CN116284659A - A high-strength lactic acid-based biodegradable elastomer material - Google Patents
A high-strength lactic acid-based biodegradable elastomer material Download PDFInfo
- Publication number
- CN116284659A CN116284659A CN202310133904.0A CN202310133904A CN116284659A CN 116284659 A CN116284659 A CN 116284659A CN 202310133904 A CN202310133904 A CN 202310133904A CN 116284659 A CN116284659 A CN 116284659A
- Authority
- CN
- China
- Prior art keywords
- acid
- lactic acid
- elastomer material
- based biodegradable
- parts
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 title claims abstract description 80
- 229920001971 elastomer Polymers 0.000 title claims abstract description 49
- 239000000806 elastomer Substances 0.000 title claims abstract description 49
- 239000004310 lactic acid Substances 0.000 title claims abstract description 39
- 235000014655 lactic acid Nutrition 0.000 title claims abstract description 39
- 239000000463 material Substances 0.000 title claims abstract description 32
- 239000012948 isocyanate Substances 0.000 claims abstract description 10
- 150000002513 isocyanates Chemical class 0.000 claims abstract description 10
- 239000006085 branching agent Substances 0.000 claims abstract description 9
- 239000003607 modifier Substances 0.000 claims abstract description 9
- 238000006068 polycondensation reaction Methods 0.000 claims abstract description 6
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 claims description 20
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid group Chemical group C(CC(O)(C(=O)O)CC(=O)O)(=O)O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 claims description 18
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical group CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 claims description 16
- YHWCPXVTRSHPNY-UHFFFAOYSA-N butan-1-olate;titanium(4+) Chemical group [Ti+4].CCCC[O-].CCCC[O-].CCCC[O-].CCCC[O-] YHWCPXVTRSHPNY-UHFFFAOYSA-N 0.000 claims description 11
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 claims description 10
- 239000003054 catalyst Substances 0.000 claims description 9
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical group C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 claims description 8
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 claims description 8
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 claims description 8
- UKLDJPRMSDWDSL-UHFFFAOYSA-L [dibutyl(dodecanoyloxy)stannyl] dodecanoate Chemical compound CCCCCCCCCCCC(=O)O[Sn](CCCC)(CCCC)OC(=O)CCCCCCCCCCC UKLDJPRMSDWDSL-UHFFFAOYSA-L 0.000 claims description 7
- 239000012975 dibutyltin dilaurate Substances 0.000 claims description 7
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 claims description 6
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 claims description 6
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 claims description 6
- CBCKQZAAMUWICA-UHFFFAOYSA-N 1,4-phenylenediamine Chemical compound NC1=CC=C(N)C=C1 CBCKQZAAMUWICA-UHFFFAOYSA-N 0.000 claims description 5
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 claims description 5
- NIMLQBUJDJZYEJ-UHFFFAOYSA-N isophorone diisocyanate Chemical compound CC1(C)CC(N=C=O)CC(C)(CN=C=O)C1 NIMLQBUJDJZYEJ-UHFFFAOYSA-N 0.000 claims description 5
- DVKJHBMWWAPEIU-UHFFFAOYSA-N toluene 2,4-diisocyanate Chemical group CC1=CC=C(N=C=O)C=C1N=C=O DVKJHBMWWAPEIU-UHFFFAOYSA-N 0.000 claims description 5
- UPMLOUAZCHDJJD-UHFFFAOYSA-N 4,4'-Diphenylmethane Diisocyanate Chemical compound C1=CC(N=C=O)=CC=C1CC1=CC=C(N=C=O)C=C1 UPMLOUAZCHDJJD-UHFFFAOYSA-N 0.000 claims description 4
- VHYFNPMBLIVWCW-UHFFFAOYSA-N 4-Dimethylaminopyridine Chemical group CN(C)C1=CC=NC=C1 VHYFNPMBLIVWCW-UHFFFAOYSA-N 0.000 claims description 4
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 claims description 4
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 claims description 4
- KXBFLNPZHXDQLV-UHFFFAOYSA-N [cyclohexyl(diisocyanato)methyl]cyclohexane Chemical compound C1CCCCC1C(N=C=O)(N=C=O)C1CCCCC1 KXBFLNPZHXDQLV-UHFFFAOYSA-N 0.000 claims description 4
- 239000001361 adipic acid Substances 0.000 claims description 4
- 235000011037 adipic acid Nutrition 0.000 claims description 4
- RRAMGCGOFNQTLD-UHFFFAOYSA-N hexamethylene diisocyanate Chemical compound O=C=NCCCCCCN=C=O RRAMGCGOFNQTLD-UHFFFAOYSA-N 0.000 claims description 4
- NAQMVNRVTILPCV-UHFFFAOYSA-N hexane-1,6-diamine Chemical compound NCCCCCCN NAQMVNRVTILPCV-UHFFFAOYSA-N 0.000 claims description 4
- AYLRODJJLADBOB-QMMMGPOBSA-N methyl (2s)-2,6-diisocyanatohexanoate Chemical compound COC(=O)[C@@H](N=C=O)CCCCN=C=O AYLRODJJLADBOB-QMMMGPOBSA-N 0.000 claims description 4
- WXZMFSXDPGVJKK-UHFFFAOYSA-N pentaerythritol Chemical compound OCC(CO)(CO)CO WXZMFSXDPGVJKK-UHFFFAOYSA-N 0.000 claims description 4
- 239000000843 powder Substances 0.000 claims description 4
- 239000004970 Chain extender Substances 0.000 claims description 3
- 239000003085 diluting agent Substances 0.000 claims description 3
- DNIAPMSPPWPWGF-GSVOUGTGSA-N (R)-(-)-Propylene glycol Chemical compound C[C@@H](O)CO DNIAPMSPPWPWGF-GSVOUGTGSA-N 0.000 claims description 2
- PTBDIHRZYDMNKB-UHFFFAOYSA-N 2,2-Bis(hydroxymethyl)propionic acid Chemical compound OCC(C)(CO)C(O)=O PTBDIHRZYDMNKB-UHFFFAOYSA-N 0.000 claims description 2
- JVYDLYGCSIHCMR-UHFFFAOYSA-N 2,2-bis(hydroxymethyl)butanoic acid Chemical compound CCC(CO)(CO)C(O)=O JVYDLYGCSIHCMR-UHFFFAOYSA-N 0.000 claims description 2
- TXBCBTDQIULDIA-UHFFFAOYSA-N 2-[[3-hydroxy-2,2-bis(hydroxymethyl)propoxy]methyl]-2-(hydroxymethyl)propane-1,3-diol Chemical compound OCC(CO)(CO)COCC(CO)(CO)CO TXBCBTDQIULDIA-UHFFFAOYSA-N 0.000 claims description 2
- RLHGFJMGWQXPBW-UHFFFAOYSA-N 2-hydroxy-3-(1h-imidazol-5-ylmethyl)benzamide Chemical compound NC(=O)C1=CC=CC(CC=2NC=NC=2)=C1O RLHGFJMGWQXPBW-UHFFFAOYSA-N 0.000 claims description 2
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 claims description 2
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 claims description 2
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 claims description 2
- ZJCCRDAZUWHFQH-UHFFFAOYSA-N Trimethylolpropane Chemical compound CCC(CO)(CO)CO ZJCCRDAZUWHFQH-UHFFFAOYSA-N 0.000 claims description 2
- TVXBFESIOXBWNM-UHFFFAOYSA-N Xylitol Natural products OCCC(O)C(O)C(O)CCO TVXBFESIOXBWNM-UHFFFAOYSA-N 0.000 claims description 2
- 229910000147 aluminium phosphate Inorganic materials 0.000 claims description 2
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 claims description 2
- 239000004327 boric acid Substances 0.000 claims description 2
- XXMIOPMDWAUFGU-UHFFFAOYSA-N hexane-1,6-diol Chemical compound OCCCCCCO XXMIOPMDWAUFGU-UHFFFAOYSA-N 0.000 claims description 2
- HEBKCHPVOIAQTA-UHFFFAOYSA-N meso ribitol Natural products OCC(O)C(O)C(O)CO HEBKCHPVOIAQTA-UHFFFAOYSA-N 0.000 claims description 2
- DNIAPMSPPWPWGF-UHFFFAOYSA-N monopropylene glycol Natural products CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 claims description 2
- 235000006408 oxalic acid Nutrition 0.000 claims description 2
- DHRLEVQXOMLTIM-UHFFFAOYSA-N phosphoric acid;trioxomolybdenum Chemical group O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.OP(O)(O)=O DHRLEVQXOMLTIM-UHFFFAOYSA-N 0.000 claims description 2
- 238000006116 polymerization reaction Methods 0.000 claims description 2
- 235000013772 propylene glycol Nutrition 0.000 claims description 2
- AOHJOMMDDJHIJH-UHFFFAOYSA-N propylenediamine Chemical compound CC(N)CN AOHJOMMDDJHIJH-UHFFFAOYSA-N 0.000 claims description 2
- 239000000600 sorbitol Substances 0.000 claims description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N sulfuric acid Substances OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims description 2
- QXJQHYBHAIHNGG-UHFFFAOYSA-N trimethylolethane Chemical compound OCC(C)(CO)CO QXJQHYBHAIHNGG-UHFFFAOYSA-N 0.000 claims description 2
- 239000008096 xylene Substances 0.000 claims description 2
- 239000000811 xylitol Substances 0.000 claims description 2
- HEBKCHPVOIAQTA-SCDXWVJYSA-N xylitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)CO HEBKCHPVOIAQTA-SCDXWVJYSA-N 0.000 claims description 2
- 229960002675 xylitol Drugs 0.000 claims description 2
- 235000010447 xylitol Nutrition 0.000 claims description 2
- 239000011701 zinc Substances 0.000 claims description 2
- 239000005057 Hexamethylene diisocyanate Substances 0.000 claims 2
- 150000001408 amides Chemical class 0.000 claims 1
- ZCILODAAHLISPY-UHFFFAOYSA-N biphenyl ether Natural products C1=C(CC=C)C(O)=CC(OC=2C(=CC(CC=C)=CC=2)O)=C1 ZCILODAAHLISPY-UHFFFAOYSA-N 0.000 claims 1
- SLCVBVWXLSEKPL-UHFFFAOYSA-N neopentyl glycol Chemical compound OCC(C)(C)CO SLCVBVWXLSEKPL-UHFFFAOYSA-N 0.000 claims 1
- PAPBSGBWRJIAAV-UHFFFAOYSA-N ε-Caprolactone Chemical compound O=C1CCCCCO1 PAPBSGBWRJIAAV-UHFFFAOYSA-N 0.000 abstract description 10
- 238000000034 method Methods 0.000 abstract description 7
- 239000002994 raw material Substances 0.000 abstract description 4
- 238000002844 melting Methods 0.000 abstract 1
- 230000008018 melting Effects 0.000 abstract 1
- 238000006243 chemical reaction Methods 0.000 description 22
- 238000003756 stirring Methods 0.000 description 16
- 239000000178 monomer Substances 0.000 description 14
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical compound OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 description 10
- 239000002904 solvent Substances 0.000 description 8
- -1 polytetrafluoroethylene Polymers 0.000 description 7
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 7
- 239000004810 polytetrafluoroethylene Substances 0.000 description 7
- 239000000376 reactant Substances 0.000 description 7
- 229920000642 polymer Polymers 0.000 description 6
- 239000012299 nitrogen atmosphere Substances 0.000 description 5
- 238000002360 preparation method Methods 0.000 description 5
- 238000010907 mechanical stirring Methods 0.000 description 4
- 239000002243 precursor Substances 0.000 description 4
- 239000005058 Isophorone diisocyanate Substances 0.000 description 3
- 239000002131 composite material Substances 0.000 description 3
- 239000002028 Biomass Substances 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 229920003052 natural elastomer Polymers 0.000 description 2
- 229920001194 natural rubber Polymers 0.000 description 2
- CXMXRPHRNRROMY-UHFFFAOYSA-N sebacic acid Chemical compound OC(=O)CCCCCCCCC(O)=O CXMXRPHRNRROMY-UHFFFAOYSA-N 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 229920002725 thermoplastic elastomer Polymers 0.000 description 2
- PUPZLCDOIYMWBV-UHFFFAOYSA-N (+/-)-1,3-Butanediol Chemical compound CC(O)CCO PUPZLCDOIYMWBV-UHFFFAOYSA-N 0.000 description 1
- AXLQXVPJPNKKAF-UHFFFAOYSA-N C=C.C=C.C=C.C=C.C=C.C=C.N=C=O.N=C=O Chemical compound C=C.C=C.C=C.C=C.C=C.C=C.N=C=O.N=C=O AXLQXVPJPNKKAF-UHFFFAOYSA-N 0.000 description 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- 244000043261 Hevea brasiliensis Species 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 229920006125 amorphous polymer Polymers 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 229920013724 bio-based polymer Polymers 0.000 description 1
- 239000012620 biological material Substances 0.000 description 1
- 150000001719 carbohydrate derivatives Chemical class 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 235000014633 carbohydrates Nutrition 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 229920006236 copolyester elastomer Polymers 0.000 description 1
- 229920006037 cross link polymer Polymers 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- USIUVYZYUHIAEV-UHFFFAOYSA-N diphenyl ether Chemical class C=1C=CC=CC=1OC1=CC=CC=C1 USIUVYZYUHIAEV-UHFFFAOYSA-N 0.000 description 1
- 238000012377 drug delivery Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 238000000855 fermentation Methods 0.000 description 1
- 230000004151 fermentation Effects 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 125000001971 neopentyl group Chemical group [H]C([*])([H])C(C([H])([H])[H])(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 229920000747 poly(lactic acid) Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 239000004626 polylactic acid Substances 0.000 description 1
- 229920003225 polyurethane elastomer Polymers 0.000 description 1
- 210000004872 soft tissue Anatomy 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/65—Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
- C08G18/66—Compounds of groups C08G18/42, C08G18/48, or C08G18/52
- C08G18/6633—Compounds of group C08G18/42
- C08G18/6637—Compounds of group C08G18/42 with compounds of group C08G18/32 or polyamines of C08G18/38
- C08G18/6648—Compounds of group C08G18/42 with compounds of group C08G18/32 or polyamines of C08G18/38 with compounds of group C08G18/3225 or C08G18/3271 and/or polyamines of C08G18/38
- C08G18/6651—Compounds of group C08G18/42 with compounds of group C08G18/32 or polyamines of C08G18/38 with compounds of group C08G18/3225 or C08G18/3271 and/or polyamines of C08G18/38 with compounds of group C08G18/3225 or polyamines of C08G18/38
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/08—Processes
- C08G18/10—Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/40—High-molecular-weight compounds
- C08G18/42—Polycondensates having carboxylic or carbonic ester groups in the main chain
- C08G18/4266—Polycondensates having carboxylic or carbonic ester groups in the main chain prepared from hydroxycarboxylic acids and/or lactones
- C08G18/4269—Lactones
- C08G18/4277—Caprolactone and/or substituted caprolactone
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/40—High-molecular-weight compounds
- C08G18/42—Polycondensates having carboxylic or carbonic ester groups in the main chain
- C08G18/4266—Polycondensates having carboxylic or carbonic ester groups in the main chain prepared from hydroxycarboxylic acids and/or lactones
- C08G18/428—Lactides
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G63/00—Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
- C08G63/02—Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
- C08G63/06—Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from hydroxycarboxylic acids
- C08G63/08—Lactones or lactides
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2230/00—Compositions for preparing biodegradable polymers
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Polyurethanes Or Polyureas (AREA)
Abstract
本申请公开了一种高强度乳酸基生物可降解弹性体材料。本技术方案中,以乳酸和己内酯、支化剂、端基改性剂为原料,采用熔融缩聚法制备端基活性支化预聚物,将异氰酸酯与端基活性支化预聚物反应制备高强度乳酸基生物可降解弹性体材料。本乳酸基弹性体在50‑100℃下可实现交联固化,固化后弹性体具有优异的拉伸强度和生物降解性能。通过调节支化剂、端基改性剂和异氰酸酯的种类和用量,引入不同的拓扑结构,可调节弹性体的分子结构和分子链间作用力,进而改变产物性能,实现了弹性体的高强度和可生物降解性。The application discloses a high-strength lactic acid-based biodegradable elastomer material. In this technical scheme, using lactic acid, caprolactone, branching agent, and end group modifier as raw materials, the end group active branched prepolymer is prepared by melting polycondensation method, and the isocyanate is reacted with the end group active branched prepolymer. High strength lactic acid based biodegradable elastomer material. The lactic acid-based elastomer can be cross-linked and cured at 50-100°C, and the cured elastomer has excellent tensile strength and biodegradability. By adjusting the type and amount of branching agent, end group modifier and isocyanate, and introducing different topological structures, the molecular structure of the elastomer and the force between molecular chains can be adjusted, thereby changing the product performance and achieving high strength of the elastomer. and biodegradability.
Description
技术领域technical field
本申请涉及生物降解材料的技术领域,尤其涉及一种高强度乳酸基生物可降解弹性体材料。The present application relates to the technical field of biodegradable materials, in particular to a high-strength lactic acid-based biodegradable elastomer material.
背景技术Background technique
在各种聚合物中,弹性体是交联和非晶态聚合物,以其高断裂伸长率、不永久变形的抗应力能力大而著称。由于弹性体的高弹性,它被广泛应用于电子工业、汽车工业以及我们的日常生活中,然而除天然橡胶外,用于工程应用的生物基弹性体很少。因此,作为下一代弹性体的生物基弹性体的设计和合成在学术界和工业界都是非常重要和迫切需要的。碳水化合物衍生物作为最丰富的生物质原料,被用作合成生物基聚合物的单体。其中乳酸(2-羟基丙酸,LA)在自然界中普遍存在,由碳水化合物的细菌发酵产生,LA已被美国能源部确定为“12大”潜在的生物质基化合物之一。Among various polymers, elastomers are cross-linked and amorphous polymers known for their high elongation at break, high resistance to stress without permanent deformation. Due to the high elasticity of elastomer, it is widely used in electronics industry, automobile industry and our daily life, however, except for natural rubber, there are few bio-based elastomers for engineering applications. Therefore, the design and synthesis of bio-based elastomers as next-generation elastomers are of great importance and urgent need in both academia and industry. Carbohydrate derivatives, as the most abundant biomass feedstock, are used as monomers for the synthesis of bio-based polymers. Among them, lactic acid (2-hydroxypropionic acid, LA) is ubiquitous in nature and produced by bacterial fermentation of carbohydrates. LA has been identified by the US Department of Energy as one of the "big 12" potential biomass-based compounds.
生物基弹性体完全或部分来源于可再生资源,是一种新型高分子生物材料,主要应用于软组织工程和药物运载。合成的可降解生物弹性体具有与天然弹性体相似的三维交联网络结构、高柔韧性和弹性。中国发明专利CN201410573539.6公开了一种聚酯弹性体及其制备方法,该弹性体具有良好的回弹性能和生物降解性,然而弹性体的拉伸强度最高只能达到6.75MPa。中国发明专利CN201810179219.0公开了一种生物可降解热塑性弹性体材料及其制备方法,该生物可降解热塑性弹性体材料弹性较好且降解性能较佳,但其拉伸强度仅能达到10MPa左右。还有报道(Polym.Chem.6(2015)8112–8123)通过直接熔融缩聚法合成了具有生物相容性的聚乳酸/丁二醇/癸二酸/衣酸酯共聚酯弹性体,该弹性体表现出了优异的断裂伸长率(400-1600%),然而其拉伸强度最高只有4.9MPa。Bio-based elastomers are wholly or partly derived from renewable resources and are a new type of polymer biomaterials, mainly used in soft tissue engineering and drug delivery. The synthetic degradable bioelastomer has a three-dimensional crosslinked network structure similar to natural elastomers, high flexibility and elasticity. Chinese invention patent CN201410573539.6 discloses a polyester elastomer and its preparation method. The elastomer has good resilience and biodegradability, but the tensile strength of the elastomer can only reach a maximum of 6.75MPa. Chinese invention patent CN201810179219.0 discloses a biodegradable thermoplastic elastomer material and its preparation method. The biodegradable thermoplastic elastomer material has good elasticity and good degradation performance, but its tensile strength can only reach about 10MPa. It is also reported (Polym.Chem.6 (2015) 8112–8123) that a biocompatible polylactic acid/butylene glycol/sebacic acid/coating acid ester copolyester elastomer was synthesized by direct melt polycondensation. The elastomer exhibits excellent elongation at break (400-1600%), but its highest tensile strength is only 4.9MPa.
现有技术所制备的生物可降解弹性体往往不能兼顾弹性体的高强度和高弹性。The biodegradable elastomers prepared in the prior art often cannot balance the high strength and high elasticity of the elastomers.
发明内容Contents of the invention
有鉴于此,本申请提供一种高强度乳酸基生物可降解弹性体材料,能够兼顾弹性体的高强度和高弹性。In view of this, the present application provides a high-strength lactic acid-based biodegradable elastomer material, which can take into account the high strength and high elasticity of the elastomer.
已为普遍意识到的是,相关技术中,所制备的生物可降解弹性体往往不能兼顾弹性体的高强度和高弹性。It has been generally recognized that, in the related art, the prepared biodegradable elastomers often cannot balance the high strength and high elasticity of the elastomer.
基于此问题,本发明人将拓扑结构和动态氢键同时引入到乳酸基生物可降解弹性体中,以支化剂,端基改性剂,己内酯和乳酸为原料,采用一步熔融缩聚法制备端基活性支化预聚物,该支化预聚物拓扑结构和端基种类可调,分子量可控;将异氰酸酯与端基活性支化预聚物反应制备高强度乳酸基生物可降解弹性体材料。通过调节各原料的种类和用量可调节乳酸基弹性体的分子结构和材料性能。Based on this problem, the inventors simultaneously introduced topological structure and dynamic hydrogen bonding into lactic acid-based biodegradable elastomers, using branching agent, end group modifier, caprolactone and lactic acid as raw materials, and adopted a one-step melt polycondensation method Preparation of end group living branched prepolymer, the branched prepolymer topology structure and end group type are adjustable, molecular weight controllable; reacting isocyanate with end group living branched prepolymer to prepare high-strength lactic acid-based biodegradable elastic body material. The molecular structure and material properties of the lactic acid-based elastomer can be adjusted by adjusting the type and amount of each raw material.
基于此,创立了本发明创造。Based on this, the present invention is created.
本申请提供一种高强度乳酸基生物可降解弹性体材料,由如下重量份的组分经聚合制备而成:This application provides a high-strength lactic acid-based biodegradable elastomer material, which is prepared by polymerization of the following components by weight:
合适但非限制性地,所述端基活性支化预聚物由下重量份的组分采用熔融缩聚法制备而成:Suitably but not limitatively, the end-group living branched prepolymer is prepared by melt polycondensation method from the following components by weight:
合适但非限制性地,所述异氰酸酯为甲苯二异氰酸酯(TDI)、异佛尔酮二异氰酸酯(IPDI)、二苯基甲烷二异氰酸酯(MDI)、二环己基甲烷二异氰酸酯(HMDI)、六亚甲基二异氰酸酯(HDI)、赖氨酸二异氰酸酯(LDI)及其各类低聚物中的一种或任意几种。Suitably but without limitation, the isocyanate is toluene diisocyanate (TDI), isophorone diisocyanate (IPDI), diphenylmethane diisocyanate (MDI), dicyclohexylmethane diisocyanate (HMDI), hexaethylene diisocyanate One or more of methyl diisocyanate (HDI), lysine diisocyanate (LDI) and various oligomers thereof.
合适但非限制性地,所述稀释剂为1,4-二氧六环、四氢呋喃(THF)、N,N-二甲基甲酰胺、N,N-二甲基乙酰胺、甲苯、二甲苯、联苯醚中的一种或任意几种。Suitably but not limitatively, the diluent is 1,4-dioxane, tetrahydrofuran (THF), N,N-dimethylformamide, N,N-dimethylacetamide, toluene, xylene , one or any of several diphenyl ethers.
合适但非限制性地,所述支化剂为柠檬酸、丙三醇、季戊四醇、硼酸、三羟甲基丙烷、三羟甲基乙烷、2,2-双(羟甲基)丙酸、2,2-双(羟甲基)丁酸、1,2,3,4-丁烷四羧酸、双季戊四醇、木糖醇、山梨醇中的一种或任意几种。Suitably but without limitation, the branching agent is citric acid, glycerol, pentaerythritol, boric acid, trimethylolpropane, trimethylolethane, 2,2-bis(hydroxymethyl)propionic acid, One or more of 2,2-bis(hydroxymethyl)butyric acid, 1,2,3,4-butanetetracarboxylic acid, dipentaerythritol, xylitol, and sorbitol.
合适但非限制性地,所述端基改性剂、所述扩链剂均为乙二醇、1,2-丙二醇、1,4-丁二醇、1,6-己二醇、新戊二醇、乙二酸、己二酸、乙二胺、丙二胺、己二胺、对苯二胺,聚醚胺中的一种或任意几种。Suitable but not limited, the end group modifier and the chain extender are ethylene glycol, 1,2-propanediol, 1,4-butanediol, 1,6-hexanediol, neopentyl One or more of glycol, oxalic acid, adipic acid, ethylenediamine, propylenediamine, hexamethylenediamine, p-phenylenediamine, polyetheramine.
合适但非限制性地,所述催化剂A为SnCl2、Sn(Oct)2、Sn粉、二月桂酸二丁基锡、Zn粉、ZnO中的一种或任意几种。Suitable but not limiting, the catalyst A is one or more of SnCl 2 , Sn(Oct) 2 , Sn powder, dibutyltin dilaurate, Zn powder, and ZnO.
合适但非限制性地,所述催化剂B为钛酸四丁酯、4-二甲氨基吡啶、对甲苯磺酸、磷钼酸、浓硫酸、浓磷酸中的一种或任意几种。Suitable but non-limiting, the catalyst B is one or more of tetrabutyl titanate, 4-dimethylaminopyridine, p-toluenesulfonic acid, phosphomolybdic acid, concentrated sulfuric acid, and concentrated phosphoric acid.
如上所述的高强度乳酸基生物可降解弹性体材料,其制备过程具体为:将100份端基活性支化预聚物加入到反应器中,升温至120℃,机械搅拌1h,以排除体系中的水分。然后降温至40-80℃,将30-90份稀释剂加入到反应器中,在氮气气氛中,0.5h内逐渐加入1-30份异氰酸酯类单体、0.2-2份催化剂A,机械搅拌4h。然后将1-10份扩链剂加入反应器中,继续机械搅拌12h。最后将反应物倒入聚四氟乙烯模具中室温挥发溶剂24h,80℃真空烘箱挥发溶剂24h得到高强度乳酸基生物可降解弹性体材料。The preparation process of the above-mentioned high-strength lactic acid-based biodegradable elastomer material is as follows: add 100 parts of end-group active branched prepolymers into the reactor, raise the temperature to 120°C, and stir mechanically for 1 hour to remove the system moisture in. Then lower the temperature to 40-80°C, add 30-90 parts of diluent into the reactor, in nitrogen atmosphere, gradually add 1-30 parts of isocyanate monomer, 0.2-2 parts of catalyst A within 0.5 hours, and mechanically stir for 4 hours . Then add 1-10 parts of chain extender into the reactor, and continue mechanical stirring for 12h. Finally, pour the reactant into a polytetrafluoroethylene mold to evaporate the solvent at room temperature for 24 hours, and then evaporate the solvent in a vacuum oven at 80°C for 24 hours to obtain a high-strength lactic acid-based biodegradable elastomer material.
与相关技术相比,本申请具有以下有益效果:Compared with related technologies, the present application has the following beneficial effects:
本申请涉及的高强度乳酸基生物可降解弹性体材料,通过在弹性体分子结构中引入支化结构和氢键作用力实现乳酸基弹性体的高强度和高弹性,是一种非常环保高效制备生物可降解弹性体的新方法。首先以支化剂,端基改性剂,己内酯和乳酸为原料,采用一步熔融缩聚法制备端基活性支化预聚物,该支化预聚物拓扑结构和端基种类可调,分子量可控;再将异氰酸酯与端基活性支化预聚物反应制备高强度乳酸基生物可降解弹性体材料。通过调节支化剂、端基改性剂和异氰酸酯的种类和用量可调节聚氨酯弹性体的分子结构和材料性能。The high-strength lactic acid-based biodegradable elastomer material involved in this application realizes the high strength and high elasticity of lactic acid-based elastomers by introducing branched structures and hydrogen bond forces into the molecular structure of the elastomer. It is a very environmentally friendly and efficient preparation A new approach to biodegradable elastomers. Firstly, using branching agent, end group modifier, caprolactone and lactic acid as raw materials, the end group living branched prepolymer is prepared by one-step melt polycondensation method. The branched prepolymer topology and end group type can be adjusted. The molecular weight is controllable; and then the isocyanate is reacted with the terminal active branched prepolymer to prepare a high-strength lactic acid-based biodegradable elastomer material. The molecular structure and material properties of polyurethane elastomers can be adjusted by adjusting the types and amounts of branching agents, end group modifiers and isocyanates.
具体实施方式Detailed ways
下面将结合本申请实施例,对本申请实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。The following will clearly and completely describe the technical solutions in the embodiments of the present application in conjunction with the embodiments of the present application. Apparently, the described embodiments are only some of the embodiments of this application, not all of them. Based on the embodiments in this application, all other embodiments obtained by those skilled in the art without making creative efforts belong to the scope of protection of this application.
在本申请的描述中,需要理解的是,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个所述特征。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。In the description of the present application, it should be understood that the terms "first" and "second" are used for description purposes only, and cannot be interpreted as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features. Thus, a feature defined as "first" or "second" may explicitly or implicitly include one or more of said features. In the description of the present application, "plurality" means two or more, unless otherwise specifically defined.
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接或可以相互通讯;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。In the description of this application, it should be noted that unless otherwise specified and limited, the terms "installation", "connection", and "connection" should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection. Connected, or integrally connected; it can be mechanically connected, or electrically connected, or can communicate with each other; it can be directly connected, or indirectly connected through an intermediary, and it can be the internal communication of two components or the interaction of two components relation. Those of ordinary skill in the art can understand the specific meanings of the above terms in this application according to specific situations.
下文的公开提供了许多不同的实施方式或例子用来实现本申请的不同结构。为了简化本申请的公开,下文中对特定例子的部件和设置进行描述。当然,它们仅仅为示例,并且目的不在于限制本申请。此外,本申请可以在不同例子中重复参考数字和/或参考字母,这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施方式和/或设置之间的关系。此外,本申请提供了的各种特定的工艺和材料的例子,但是本领域普通技术人员可以意识到其他工艺的应用和/或其他材料的使用。The following disclosure provides many different implementations or examples for implementing different structures of the present application. To simplify the disclosure of the present application, components and arrangements of specific examples are described below. Of course, they are examples only and are not intended to limit the application. Furthermore, the present application may repeat reference numerals and/or reference letters in various instances, such repetition is for simplicity and clarity and does not in itself indicate a relationship between the various embodiments and/or arrangements discussed. In addition, various specific process and material examples are provided herein, but one of ordinary skill in the art may recognize the use of other processes and/or the use of other materials.
实施例1:Example 1:
(1)将100份乳酸单体,20份己内酯单体和10份柠檬酸,在120℃抽真空控制反应体系压力在70kPa条件下,聚合4h,排除反应中生成的水分得到支化预聚物;然后加入10份1,4-丁二醇和0.5份钛酸四丁酯,升温到160℃,抽真空控制反应体系压力在50kPa,反应2h,得到端羟基支化预聚物。(1) 100 parts of lactic acid monomer, 20 parts of caprolactone monomer and 10 parts of citric acid were vacuumed at 120°C to control the pressure of the reaction system at 70kPa, polymerized for 4 hours, and the moisture generated during the reaction was removed to obtain a branched precursor Polymer; then add 10 parts of 1,4-butanediol and 0.5 parts of tetrabutyl titanate, raise the temperature to 160°C, vacuum control the pressure of the reaction system at 50kPa, and react for 2 hours to obtain a hydroxyl-terminated branched prepolymer.
(2)将100份端羟基活性支化预聚物升温至120℃,机械搅拌1h,以排除体系中的水分;然后降温至50℃,将30份THF加入到反应器中,在氮气气氛中,0.5h内逐渐加入20份异佛尔酮二异氰酸酯、0.5份二月桂酸二丁基锡,机械搅拌4h;然后将10份对苯二胺加入反应器中,继续机械搅拌12h。将反应物倒入聚四氟乙烯模具中室温挥发溶剂24h,真空条件下80℃保温24h成型固化,得到高强度乳酸基生物可降解弹性体材料。(2) Warm up 100 parts of hydroxyl-terminated active branched prepolymer to 120°C, and stir mechanically for 1 hour to remove moisture in the system; then cool down to 50°C, add 30 parts of THF to the reactor, and , 20 parts of isophorone diisocyanate and 0.5 parts of dibutyltin dilaurate were gradually added within 0.5 hours, and mechanically stirred for 4 hours; then 10 parts of p-phenylenediamine were added to the reactor, and mechanical stirring was continued for 12 hours. The reactant was poured into a polytetrafluoroethylene mold at room temperature to evaporate the solvent for 24 hours, and then molded and solidified at 80°C for 24 hours under vacuum conditions to obtain a high-strength lactic acid-based biodegradable elastomer material.
实施例2:Example 2:
(增加己内酯)(increased caprolactone)
(1)将100份乳酸单体,40份己内酯单体和10份柠檬酸,在120℃抽真空控制反应体系压力在70kPa条件下,聚合4h,排除反应中生成的水分得到支化预聚物;然后加入10份1,4-丁二醇和0.3份钛酸四丁酯,升温到160℃,抽真空控制反应体系压力在50kPa,反应4h,得到端羟基支化预聚物。(1) 100 parts of lactic acid monomer, 40 parts of caprolactone monomer and 10 parts of citric acid were vacuumed at 120°C to control the pressure of the reaction system at 70kPa, polymerized for 4 hours, and the moisture generated during the reaction was removed to obtain a branched precursor polymer; then add 10 parts of 1,4-butanediol and 0.3 parts of tetrabutyl titanate, raise the temperature to 160°C, vacuumize the reaction system to control the pressure at 50kPa, and react for 4 hours to obtain a hydroxyl-terminated branched prepolymer.
(2)将100份端羟基活性支化预聚物升温至120℃,机械搅拌1h,以排除体系中的水分;然后降温至50℃,将50份1,4-二氧六环+THF(份数比1.4-二氧六环:THF=2:1)加入到反应器中,在氮气气氛中,0.5h内逐渐加入20份异佛尔酮二异氰酸酯、0.5份Sn(Oct)2,机械搅拌4h;然后将10份对苯二胺加入反应器中,继续机械搅拌12h。将反应物倒入聚四氟乙烯模具中室温挥发溶剂24h,真空条件下80℃保温24h成型固化,得到高强度乳酸基生物可降解弹性体材料。(2) Warm up 100 parts of hydroxyl-terminated reactive branched prepolymer to 120°C and stir mechanically for 1 hour to remove moisture from the system; then cool down to 50°C and mix 50 parts of 1,4-dioxane+THF ( Part ratio 1.4-dioxane:THF=2:1) into the reactor, in nitrogen atmosphere, gradually add 20 parts of isophorone diisocyanate, 0.5 parts of Sn(Oct) 2 within 0.5h, mechanically Stir for 4h; then add 10 parts of p-phenylenediamine to the reactor and continue mechanical stirring for 12h. The reactant was poured into a polytetrafluoroethylene mold at room temperature to evaporate the solvent for 24 hours, and then molded and solidified at 80°C for 24 hours under vacuum conditions to obtain a high-strength lactic acid-based biodegradable elastomer material.
实施例3:Example 3:
(改变支化剂)(change branching agent)
(1)将100份乳酸单体,20份己内酯单体和10份季戊四醇,在120℃抽真空控制反应体系压力在70kPa条件下,聚合4h,排除反应中生成的水分得到支化预聚物;然后加入10份己二酸和0.5份对甲苯磺酸+钛酸四丁酯(份数比对甲苯磺酸:钛酸四丁酯=1:1)复合催化剂,升温到160℃,抽真空控制反应体系压力在50kPa,反应2h,得到端羟基支化预聚物。(1) Put 100 parts of lactic acid monomer, 20 parts of caprolactone monomer and 10 parts of pentaerythritol in a vacuum at 120°C to control the pressure of the reaction system at 70kPa, polymerize for 4 hours, and remove the moisture generated during the reaction to obtain branched prepolymerization Then add 10 parts of adipic acid and 0.5 parts of p-toluenesulfonic acid + tetrabutyl titanate (ratio of p-toluenesulfonic acid: tetrabutyl titanate = 1:1) composite catalyst, heat up to 160 ° C, pump The pressure of the reaction system was controlled at 50 kPa by vacuum, and the reaction was carried out for 2 hours to obtain a hydroxyl-terminated branched prepolymer.
(2)将100份端羟基活性支化预聚物升温至120℃,机械搅拌1h,以排除体系中的水分;然后降温至50℃,将30份1,4-二氧六环加入到反应器中,在氮气气氛中,0.5h内逐渐加入20份异佛尔酮二异氰酸酯、0.8份二月桂酸二丁基锡,机械搅拌4h;然后将10份对苯二胺加入反应器中,继续机械搅拌12h。将反应物倒入聚四氟乙烯模具中室温挥发溶剂24h,真空条件下80℃保温24h成型固化,得到高强度乳酸基生物可降解弹性体材料。(2) Warm up 100 parts of hydroxyl-terminated active branched prepolymer to 120°C and stir mechanically for 1 hour to remove moisture from the system; then cool down to 50°C and add 30 parts of 1,4-dioxane to the reaction In the reactor, in a nitrogen atmosphere, gradually add 20 parts of isophorone diisocyanate and 0.8 parts of dibutyltin dilaurate within 0.5 hours, and mechanically stir for 4 hours; then add 10 parts of p-phenylenediamine into the reactor and continue to mechanically stir 12h. The reactant was poured into a polytetrafluoroethylene mold at room temperature to evaporate the solvent for 24 hours, and then molded and solidified at 80°C for 24 hours under vacuum conditions to obtain a high-strength lactic acid-based biodegradable elastomer material.
实施例4:Example 4:
(改变异氰酸酯和第二步端基改性剂)(change isocyanate and second step end group modifier)
将100份乳酸单体,20份己内酯单体和10份季戊四醇,在120℃抽真空控制反应体系压力在70kPa条件下,聚合4h,排除反应中生成的水分得到支化预聚物;然后加入10份己二酸和0.2份对甲苯磺酸+钛酸四丁酯(份数比对甲苯磺酸:钛酸四丁酯=1:1)复合催化剂,升温到160℃,抽真空控制反应体系压力在50kPa,反应2h,得到端羟基支化预聚物。100 parts of lactic acid monomer, 20 parts of caprolactone monomer and 10 parts of pentaerythritol were evacuated at 120°C to control the pressure of the reaction system at 70kPa, and polymerized for 4 hours to remove the moisture generated during the reaction to obtain a branched prepolymer; then Add 10 parts of adipic acid and 0.2 parts of p-toluenesulfonic acid + tetrabutyl titanate (the ratio of parts to p-toluenesulfonic acid: tetrabutyl titanate = 1:1) composite catalyst, raise the temperature to 160°C, and vacuumize to control the reaction The system pressure was 50kPa, and the reaction was carried out for 2 hours to obtain a hydroxyl-terminated branched prepolymer.
(2)将100份端羟基活性支化预聚物升温至120℃,机械搅拌1h,以排除体系中的水分;然后降温至50℃,将70份1,4-二氧六环加入到反应器中,在氮气气氛中,0.5h内逐渐加入20份甲苯二异氰酸酯、0.5份二月桂酸二丁基锡,机械搅拌4h;然后将10份乙二胺加入反应器中,继续机械搅拌12h。将反应物倒入聚四氟乙烯模具中室温挥发溶剂24h,真空条件下80℃保温24h成型固化,得到高强度乳酸基生物可降解弹性体材料。(2) Warm up 100 parts of hydroxyl-terminated active branched prepolymer to 120°C and stir mechanically for 1 hour to remove moisture from the system; then cool down to 50°C and add 70 parts of 1,4-dioxane to the reaction In the reactor, in a nitrogen atmosphere, gradually add 20 parts of toluene diisocyanate and 0.5 parts of dibutyltin dilaurate within 0.5 hours, and mechanically stir for 4 hours; then add 10 parts of ethylenediamine into the reactor, and continue to mechanically stir for 12 hours. The reactant was poured into a polytetrafluoroethylene mold at room temperature to evaporate the solvent for 24 hours, and then molded and solidified at 80°C for 24 hours under vacuum conditions to obtain a high-strength lactic acid-based biodegradable elastomer material.
实施例5:Example 5:
(改变异氰酸酯和第二步端基改性剂)(change isocyanate and second step end group modifier)
(1)将100份乳酸单体,20份己内酯单体和10份柠檬酸,在120℃抽真空控制反应体系压力在70kPa条件下,聚合4h,排除反应中生成的水分得到支化预聚物;然后加入10份1,4-丁二醇和0.5份对甲苯磺酸+钛酸四丁酯(份数比对甲苯磺酸:钛酸四丁酯=1:1)复合催化剂,升温到160℃,抽真空控制反应体系压力在50kPa,反应2h,得到端羟基支化预聚物。(1) 100 parts of lactic acid monomer, 20 parts of caprolactone monomer and 10 parts of citric acid were vacuumed at 120°C to control the pressure of the reaction system at 70kPa, polymerized for 4 hours, and the moisture generated during the reaction was removed to obtain a branched precursor polymer; then add 10 parts of 1,4-butanediol and 0.5 parts of p-toluenesulfonic acid+tetrabutyl titanate (parts ratio p-toluenesulfonic acid: tetrabutyl titanate = 1:1) composite catalyst, and heat up to 160° C., vacuuming to control the pressure of the reaction system at 50 kPa, and reacting for 2 hours to obtain a hydroxyl-terminated branched prepolymer.
(2)将100份端羟基活性支化预聚物升温至120℃,机械搅拌1h,以排除体系中的水分;然后降温至50℃,将50份THF加入到反应器中,在氮气气氛中,0.5h内逐渐加入20份二环己基甲烷二异氰酸酯、0.5份二月桂酸二丁基锡,机械搅拌4h;然后将10份乙二胺加入反应器中,继续机械搅拌12h。将反应物倒入聚四氟乙烯模具中室温挥发溶剂24h,真空条件下80℃保温24h成型固化,得到高强度乳酸基生物可降解弹性体材料。(2) Warm up 100 parts of hydroxyl-terminated reactive branched prepolymer to 120°C, and stir mechanically for 1 hour to remove moisture in the system; then cool down to 50°C, add 50 parts of THF to the reactor, and , Gradually add 20 parts of dicyclohexylmethane diisocyanate and 0.5 parts of dibutyltin dilaurate within 0.5 hours, and mechanically stir for 4 hours; then add 10 parts of ethylenediamine into the reactor, and continue to mechanically stir for 12 hours. The reactant was poured into a polytetrafluoroethylene mold at room temperature to evaporate the solvent for 24 hours, and then molded and solidified at 80°C for 24 hours under vacuum conditions to obtain a high-strength lactic acid-based biodegradable elastomer material.
实施例6:Embodiment 6:
(增加支化剂)(increase branching agent)
(1)将100份乳酸单体,20份己内酯单体和20份柠檬酸,在120℃抽真空控制反应体系压力在70kPa条件下,聚合4h,排除反应中生成的水分得到支化预聚物;然后加入20份1,4-丁二醇和0.5份钛酸四丁酯催化剂,升温到160℃,抽真空控制反应体系压力在50kPa,反应1h,得到端羟基支化预聚物。(1) 100 parts of lactic acid monomer, 20 parts of caprolactone monomer and 20 parts of citric acid were vacuumed at 120°C to control the pressure of the reaction system at 70kPa, polymerized for 4 hours, and the moisture generated during the reaction was removed to obtain a branched precursor polymer; then add 20 parts of 1,4-butanediol and 0.5 parts of tetrabutyl titanate catalyst, raise the temperature to 160°C, vacuumize and control the pressure of the reaction system at 50kPa, and react for 1h to obtain a hydroxyl-terminated branched prepolymer.
(2)将100份端羟基活性支化预聚物升温至120℃,机械搅拌1h,以排除体系中的水分;然后降温至50℃,将30份1,4-二氧六环+THF(份数比1.4-二氧六环:THF=2:1)加入到反应器中,在氮气气氛中,0.5h内逐渐加入30份二环己基甲烷二异氰酸酯、0.5份二月桂酸二丁基锡,机械搅拌4h;然后将20份乙二胺加入反应器中,继续机械搅拌12h。将反应物倒入聚四氟乙烯模具中室温挥发溶剂24h,真空条件下80℃保温24h成型固化,得到高强度乳酸基生物可降解弹性体材料。(2) Warm up 100 parts of hydroxyl-terminated reactive branched prepolymer to 120°C, and stir mechanically for 1 hour to remove moisture in the system; then cool down to 50°C, add 30 parts of 1,4-dioxane+THF ( Part ratio 1.4-dioxane:THF=2:1) into the reactor, in nitrogen atmosphere, gradually add 30 parts of dicyclohexylmethane diisocyanate, 0.5 parts of dibutyltin dilaurate within 0.5h, mechanically Stir for 4h; then add 20 parts of ethylenediamine to the reactor and continue mechanical stirring for 12h. The reactant was poured into a polytetrafluoroethylene mold at room temperature to evaporate the solvent for 24 hours, and then molded and solidified at 80°C for 24 hours under vacuum conditions to obtain a high-strength lactic acid-based biodegradable elastomer material.
表1各实施例弹性体的力学性能The mechanical property of each embodiment elastomer of table 1
以上所述,仅为本申请较佳的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本申请的保护范围之内。The above is only a preferred embodiment of the present application, but the scope of protection of the present application is not limited thereto. Any person familiar with the technical field can easily conceive of changes or changes within the technical scope disclosed in this application Replacement should be covered within the protection scope of this application.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310133904.0A CN116284659A (en) | 2023-02-20 | 2023-02-20 | A high-strength lactic acid-based biodegradable elastomer material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310133904.0A CN116284659A (en) | 2023-02-20 | 2023-02-20 | A high-strength lactic acid-based biodegradable elastomer material |
Publications (1)
Publication Number | Publication Date |
---|---|
CN116284659A true CN116284659A (en) | 2023-06-23 |
Family
ID=86793315
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202310133904.0A Pending CN116284659A (en) | 2023-02-20 | 2023-02-20 | A high-strength lactic acid-based biodegradable elastomer material |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN116284659A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117757048A (en) * | 2023-12-20 | 2024-03-26 | 中国地质大学(武汉) | A kind of hyperbranched polycaprolactone-polylactic acid copolymer and its preparation method and application |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1998001493A1 (en) * | 1996-07-08 | 1998-01-15 | Jvs-Polymers Oy | High impact strength biodegradable material |
CN101899139A (en) * | 2010-07-23 | 2010-12-01 | 同济大学 | A kind of preparation method of polylactic acid base high elasticity copolymer |
CN105175676A (en) * | 2015-10-14 | 2015-12-23 | 中国科学院宁波材料技术与工程研究所 | Polylactic acid based polyurethane elastomer material for medical infusion apparatus and preparation method thereof |
CN108559088A (en) * | 2018-05-03 | 2018-09-21 | 同济大学 | The preparation method of polylactic acid base thermoplastic elastomer with shape-memory properties |
CN110627985A (en) * | 2019-09-09 | 2019-12-31 | 北京化工大学 | A kind of polylactic acid-based thermoplastic polyurethane elastomer material and preparation method thereof |
-
2023
- 2023-02-20 CN CN202310133904.0A patent/CN116284659A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1998001493A1 (en) * | 1996-07-08 | 1998-01-15 | Jvs-Polymers Oy | High impact strength biodegradable material |
CN101899139A (en) * | 2010-07-23 | 2010-12-01 | 同济大学 | A kind of preparation method of polylactic acid base high elasticity copolymer |
CN105175676A (en) * | 2015-10-14 | 2015-12-23 | 中国科学院宁波材料技术与工程研究所 | Polylactic acid based polyurethane elastomer material for medical infusion apparatus and preparation method thereof |
CN108559088A (en) * | 2018-05-03 | 2018-09-21 | 同济大学 | The preparation method of polylactic acid base thermoplastic elastomer with shape-memory properties |
CN110627985A (en) * | 2019-09-09 | 2019-12-31 | 北京化工大学 | A kind of polylactic acid-based thermoplastic polyurethane elastomer material and preparation method thereof |
Non-Patent Citations (1)
Title |
---|
许文殊;罗祥林;: "聚乳酸降解材料的绿色化学合成", 中国组织工程研究与临床康复, no. 03, 15 January 2011 (2011-01-15) * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117757048A (en) * | 2023-12-20 | 2024-03-26 | 中国地质大学(武汉) | A kind of hyperbranched polycaprolactone-polylactic acid copolymer and its preparation method and application |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110655646A (en) | A kind of preparation method of long carbon chain nylon elastomer | |
CN103483571B (en) | A kind of containing full bio-based polyester of double bond and its preparation method and application | |
CN101899139A (en) | A kind of preparation method of polylactic acid base high elasticity copolymer | |
CN103450649B (en) | High-toughness polylactic acid/cross-linked polyurethane mixture and preparation method thereof | |
CN107033312B (en) | A kind of star-like method for preparing polyurethane elastic body | |
CN107189386B (en) | Preparation method of star polyurethane elastomer toughened polylactic acid compound | |
CN100523050C (en) | Method for preparing polylactic acid-polycarbonate copolymers | |
CN113121786B (en) | Polyurethane elastomer with bio-based amorphous multi-polyester as soft segment and preparation method thereof | |
CN101121780A (en) | A kind of preparation method of polylactic acid base block copolymer | |
CN112126036A (en) | Disulfide bond-based biodegradable cross-linked self-repairing polyurethane and preparation method thereof | |
CN107312167A (en) | Biomass-based 2, 5-furandicarboxylic acid-based thermoplastic polyester elastomer and preparation method thereof | |
CN108559088A (en) | The preparation method of polylactic acid base thermoplastic elastomer with shape-memory properties | |
CN103665805B (en) | Glass fibre/lactic acid composite material of a kind of lactic acid oligomer modification of isocyanato end-blocking and preparation method thereof | |
CN116284659A (en) | A high-strength lactic acid-based biodegradable elastomer material | |
CN116693799A (en) | Polyurethane elastomer and preparation method thereof | |
CN115926124B (en) | A polybutylene succinate/terephthalate based thermoplastic polyester elastomer and preparation method thereof | |
CN115746275B (en) | A kind of polybutylene succinate/terephthalate copolymer and preparation method thereof | |
CN108707322A (en) | The method that vegetable oil derivatives reactively blending prepares high impact toughness polylactic acid composition | |
CN109021196B (en) | Organic silicon type polyurethane damping material and preparation method thereof | |
CN109320726B (en) | A kind of high resilience thermoplastic elastomer and preparation method thereof | |
CN105273185A (en) | Method for preparing aliphatic-aromatic mixed block thermoplastic polyurethane through nonisocyanate method | |
CN113956486B (en) | Long-chain branch polylactic acid-based copolymer and preparation method thereof | |
CN107141459A (en) | The preparation method of aliphatic polyester-b- polycarbonate block Biodegradable polyesters | |
CN114790273B (en) | Polyurethane, high-solid-content aqueous polyurethane emulsion and preparation method thereof | |
CN111040419A (en) | A kind of bio-based polyester polyurethane film and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |