupled to the optical waveguide unit; the first conductive wiring unit is electrically connected to the first electro-optical conversion unit; the second conductive wiring unit is electrically connected to the first photoelectric conversion unit connect.
S1003、对所述晶圆进行分割,得到多个独立的光子集成电路。S1003. Divide the wafer to obtain multiple independent photonic integrated circuits.
其中,多个光子集成电路被分割独立的光子集成电路,从而每一个所述 光子集成电路芯片中包括独立的光子集成电路。Wherein, a plurality of photonic integrated circuits are divided into independent photonic integrated circuits, so that each photonic integrated circuit chip includes an independent photonic integrated circuit.
S1004、在所述多个独立的光子集成电路芯片中的每一个上安装第一电 芯片和第二电芯片,以使所述第一电芯片与所述第一导电布线单元电连接, 所述第二电芯片与所述第二导电布线单元电连接。S1004. Install a first electrical chip and a second electrical chip on each of the plurality of independent photonic integrated circuit chips, so that the first electrical chip is electrically connected to the first conductive wiring unit, the The second electric chip is electrically connected to the second conductive wiring unit.
作为一个示例,S1004可在步骤S1003之后执行,但不限于此。As an example, S1004 may be performed after step S1003, but is not limited thereto.
其中,所述第一电芯片、所述第二电芯片能够通过所述第一导电布线单 元、所述第一电光转换单元、所述光波导单元、所述第一光电转换单元以及 所述第二导电布线单元进行通信。Wherein, the first electrical chip and the second electrical chip can pass through the first conductive wiring unit, the first electro-optical conversion unit, the optical waveguide unit, the first photoelectric conversion unit and the second Two conductive wiring units communicate.
上述步骤S1002的具体实现可参见上述各实施例中相应内容,在此不在 赘述。For the specific implementation of the above step S1002, refer to the corresponding content in the above embodiments, and details are not repeated here.
在一些实施方式中,前文中的所述的光互连件例如第一光互连件,第二 光互连件中的光子集成电路均可采用以上方法中相关光子集成电路的制造步 骤形成,并按照上述提到的方法在第一光互连件设置至少一个电芯片,以及 在第二光互连件上设置至少一个电芯片。In some embodiments, the aforementioned optical interconnects such as the first optical interconnect and the photonic integrated circuit in the second optical interconnect can be formed by the manufacturing steps of related photonic integrated circuits in the above method, And according to the method mentioned above, at least one electrical chip is arranged on the first optical interconnection, and at least one electrical chip is arranged on the second optical interconnection.
在一些实施方式中,还包括用使用多个光纤将所述第一光互连件与所述 第二光互连件进行光学连接的步骤。替换性的,所述多个光纤可以替换为多 个光波导,用于实现第一光互连件与第二光互连件的光学连接。In some embodiments, further comprising the step of optically connecting the first optical interconnect with the second optical interconnect using a plurality of optical fibers. Alternatively, the plurality of optical fibers may be replaced with a plurality of optical waveguides for realizing the optical connection between the first optical interconnection and the second optical interconnection.
在一些实施方式中,制造光互连件装置的方法包括:将光互连件设置于 承载基板上。示例性的,可以是将第一光互连件、第二光互连件设置于承载 基板上。In some embodiments, a method of manufacturing an optical interconnect device includes disposing an optical interconnect on a carrier substrate. Exemplarily, the first optical interconnection and the second optical interconnection may be disposed on the carrier substrate.
这里需要说明的是:本申请实施例提供的所述方法中各步骤未尽详述的 内容可参见上述实施例中的相应内容,此处不再赘述。此外,本申请实施例 提供的所述方法中除了上述各步骤以外,还可包括上述各实施例中其他部分 或全部步骤,具体可参见上述各实施例相应内容,在此不再赘述。What needs to be explained here is: for the content that is not fully described in the steps of the method provided in the embodiment of the present application, please refer to the corresponding content in the above embodiment, and will not be repeated here. In addition, in addition to the above-mentioned steps, the methods provided in the embodiments of the present application may also include other parts or all of the steps in the above-mentioned embodiments. For details, please refer to the corresponding content of the above-mentioned embodiments, and details will not be repeated here.
本领技术人员应当理解,以上所公开的仅为本发明的实施方式而已,当 然不能以此来限定本发明之权利范围,依本发明实施方式所作的等同变化, 仍属本发明权利要求所涵盖的范围。Those skilled in the art should understand that what is disclosed above is only the embodiment of the present invention, and of course the scope of rights of the present invention cannot be limited by this. The equivalent changes made according to the embodiments of the present invention are still covered by the claims of the present invention. scope.
Claims (21)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111529427.7A CN116299888A (en) | 2021-12-14 | 2021-12-14 | Optical interconnection device and manufacturing method thereof |
PCT/CN2022/138124 WO2023109692A1 (en) | 2021-12-14 | 2022-12-09 | Optical interconnection device and manufacturing method therefor |
TW111147957A TWI855456B (en) | 2021-12-14 | 2022-12-14 | Optical interconnection device and fabrication method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111529427.7A CN116299888A (en) | 2021-12-14 | 2021-12-14 | Optical interconnection device and manufacturing method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN116299888A true CN116299888A (en) | 2023-06-23 |
Family
ID=86774899
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111529427.7A Pending CN116299888A (en) | 2021-12-14 | 2021-12-14 | Optical interconnection device and manufacturing method thereof |
Country Status (3)
Country | Link |
---|---|
CN (1) | CN116299888A (en) |
TW (1) | TWI855456B (en) |
WO (1) | WO2023109692A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117538984A (en) * | 2024-01-09 | 2024-02-09 | 赛丽科技(苏州)有限公司 | Integrated photon chip, array and testing method thereof |
WO2025066910A1 (en) * | 2023-09-28 | 2025-04-03 | 杭州光智元科技有限公司 | On-chip optical circuit switching network device, semiconductor apparatus, and manufacturing method therefor |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140270629A1 (en) * | 2013-03-15 | 2014-09-18 | Apic Corporation | Optical waveguide network of an interconnecting ic module |
US10114173B2 (en) * | 2017-03-14 | 2018-10-30 | Huawei Technologies Co., Ltd. | Optical device |
JP7192255B2 (en) * | 2018-05-31 | 2022-12-20 | 富士通オプティカルコンポーネンツ株式会社 | Optical device, optical module using same, and test method for optical device |
KR102622409B1 (en) * | 2018-10-19 | 2024-01-09 | 삼성전자주식회사 | photonic integrated circuit device and method for manufacturing the same |
US11041999B2 (en) * | 2018-11-21 | 2021-06-22 | Nokia Solutions And Networks Oy | Chip-to-chip optical interconnect |
US10962711B2 (en) * | 2018-11-29 | 2021-03-30 | Taiwan Semiconductor Manufacturing Company, Ltd. | Semiconductor package and manufacturing method thereof |
CN112558240A (en) * | 2019-09-26 | 2021-03-26 | 台湾积体电路制造股份有限公司 | Package assembly and method of manufacturing the same |
US11700068B2 (en) * | 2020-05-18 | 2023-07-11 | Ayar Labs, Inc. | Integrated CMOS photonic and electronic WDM communication system using optical frequency comb generators |
-
2021
- 2021-12-14 CN CN202111529427.7A patent/CN116299888A/en active Pending
-
2022
- 2022-12-09 WO PCT/CN2022/138124 patent/WO2023109692A1/en active Application Filing
- 2022-12-14 TW TW111147957A patent/TWI855456B/en active
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2025066910A1 (en) * | 2023-09-28 | 2025-04-03 | 杭州光智元科技有限公司 | On-chip optical circuit switching network device, semiconductor apparatus, and manufacturing method therefor |
CN117538984A (en) * | 2024-01-09 | 2024-02-09 | 赛丽科技(苏州)有限公司 | Integrated photon chip, array and testing method thereof |
Also Published As
Publication number | Publication date |
---|---|
TW202323894A (en) | 2023-06-16 |
TWI855456B (en) | 2024-09-11 |
WO2023109692A1 (en) | 2023-06-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US12128729B2 (en) | Integrated optical transceiver | |
US20220224433A1 (en) | Optical Multiplexer/Demultiplexer Module and Associated Methods | |
CN113759475B (en) | Inner Encapsulation Photoelectric Module | |
US5859719A (en) | Photogenerator for lightwave networks | |
US9164300B2 (en) | Reconfigurable optical networks | |
TWI855456B (en) | Optical interconnection device and fabrication method thereof | |
CN113759477A (en) | Packaged chiplets and co-packaged optoelectronic modules for multi-channel optical engines | |
KR20240165455A (en) | Photonic communication platform and related architectures, systems and methods | |
US20140270621A1 (en) | Photonic multi-chip module | |
CN111474745B (en) | An optoelectronic monolithic integrated system based on a multi-material system | |
TWI832609B (en) | Optical interconnection device and manufacturing method thereof and computing device | |
TW202240217A (en) | Low-power optical input/output chiplet for ethernet switches (teraphye) | |
CN116184566A (en) | Semiconductor packaging structure, information transmission method, manufacturing method and optical interconnection equipment | |
CN117406337A (en) | Heterogeneous photoelectric fusion integrated system based on wafer-to-wafer bonding | |
Wosinski et al. | Integrated silicon nanophotonics: A solution for computer interconnects | |
CN119728599A (en) | On-chip all-optical switching network device, semiconductor device, and method of manufacturing the same | |
CN118732151A (en) | Semiconductor structure and method for manufacturing the same | |
CN222125480U (en) | An optoelectronic co-sealing module based on advanced packaging | |
GB2240682A (en) | An optical interconnect assembly | |
Hirokawa | Wavelength-Selective Photonic Switches for Energy Efficient Reconfigurable Data Center Networks | |
KR20240159979A (en) | Photonic communication platform and related architectures, systems and methods | |
CN114660710A (en) | Wafer level optical interconnect and switch system on chip | |
CN117234459A (en) | Optical multichannel convolution processor chip and on-chip integration method thereof | |
CN118732150A (en) | Semiconductor structure and method for manufacturing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |