CN116299803A - Transmitted light amplitude, phase and polarization independent modulation metasurface device and modulation method - Google Patents
Transmitted light amplitude, phase and polarization independent modulation metasurface device and modulation method Download PDFInfo
- Publication number
- CN116299803A CN116299803A CN202310283471.7A CN202310283471A CN116299803A CN 116299803 A CN116299803 A CN 116299803A CN 202310283471 A CN202310283471 A CN 202310283471A CN 116299803 A CN116299803 A CN 116299803A
- Authority
- CN
- China
- Prior art keywords
- metal
- phase
- polarization
- modulation
- angle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000010287 polarization Effects 0.000 title claims abstract description 70
- 238000000034 method Methods 0.000 title claims abstract description 15
- 239000002184 metal Substances 0.000 claims abstract description 100
- 229910052751 metal Inorganic materials 0.000 claims abstract description 100
- 239000002086 nanomaterial Substances 0.000 claims abstract description 18
- 238000003491 array Methods 0.000 claims abstract description 3
- 239000000463 material Substances 0.000 claims description 7
- 239000010931 gold Substances 0.000 claims description 4
- 238000002834 transmittance Methods 0.000 claims description 4
- 239000004642 Polyimide Substances 0.000 claims description 3
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 3
- 229910052737 gold Inorganic materials 0.000 claims description 3
- 229920001721 polyimide Polymers 0.000 claims description 3
- 230000033228 biological regulation Effects 0.000 abstract description 6
- 238000007142 ring opening reaction Methods 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 230000001427 coherent effect Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 238000013459 approach Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000005388 cross polarization Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000002310 reflectometry Methods 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
- G02B1/002—Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of materials engineered to provide properties not available in nature, e.g. metamaterials
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/18—Diffraction gratings
- G02B5/1866—Transmission gratings characterised by their structure, e.g. step profile, contours of substrate or grooves, pitch variations, materials
- G02B5/1871—Transmissive phase gratings
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/30—Polarising elements
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02D—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
- Y02D30/00—Reducing energy consumption in communication networks
- Y02D30/70—Reducing energy consumption in communication networks in wireless communication networks
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Polarising Elements (AREA)
Abstract
本发明提供了一种透射光振幅、相位和偏振独立调制超表面器件及调制方法,包括三层金属结构层和两层中间介质层,每两层所述金属结构层之间设有所述中间介质层,所述金属结构层为金属微纳结构阵列,所述金属微纳结构阵列的顶层和底层为相互垂直的金属光栅阵列,所述金属微纳结构阵列的中间结构为沿与所述金属光栅阵列方向角呈45°方向对称的金属劈裂环天线。本发明通过控制不同的三层金属超表面的几何参数,可以对透射光的振幅、相位和偏振进行独立的调控,对以上三个性质的调制分别由独立参数控制,互相不影响,可以独立进行。调制效率可以达到92%以上,拓展了超表面的调控功能。
The invention provides a transmissive light amplitude, phase and polarization independently modulated metasurface device and modulation method, comprising three layers of metal structure layers and two layers of intermediate dielectric layers, the intermediate layer is arranged between each two layers of the metal structure layer The medium layer, the metal structure layer is a metal micro-nano structure array, the top layer and the bottom layer of the metal micro-nano structure array are metal grating arrays perpendicular to each other, and the middle structure of the metal micro-nano structure array is along the metal micro-nano structure array. A metal split loop antenna with a 45° directional symmetry of the grating array. By controlling the geometric parameters of different three-layer metal metasurfaces, the present invention can independently regulate the amplitude, phase and polarization of the transmitted light, and the modulation of the above three properties is controlled by independent parameters without affecting each other and can be carried out independently . The modulation efficiency can reach more than 92%, expanding the regulation function of the metasurface.
Description
技术领域technical field
本发明涉及超表面器件技术领域,尤其是涉及一种透射光振幅、相位和偏振独立调制超表面器件及调制方法。The invention relates to the technical field of metasurface devices, in particular to a metasurface device and a modulation method for independently modulating the amplitude, phase and polarization of transmitted light.
背景技术Background technique
超表面是指人工设计的由亚波长尺度的单元结构构成的二维平面材料,由于其性质并不主要由构成材料的固有属性决定,而是通过设计其单元结构的尺寸、几何形状、空间分布等参数决定,因此可以通过设计,使其具有自然界中材料不具有的性质,如特殊的介电常数和磁导率等。相比传统材料,超构表面具有尺寸小、轻薄、可调控、易于加工、成本低等优势,可用于制备小型化、轻量化、高度集成化的光学调制器件。Metasurfaces refer to artificially designed two-dimensional planar materials composed of subwavelength-scale unit structures. Because their properties are not mainly determined by the inherent properties of the constituent materials, they are determined by designing the size, geometry, and spatial distribution of their unit structures. and other parameters, so it can be designed to have properties that materials in nature do not have, such as special permittivity and magnetic permeability. Compared with traditional materials, metasurfaces have the advantages of small size, thinness, controllability, easy processing, and low cost, and can be used to prepare miniaturized, lightweight, and highly integrated optical modulation devices.
以往的工作中,通过设计复杂超表面以及改变超表面的几何参数,可以实现对透过光波的振幅、相位、偏振态特性中的某一个或者两个性质进行独立调制。比如通过使用介质超表面可以对透射光的相位和偏振进行调制,如使用各向异性的椭圆形硅柱结构,对透射光进行相位和偏振的调制,通过分别调节椭圆形硅柱沿两个主轴方向的几何尺寸,可以控制出射光的相位。或者使用十字形金属超表面,对透射光的振幅和偏振进行调制,通过整体旋转十字形超表面,可以调节出射线偏振光的偏振角度。或者使用三层金属C环组成的超表面实现了对透射光振幅和相位的调制,通过改变金属C环的半径大小,实现对透射光的振幅调制。In previous work, by designing complex metasurfaces and changing the geometric parameters of the metasurfaces, one or both of the amplitude, phase, and polarization characteristics of the transmitted light waves can be independently modulated. For example, the phase and polarization of the transmitted light can be modulated by using a dielectric metasurface. For example, the phase and polarization of the transmitted light can be modulated by using an anisotropic elliptical silicon pillar structure. By separately adjusting the elliptical silicon pillar along the two main axes The geometric dimension of the direction can control the phase of the outgoing light. Or use a cross-shaped metal metasurface to modulate the amplitude and polarization of the transmitted light, and rotate the cross-shaped metasurface as a whole to adjust the polarization angle of the outgoing ray-polarized light. Alternatively, the metasurface composed of three metal C-rings can realize the modulation of the amplitude and phase of the transmitted light, and the amplitude modulation of the transmitted light can be realized by changing the radius of the metal C-ring.
上述三个工作分别实现了相位/偏振,振幅/偏振和振幅/相位的独立调节,其在进行相关参数调制时,相对应的振幅、相位、偏振态分别为定值,无法根据需求进行调制。目前为止,没有发现有关实现振幅、相位、偏振独立调控超表面的报道。而振幅、相位、偏振是一束电磁波的重要内禀属性,对上述三个性质的独立调控将大大提高器件控制光束的能力,在结构光产生、光束整形、新型光子器件研制方面有着重要意义。The above three tasks realize the independent adjustment of phase/polarization, amplitude/polarization and amplitude/phase respectively. When the relevant parameters are modulated, the corresponding amplitude, phase, and polarization state are fixed values, which cannot be modulated according to requirements. So far, no report has been found on the realization of amplitude, phase, and polarization-independent regulation of metasurfaces. Amplitude, phase, and polarization are important intrinsic properties of a beam of electromagnetic waves. Independent regulation of the above three properties will greatly improve the ability of the device to control the beam, which is of great significance in the generation of structured light, beam shaping, and the development of new photonic devices.
现有技术虽然可以利用现有的金属和介质超表面器件,可以实现对振幅、相位、偏振中的任意一个性质进行调制,也可以对某两个性质进行独立调控,但是对上述三个性质进行独立调控一直是一个难点。Although the existing technology can use the existing metal and dielectric metasurface devices, it can realize the modulation of any one of the properties of amplitude, phase, and polarization, and can also independently regulate two properties, but the above three properties Independent regulation has always been a difficulty.
发明内容Contents of the invention
本发明的目的在于提供一种透射光振幅、相位和偏振独立调制超表面器件及调制方法,能够实现对透射光波振幅、相位、偏振态的独立调控,极大拓展了金属超表面的调制功能,为多种功能器件的设计和研制提供了途径。The purpose of the present invention is to provide a transmitted light amplitude, phase and polarization independent modulation metasurface device and modulation method, which can realize the independent regulation of the transmitted light amplitude, phase and polarization state, and greatly expand the modulation function of the metal metasurface. It provides a way for the design and development of various functional devices.
根据本发明的一个目的,本发明提供一种透射光振幅、相位和偏振独立调制超表面器件,包括三层金属结构层和两层中间介质层,每两层所述金属结构层之间设有所述中间介质层,所述金属结构层为金属微纳结构阵列,所述金属微纳结构阵列的顶层和底层为相互垂直的金属光栅阵列,所述金属微纳结构阵列的中间结构为沿与所述金属光栅阵列方向角呈45°方向对称的金属劈裂环天线。According to an object of the present invention, the present invention provides a transmissive light amplitude, phase and polarization independently modulated metasurface device, comprising three layers of metal structure layers and two layers of intermediate dielectric layers, between each two layers of the metal structure layer is arranged The intermediate dielectric layer, the metal structure layer is a metal micro-nano structure array, the top layer and the bottom layer of the metal micro-nano structure array are metal grating arrays perpendicular to each other, and the middle structure of the metal micro-nano structure array is along and The metal grating array has a direction angle of 45° and is a symmetrical metal split loop antenna.
进一步地,所述金属劈裂环天线为C形环、V形天线或L形天线。Further, the metal split loop antenna is a C-shaped loop, a V-shaped antenna or an L-shaped antenna.
进一步地,所述金属微纳结构阵列以及两层所述中间介质层共同组成法布里-珀罗共振腔。Further, the metal micro-nano structure array and the two intermediate dielectric layers together form a Fabry-Perot resonant cavity.
进一步地,所述金属光栅阵列和所述金属劈裂环天线采用厚度为100nm的金制成。Further, the metal grating array and the metal split loop antenna are made of gold with a thickness of 100 nm.
进一步地,所述中间介质层采用厚度为40μm的聚酰亚胺材料制成。Further, the intermediate dielectric layer is made of polyimide material with a thickness of 40 μm.
进一步地,所述金属光栅阵列的宽度w和周期d分别为10μm和20μm,所述金属劈裂环天线的外半径和内半径分别为R和r分别为45μm和35μm。Further, the width w and period d of the metal grating array are 10 μm and 20 μm respectively, and the outer radius and inner radius R and r of the metal split loop antenna are 45 μm and 35 μm, respectively.
根据本发明的另一个目的,本发明提供一种透射光振幅、相位和偏振独立调制超表面器件的调制方法,包括如下步骤:According to another object of the present invention, the present invention provides a modulation method for independently modulating metasurface devices of amplitude, phase and polarization of transmitted light, comprising the following steps:
S1,金属微纳结构阵列的顶层和底层相互垂直,定义光栅方位角θ为顶层光栅与x轴之间的角度,金属劈裂环天线开口角度为2α,S1, the top layer and the bottom layer of the metal micro-nano structure array are perpendicular to each other, the azimuth angle θ of the grating is defined as the angle between the top layer grating and the x-axis, and the opening angle of the metal split loop antenna is 2α,
S2,定义u轴与x轴的夹角为θ+45°,定义v轴与x轴的夹角为θ-45°,定义C环旋转角δ为金属劈裂环天线的对称轴与u轴之间的夹角,C环对称轴角度定义为金属劈裂环天线对称轴与x轴之间的夹角;S2, define the angle between the u-axis and the x-axis as θ+45°, define the angle between the v-axis and the x-axis as θ-45°, define the C-ring rotation angle δ as the symmetry axis and u-axis of the metal split loop antenna The angle between the C-ring symmetry axis is defined as the angle between the symmetry axis of the metal split loop antenna and the x-axis;
S3,通过调节光栅方位角θ,控制透射太赫兹波的偏振角度为θ°;S3, controlling the polarization angle of the transmitted terahertz wave to be θ° by adjusting the azimuth angle θ of the grating;
S4,通过调节金属劈裂环天线的开口角度2α使得透射太赫兹波的相位在0-360°之间变化;S4, by adjusting the opening angle 2α of the metal split loop antenna, the phase of the transmitted terahertz wave is changed between 0-360°;
S5,通过改变C环旋转角δ在0°到45°之间变化,使出射太赫兹波的绝对振幅透过率在0-1之间变化。S5, changing the absolute amplitude transmittance of the outgoing terahertz wave between 0° and 45° by changing the rotation angle δ of the C ring between 0° and 45°.
进一步地,所述金属劈裂环天线为C形环天线。Further, the metal split loop antenna is a C-shaped loop antenna.
进一步地,所述金属光栅阵列的宽度w和周期d分别为10μm和20μm,所述金属劈裂环天线的外半径和内半径分别为R和r分别为45μm和35μm。Further, the width w and period d of the metal grating array are 10 μm and 20 μm respectively, and the outer radius and inner radius R and r of the metal split loop antenna are 45 μm and 35 μm, respectively.
进一步地,通过调节每一层中超表面结构的几何参数,对透过光进行振幅范围为0-1,相位范围为0-360°,偏振角度为0-180°的调制。Further, by adjusting the geometric parameters of the metasurface structure in each layer, the transmitted light is modulated with an amplitude range of 0-1, a phase range of 0-360°, and a polarization angle of 0-180°.
本发明的技术方案通过控制不同的三层金属超表面的几何参数,可以对透射光的振幅、相位和偏振进行独立的调控,对以上三个性质的调制分别由独立参数控制,互相不影响,可以独立进行。调制效率可以达到92%以上,拓展了超表面的调控功能。The technical solution of the present invention can independently regulate the amplitude, phase and polarization of the transmitted light by controlling the geometric parameters of different three-layer metal metasurfaces, and the modulation of the above three properties is controlled by independent parameters without affecting each other. Can be done independently. The modulation efficiency can reach more than 92%, expanding the regulation function of the metasurface.
附图说明Description of drawings
为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the specific implementation of the present invention or the technical solutions in the prior art, the following will briefly introduce the accompanying drawings that need to be used in the specific implementation or description of the prior art. Obviously, the accompanying drawings in the following description The drawings show some implementations of the present invention, and those skilled in the art can obtain other drawings based on these drawings without any creative effort.
图1为本发明实施例的结构示意图;Fig. 1 is the structural representation of the embodiment of the present invention;
图2为本发明实施例三层金属超表面形成的法玻腔的工作原理示意图。Fig. 2 is a schematic diagram of the working principle of the method-glass cavity formed by the three-layer metal metasurface of the embodiment of the present invention.
图3为本发明实施例顶层金属光栅层、中间金属C环天线层和底层金属光栅层的俯视图。Fig. 3 is a top view of the top metal grating layer, the middle metal C-loop antenna layer and the bottom metal grating layer according to the embodiment of the present invention.
图4为本发明实施例512个超表面天线对透射交叉偏振太赫兹波的的振幅、相位、偏振调制。Fig. 4 shows the amplitude, phase and polarization modulation of 512 metasurface antennas according to the embodiment of the present invention to transmitted cross-polarized terahertz waves.
图5为本发明实施例选择的振幅调制系列超表面的详细参数以及调制数据。Fig. 5 shows the detailed parameters and modulation data of the amplitude modulation series metasurfaces selected by the embodiment of the present invention.
图6为本发明实施例选择的相位调制系列超表面的详细参数以及调制数据。Fig. 6 shows the detailed parameters and modulation data of the phase modulation series metasurfaces selected by the embodiment of the present invention.
图7为本发明实施例选择的偏振调制系列超表面的详细参数以及调制数据。Fig. 7 shows the detailed parameters and modulation data of the polarization modulation series metasurfaces selected in the embodiment of the present invention.
图8为本发明实施例选择的振幅、相位调制系列超表面的详细参数以及调制数据。Fig. 8 shows the detailed parameters and modulation data of the amplitude and phase modulation series metasurfaces selected by the embodiment of the present invention.
图9为本发明实施例选择的振幅、偏振调制系列超表面的详细参数以及调制数据。Fig. 9 shows detailed parameters and modulation data of amplitude and polarization modulation series metasurfaces selected in the embodiment of the present invention.
图10为本发明实施例选择的相位、偏振调制系列超表面的详细参数以及调制数据。Fig. 10 is the detailed parameters and modulation data of phase and polarization modulation series metasurfaces selected by the embodiment of the present invention.
图11为本发明实施例选择的振幅、相位、偏振调制系列超表面的详细参数以及调制数据。Fig. 11 shows the detailed parameters and modulation data of the amplitude, phase, and polarization modulation series metasurfaces selected by the embodiment of the present invention.
具体实施方式Detailed ways
下面将结合实施例对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The technical solutions of the present invention will be clearly and completely described below in conjunction with the embodiments. Obviously, the described embodiments are part of the embodiments of the present invention, but not all of them. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without making creative efforts belong to the protection scope of the present invention.
在本发明的描述中,需要理解的是,术语"中心"、"纵向"、"横向"、"长度"、"宽度"、"厚度"、"上"、"下"、"前"、"后"、"左"、"右"、"竖直"、"水平"、"顶"、"底"、"内"、"外"、"顺时针"、"逆时针"等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。In describing the present invention, it is to be understood that the terms "center", "longitudinal", "transverse", "length", "width", "thickness", "upper", "lower", "front", " Back", "Left", "Right", "Vertical", "Horizontal", "Top", "Bottom", "Inner", "Outer", "Clockwise", "Counterclockwise", etc. or The positional relationship is based on the orientation or positional relationship shown in the drawings, which is only for the convenience of describing the present invention and simplifying the description, rather than indicating or implying that the referred device or element must have a specific orientation, be constructed and operated in a specific orientation, Therefore, it should not be construed as limiting the invention.
此外,术语"第一"、"第二"仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有"第一"、"第二"的特征可以明示或者隐含地包括一个或者更多个所述特征。在本发明的描述中,"多个"的含义是两个或两个以上,除非另有明确具体的限定。此外,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。In addition, the terms "first" and "second" are used for descriptive purposes only, and cannot be understood as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features. Thus, a feature defined as "first" or "second" may explicitly or implicitly include one or more of said features. In the description of the present invention, "plurality" means two or more, unless otherwise specifically defined. In addition, the terms "installation", "connection" and "connection" should be interpreted in a broad sense, for example, it can be fixed connection, detachable connection, or integral connection; it can be mechanical connection or electrical connection; it can be It can be directly connected, or indirectly connected through an intermediary, and can be internal communication between two components. Those of ordinary skill in the art can understand the specific meanings of the above terms in the present invention in specific situations.
实施例1Example 1
如图1所示,As shown in Figure 1,
一种透射光振幅、相位和偏振独立调制超表面器件,包括三层金属结构层和两层中间介质层,其中,金属结构层为金属微纳结构阵列,具体的,金属微纳结构阵列的顶层和底层为相互垂直的金属光栅阵列,作为入射线偏振和出射交叉线偏振分量的偏振滤波器,金属微纳结构阵列的中间结构为沿与金属光栅阵列方向角呈45°方向对称的金属劈裂环天线,金属劈裂环天线可以为C形环、V形天线或L形天线等,以实现对入射线偏振光的交叉偏振转换以及振幅和相位调制,位于中间的金属劈裂环天线的方位角和该单元处想要得到的线偏振角度有关。通过改变金属光栅阵列的方位角以及金属劈裂环天线的结合参数如旋转角度,开口角度等,即可分别独立的调制出射线偏振光的偏振角度、振幅和相位。A metasurface device for independently modulating the amplitude, phase and polarization of transmitted light, comprising three metal structure layers and two intermediate dielectric layers, wherein the metal structure layer is a metal micro-nano structure array, specifically, the top layer of the metal micro-nano structure array The metal grating array and the bottom layer are perpendicular to each other, as a polarization filter for the incident line polarization and the outgoing cross line polarization component. The middle structure of the metal micro-nano structure array is a metal splitting symmetrical to the direction angle of 45° to the direction of the metal grating array. Loop antenna, the metal split loop antenna can be a C-shaped loop, V-shaped antenna or L-shaped antenna, etc., to achieve cross-polarization conversion and amplitude and phase modulation of the incident ray polarized light, the orientation of the metal split loop antenna in the middle The angle is related to the desired linear polarization angle at the cell. By changing the azimuth angle of the metal grating array and the combination parameters of the metal split loop antenna, such as rotation angle and opening angle, the polarization angle, amplitude and phase of the ray polarized light can be independently modulated.
本实施例中,三层金属微纳结构阵列以及两层中间介质层共同组成法布里-珀罗共振腔,因此偏振转换效率理论上可以达到92%以上,由此获得高效的调制效率。In this embodiment, the three-layer metal micro-nano structure array and two intermediate dielectric layers together form a Fabry-Perot resonant cavity, so the polarization conversion efficiency can theoretically reach more than 92%, thereby obtaining high modulation efficiency.
本发明使用三层金属超表面,可以对透射光的振幅、相位、偏振态进行独立的调控,本实施例与传统方法中的超表面对透射太赫兹波的调制对比,与以往只能调制振幅、相位、偏振中的单一性质或某两种性质的技术相比,本实施例方法增加了超表面的调制维度,将在保证高性能的基础上,大幅拓展超表面器件的波前调制功能。The invention uses a three-layer metal metasurface, which can independently regulate the amplitude, phase, and polarization state of the transmitted light. Compared with the modulation of the metasurface in the traditional method, this embodiment can only modulate the amplitude of the transmitted terahertz wave. Compared with the technology of a single property or some two properties in , phase, and polarization, the method of this embodiment increases the modulation dimension of the metasurface, and will greatly expand the wavefront modulation function of the metasurface device on the basis of ensuring high performance.
本发明三层金属超构表面由三层金属结构层和两层介质层组成。光波从左至右入射到超表面上,其中,从左至右第一层和最后一层金属结构层是由周期性的金属光栅构成,中间金属结构层由金属劈裂环天线如金属C环天线构成。每两层金属结构层之间是中间介质层。金属层和介质层共同构成了类法珀共振腔。The three-layer metal metasurface of the invention is composed of three metal structure layers and two dielectric layers. Light waves are incident on the metasurface from left to right, wherein the first and last metal structure layers from left to right are composed of periodic metal gratings, and the middle metal structure layer is composed of metal split loop antennas such as metal C-rings Antenna composition. Between every two metal structure layers is an intermediate dielectric layer. The metal layer and the dielectric layer together constitute a Fapp-like resonant cavity.
本实施例构成的类法珀共振腔的工作原理示意图如图2所示,假设x偏振的太赫兹波为Exin从上层入射,经过一次整个超表面透过的y偏振分量为Eyt1,在上层PI构成的共振腔中共振一次并透过的y偏振分量为Eyt2,在下层PI构成的共振腔中共振一次并透过的y偏振分量为Eyt3,最终透过超表面的y偏振太赫兹波等于若干个y偏振分量电场的相干叠加,由公式1表示,其中,t和r分别表示振幅透射率和反射率,上标的第二和第一个数字表示从第一种介质入射到第二种介质的情况,下标的第二和第一个字母表示入射和透射偏振态。表示各次震荡带来的相位差,通过精细调整介质层2和介质层3的厚度,可以使得各个y偏振分量之间发生相干叠加,从而使整个器件获得较高的调制效率。The schematic diagram of the working principle of the F-P-like resonant cavity formed in this embodiment is shown in Figure 2, assuming that the x-polarized terahertz wave is Ex in incident from the upper layer, and the y-polarized component transmitted through the entire metasurface once is Ey t1 , in The y-polarized component resonated once and transmitted in the resonant cavity formed by the upper layer PI is Ey t2 , the y-polarized component resonated once and transmitted in the resonant cavity formed by the lower layer PI is Ey t3 , and the y-polarized component transmitted through the metasurface is finally The Hertzian wave is equal to the coherent superposition of electric fields of several y-polarized components, expressed by
实施例2Example 2
本实施例给出工作频率为0.75THz的振幅、相位、偏振同时独立调制的超表面器件的设计结果。在本实施例中,超表面的周期P被设定为100μm,金属光栅和金属C环天线由厚度为100nm的金(Au)制成,两个中间介质层由40μm厚聚酰亚胺材料(PI)制成,以支持工作频率为0.75THz的透射波发生干涉相长,获得较高的偏振转换效率。This embodiment presents the design results of a metasurface device with a working frequency of 0.75 THz for simultaneous and independent modulation of amplitude, phase, and polarization. In this embodiment, the period P of the metasurface is set to 100 μm, the metal grating and metal C-loop antenna are made of gold (Au) with a thickness of 100 nm, and the two intermediate dielectric layers are made of 40 μm thick polyimide material ( PI) to support the interference and constructive interference of transmitted waves with a working frequency of 0.75 THz to obtain higher polarization conversion efficiency.
如图3所示,分别展示了第一层金属光栅层、中间金属C环天线层和最后一层金属光栅层的俯视图。其中,金属光栅的宽度w和周期d分别为10μm和20μm,金属C形天线的外半径和内半径分别为R和r,分别为45μm和35μm,第一层和最后一层金属光栅相互垂直,定义光栅方位角θ为第一层光栅与x轴之间的角度,C环开口角度为2α,定义轴u、v如图3中虚线所示,u轴与x轴的夹角为θ+45°,v轴与x轴的夹角为θ-45°,定义C环旋转角δ为中间层金属C环天线的对称轴与u轴之间的夹角,C环对称轴角度定义为C环对称轴与x轴之间的夹角,会随光栅方位角以及C环旋转角度变化而变化。As shown in FIG. 3 , the top views of the first metal grating layer, the middle metal C-loop antenna layer and the last metal grating layer are respectively shown. Among them, the width w and period d of the metal grating are 10 μm and 20 μm, respectively, the outer radius and inner radius of the metal C-shaped antenna are R and r, respectively, 45 μm and 35 μm, and the first layer and the last layer of metal gratings are perpendicular to each other. Define the azimuth angle θ of the grating as the angle between the first grating and the x-axis, the opening angle of the C ring is 2α, define the axes u and v as shown by the dotted lines in Figure 3, and the angle between the u-axis and the x-axis is θ+45 °, the angle between the v-axis and the x-axis is θ-45°, and the C-ring rotation angle δ is defined as the angle between the symmetry axis and the u-axis of the metal C-loop antenna in the middle layer, and the angle of the C-ring symmetry axis is defined as the C-ring The included angle between the symmetry axis and the x-axis will vary with the azimuth angle of the grating and the rotation angle of the C ring.
具体的调制方式如下:通过调节光栅方位角θ,即可控制透射太赫兹波的偏振角度为θ°;通过调节C环天线的开口角度2α可以使得透射太赫兹波的相位在0-360°之间变化;通过改变C环旋转角δ在0°到45°之间变化,可以使得出射太赫兹波的绝对振幅透过率在0-1之间变化。The specific modulation method is as follows: by adjusting the azimuth angle θ of the grating, the polarization angle of the transmitted terahertz wave can be controlled to be θ°; by adjusting the opening angle 2α of the C-loop antenna, the phase of the transmitted terahertz wave can be between 0-360° By changing the C-ring rotation angle δ from 0° to 45°, the absolute amplitude transmittance of the outgoing terahertz wave can be changed from 0 to 1.
实施例3Example 3
为了展示本方法所设计的超表面对透射太赫兹波的调制效果,选出代表性的512个超表面构成超表面库,其对透射太赫兹波的振幅、相位、偏振调制如图4所示,该超表面库中的超表面可以实现对透射太赫兹波振幅调制为0-1,相位调制为0-315°,偏振调制为0-315°的调制,接下来只需要按照需求,从超表面库中选择满足调制需求的超表面系列即可。作为案例,本实施例选出7个不同的调制系列天线,每个调制系列分别由8个超表面基本单元组成,其中,各个超表面基本单元的周期、光栅宽度、光栅周期、C环内外半径均不变,而光栅方位角θ,C环旋转角δ,C环开口角度2α,以及C环对称轴角度,则需要进行相应的变化,现分别对各个调制系列进行介绍。In order to demonstrate the modulation effect of the metasurface designed by this method on the transmitted terahertz wave, 512 representative metasurfaces were selected to form the metasurface library, and their amplitude, phase, and polarization modulation on the transmitted terahertz wave are shown in Figure 4 , the metasurface in the metasurface library can realize the modulation of transmitted terahertz wave amplitude from 0-1, phase modulation from 0-315°, and polarization modulation from 0-315°. Just select the metasurface series that meets the modulation requirements in the surface library. As an example, this embodiment selects 7 different modulation series antennas, and each modulation series is composed of 8 metasurface basic units, wherein, the period of each metasurface basic unit, grating width, grating period, C ring inner and outer radius However, the azimuth angle θ of the grating, the rotation angle δ of the C ring, the opening angle of the C ring 2α, and the angle of the symmetry axis of the C ring need to be changed accordingly. Now we will introduce each modulation series separately.
1、振幅调制系列超表面:如图5所示,该系列的8个超表面的光栅方位角θ均固定为0°,也就是说透射的太赫兹波偏振角度为0°;8个超表面的C环开口角度2α均为120°,即透射的太赫兹波相位调制为一固定值,约为100°左右,相位调制的绝对误差为5°;通过改变8个超表面的C环旋转角度δ在2.5°~45°之间变化,使得透射太赫兹波获得0~1范围内的振幅调制。1. Amplitude modulation series metasurfaces: As shown in Figure 5, the grating azimuth angle θ of the 8 metasurfaces in this series is fixed at 0°, which means that the transmitted terahertz wave polarization angle is 0°; the 8 metasurfaces The opening angles 2α of the C-rings are all 120°, that is, the phase modulation of the transmitted terahertz wave is a fixed value, about 100°, and the absolute error of the phase modulation is 5°; by changing the rotation angles of the C-rings of the 8 metasurfaces δ varies from 2.5° to 45°, so that the transmitted terahertz wave obtains amplitude modulation in the range of 0 to 1.
2、相位调制系列超表面:如图6所示,该系列的8个超表面的光栅方位角θ均固定为0°,也就是说透射的太赫兹波偏振角度为0°;8个超表面的C环旋转角度δ均为10°,即透射的太赫兹波振幅调制为一固定值,约为0.85左右,振幅调制的误差为0.15;通过改变8个超表面的C环开口角度2α,以及C环对称轴角度,使得透射太赫兹波获得0~315°的相位调制。2. Phase modulation series of metasurfaces: As shown in Figure 6, the grating azimuth angle θ of the 8 metasurfaces of this series is fixed at 0°, that is to say, the polarization angle of the transmitted terahertz wave is 0°; the 8 metasurfaces The rotation angle δ of the C rings is 10°, that is, the amplitude modulation of the transmitted terahertz wave is a fixed value, about 0.85, and the error of the amplitude modulation is 0.15; by changing the C ring opening angle 2α of the 8 metasurfaces, and The angle of the symmetry axis of the C ring enables the transmitted terahertz wave to obtain a phase modulation of 0-315°.
3、偏振调制系列超表面:如图7所示,该系列的8个超表面的C环开口角度2α均为146.4°,即透射的太赫兹波相位调制为一固定值,约为45°左右;8个超表面的C环旋转角度δ均为10°,即透射的太赫兹波振幅调制为一固定值,约为0.95左右;8个超表面的光栅方位角θ在0~315°之间变化,使得透射太赫兹波的偏振角度也在该范围内变化。3. Polarization modulation series metasurfaces: As shown in Figure 7, the C-ring opening angles 2α of the eight metasurfaces in this series are all 146.4°, that is, the phase modulation of the transmitted terahertz wave is a fixed value, about 45° ; The C-ring rotation angle δ of the 8 metasurfaces is all 10°, that is, the amplitude modulation of the transmitted terahertz wave is a fixed value, about 0.95; the azimuth angle θ of the 8 metasurfaces is between 0° and 315° Change, so that the polarization angle of the transmitted terahertz wave also changes within this range.
4、振幅、相位调制超表面系列:如图8所示,该系列的8个超表面的光栅方位角θ均固定为0°,也就是说透射的太赫兹波偏振角度为0°;通过同时改变超表面的C环开口角度2α和C环旋转角度δ,使得透射太赫兹波的振幅和相位均得到调制,其振幅在0-1之间变化,而相位在0-315°之间变化。4. Amplitude and phase modulation metasurface series: As shown in Figure 8, the grating azimuth angle θ of the eight metasurfaces in this series is fixed at 0°, that is to say, the transmitted terahertz wave polarization angle is 0°; By changing the C-ring opening angle 2α and the C-ring rotation angle δ of the metasurface, both the amplitude and phase of the transmitted terahertz wave are modulated, and the amplitude varies between 0-1, while the phase varies between 0-315°.
5、振幅、偏振调制超表面系列:如图9所示,该系列的8个超表面的C环开口角度2α固定为120°,使得透射太赫兹波的相位为一固定值,约为102°;通过同时改变超表面的C环旋转角度δ和光栅方位角θ,使得透射太赫兹波的振幅和偏振角度均得到调制,其振幅在0-1之间变化,而偏振角度在0-315°之间变化。5. Amplitude and polarization modulation metasurface series: As shown in Figure 9, the C-ring opening angle 2α of the 8 metasurfaces in this series is fixed at 120°, so that the phase of the transmitted terahertz wave is a fixed value, about 102° ; By simultaneously changing the C-ring rotation angle δ and the grating azimuth angle θ of the metasurface, both the amplitude and the polarization angle of the transmitted terahertz wave are modulated, and the amplitude varies between 0-1, while the polarization angle ranges from 0-315° change between.
6、相位、偏振调制超表面系列:如图10所示,该系列的8个超表面的C环旋转角度δ固定为10°,使得透射太赫兹波的振幅调制为一固定值,约为0.85;通过同时改变超表面的C环开口角度2α和光栅方位角θ,使得透射太赫兹波的相位和偏振角度均得到调制,其相位在315°~0°之间变化,而偏振角度在0-315°之间变化。6. Phase and polarization modulation metasurface series: As shown in Figure 10, the C-ring rotation angle δ of the 8 metasurfaces in this series is fixed at 10°, so that the amplitude modulation of the transmitted terahertz wave is a fixed value, about 0.85 ; By simultaneously changing the C-ring opening angle 2α of the metasurface and the grating azimuth angle θ, the phase and polarization angle of the transmitted terahertz wave are modulated, and the phase varies between 315° and 0°, while the polarization angle is between 0- Change between 315°.
7、振幅、相位、偏振调制超表面系列:如图11所示,该系列的8个超表面的C环旋转角度δ固定为10°,使得透射太赫兹波的振幅调制为一固定值,约为0.85;通过同时改变超表面的C环旋转角度δ、C环开口角度2α和光栅方位角θ,使得透射太赫兹波的振幅、相位和偏振角度均得到调制,其振幅调制在1-0之间变化,相位调制在315°~0°之间变化,而偏振角度在0-315°之间变化。7. Amplitude, phase, polarization modulation metasurface series: As shown in Figure 11, the C-ring rotation angle δ of the 8 metasurfaces in this series is fixed at 10°, so that the amplitude modulation of the transmitted terahertz wave is a fixed value, about is 0.85; by simultaneously changing the C-ring rotation angle δ, C-ring opening angle 2α and grating azimuth θ of the metasurface, the amplitude, phase and polarization angle of the transmitted terahertz wave are all modulated, and the amplitude modulation is between 1-0 The phase modulation varies between 315° and 0°, and the polarization angle varies between 0-315°.
综上所述,本发明通过控制不同的三层金属超表面的几何参数,可以对透射光的振幅、相位和偏振进行独立的调控,对以上三个性质的调制分别由独立参数控制,互相不影响,可以独立进行。In summary, the present invention can independently regulate the amplitude, phase and polarization of the transmitted light by controlling the geometric parameters of different three-layer metal metasurfaces, and the modulation of the above three properties is controlled by independent parameters, independent of each other. effects can be performed independently.
本发明使用三层金属超表面,通过调节每一层中超表面结构的几何参数,可以对透过光进行振幅范围为0-1,相位范围为0-360°,偏振角度为0-180°的调制,上述调制相互独立,互不影响。调制效率可以达到92%以上,拓展了超表面的调控功能,为多种新型超表面器件的研制提供了方法和途径。The present invention uses a three-layer metal metasurface, and by adjusting the geometric parameters of the metasurface structure in each layer, the transmitted light can be adjusted with an amplitude range of 0-1, a phase range of 0-360°, and a polarization angle of 0-180°. Modulation, the above modulations are independent of each other and do not affect each other. The modulation efficiency can reach more than 92%, which expands the control function of the metasurface and provides methods and approaches for the development of various new metasurface devices.
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。Finally, it should be noted that: the above embodiments are only used to illustrate the technical solutions of the present invention, rather than limiting them; although the present invention has been described in detail with reference to the foregoing embodiments, those of ordinary skill in the art should understand that: It is still possible to modify the technical solutions described in the foregoing embodiments, or perform equivalent replacements for some or all of the technical features; and these modifications or replacements do not make the essence of the corresponding technical solutions deviate from the technical solutions of the various embodiments of the present invention. scope.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310283471.7A CN116299803A (en) | 2023-03-21 | 2023-03-21 | Transmitted light amplitude, phase and polarization independent modulation metasurface device and modulation method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310283471.7A CN116299803A (en) | 2023-03-21 | 2023-03-21 | Transmitted light amplitude, phase and polarization independent modulation metasurface device and modulation method |
Publications (1)
Publication Number | Publication Date |
---|---|
CN116299803A true CN116299803A (en) | 2023-06-23 |
Family
ID=86793934
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202310283471.7A Pending CN116299803A (en) | 2023-03-21 | 2023-03-21 | Transmitted light amplitude, phase and polarization independent modulation metasurface device and modulation method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN116299803A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116626920A (en) * | 2023-07-21 | 2023-08-22 | 南京大学 | A Metasurface Polarization Modulator Integrated with Light Emitting Diodes |
-
2023
- 2023-03-21 CN CN202310283471.7A patent/CN116299803A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116626920A (en) * | 2023-07-21 | 2023-08-22 | 南京大学 | A Metasurface Polarization Modulator Integrated with Light Emitting Diodes |
CN116626920B (en) * | 2023-07-21 | 2023-11-03 | 南京大学 | A metasurface polarization modulator integrated with light-emitting diodes |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zhang et al. | Space-time-coding digital metasurfaces: principles and applications | |
Liu et al. | Frequency-domain and spatial-domain reconfigurable metasurface | |
Shang et al. | Transmission–reflection-integrated multiplexed Janus metasurface | |
Liu et al. | Conformal polarization conversion metasurface for omni-directional circular polarization antenna application | |
Tian et al. | Terahertz metasurfaces: toward multifunctional and programmable wave manipulation | |
CN111610670B (en) | Terahertz spatial light modulator, preparation method and application | |
Tang et al. | Metamaterial lenses and their applications at microwave frequencies | |
Wang et al. | Ultra-broadband high-efficiency circular polarization conversion and terahertz wavefront manipulation based on an all-metallic reflective metasurface | |
Wang et al. | Active wavefronts control with graphene-functionalized terahertz Metasurfaces | |
Yang et al. | Bifunctional Integration Performed by a Broadband High‐Efficiency Spin‐Decoupled Metasurface | |
Zhang et al. | Methodology for high purity broadband near-unity THz linear polarization converter and its switching characteristics | |
CN116299803A (en) | Transmitted light amplitude, phase and polarization independent modulation metasurface device and modulation method | |
CN114069249A (en) | Ultra-Broadband Transmissive Terahertz Polarization Converter | |
Guan et al. | Helicity-switched hologram utilizing a polarization-free multi-bit coding metasurface | |
Yang et al. | Terahertz Bessel beam scanning enabled by dispersion-engineered metasurface | |
CN107608025A (en) | A kind of novel plasma photonic crystal omni-directional reflector and implementation method | |
CN113422196B (en) | A terahertz thermal radiation source capable of generating ultra-narrow bandwidth and its working method | |
Li et al. | Spin-multiplexed full-space trifunctional terahertz metasurface | |
Huang et al. | Switchable terahertz orbital angular momentum Bessel beams based on spin-decoupled multifunctional reflective metasurfaces | |
Yuan et al. | Generation of Mathieu beam using a single layer transmissive metasurface | |
Selvaraj et al. | Study of complementary loop integrated metasurface for 6G THz communication | |
CN114914700B (en) | A dynamic multifunctional terahertz reflector array based on vanadium dioxide and its preparation method | |
CN111999939A (en) | High-frequency wireless signal generator | |
Zhu et al. | Frequency coding all-dielectric metasurface for flexible control of electromagnetic radiation | |
Xu et al. | Fully Electrically Driven Liquid Crystal Reconfigurable Intelligent Surface for Terahertz Beam Steering |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |