CN116273123A - A large-scale preparation method of a supported single-atom catalyst - Google Patents
A large-scale preparation method of a supported single-atom catalyst Download PDFInfo
- Publication number
- CN116273123A CN116273123A CN202310270182.3A CN202310270182A CN116273123A CN 116273123 A CN116273123 A CN 116273123A CN 202310270182 A CN202310270182 A CN 202310270182A CN 116273123 A CN116273123 A CN 116273123A
- Authority
- CN
- China
- Prior art keywords
- catalyst
- supported
- atom
- carrier
- preparation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000003054 catalyst Substances 0.000 title claims abstract description 150
- 238000002360 preparation method Methods 0.000 title claims abstract description 51
- 230000005495 cold plasma Effects 0.000 claims abstract description 32
- 239000012018 catalyst precursor Substances 0.000 claims abstract description 28
- 239000000843 powder Substances 0.000 claims abstract description 26
- 239000011259 mixed solution Substances 0.000 claims abstract description 13
- 150000004696 coordination complex Chemical class 0.000 claims abstract description 12
- 239000000463 material Substances 0.000 claims abstract description 12
- 238000005470 impregnation Methods 0.000 claims abstract description 11
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 claims abstract description 10
- 239000003446 ligand Substances 0.000 claims abstract description 9
- 150000002894 organic compounds Chemical class 0.000 claims abstract description 9
- 238000001035 drying Methods 0.000 claims abstract description 7
- 239000003960 organic solvent Substances 0.000 claims abstract description 6
- 238000000227 grinding Methods 0.000 claims abstract 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical group [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims description 80
- 229910052751 metal Inorganic materials 0.000 claims description 49
- 239000002184 metal Substances 0.000 claims description 49
- 238000000034 method Methods 0.000 claims description 41
- 229910052763 palladium Inorganic materials 0.000 claims description 40
- 238000006243 chemical reaction Methods 0.000 claims description 30
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 27
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 20
- 239000010949 copper Substances 0.000 claims description 15
- 238000003756 stirring Methods 0.000 claims description 14
- 239000011261 inert gas Substances 0.000 claims description 12
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 10
- 229910052802 copper Inorganic materials 0.000 claims description 10
- -1 porphyrin salt Chemical class 0.000 claims description 10
- 150000004032 porphyrins Chemical class 0.000 claims description 10
- 229910052759 nickel Inorganic materials 0.000 claims description 8
- 238000009832 plasma treatment Methods 0.000 claims description 8
- 238000003763 carbonization Methods 0.000 claims description 7
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 6
- DLIOHRNRAIDJAW-UHFFFAOYSA-N N1C2=CC([N]3)=CC=C3C=C(N3)C=CC3=CC([N]3)=CC=C3C=C1C(N)=C2C1=CC=CC=C1 Chemical compound N1C2=CC([N]3)=CC=C3C=C(N3)C=CC3=CC([N]3)=CC=C3C=C1C(N)=C2C1=CC=CC=C1 DLIOHRNRAIDJAW-UHFFFAOYSA-N 0.000 claims description 4
- GWEDZEGGJIRIKE-UHFFFAOYSA-N N1C2=CC([N]3)=CC=C3C=C(N3)C=CC3=CC([N]3)=CC=C3C=C1C(O)=C2C1=CC=CC=C1 Chemical compound N1C2=CC([N]3)=CC=C3C=C(N3)C=CC3=CC([N]3)=CC=C3C=C1C(O)=C2C1=CC=CC=C1 GWEDZEGGJIRIKE-UHFFFAOYSA-N 0.000 claims description 4
- 239000004793 Polystyrene Substances 0.000 claims description 4
- QJOCEWKQJZUTSL-UHFFFAOYSA-N [N+](=O)([O-])C=1C(=C2NC=1C=C1C=CC(=N1)C=C1C=CC(N1)=CC=1C=CC(N=1)=C2)C1=CC=CC=C1 Chemical compound [N+](=O)([O-])C=1C(=C2NC=1C=C1C=CC(=N1)C=C1C=CC(N1)=CC=1C=CC(N=1)=C2)C1=CC=CC=C1 QJOCEWKQJZUTSL-UHFFFAOYSA-N 0.000 claims description 4
- 238000001354 calcination Methods 0.000 claims description 4
- IEQIEDJGQAUEQZ-UHFFFAOYSA-N phthalocyanine Chemical group N1C(N=C2C3=CC=CC=C3C(N=C3C4=CC=CC=C4C(=N4)N3)=N2)=C(C=CC=C2)C2=C1N=C1C2=CC=CC=C2C4=N1 IEQIEDJGQAUEQZ-UHFFFAOYSA-N 0.000 claims description 4
- 229920002223 polystyrene Polymers 0.000 claims description 4
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 claims description 4
- 229920000881 Modified starch Polymers 0.000 claims description 3
- DAUBPVALNIAUKM-UHFFFAOYSA-N [Na].C1(=CC=CC=C1)C1=C2C=CC(C(=C3C=CC(=C(C=4C=CC(=C(C5=CC=C1N5)C5=CC=CC=C5)N4)C4=CC=CC=C4)N3)C3=CC=CC=C3)=N2 Chemical group [Na].C1(=CC=CC=C1)C1=C2C=CC(C(=C3C=CC(=C(C=4C=CC(=C(C5=CC=C1N5)C5=CC=CC=C5)N4)C4=CC=CC=C4)N3)C3=CC=CC=C3)=N2 DAUBPVALNIAUKM-UHFFFAOYSA-N 0.000 claims description 3
- 239000001913 cellulose Substances 0.000 claims description 3
- 229920002678 cellulose Polymers 0.000 claims description 3
- 235000019426 modified starch Nutrition 0.000 claims description 3
- YNHJECZULSZAQK-UHFFFAOYSA-N tetraphenylporphyrin Chemical compound C1=CC(C(=C2C=CC(N2)=C(C=2C=CC=CC=2)C=2C=CC(N=2)=C(C=2C=CC=CC=2)C2=CC=C3N2)C=2C=CC=CC=2)=NC1=C3C1=CC=CC=C1 YNHJECZULSZAQK-UHFFFAOYSA-N 0.000 claims description 3
- 238000002156 mixing Methods 0.000 claims description 2
- 125000001424 substituent group Chemical group 0.000 claims description 2
- 238000009825 accumulation Methods 0.000 claims 1
- 238000005516 engineering process Methods 0.000 abstract description 11
- 238000011031 large-scale manufacturing process Methods 0.000 abstract description 5
- 238000004519 manufacturing process Methods 0.000 abstract description 5
- 238000007598 dipping method Methods 0.000 abstract description 4
- 230000009286 beneficial effect Effects 0.000 abstract description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 22
- 239000000243 solution Substances 0.000 description 20
- 230000000052 comparative effect Effects 0.000 description 15
- 125000004429 atom Chemical group 0.000 description 13
- 229910052786 argon Inorganic materials 0.000 description 11
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 10
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 10
- 230000008569 process Effects 0.000 description 10
- 239000006185 dispersion Substances 0.000 description 9
- 239000000203 mixture Substances 0.000 description 9
- 238000005457 optimization Methods 0.000 description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 9
- 239000007789 gas Substances 0.000 description 8
- 238000012360 testing method Methods 0.000 description 8
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 7
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 7
- 229910052799 carbon Inorganic materials 0.000 description 7
- 230000000694 effects Effects 0.000 description 7
- 238000005984 hydrogenation reaction Methods 0.000 description 7
- 238000011068 loading method Methods 0.000 description 7
- 239000002904 solvent Substances 0.000 description 7
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 6
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 6
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 6
- 229910021529 ammonia Inorganic materials 0.000 description 6
- PIBWKRNGBLPSSY-UHFFFAOYSA-L palladium(II) chloride Chemical compound Cl[Pd]Cl PIBWKRNGBLPSSY-UHFFFAOYSA-L 0.000 description 6
- 239000002243 precursor Substances 0.000 description 6
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 5
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 5
- 239000001257 hydrogen Substances 0.000 description 5
- 229910052739 hydrogen Inorganic materials 0.000 description 5
- 239000002105 nanoparticle Substances 0.000 description 5
- WLOADVWGNGAZCW-UHFFFAOYSA-N 3-phenyl-23H-porphyrin-2,18,20,21-tetracarboxylic acid Chemical compound OC(=O)C=1C(N2C(O)=O)=C(C(O)=O)C(=N3)C(C(=O)O)=CC3=CC(N3)=CC=C3C=C(N=3)C=CC=3C=C2C=1C1=CC=CC=C1 WLOADVWGNGAZCW-UHFFFAOYSA-N 0.000 description 4
- UEXCJVNBTNXOEH-UHFFFAOYSA-N Ethynylbenzene Chemical group C#CC1=CC=CC=C1 UEXCJVNBTNXOEH-UHFFFAOYSA-N 0.000 description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 4
- 229910021124 PdAg Inorganic materials 0.000 description 4
- 230000003197 catalytic effect Effects 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 239000012621 metal-organic framework Substances 0.000 description 4
- LQNUZADURLCDLV-UHFFFAOYSA-N nitrobenzene Chemical compound [O-][N+](=O)C1=CC=CC=C1 LQNUZADURLCDLV-UHFFFAOYSA-N 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 4
- 239000010453 quartz Substances 0.000 description 4
- 239000012495 reaction gas Substances 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- 150000003839 salts Chemical class 0.000 description 4
- 238000001179 sorption measurement Methods 0.000 description 4
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 239000002041 carbon nanotube Substances 0.000 description 3
- 229910021393 carbon nanotube Inorganic materials 0.000 description 3
- 239000008367 deionised water Substances 0.000 description 3
- 229910021641 deionized water Inorganic materials 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 238000011065 in-situ storage Methods 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 238000010926 purge Methods 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- 238000013112 stability test Methods 0.000 description 3
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 3
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 2
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 2
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N Aniline Chemical compound NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 description 2
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 2
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 2
- 239000005977 Ethylene Substances 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 2
- KAESVJOAVNADME-UHFFFAOYSA-N Pyrrole Chemical compound C=1C=CNC=1 KAESVJOAVNADME-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 238000004220 aggregation Methods 0.000 description 2
- 230000002776 aggregation Effects 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 235000011114 ammonium hydroxide Nutrition 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 238000000231 atomic layer deposition Methods 0.000 description 2
- 229910002091 carbon monoxide Inorganic materials 0.000 description 2
- 239000013310 covalent-organic framework Substances 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 238000009776 industrial production Methods 0.000 description 2
- 238000007689 inspection Methods 0.000 description 2
- 150000002678 macrocyclic compounds Chemical class 0.000 description 2
- 239000002808 molecular sieve Substances 0.000 description 2
- 239000013110 organic ligand Substances 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 238000011946 reduction process Methods 0.000 description 2
- 238000010992 reflux Methods 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 2
- 239000008247 solid mixture Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- ONDPHDOFVYQSGI-UHFFFAOYSA-N zinc nitrate Chemical compound [Zn+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O ONDPHDOFVYQSGI-UHFFFAOYSA-N 0.000 description 2
- XIOUDVJTOYVRTB-UHFFFAOYSA-N 1-(1-adamantyl)-3-aminothiourea Chemical compound C1C(C2)CC3CC2CC1(NC(=S)NN)C3 XIOUDVJTOYVRTB-UHFFFAOYSA-N 0.000 description 1
- 101710134784 Agnoprotein Proteins 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 239000012696 Pd precursors Substances 0.000 description 1
- 101150003085 Pdcl gene Proteins 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 230000004931 aggregating effect Effects 0.000 description 1
- 239000011668 ascorbic acid Substances 0.000 description 1
- 229960005070 ascorbic acid Drugs 0.000 description 1
- 235000010323 ascorbic acid Nutrition 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 238000009903 catalytic hydrogenation reaction Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 238000000975 co-precipitation Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- HZXGNBMOOYOYIS-PAMPIZDHSA-L copper;(z)-1,1,1,5,5,5-hexafluoro-4-oxopent-2-en-2-olate Chemical compound [Cu+2].FC(F)(F)C(/[O-])=C/C(=O)C(F)(F)F.FC(F)(F)C(/[O-])=C/C(=O)C(F)(F)F HZXGNBMOOYOYIS-PAMPIZDHSA-L 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 238000002329 infrared spectrum Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000002071 nanotube Substances 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- AOPCKOPZYFFEDA-UHFFFAOYSA-N nickel(2+);dinitrate;hexahydrate Chemical compound O.O.O.O.O.O.[Ni+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O AOPCKOPZYFFEDA-UHFFFAOYSA-N 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 125000001477 organic nitrogen group Chemical group 0.000 description 1
- 238000005554 pickling Methods 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000012266 salt solution Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000004729 solvothermal method Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 238000009210 therapy by ultrasound Methods 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Images
Landscapes
- Catalysts (AREA)
Abstract
Description
技术领域technical field
本发明涉及负载型单原子催化剂制备领域,具体的说是一种负载型单原子催化剂的规模化制备方法。The invention relates to the field of preparation of supported single-atom catalysts, in particular to a large-scale preparation method of supported single-atom catalysts.
背景技术Background technique
单原子催化剂是指金属组分以单个原子形式分散存在的一类催化剂。从理论上讲,单原子催化剂的每个金属原子都是孤立的分散的,每个原子都是一个活性中心,使这种催化剂具有最大的原子利用率和最好的反应选择性。金属单原子由于具有非常大的表面能,无负载的情况下,它们是很难稳定存在的,会不断聚集成大的纳米颗粒,从而限制了单原子催化剂的性能和应用。载体可以有效的固定金属单原子,防止原子之间相互聚集,因此真正具有应用价值的单原子催化剂基本都是负载型单原子催化剂。Single-atom catalysts refer to a class of catalysts in which the metal components are dispersed in the form of single atoms. Theoretically, each metal atom of a single-atom catalyst is isolated and dispersed, and each atom is an active center, which makes this catalyst have the greatest atom utilization and the best reaction selectivity. Due to the very large surface energy of metal single atoms, it is difficult for them to exist stably without a load, and they will continue to aggregate into large nanoparticles, which limits the performance and application of single-atom catalysts. The support can effectively fix metal single atoms and prevent atoms from aggregating with each other. Therefore, the single-atom catalysts with real application value are basically supported single-atom catalysts.
单原子催化剂的制备方法主要有:共沉淀法、质量分离软着陆法、浸渍法、原子层沉积法、溶胶固定法、沉淀沉积法等。其中,浸渍法操作简单、技术成熟、参数易于控制,是制备传统工业催化剂最常用的方法。尽管目前单原子催化剂的制备方法多样,但仍然存在一些技术问题亟待解决:1、单原子催化剂的制备方法一般较为复杂,成本高昂或者需要酸洗等高污染处理途径,使其难以应用于催化剂的规模化生产;2、单原子催化剂在制备过程中,金属原子容易发生聚集,从而影响催化性能。The preparation methods of single-atom catalysts mainly include: co-precipitation method, mass separation soft landing method, impregnation method, atomic layer deposition method, sol immobilization method, precipitation deposition method, etc. Among them, the impregnation method is the most commonly used method for preparing traditional industrial catalysts because of its simple operation, mature technology, and easy control of parameters. Although there are various preparation methods for single-atom catalysts, there are still some technical problems to be solved: 1. The preparation methods of single-atom catalysts are generally complicated, costly or require high-pollution treatment methods such as pickling, making it difficult to apply to catalysts. Large-scale production; 2. During the preparation process of single-atom catalysts, metal atoms tend to aggregate, which affects the catalytic performance.
公开号为CN109806903A的发明专利申请提供了一种单原子钯催化剂及其制备方法和应用。该方法首先将Pd前驱体、碳源、氮源溶于溶剂中,加热制得透明溶液。然后再冷冻干燥除去溶剂,得干燥的固体混合物。最后将所得的固体混合物置于惰性气体氛围中,600–1000℃温度下处理14小时得到单原子钯催化剂。该催化剂的载体为碳,完全来自于有机氮源、碳源的高温碳化,成本高,工业化大规模生产的意义不大。The invention patent application with publication number CN109806903A provides a single-atom palladium catalyst and its preparation method and application. In the method, a Pd precursor, a carbon source, and a nitrogen source are first dissolved in a solvent, and heated to obtain a transparent solution. The solvent was then lyophilized to obtain a dry solid mixture. Finally, the obtained solid mixture was placed in an inert gas atmosphere, and treated at a temperature of 600-1000° C. for 14 hours to obtain a monoatomic palladium catalyst. The carrier of the catalyst is carbon, which is completely derived from high-temperature carbonization of organic nitrogen sources and carbon sources, and the cost is high, so the industrialized large-scale production has little meaning.
公开号为CN109939676A的发明专利涉及一种单原子钯催化剂及其制备和在乙炔选择性加氢中的应用。所述单原子钯催化剂通过以下方法制备:首先将分子筛载体放于80℃烘箱干燥12h备用。配置60mL 0.01mol/L氯化钯溶液,按照氯化钯质量的1%加入聚乙烯醇,放于–120℃高低温反应箱搅拌,氯化钯溶液的溶剂按照乙醇:水体积比为8:2配置。按照抗坏血酸与氯化钯中的钯的摩尔比为5:1加入到氯化钯溶液,–120℃下搅拌1h,制得钯金属溶胶。称取10g干燥好的分子筛载体,加入到金属溶胶中,搅拌2h,搅拌速率为200r/min,反应结束后在–120℃下抽滤并用去离子水清洗产品,最后放于70℃烘箱中干燥12h,得到单原子钯催化剂。此方法制备流程较为复杂,专利也没有提供证明单原子性能的任何乙烯选择性数据。The invention patent with the publication number CN109939676A relates to a single-atom palladium catalyst and its preparation and application in the selective hydrogenation of acetylene. The monoatomic palladium catalyst is prepared by the following method: first, the molecular sieve carrier is dried in an oven at 80° C. for 12 hours for later use. Prepare 60mL of 0.01mol/L palladium chloride solution, add polyvinyl alcohol according to 1% of the mass of palladium chloride, and put it in a high-low temperature reaction box at –120°C for stirring. The solvent of the palladium chloride solution is based on the ethanol:water volume ratio of 8: 2 configuration. According to the molar ratio of ascorbic acid and palladium in palladium chloride being 5:1, add the palladium chloride solution into the palladium chloride solution and stir at -120°C for 1 hour to prepare the palladium metal sol. Weigh 10g of the dried molecular sieve carrier, add it to the metal sol, stir for 2 hours, the stirring speed is 200r/min, after the reaction is completed, suction filter at –120°C and wash the product with deionized water, and finally dry it in an oven at 70°C 12h, a monoatomic palladium catalyst was obtained. The preparation process of this method is relatively complicated, and the patent does not provide any ethylene selectivity data to prove the performance of single atoms.
公开号为CN112871154A的发明专利提供了一种铂单原子催化剂及其制备方法以及其在苯乙炔选择性催化加氢制备苯乙烯反应中的应用。该方法以金属有机框架(MOFs)为前体制备的载体负载铂单原子催化剂。首先将载体前驱体金属盐分散到水中,将有机配体分散到N,N–二甲基甲酰胺中,将上述两种溶液超声混合得到原料溶液,而后加入活性组分金属盐,在50–150℃的油浴搅拌下反应5–50min,得到混合物;再将混合物抽滤,洗涤,干燥。干燥后得到的样品于空气气氛下400–800℃焙烧1–24h,将焙烧后的固体在氢气/惰性气氛下于100–500℃还原1–12h,得到所述催化剂。将该催化剂应用于苯乙炔选择性加氢制备苯乙烯的反应,其苯乙烯选择性,转化率均可高达90%以上,但此方法制得的催化剂成本高昂,工艺流程复杂,难以实现规模化生产。The invention patent with publication number CN112871154A provides a platinum single-atom catalyst, its preparation method and its application in the reaction of styrene selective catalytic hydrogenation of phenylacetylene. This method uses metal-organic frameworks (MOFs) as precursors to prepare support-supported platinum single-atom catalysts. First, disperse the carrier precursor metal salt into water, disperse the organic ligand into N,N-dimethylformamide, and mix the above two solutions ultrasonically to obtain the raw material solution, and then add the active component metal salt, at 50– The reaction was carried out under stirring in an oil bath at 150°C for 5-50 minutes to obtain a mixture; the mixture was suction-filtered, washed and dried. The sample obtained after drying is calcined at 400-800° C. for 1-24 h in air atmosphere, and the calcined solid is reduced at 100-500° C. for 1-12 h under hydrogen/inert atmosphere to obtain the catalyst. The catalyst is applied to the reaction of preparing styrene by selective hydrogenation of phenylacetylene, and the selectivity and conversion rate of styrene can be as high as 90%. Production.
公开号为CN109939718A的发明专利提供了一种具有高催化活性的单原子催化剂及其制备方法与应用。该发明首先将金属盐、硝酸锌与配体进行溶剂热反应,溶于溶剂得到分散液,再包覆聚合物在惰性气氛中进行高温处理,得到所述具有空壳结构的单原子催化剂。将上述方法制得的单原子催化剂应用于硝基苯的加氢反应,110℃、5MPa氢气氛围反应1小时,计算出该单原子催化剂对于硝基苯加氢反应的TOF值高于现有文献的几倍,表现出了优异的活性和选择性。但同样该方法碳载体来源于MOFs和聚合物的碳化,成本高昂,无法实现工业化大规模生产。The invention patent with the publication number CN109939718A provides a single-atom catalyst with high catalytic activity and its preparation method and application. In this invention, metal salt, zinc nitrate and ligand are subjected to solvothermal reaction, dissolved in a solvent to obtain a dispersion liquid, and then coated with a polymer and subjected to high temperature treatment in an inert atmosphere to obtain the single-atom catalyst with an empty shell structure. The single-atom catalyst prepared by the above method was applied to the hydrogenation reaction of nitrobenzene, and reacted for 1 hour at 110°C in a hydrogen atmosphere of 5 MPa. The calculated TOF value of the single-atom catalyst for the hydrogenation reaction of nitrobenzene was higher than that of the existing literature several times that of , showing excellent activity and selectivity. However, the carbon support of this method is also derived from the carbonization of MOFs and polymers, which is expensive and cannot be industrialized and mass-produced.
公开号为CN114950474A的发明专利提供了一种使用配合物前驱体调控金属负载催化剂金属活性中心分散度的方法,包括以下步骤:1、将钴的可溶性盐加入去离子水中,再加入助剂金属的可溶性盐,得到金属盐溶液;所述助剂金属为铬、钯、铜中的一种或者几种;2、加入氨水,超声处理,得到金属配合物溶液;3、将载体在280–350℃下通入水蒸气8–24h进行改性,干燥后加入分散剂中,再向其中加入去离子水,回流,过滤、洗涤、干燥,得到改性后的载体;4、将载体加入金属配合物溶液中,用氨水调节体系的pH为9–11,超声浸渍,无水乙醇洗涤、过滤,经过滤、干燥、焙烧。采用该方法制备的金属催化剂在高负载的前提下还能提高其金属活性中心的分散度。但是采用这种方法并不能获得单原子催化剂,从理论上讲,该方法预分散以后,再焙烧还原过程得到的金属单质由于表面能极大,还会再团聚形成纳米颗粒。The invention patent with the publication number CN114950474A provides a method for regulating the dispersion of metal active centers of metal-supported catalysts using complex precursors. Soluble salt to obtain a metal salt solution; the auxiliary metal is one or more of chromium, palladium, copper; 2. Add ammonia water and ultrasonic treatment to obtain a metal complex solution; 3. Put the carrier at 280-350 ° C Pass water vapor under it for 8-24 hours to modify, add to the dispersant after drying, then add deionized water to it, reflux, filter, wash, and dry to obtain the modified carrier; 4. Add the carrier to the metal complex solution , adjust the pH of the system to 9-11 with ammonia water, impregnate with ultrasonic, wash with absolute ethanol, filter, filter, dry and roast. The metal catalyst prepared by the method can also improve the dispersion degree of its metal active center under the premise of high load. However, single-atom catalysts cannot be obtained by using this method. Theoretically speaking, after the method is pre-dispersed, the metal simple substance obtained during the roasting reduction process will reunite to form nanoparticles due to its large surface energy.
基于以上研究现状可知,寻求一种简单、便捷、经济的规模化制备负载型单原子催化剂的新工艺方法具有重要的经济价值。Based on the above research status, it can be seen that it is of great economic value to seek a simple, convenient and economical new process for large-scale preparation of supported single-atom catalysts.
发明内容Contents of the invention
本发明旨在提供一种负载型单原子催化剂的规模化制备方法,以解决负载型单原子催化剂不易实现规模化生产的问题。The invention aims to provide a large-scale preparation method of a supported single-atom catalyst to solve the problem that the supported single-atom catalyst is difficult to realize large-scale production.
为了解决以上技术问题,本发明采用的具体方案为:一种负载型单原子催化剂的规模化制备方法,包括以下步骤:S1:将配体为含氮大环有机物的可溶性金属配合物溶于有机溶剂中,制得混合溶液;S2:向混合溶液中加入催化剂载体进行等体积浸渍,得到混合物料;S3:将混合物料烘干、研磨,得到催化剂前驱体粉末;S4:将催化剂前驱体粉末进行焙烧或冷等离子体处理,即制得负载型单原子催化剂。In order to solve the above technical problems, the specific scheme adopted in the present invention is: a large-scale preparation method of a supported single-atom catalyst, comprising the following steps: S1: dissolving a soluble metal complex whose ligand is a nitrogen-containing macrocyclic organic compound in an organic A mixed solution is prepared in a solvent; S2: add a catalyst carrier to the mixed solution for equal volume impregnation to obtain a mixed material; S3: dry and grind the mixed material to obtain a catalyst precursor powder; S4: process the catalyst precursor powder Calcination or cold plasma treatment, that is, the preparation of supported single-atom catalysts.
作为上述技术方案的进一步优化,步骤S4中的焙烧处理为在氨气和惰性气体混合气氛下的高温氨化处理。As a further optimization of the above technical solution, the roasting treatment in step S4 is a high-temperature ammoniation treatment under a mixed atmosphere of ammonia gas and inert gas.
作为上述技术方案的进一步优化,步骤S4中的焙烧处理为在惰性气氛下的高温碳化处理。As a further optimization of the above technical solution, the calcination in step S4 is high-temperature carbonization under an inert atmosphere.
作为上述技术方案的进一步优化,冷等离子体处理具体包括以下步骤:As a further optimization of the above technical solution, the cold plasma treatment specifically includes the following steps:
S401:将催化剂前驱体粉末置于冷等离子体装置中;S401: placing the catalyst precursor powder in a cold plasma device;
S402:向冷等离子体装置的反应腔内通惰性气体与氨气的混合气氛;S402: passing a mixed atmosphere of inert gas and ammonia gas into the reaction chamber of the cold plasma device;
S403:保持与步骤S402相同的混合气氛,对催化剂前驱体粉末处理;S403: Maintain the same mixed atmosphere as step S402, and process the catalyst precursor powder;
S404:关闭氨气,继续通入惰性气体吹扫;S404: close the ammonia gas, and continue to pass inert gas for purging;
S405:把反应腔内的催化剂前驱体粉末搅拌混合;S405: stirring and mixing the catalyst precursor powder in the reaction chamber;
S406:重复步骤S402~S405,累计处理N次,即制得负载型单原子催化剂。S406: Steps S402-S405 are repeated for a total of N times of treatment to obtain a supported single-atom catalyst.
作为上述技术方案的进一步优化,含氮大环有机物为卟啉、卟啉盐或可溶性的酞菁结构。As a further optimization of the above technical solution, the nitrogen-containing macrocyclic organic compound is a porphyrin, a porphyrin salt or a soluble phthalocyanine structure.
作为上述技术方案的进一步优化,卟啉为四苯基卟啉、四羧基苯基卟啉、氨基苯基卟啉、羟基苯基卟啉或硝基苯基卟啉;卟啉盐为四苯基卟啉磺酸钠。As a further optimization of the above-mentioned technical scheme, the porphyrin is tetraphenylporphyrin, tetracarboxyphenylporphyrin, aminophenylporphyrin, hydroxyphenylporphyrin or nitrophenylporphyrin; the porphyrin salt is tetraphenylporphyrin Sodium porphyrin sulfonate.
作为上述技术方案的进一步优化,可溶性金属配合物中的金属为钯、镍或铜。As a further optimization of the above technical solution, the metal in the soluble metal complex is palladium, nickel or copper.
作为上述技术方案的进一步优化,催化剂载体为氧化物载体、碳化物载体或高分子类的不耐温载体。As a further optimization of the above-mentioned technical solution, the catalyst carrier is an oxide carrier, a carbide carrier or a temperature-labile polymer carrier.
作为上述技术方案的进一步优化,催化剂载体为SiO2、聚苯乙烯、淀粉衍生物或纤维素类衍生物。As a further optimization of the above technical solution, the catalyst carrier is SiO 2 , polystyrene, starch derivatives or cellulose derivatives.
作为上述技术方案的进一步优化,SiO2为比表面积是300m2/g的介孔结构。As a further optimization of the above technical solution, SiO 2 is a mesoporous structure with a specific surface area of 300 m 2 /g.
与现有技术相比,本发明的有益效果如下:Compared with the prior art, the beneficial effects of the present invention are as follows:
1、本发明是在传统浸渍法的基础上改进而来的,浸渍法技术成熟、操作简单、参数易于控制,因此利于实现规模化生产,且生产成本低。1. The present invention is improved on the basis of the traditional dipping method. The dipping method has mature technology, simple operation, and easy control of parameters, so it is beneficial to realize large-scale production, and the production cost is low.
2、本发明巧妙地运用了金属预分散的办法,即将金属与含氮大环的有机配体分隔开,进而浸渍到催化剂载体上,有效的防止在后续处理过程中,金属原子的聚集。2. The present invention cleverly uses the method of metal pre-dispersion, that is, the metal is separated from the nitrogen-containing macrocyclic organic ligand, and then impregnated on the catalyst carrier, effectively preventing the aggregation of metal atoms in the subsequent treatment process.
3、本发明引入了冷等离子体技术,绿色、低温、高效,大大缩短了催化剂的制备周期,提高了催化剂的性能,为单原子催化剂的工业化生产提供一个可行的策略,具有极大的商业价值。3. The invention introduces cold plasma technology, green, low temperature and high efficiency, which greatly shortens the preparation cycle of the catalyst, improves the performance of the catalyst, provides a feasible strategy for the industrial production of single-atom catalysts, and has great commercial value .
4、本发明引入了冷等离子体技术,由于冷等离子体处理的温度较低,因此可以选用一些高分子类的不耐温载体即可达到处理过程中载体不发生变化,载体的来源更加丰富。4. The present invention introduces cold plasma technology. Since the temperature of cold plasma treatment is relatively low, some high-molecular non-temperature-resistant carriers can be selected to ensure that the carrier does not change during the treatment process, and the source of the carrier is more abundant.
5、本发明的催化剂生产成本低,可以选用工业常用的氧化物载体或碳化物载体制备不同的负载型金属单原子催化剂,大大降低了生产成本。5. The production cost of the catalyst of the present invention is low, and the oxide support or carbide support commonly used in industry can be selected to prepare different supported metal single-atom catalysts, which greatly reduces the production cost.
附图说明Description of drawings
图1为负载型单原子催化剂的制备流程图;Fig. 1 is the preparation flowchart of supported single-atom catalyst;
图2为冷等离子体处理装置示意图;Fig. 2 is the schematic diagram of cold plasma treatment device;
图3为实施例1所制催化剂与对比实施例3所制催化剂在70℃下长时间稳定性测试试验数据曲线图;Fig. 3 is the long-time stability test test data curve chart at 70 ℃ for the catalyst made in embodiment 1 and the catalyst made in comparative example 3;
图4为负载型单原子催化剂一氧化碳原位红外谱图。Fig. 4 is the in-situ infrared spectrum of the supported single-atom catalyst carbon monoxide.
具体实施方式Detailed ways
下面结合具体实施例对本发明做进一步的阐述,但并非对本发明保护范围的限制。The present invention will be further described below in conjunction with specific examples, but it is not intended to limit the protection scope of the present invention.
首先需要说明的是,由于单原子催化剂是指金属组分以单个原子形式分散存在的一类催化剂,本发明中的负载型单原子催化剂即为负载型金属单原子催化剂,如图1所示为负载型单原子催化剂的制备流程图,制备过程中所采用的可溶性金属配合物均为市售产品。First of all, it needs to be explained that since the single-atom catalyst refers to a type of catalyst in which the metal component is dispersed in the form of a single atom, the supported single-atom catalyst in the present invention is a supported metal single-atom catalyst, as shown in Figure 1 The flow chart of the preparation of the supported single-atom catalyst, and the soluble metal complexes used in the preparation process are all commercially available products.
本发明的实施例中可溶性金属配合物的金属为钯、镍或铜,但实际在负载型单原子催化剂的制备过程中,可溶性金属配合物的金属并不局限于所列举的这几种,也可以使用其它过渡金属单原子。In the embodiment of the present invention, the metal of the soluble metal complex is palladium, nickel or copper, but actually in the preparation process of the supported single-atom catalyst, the metal of the soluble metal complex is not limited to the listed ones. Other transition metal single atoms can be used.
本发明的实施例中可溶性金属配合物的配体为四羧基苯基卟啉、四羧基酞菁。但实际在负载型单原子催化剂的制备过程中,可溶性金属配合物的配体还可以为卟啉、含有不同取代基的卟啉、卟啉盐或可溶性的酞菁结构,具体的,卟啉为四苯基卟啉、氨基苯基卟啉、羟基苯基卟啉或硝基苯基卟啉等,卟啉盐为四苯基卟啉磺酸钠等。The ligands of the soluble metal complexes in the embodiments of the present invention are tetracarboxyphenylporphyrin and tetracarboxyphthalocyanine. However, in the actual preparation process of the supported single-atom catalyst, the ligand of the soluble metal complex can also be a porphyrin, a porphyrin containing different substituents, a porphyrin salt or a soluble phthalocyanine structure. Specifically, the porphyrin is Tetraphenylporphyrin, aminophenylporphyrin, hydroxyphenylporphyrin, nitrophenylporphyrin, etc., and the porphyrin salt is sodium tetraphenylporphyrin sulfonate, etc.
其中,金属为钯的负载型单原子催化剂为负载型钯基单原子催化剂,金属为镍的负载型单原子催化剂为负载型镍基单原子催化剂,金属为铜的负载型单原子催化剂为负载型铜基单原子催化剂。以下以负载型钯基单原子催化剂、负载型镍基单原子催化剂、负载型铜基单原子催化剂的制备方法为例对本发明的制备方法进行详细阐述。Among them, the supported single-atom catalyst whose metal is palladium is a supported palladium-based single-atom catalyst, the supported single-atom catalyst whose metal is nickel is a supported nickel-based single-atom catalyst, and the supported single-atom catalyst whose metal is copper is a supported Copper-based single-atom catalysts. The preparation method of the present invention will be described in detail below by taking the preparation methods of supported palladium-based single-atom catalysts, supported nickel-based single-atom catalysts, and supported copper-based single-atom catalysts as examples.
实施例1Example 1
负载型钯基单原子催化剂制备方法如下:The preparation method of supported palladium-based single-atom catalyst is as follows:
S1:将质量为8.34mg可溶性钯配合物(配体为四羧基苯基卟啉)溶于1200ul四氢呋喃溶液,轻微晃动瓶身使其充分溶解,制得混合溶液;S1: Dissolve 8.34 mg of soluble palladium complex (ligand tetracarboxyphenylporphyrin) in 1200 ul of tetrahydrofuran solution, shake the bottle slightly to fully dissolve, and prepare a mixed solution;
S2:加入质量为1g的SiO2作为催化剂载体进行等体积浸渍,搅拌使混合溶液充分混合,直到形成颜色均匀的混合物料;所用SiO2的比表面积为300m2/g,是介孔结构。S2: Add 1g of SiO 2 as the catalyst carrier for equal volume impregnation, stir to mix the mixed solution fully until a mixed material with uniform color is formed; the specific surface area of the SiO 2 used is 300m 2 /g, which is a mesoporous structure.
S3:将混合物料放入烘干箱中,调节温度至85℃干燥12小时,得到催化剂前驱体,将催化剂前驱体研磨成粉末;S3: put the mixed material into a drying box, adjust the temperature to 85° C. and dry for 12 hours to obtain a catalyst precursor, and grind the catalyst precursor into powder;
S4:取100mg的催化剂前驱体粉末作为样品置于冷等离子体装置中,在氨气与惰性气体的混合气氛下进行冷等离子体处理;S4: Take 100 mg of catalyst precursor powder as a sample and place it in a cold plasma device, and perform cold plasma treatment under a mixed atmosphere of ammonia gas and inert gas;
具体的:specific:
S401:取100mg的催化剂前驱体粉末作为样品置于冷等离子体装置中;S401: Take 100 mg of catalyst precursor powder as a sample and place it in a cold plasma device;
S402:向冷等离子体装置(如图2所示为冷等离子体装置示意图)的反应腔中通氩气与氨气的混合气氛4min,以除去反应腔内的空气,氩气、氨气的体积流量之比为4:1,混合气氛的总流量30ml/min;S402: Pass a mixed atmosphere of argon and ammonia to the reaction chamber of the cold plasma device (as shown in Figure 2 is a schematic diagram of the cold plasma device) for 4 minutes, to remove the air in the reaction chamber, the volume of argon and ammonia The flow ratio is 4:1, and the total flow of the mixed atmosphere is 30ml/min;
S403:保持与步骤S402相同的混合气氛,电压为100V,电流为0.6A,对催化剂前驱体粉末处理1min;S403: Maintain the same mixed atmosphere as in step S402, with a voltage of 100V and a current of 0.6A, and treat the catalyst precursor powder for 1 min;
S404:然后关闭氨气,只通氩气吹扫2min,除掉残留的气态氨气,防止打开反应腔处理样品时,氨气残留氨气吸水,导致样品变潮。S404: Then turn off the ammonia gas, and only purge with argon gas for 2 minutes to remove the residual gaseous ammonia gas, so as to prevent the residual ammonia gas from absorbing water when the reaction chamber is opened to process the sample, which will cause the sample to become damp.
S405:把反应仓内的样品搅拌混合均匀;S405: Stir and mix the samples in the reaction chamber evenly;
S406:重复步骤S402~S405,累计处理10次,即制得灰白色的负载型单原子催化剂。S406: Steps S402-S405 are repeated for a total of 10 times of treatment to obtain a gray-white supported single-atom catalyst.
本实施例得到46.9mg负载型单原子催化剂,经检验,制得的负载型单原子催化剂中钯的含量是0.1%。In this example, 46.9 mg of the supported single-atom catalyst was obtained. After testing, the content of palladium in the prepared supported single-atom catalyst was 0.1%.
由于本实施例中冷等离子体处理的温度较低,因此催化剂载体还可以采用高分子类的不耐温载体,如聚苯乙烯、淀粉衍生物及纤维素类衍生物等的纳米多孔结构材料,催化剂载体的选择范围广泛。Since the temperature of the cold plasma treatment in this embodiment is relatively low, the catalyst carrier can also be a heat-resistant polymer carrier, such as nanoporous structure materials such as polystyrene, starch derivatives, and cellulose derivatives. Catalyst supports can be selected from a wide range of options.
本实施例的步骤S1中,采用的有机溶剂为四氢呋喃溶液,有机溶剂也可以采用N,N-二甲基甲酰胺、吡啶、苯胺或吡咯。有机溶剂的选择取决于大环有机化合物在该有机溶剂中的溶解度,溶解度好,沸点低的优先考虑,容易干燥。In step S1 of this embodiment, the organic solvent used is tetrahydrofuran solution, and N,N-dimethylformamide, pyridine, aniline or pyrrole may also be used as the organic solvent. The selection of the organic solvent depends on the solubility of the macrocyclic organic compound in the organic solvent. The solubility is good, the priority is low boiling point, and it is easy to dry.
需要说明的:本实施例中的等体积浸渍是一个初湿浸渍法等体积浸渍过程。例如1g二氧化硅,孔体积是1.2ml,那么取1g二氧化硅制备样品时,加入的混合溶液体积就正好是1.2ml;然后强力搅拌混合,再进行干燥。1.2ml混合溶液中的金属配合物要根据钯载量确定,如钯的载量是0.1%,也就是1g二氧化硅上负载0.001g钯,对应需要多少钯配合物就可以计算得出。It should be noted that the equal-volume impregnation in this example is an equal-volume impregnation process of incipient wetness impregnation. For example, 1g of silica has a pore volume of 1.2ml, so when taking 1g of silica to prepare a sample, the volume of the mixed solution added is exactly 1.2ml; then vigorously stir and mix, and then dry. The metal complex in the 1.2ml mixed solution should be determined according to the palladium loading. For example, the loading of palladium is 0.1%, that is, 0.001g of palladium is loaded on 1g of silica, and the corresponding palladium complex can be calculated.
本实施例采用的原料为金属和含氮大环有机物形成的配合物,对于这种配合物,金属是通过与大环有机物的氮配位从而被牢牢固定的,结构如下(1)所示:The raw material used in this example is a complex formed by a metal and a nitrogen-containing macrocyclic organic compound. For this complex, the metal is firmly fixed by coordinating with the nitrogen of the macrocyclic organic compound. The structure is shown in (1) below :
而且这种刚性结构,使浸渍后的配合物分子具有很强的自分散能力。本实施例只是简单地通过浸渍金属大环有机配合物,将配合物附着在载体孔道壁上,实现金属的预分散与固定,然后引入冷等离子体技术进行处理。处理过程系统温度低,几近室温,能耗低,效率高,这大大缩短了催化剂的制备周期,提高了催化剂的性能,为单原子催化剂的工业化生产提供一个可行的策略,具有极大的商业价值。Moreover, this rigid structure makes the impregnated complex molecules have a strong self-dispersion ability. In this embodiment, the metal macrocyclic organic complex is simply impregnated, and the complex is attached to the channel wall of the carrier to realize the pre-dispersion and fixation of the metal, and then the cold plasma technology is introduced for treatment. The process system has low temperature, close to room temperature, low energy consumption and high efficiency, which greatly shortens the catalyst preparation cycle and improves the performance of the catalyst. It provides a feasible strategy for the industrial production of single-atom catalysts and has great commercial potential. value.
本发明中主要通过大环来限制金属,进行预分散,所用的含氮大环有机物还可以是其他的各种基团的卟啉及卟啉盐,比如卟啉、氨基苯基卟啉、羟基苯基卟啉、硝基苯基卟啉、四苯基卟啉磺酸钠等,只要在某些溶剂里溶解度较好即可。此外,含氮大环有机物还可以是可溶性的酞菁结构,比如下(2)所示的结构:In the present invention, metals are mainly limited by macrocycles for pre-dispersion, and the nitrogen-containing macrocycle organics used can also be porphyrins and porphyrin salts of other various groups, such as porphyrin, aminophenylporphyrin, hydroxyl Phenylporphyrin, nitrophenylporphyrin, sodium tetraphenylporphyrin sulfonate, etc., as long as they have good solubility in certain solvents. In addition, the nitrogen-containing macrocyclic organic compound can also be a soluble phthalocyanine structure, such as the structure shown in (2) below:
本实施例的冷等离子体技术为介质放电冷等离子体技术,这种介质放电冷等离子体技术处理的是浸渍了金属大环配合物的催化剂前驱体。按照传统的工业催化剂制备方法,浸渍完金属的前驱体,要进行焙烧、还原。而本实施例的介质放电冷等离子体技术是替代了传统焙烧和还原过程,通过介质放电冷等离子体在低温下就实现了金属大环有机物的碳化和金属的还原。冷等离子体属于非热平衡等离子体,具有较高的电子能量和较低的气体温度,可以提高原子分散度,增强金属与载体的相互作用,有着更好的抗积碳性。冷等离子体技术制备的负载型单原子催化剂具有比表面大、还原速率快、催化组分晶格缺陷等优点,从而导致催化性能的提高。The cold plasma technology in this embodiment is a dielectric discharge cold plasma technology, and this dielectric discharge cold plasma technology treats a catalyst precursor impregnated with a metal macrocyclic complex. According to the traditional industrial catalyst preparation method, after impregnating the metal precursor, it needs to be roasted and reduced. The dielectric discharge cold plasma technology of this embodiment replaces the traditional roasting and reduction process, and realizes the carbonization of metal macrocyclic organic matter and the reduction of metals at low temperature through dielectric discharge cold plasma. Cold plasma belongs to non-thermal equilibrium plasma, which has higher electron energy and lower gas temperature, which can improve atomic dispersion, enhance the interaction between metal and carrier, and have better resistance to carbon deposition. The supported single-atom catalysts prepared by cold plasma technology have the advantages of large specific surface area, fast reduction rate, and lattice defects of catalytic components, which lead to enhanced catalytic performance.
所得样品的一氧化碳原位红外CO-DRIFT测试结果如图4。红外谱图结果显示,仅在2080cm-1有一个特征吸收峰,归属于CO的线性吸附。2000cm-1以下无吸收峰,表面CO不存在桥式吸附及三位点吸附。说明制备的催化剂为单原子催化剂。The carbon monoxide in-situ infrared CO-DRIFT test results of the obtained samples are shown in Fig. 4 . The infrared spectrogram results show that there is only one characteristic absorption peak at 2080cm -1 , which is attributed to the linear adsorption of CO. There is no absorption peak below 2000cm -1 , and there is no bridge adsorption and three-site adsorption of CO on the surface. It shows that the prepared catalyst is a single-atom catalyst.
实施例2Example 2
负载型钯基单原子催化剂制备方法:Preparation method of supported palladium-based single-atom catalyst:
本实施例的制备方法同实施例1,不同之处在于步骤S4中将得到的催化剂前驱体粉末在惰性气体下进行高温碳化处理,得到负载型钯基单原子催化剂;The preparation method of this example is the same as that of Example 1, except that the catalyst precursor powder obtained in step S4 is subjected to high-temperature carbonization treatment under an inert gas to obtain a supported palladium-based single-atom catalyst;
具体的:specific:
取102.2mg的催化剂前驱体粉末作为样品置于密闭的容器中,向容器内通入氩气气体,氩气的流量30ml/min,按照1℃/min的升温速率将容器内升温至600℃,在600℃的温度下处理1h,然后自然降温,即制得负载型钯基单原子催化剂。Take 102.2 mg of catalyst precursor powder as a sample and place it in a closed container, and pass argon gas into the container. The flow rate of argon gas is 30ml/min, and the temperature in the container is raised to 600 ° C at a heating rate of 1 ° C / min. Treat at a temperature of 600° C. for 1 hour, and then lower the temperature naturally to prepare a supported palladium-based single-atom catalyst.
经检验,制得的负载型钯基单原子催化剂中钯的含量是0.1%。After inspection, the content of palladium in the prepared supported palladium-based single-atom catalyst is 0.1%.
实施例3Example 3
负载型钯基单原子催化剂制备方法:Preparation method of supported palladium-based single-atom catalyst:
本实施例的制备方法同实施例1,不同之处在于步骤S4中将得到的催化剂前驱体粉末在氨气与惰性气体混合气氛下进行高温氨化处理,得到负载型钯基单原子催化剂。The preparation method of this example is the same as that of Example 1, except that in step S4, the obtained catalyst precursor powder is subjected to high-temperature ammoniation treatment in a mixed atmosphere of ammonia gas and inert gas to obtain a supported palladium-based single-atom catalyst.
具体的:specific:
取102.2mg的催化剂前驱体粉末作为样品置于密闭的容器中,向容器内通入氩气与氨气的混合气氛,混合气氛中氩气、氨气的体积流量之比为4:1,混合气氛的总流量30ml/min,按照1℃/min的升温速率将容器内升温至600℃,在600℃的温度下处理1h,然后自然降温,即制得负载型钯基单原子催化剂。Take 102.2 mg of catalyst precursor powder as a sample and place it in a closed container, and introduce a mixed atmosphere of argon and ammonia into the container, the volume flow ratio of argon and ammonia in the mixed atmosphere is 4:1, mix The total flow rate of the atmosphere is 30ml/min, and the temperature in the container is raised to 600°C at a heating rate of 1°C/min, treated at 600°C for 1 hour, and then cooled naturally to prepare a supported palladium-based single-atom catalyst.
经检验,制得的负载型钯基单原子催化剂中钯的含量是0.1%。After inspection, the content of palladium in the prepared supported palladium-based single-atom catalyst is 0.1%.
与实施例1相同的是,本实施例采用的原料依然为金属和含氮大环有机物形成的配合物。更重要的是,这种可溶性金属配合物催化剂载体进行等体积浸渍后制得的催化剂前驱体,在惰性气体环境下焙烧(包括实施例2的高温碳化和实施例3的高温氨化)以后,有机大环配合物会原位形成氮掺杂碳,会有效阻止大环中间的金属形成单质过程中的聚集,从而形成氮掺杂碳中氮锚定的单原子分散结构,负载在载体上。Same as Example 1, the raw materials used in this example are still complexes formed by metals and nitrogen-containing macrocyclic organic compounds. More importantly, the catalyst precursor prepared after equal-volume impregnation of this soluble metal complex catalyst carrier is roasted under an inert gas environment (including the high-temperature carbonization of Example 2 and the high-temperature ammoniation of Example 3), The organic macrocyclic complex will form nitrogen-doped carbon in situ, which will effectively prevent the aggregation of the metal in the middle of the macrocycle during the formation of a single substance, thereby forming a single-atom dispersed structure anchored by nitrogen in the nitrogen-doped carbon, which is loaded on the carrier.
本发明只是简单地通过浸渍金属大环有机配合物,不是通过聚合形成MOFs或者共价有机骨架材料(COFs)固定,而是通过载体和配合物的吸附作用力先预分散与固定,然后焙烧,这种制备过程跟传统的催化剂制备方法极为类似,过程简单,经济,利于规模化制备。The present invention simply impregnates metal-macrocyclic organic complexes instead of forming MOFs or covalent organic framework materials (COFs) through polymerization, but pre-disperses and fixes them through the adsorption force of the carrier and the complexes, and then roasts them. This preparation process is very similar to the traditional catalyst preparation method, the process is simple, economical and conducive to large-scale preparation.
实施例4Example 4
负载型镍基单原子催化剂制备方法:Preparation method of supported nickel-based single-atom catalyst:
本实施例的制备方法同实施例1,不同之处在于将金属钯更换为金属镍。The preparation method of this embodiment is the same as that of Example 1, except that metal palladium is replaced by metal nickel.
实施例5Example 5
负载型铜基单原子催化剂制备方法:Preparation method of supported copper-based single-atom catalyst:
本实施例的制备方法同实施例1,不同之处在于将金属钯更换为金属铜。The preparation method of this embodiment is the same as that of Example 1, except that metal palladium is replaced by metal copper.
实施例6Example 6
负载型钯基单原子催化剂制备方法:Preparation method of supported palladium-based single-atom catalyst:
本实施例的制备方法同实施例1,不同之处在于所用配体为四羧基酞菁。The preparation method of this example is the same as that of Example 1, except that the ligand used is tetracarboxyphthalocyanine.
实施例7Example 7
负载型钯基单原子催化剂制备方法如下:The preparation method of supported palladium-based single-atom catalyst is as follows:
S1:将质量为10.56mg可溶性钯配合物(配体为四羧基苯基卟啉)溶于1200ul四氢呋喃溶液,轻微晃动瓶身使其充分溶解,制得混合溶液;S1: Dissolve 10.56 mg of soluble palladium complex (ligand tetracarboxyphenylporphyrin) in 1200 ul of tetrahydrofuran solution, shake the bottle slightly to fully dissolve, and prepare a mixed solution;
S2:加入质量为1.6g的聚苯乙烯作为催化剂载体进行等体积浸渍,搅拌使混合溶液充分混合,直到形成颜色均匀的混合物料。S2: Add 1.6 g of polystyrene as the catalyst carrier for equal-volume impregnation, and stir to fully mix the mixed solution until a mixed material with uniform color is formed.
S3:将混合物料放入烘干箱中,调节温度至80℃干燥12小时,得到催化剂前驱体,将催化剂前驱体研磨成粉末;S3: Put the mixed material into a drying box, adjust the temperature to 80° C. and dry for 12 hours to obtain a catalyst precursor, and grind the catalyst precursor into powder;
S4:取100mg的催化剂前驱体粉末作为样品置于冷等离子体装置中,在氨气与惰性气体的混合气氛下进行冷等离子体处理;S4: Take 100 mg of catalyst precursor powder as a sample and place it in a cold plasma device, and perform cold plasma treatment under a mixed atmosphere of ammonia gas and inert gas;
具体的:specific:
S401:取100mg的催化剂前驱体粉末作为样品置于冷等离子体装置中;S401: Take 100 mg of catalyst precursor powder as a sample and place it in a cold plasma device;
S402:向冷等离子体装置(如图2所示为冷等离子体装置示意图)的反应腔中通氩气与氨气的混合气氛4min,以除去反应腔内的空气,氩气、氨气的体积流量之比为4:1,混合气氛的总流量30ml/min;S402: Pass a mixed atmosphere of argon and ammonia to the reaction chamber of the cold plasma device (as shown in Figure 2 is a schematic diagram of the cold plasma device) for 4 minutes, to remove the air in the reaction chamber, the volume of argon and ammonia The flow ratio is 4:1, and the total flow of the mixed atmosphere is 30ml/min;
S403:保持与步骤S402相同的混合气氛,电压为100V,电流为0.6A,对催化剂前驱体粉末处理1min;S403: Maintain the same mixed atmosphere as in step S402, with a voltage of 100V and a current of 0.6A, and treat the catalyst precursor powder for 1 min;
S404:然后关闭氨气,只通氩气吹扫2min,除掉残留的气态氨气,防止打开反应腔处理样品时,氨气残留氨气吸水,导致样品变潮。S404: Then turn off the ammonia gas, and only purge with argon gas for 2 minutes to remove the residual gaseous ammonia gas, so as to prevent the residual ammonia gas from absorbing water when the reaction chamber is opened to process the sample, which will cause the sample to become damp.
S405:把反应仓内的样品搅拌混合均匀;S405: Stir and mix the samples in the reaction chamber evenly;
S406:重复步骤S402~S405,累计处理10次,即制得负载型单原子催化剂。S406: Steps S402-S405 are repeated for a total of 10 times of treatment to obtain a supported single-atom catalyst.
对比实施例1Comparative Example 1
Ni3Zn/oCNT催化剂的制备方法如下:The preparation method of Ni 3 Zn/oCNT catalyst is as follows:
(1)首先以1g:100ml的投料比将碳纳米管加入到浓盐酸中,室温搅拌24小时,去除掉残留金属;然后以1g:100ml的投料比将碳纳米管加入到浓硝酸中,140℃回流2小时,过滤洗涤至中性得到氧化碳纳米管(oCNT)。(1) First, carbon nanotubes are added to concentrated hydrochloric acid with a feed ratio of 1g:100ml, and stirred at room temperature for 24 hours to remove residual metal; then carbon nanotubes are added to concentrated nitric acid with a feed ratio of 1g:100ml, 140 Reflux at °C for 2 hours, filter and wash until neutral to obtain oxidized carbon nanotubes (oCNT).
(2)浸渍法:取101mg的六水硝酸镍和33.7mg的六水硝酸锌溶解于40ml乙醇中,然后加入374mg氧化碳纳米管,超声搅拌约1小时,保证均匀分散,然后通过旋转蒸发仪去除溶剂乙醇,在100℃烘箱中保温2小时。(2) Immersion method: Dissolve 101mg of nickel nitrate hexahydrate and 33.7mg of zinc nitrate hexahydrate in 40ml of ethanol, then add 374mg of carbon dioxide nanotubes, stir ultrasonically for about 1 hour to ensure uniform dispersion, and then pass through a rotary evaporator The solvent ethanol was removed, and the temperature was kept in an oven at 100°C for 2 hours.
(3)经步骤2处理后的样品在氢气与氩气的混合气氛中进行还原处理,混合气体流量100ml/min,混合气中氢气体积比例为50%;还原处理时,以5℃/min的升温速率升温至500℃并恒温处理2小时,降至室温得到Ni3Zn/oCNT催化剂。(3) The sample processed in step 2 is subjected to reduction treatment in a mixed atmosphere of hydrogen and argon, the flow rate of the mixed gas is 100ml/min, and the volume ratio of hydrogen in the mixed gas is 50%; The heating rate was raised to 500° C. and treated at a constant temperature for 2 hours, and then lowered to room temperature to obtain a Ni 3 Zn/oCNT catalyst.
其中Ni的负载量约为5wt.%。Wherein the loading amount of Ni is about 5wt.%.
详细内容参考专利CN109622000A中的对比例1。For details, refer to Comparative Example 1 in patent CN109622000A.
对比实施例2Comparative Example 2
采用ALD法制备9.3nm的Cu/Al2O3纳米颗粒催化剂。载以球形氧化铝粉末(Nanodur,99.5%Alfa Aesar)为载体,以铜(II)六氟乙酰丙酮水合物(Cu(hfac),AladdinIndustrial corporation 98%),和福尔马林(Aldrich,37%HCHO和15%CH3OH水溶液)为前驱体。Cu(hfac)前驱体装在密封的不锈钢瓶中,加热到75℃以获得足够的蒸汽压。采用球形氧化铝粉(Nanodur,99.5%Alfa Aesa)作为载体。将样品在300℃下进行5个Cu ALD循环得到9.3nm的Cu/Al2O3纳米颗粒催化剂。The 9.3nm Cu/Al 2 O 3 nanoparticle catalyst was prepared by ALD method. Spherical alumina powder (Nanodur, 99.5% Alfa Aesar) was used as a carrier, copper (II) hexafluoroacetylacetonate hydrate (Cu(hfac), Aladdin Industrial corporation 98%), and formalin (Aldrich, 37% HCHO and 15% CH 3 OH in water) as precursors. The Cu(hfac) precursor was packed in a sealed stainless steel bottle and heated to 75 °C to obtain sufficient vapor pressure. Spherical alumina powder (Nanodur, 99.5% Alfa Aesa) was used as support. The sample was subjected to 5 Cu ALD cycles at 300°C to obtain a 9.3 nm Cu/Al 2 O 3 nanoparticle catalyst.
详细内容参考文献Copper Catalysts in Semi-Hydrogenation of Acetylene:From Single Atoms to Nanoparticles。For details, refer to Copper Catalysts in Semi-Hydrogenation of Acetylene: From Single Atoms to Nanoparticles.
对比实施例3Comparative Example 3
PdAg/MgAl-MMO催化剂的制备。Preparation of PdAg/MgAl-MMO catalyst.
将浓度为1mol/L Na2CO3及NaOH混合溶液滴加到含有560μL 36.3mmol/LNa2PdCl4、400μL 50mmol/L AgNO3和MgAl-MMO的混合悬浮液中直到pH值为9,60℃下充分搅拌9小时。用去离子水离心洗涤后置于120℃烘箱中烘干12小时,然后在550℃下还原4h,即获得PdAg/MgAl-MMO催化剂(理论负载量为1.0wt.%)。Add the mixed solution of 1mol/L Na 2 CO 3 and NaOH dropwise to the mixed suspension containing 560 μL 36.3 mmol/L Na 2 PdCl 4 , 400 μL 50 mmol/L AgNO 3 and MgAl-MMO until the pH value is 9, 60°C Under vigorous stirring for 9 hours. Centrifugal washing with deionized water, drying in an oven at 120°C for 12 hours, and then reducing at 550°C for 4 hours to obtain a PdAg/MgAl-MMO catalyst (theoretical loading is 1.0wt.%).
实验所需试剂及MgAl-MMO载体的制备参考刘雅楠、贺宇飞等人发表的文章《复合金属氧化物负载双金属PdAg催化剂制备及其乙炔选择性加氢性能研究》。For the preparation of the reagents required for the experiment and the MgAl-MMO carrier, please refer to the article "Preparation of Composite Metal Oxide Supported Bimetallic PdAg Catalyst and Its Selective Hydrogenation Performance of Acetylene" published by Liu Yanan, He Yufei and others.
<催化剂活性及选择性试验><Catalyst activity and selectivity test>
将实施例1–6和对比例1–3中制得的催化剂按照下面方法进行催化剂活性及选择性评价:Catalysts prepared in Examples 1-6 and Comparative Examples 1-3 are carried out in accordance with the following method for catalyst activity and selectivity evaluation:
1)取适量催化剂置于小型石英管反应器,将石英管反应器放置于可控温的管式加热炉中;1) Take an appropriate amount of catalyst and place it in a small quartz tube reactor, and place the quartz tube reactor in a temperature-controllable tubular heating furnace;
2)向石英管反应器内通入纯H2,并在120℃条件下还原样品1h,还原气流速为10mL/min;2) Pass pure H 2 into the quartz tube reactor, and reduce the sample at 120°C for 1 hour, and the reducing gas flow rate is 10mL/min;
3)还原后,向石英管反应器内通入反应气体,在一定温度下进行反应。其中,反应气体组成为(体积分数):0.33%乙炔,0.66%氢气,33%乙烯,余量为氮气,氢炔比为20:1,反应气体的流速50mL/min,反应压力为常压。3) After the reduction, the reaction gas is introduced into the quartz tube reactor, and the reaction is carried out at a certain temperature. Wherein, the reaction gas composition is (volume fraction): 0.33% acetylene, 0.66% hydrogen, 33% ethylene, the balance is nitrogen, the hydrogen-alkyne ratio is 20:1, the flow rate of the reaction gas is 50mL/min, and the reaction pressure is normal pressure.
4)反应气体出口接气相色谱在线检测。4) The reaction gas outlet is connected to gas chromatography for online detection.
<催化剂活性及选择性分析><Catalyst activity and selectivity analysis>
负载型金属催化剂对乙炔进行选择性加氢的结果如下:The results of the selective hydrogenation of acetylene over supported metal catalysts are as follows:
表1Table 1
表中涉及催化剂均为钯基催化剂。通过表1可以看出:在反应温度为70℃时,三款单元子催化剂(实施例1–3,6)的选择性均明显优于对比实施例3。虽然表面看,对比实施例3催化剂用量为10mg,实施例1–3,6催化剂用量为30mg,但前者钯载量为1%,后四者的钯载量仅为0.1%。由此可知,实施例1–3,6单原子催化剂的活性也明显优于对比实施例3。The catalysts involved in the table are all palladium-based catalysts. It can be seen from Table 1 that when the reaction temperature is 70°C, the selectivities of the three unit catalysts (Examples 1-3, 6) are significantly better than those of Comparative Example 3. Although on the surface, the amount of catalyst used in Comparative Example 3 is 10 mg, and the amount of catalyst used in Examples 1-3, 6 is 30 mg, but the palladium loading of the former is 1%, and the palladium loading of the latter four is only 0.1%. It can be seen that the activity of the single-atom catalysts of Examples 1-3, 6 is also significantly better than that of Comparative Example 3.
表2Table 2
表2涉及催化剂均为Ni基催化剂。通过表2可以看出:实施例4的单原子催化剂选择性及活性均明显优于对比实施例1。The catalysts involved in Table 2 are all Ni-based catalysts. It can be seen from Table 2 that the selectivity and activity of the single-atom catalyst in Example 4 are significantly better than those in Comparative Example 1.
表3table 3
表3涉及催化剂均为Cu基催化剂。通过表3可以看出:实施例5的单原子催化剂选择性及活性均明显优于对比实施例2。The catalysts involved in Table 3 are all Cu-based catalysts. It can be seen from Table 3 that the selectivity and activity of the single-atom catalyst in Example 5 are significantly better than those in Comparative Example 2.
<稳定性测试分析><Stability test analysis>
如图3所示为实施例1所制催化剂与对比实施例3所制催化剂在70℃下长时间稳定性测试试验数据曲线图,As shown in Fig. 3, it is the long-term stability test test data curve chart at 70 ℃ for the catalyst prepared in Example 1 and the catalyst prepared in Comparative Example 3,
根据图3可以看出,实施例1所制负载型钯基单原子催化剂的转化率始终接近或等于100%,选择性在90%左右,并没有随着试验时间的增加而衰减,稳定性好。As can be seen from Figure 3, the conversion rate of the supported palladium-based single-atom catalyst prepared in Example 1 is always close to or equal to 100%, the selectivity is about 90%, and it does not decay with the increase of the test time, and the stability is good .
而对比实施例3中所制得的PdAg/MgAl-MMO催化剂,在12–19h时转化率70%左右,随着试验时间的增加,从19h开设即呈现衰减趋势,在实验进行至24h时,转化率仅为60%。对比实施例3中所制得催化剂的选择性同样随着实验时间的增加而呈衰减趋势,在12–18h时转化率70%左右,试验进行至24h时,转化率仅为60%。The PdAg/MgAl-MMO catalyst prepared in Comparative Example 3 has a conversion rate of about 70% at 12-19h, and as the test time increases, it will show a decaying trend from 19h, and when the experiment is carried out to 24h, The conversion rate is only 60%. The selectivity of the catalyst prepared in Comparative Example 3 also showed a decreasing trend with the increase of the experiment time, and the conversion rate was about 70% at 12-18 hours, and the conversion rate was only 60% when the test was carried out to 24 hours.
由此可知,本发明的制备方法所制得的催化剂可以维持较长时间的稳定性,优于现有技术所制得催化剂的稳定性性能。It can be seen that the catalyst prepared by the preparation method of the present invention can maintain stability for a long time, which is better than the stability performance of the catalyst prepared by the prior art.
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The above descriptions are only preferred embodiments of the present invention, and are not intended to limit the present invention. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of the present invention shall be included in the scope of the present invention. within the scope of protection.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310270182.3A CN116273123B (en) | 2023-03-20 | 2023-03-20 | Large-scale preparation method of supported single-atom catalyst |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310270182.3A CN116273123B (en) | 2023-03-20 | 2023-03-20 | Large-scale preparation method of supported single-atom catalyst |
Publications (2)
Publication Number | Publication Date |
---|---|
CN116273123A true CN116273123A (en) | 2023-06-23 |
CN116273123B CN116273123B (en) | 2024-08-20 |
Family
ID=86830176
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202310270182.3A Active CN116273123B (en) | 2023-03-20 | 2023-03-20 | Large-scale preparation method of supported single-atom catalyst |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN116273123B (en) |
Citations (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4234455A (en) * | 1979-04-09 | 1980-11-18 | Uop Inc. | Catalyst preparation |
CN1647858A (en) * | 2004-12-01 | 2005-08-03 | 天津大学 | Method for Reducing Supported Metal Catalysts Using Low Temperature Plasma |
CN103566935A (en) * | 2013-01-08 | 2014-02-12 | 湖南大学 | Preparation method of monatomic dispersion catalyst with high catalytic performance |
CN103769163A (en) * | 2014-01-09 | 2014-05-07 | 大连大学 | Method for preparing load type double-metal catalyst by reducing atmospheric cold plasmas |
JP2015229123A (en) * | 2014-06-03 | 2015-12-21 | 国立大学法人九州工業大学 | Metal-supporting material, method for manufacturing metal-supporting material, and method for manufacturing catalyst |
US20180044805A1 (en) * | 2015-02-16 | 2018-02-15 | Stc.Unm | Materials with Atomically Dispersed Chemical Moieties |
CN108993499A (en) * | 2018-07-19 | 2018-12-14 | 天津大学 | A kind of preparation method of the rare earth metal oxide catalyst of the monatomic Pt of load of constant temperature catalyzing degradation VOCs |
CN110694616A (en) * | 2019-10-28 | 2020-01-17 | 湖南大学 | A universal method for preparing supported metal single atoms/metal nanoparticles |
CN110911694A (en) * | 2019-11-27 | 2020-03-24 | 南方科技大学 | Method for preparing heterogeneous single-molecule electrocatalyst using metal phthalocyanine molecule-nano-carbon and its application |
CN111013576A (en) * | 2019-12-25 | 2020-04-17 | 中南大学 | A single-atom catalyst based on surface immobilization |
CN111715235A (en) * | 2019-03-19 | 2020-09-29 | 中国科学院大连化学物理研究所 | A kind of high temperature anti-loss ruthenium single-atom catalyst and its preparation and application |
CN111744522A (en) * | 2020-07-03 | 2020-10-09 | 湖南大学 | Universal preparation and application of a nitrogen-rich graphene aerogel-supported single-atom cluster catalyst based on sol-gel method |
US20210060535A1 (en) * | 2019-09-02 | 2021-03-04 | Unist (Ulsan National Institute Of Science And Technology) | Pt-N-C Based Electrochemical Catalyst for Chlorine Evolution Reaction and Production Method Thereof |
CN112916009A (en) * | 2021-01-25 | 2021-06-08 | 合肥工业大学 | Preparation method of biomass-derived porous carbon-limited-domain monoatomic metal composite material |
CN115337950A (en) * | 2022-08-23 | 2022-11-15 | 中南大学 | Preparation method of nitrogen-doped carbon-loaded high-loading transition metal monatomic catalyst |
CN115611269A (en) * | 2022-09-07 | 2023-01-17 | 中国石油大学(华东) | Graphene material modified by metal single atom, modified diaphragm for lithium-sulfur battery and preparation method thereof, and lithium-sulfur battery |
CN116832847A (en) * | 2023-06-13 | 2023-10-03 | 安徽工业技术创新研究院 | Composite photocatalyst loaded with monoatomic metal and preparation method and application thereof |
-
2023
- 2023-03-20 CN CN202310270182.3A patent/CN116273123B/en active Active
Patent Citations (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4234455A (en) * | 1979-04-09 | 1980-11-18 | Uop Inc. | Catalyst preparation |
CN1647858A (en) * | 2004-12-01 | 2005-08-03 | 天津大学 | Method for Reducing Supported Metal Catalysts Using Low Temperature Plasma |
CN103566935A (en) * | 2013-01-08 | 2014-02-12 | 湖南大学 | Preparation method of monatomic dispersion catalyst with high catalytic performance |
CN103769163A (en) * | 2014-01-09 | 2014-05-07 | 大连大学 | Method for preparing load type double-metal catalyst by reducing atmospheric cold plasmas |
JP2015229123A (en) * | 2014-06-03 | 2015-12-21 | 国立大学法人九州工業大学 | Metal-supporting material, method for manufacturing metal-supporting material, and method for manufacturing catalyst |
US20180044805A1 (en) * | 2015-02-16 | 2018-02-15 | Stc.Unm | Materials with Atomically Dispersed Chemical Moieties |
CN108993499A (en) * | 2018-07-19 | 2018-12-14 | 天津大学 | A kind of preparation method of the rare earth metal oxide catalyst of the monatomic Pt of load of constant temperature catalyzing degradation VOCs |
CN111715235A (en) * | 2019-03-19 | 2020-09-29 | 中国科学院大连化学物理研究所 | A kind of high temperature anti-loss ruthenium single-atom catalyst and its preparation and application |
US20210060535A1 (en) * | 2019-09-02 | 2021-03-04 | Unist (Ulsan National Institute Of Science And Technology) | Pt-N-C Based Electrochemical Catalyst for Chlorine Evolution Reaction and Production Method Thereof |
CN110694616A (en) * | 2019-10-28 | 2020-01-17 | 湖南大学 | A universal method for preparing supported metal single atoms/metal nanoparticles |
CN110911694A (en) * | 2019-11-27 | 2020-03-24 | 南方科技大学 | Method for preparing heterogeneous single-molecule electrocatalyst using metal phthalocyanine molecule-nano-carbon and its application |
CN111013576A (en) * | 2019-12-25 | 2020-04-17 | 中南大学 | A single-atom catalyst based on surface immobilization |
CN111744522A (en) * | 2020-07-03 | 2020-10-09 | 湖南大学 | Universal preparation and application of a nitrogen-rich graphene aerogel-supported single-atom cluster catalyst based on sol-gel method |
CN112916009A (en) * | 2021-01-25 | 2021-06-08 | 合肥工业大学 | Preparation method of biomass-derived porous carbon-limited-domain monoatomic metal composite material |
CN115337950A (en) * | 2022-08-23 | 2022-11-15 | 中南大学 | Preparation method of nitrogen-doped carbon-loaded high-loading transition metal monatomic catalyst |
CN115611269A (en) * | 2022-09-07 | 2023-01-17 | 中国石油大学(华东) | Graphene material modified by metal single atom, modified diaphragm for lithium-sulfur battery and preparation method thereof, and lithium-sulfur battery |
CN116832847A (en) * | 2023-06-13 | 2023-10-03 | 安徽工业技术创新研究院 | Composite photocatalyst loaded with monoatomic metal and preparation method and application thereof |
Non-Patent Citations (6)
Title |
---|
HONGMEI ZHENG ET AL: ""Post incorporation of Fe sites on defective carbon sponge with high accessibility to enhance oxygen reduction elecrocatalysis"", 《JOURNAL OF ALLOYS AND COMPOUNDS》, vol. 927, 2 September 2022 (2022-09-02), XP087187083, DOI: 10.1016/j.jallcom.2022.167054 * |
JIA LIU ET AL: ""Molecular engineered palladium single atom catalysts with an M-C1N3 subunit for Suzuki coupling"", 《J. MATER. CHEM. A》, vol. 9, 17 April 2021 (2021-04-17) * |
WEIJING TANG ET AL: ""Atomically dispersed metal sites stabilized on a nitrogen doped carbon carrier via N2 glow-discharge plasma"", 《CHEM. COMMUN.》, vol. 56, 1 July 2020 (2020-07-01) * |
李晓怡等: ""Cu-N/C单原子催化剂用于芳基硼酸羟基化反应"", 《化学试剂》, vol. 44, no. 2, 5 December 2021 (2021-12-05), pages 1 * |
翟梓会: ""利用模板调控金属卟啉的组装及热解制备氧还原电催化剂的研究"", 《中国博士学位论文全文数据库 工程科技Ⅰ辑》, no. 03, 15 March 2022 (2022-03-15) * |
闫晓红: ""基于有机配合物途径制备超细高分散碳载过渡金属催化剂"", 《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》, no. 01, 15 January 2019 (2019-01-15), pages 4 * |
Also Published As
Publication number | Publication date |
---|---|
CN116273123B (en) | 2024-08-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112973750B (en) | Carbon quantum dot coated metal monoatomic-carbon nitride composite material and preparation method thereof | |
CN104624160A (en) | Preparation method of thermal conduction enhanced metal organic framework gas storage material | |
CN114367286B (en) | A metal single-atom catalyst and its preparation method | |
CN111054424B (en) | A kind of monolithic catalyst containing palladium and its preparation method and use | |
CN110479248A (en) | A kind of preparation method of metal oxide supported monatomic catalyst | |
CN108704654B (en) | Nitrogen-doped carbon-inlaid non-noble metal catalyst and preparation method and application thereof | |
CN105642311A (en) | Carbon-based non-noble metal @ noble metal core-shell nano catalyst and preparation method thereof by taking MOFs (Metal-Organic Framework) as template | |
CN108404987A (en) | Method for improving catalytic efficiency of nanoparticle @ MOFs material | |
CN116173983B (en) | Hydrogenation catalyst, preparation method and application thereof, and hydrogen-absorbing composite material | |
WO2023231474A1 (en) | Catalyst for preparing olefins by dehydrogenation of light alkane and application thereof | |
CN113101964B (en) | A kind of mesoporous cerium oxide photocatalyst and its preparation method and application | |
CN114632545A (en) | A kind of ultra-stable acetylene selective hydrogenation catalyst and its preparation method and application | |
CN115957752B (en) | Active carbon supported high-dispersion bimetallic particle catalyst and preparation method and application thereof | |
CN117427691A (en) | Cu modified Ti-based MOF material and preparation method and application thereof | |
CN111111784B (en) | UiO-67 coated Co catalyst and preparation method and application thereof | |
CN112473721A (en) | PdAg/NH2-MCM-41 catalyst, preparation method and application thereof | |
CN108607576A (en) | A method of simply preparing monodisperse platinoid duplex metal nano granule | |
CN112892570B (en) | Hierarchical Porous Co-N-C Composite Material and Its Preparation Method and Application | |
CN116273123A (en) | A large-scale preparation method of a supported single-atom catalyst | |
CN116899570B (en) | Metal catalyst and preparation method and application thereof | |
CN114797928A (en) | Core-shell ZIFs pyrolysis derived porous carbon material cobalt catalyst and preparation method thereof | |
CN118022813A (en) | Cyanide-modified single-point carbon nitride catalyst and photocatalytic hydrogen production method | |
CN117718070A (en) | Difunctional Ni-Cu bimetallic catalyst, preparation method and application thereof in catalytic dehydrogenation of organic liquid | |
CN115646491B (en) | Copper oxide catalyst with high monovalent copper content carried by layered mesoporous alumina, preparation method and application thereof | |
CN107442160B (en) | A kind of preparation method of anti-sintering supported Pd-based catalytic material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |