CN116272371A - Method for preparing reverse osmosis membrane with high boric acid rejection rate by utilizing ultraviolet light modification process - Google Patents
Method for preparing reverse osmosis membrane with high boric acid rejection rate by utilizing ultraviolet light modification process Download PDFInfo
- Publication number
- CN116272371A CN116272371A CN202310251281.7A CN202310251281A CN116272371A CN 116272371 A CN116272371 A CN 116272371A CN 202310251281 A CN202310251281 A CN 202310251281A CN 116272371 A CN116272371 A CN 116272371A
- Authority
- CN
- China
- Prior art keywords
- reverse osmosis
- membrane
- osmosis membrane
- rejection rate
- boric acid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000012528 membrane Substances 0.000 title claims abstract description 142
- 238000001223 reverse osmosis Methods 0.000 title claims abstract description 81
- 238000000034 method Methods 0.000 title claims abstract description 58
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 title claims abstract description 47
- 239000004327 boric acid Substances 0.000 title claims abstract description 46
- 230000008569 process Effects 0.000 title claims abstract description 27
- 230000004048 modification Effects 0.000 title claims abstract description 16
- 238000012986 modification Methods 0.000 title claims abstract description 16
- 239000012071 phase Substances 0.000 claims abstract description 26
- PRAMZQXXPOLCIY-UHFFFAOYSA-N 2-(2-methylprop-2-enoyloxy)ethanesulfonic acid Chemical compound CC(=C)C(=O)OCCS(O)(=O)=O PRAMZQXXPOLCIY-UHFFFAOYSA-N 0.000 claims abstract description 23
- 238000012695 Interfacial polymerization Methods 0.000 claims abstract description 22
- 239000008346 aqueous phase Substances 0.000 claims abstract description 22
- LNCPIMCVTKXXOY-UHFFFAOYSA-N hexyl 2-methylprop-2-enoate Chemical compound CCCCCCOC(=O)C(C)=C LNCPIMCVTKXXOY-UHFFFAOYSA-N 0.000 claims abstract description 20
- 238000006243 chemical reaction Methods 0.000 claims abstract description 10
- 239000000654 additive Substances 0.000 claims abstract description 7
- 230000000996 additive effect Effects 0.000 claims abstract description 7
- 238000010438 heat treatment Methods 0.000 claims abstract description 4
- 239000002954 polymerization reaction product Substances 0.000 claims abstract description 3
- 239000000243 solution Substances 0.000 claims description 67
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 claims description 30
- UWCPYKQBIPYOLX-UHFFFAOYSA-N benzene-1,3,5-tricarbonyl chloride Chemical compound ClC(=O)C1=CC(C(Cl)=O)=CC(C(Cl)=O)=C1 UWCPYKQBIPYOLX-UHFFFAOYSA-N 0.000 claims description 12
- 239000007864 aqueous solution Substances 0.000 claims description 10
- PIZHFBODNLEQBL-UHFFFAOYSA-N 2,2-diethoxy-1-phenylethanone Chemical compound CCOC(OCC)C(=O)C1=CC=CC=C1 PIZHFBODNLEQBL-UHFFFAOYSA-N 0.000 claims description 8
- 238000002791 soaking Methods 0.000 claims description 4
- 239000000126 substance Substances 0.000 claims description 2
- 239000003999 initiator Substances 0.000 claims 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 abstract description 48
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 28
- 239000011780 sodium chloride Substances 0.000 abstract description 24
- 230000004907 flux Effects 0.000 abstract description 18
- 238000002360 preparation method Methods 0.000 abstract description 11
- 238000000926 separation method Methods 0.000 description 26
- 239000004952 Polyamide Substances 0.000 description 18
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 18
- 229920002647 polyamide Polymers 0.000 description 18
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 12
- 239000000047 product Substances 0.000 description 9
- WZCQRUWWHSTZEM-UHFFFAOYSA-N 1,3-phenylenediamine Chemical compound NC1=CC=CC(N)=C1 WZCQRUWWHSTZEM-UHFFFAOYSA-N 0.000 description 8
- SNRUBQQJIBEYMU-UHFFFAOYSA-N dodecane Chemical compound CCCCCCCCCCCC SNRUBQQJIBEYMU-UHFFFAOYSA-N 0.000 description 8
- 229940018564 m-phenylenediamine Drugs 0.000 description 8
- JXRGUPLJCCDGKG-UHFFFAOYSA-N 4-nitrobenzenesulfonyl chloride Chemical compound [O-][N+](=O)C1=CC=C(S(Cl)(=O)=O)C=C1 JXRGUPLJCCDGKG-UHFFFAOYSA-N 0.000 description 7
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 6
- MIOPJNTWMNEORI-UHFFFAOYSA-N camphorsulfonic acid Chemical compound C1CC2(CS(O)(=O)=O)C(=O)CC1C2(C)C MIOPJNTWMNEORI-UHFFFAOYSA-N 0.000 description 6
- 239000002131 composite material Substances 0.000 description 6
- GHVNFZFCNZKVNT-UHFFFAOYSA-N decanoic acid Chemical compound CCCCCCCCCC(O)=O GHVNFZFCNZKVNT-UHFFFAOYSA-N 0.000 description 6
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 5
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 5
- 229910052796 boron Inorganic materials 0.000 description 5
- 230000003993 interaction Effects 0.000 description 5
- 239000013535 sea water Substances 0.000 description 5
- 239000011734 sodium Substances 0.000 description 5
- 229910052708 sodium Inorganic materials 0.000 description 5
- 125000000542 sulfonic acid group Chemical group 0.000 description 5
- 238000010612 desalination reaction Methods 0.000 description 4
- -1 n-hexyl methacrylate n-hexane Chemical compound 0.000 description 4
- 238000005457 optimization Methods 0.000 description 4
- 238000006116 polymerization reaction Methods 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 description 4
- 230000008961 swelling Effects 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 239000005632 Capric acid (CAS 334-48-5) Substances 0.000 description 3
- 238000012698 light-induced step-growth polymerization Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 230000037048 polymerization activity Effects 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 2
- 239000000460 chlorine Substances 0.000 description 2
- 229910052801 chlorine Inorganic materials 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 239000003651 drinking water Substances 0.000 description 2
- 235000020188 drinking water Nutrition 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000009878 intermolecular interaction Effects 0.000 description 2
- 230000014759 maintenance of location Effects 0.000 description 2
- 229920002492 poly(sulfone) Polymers 0.000 description 2
- DAJSVUQLFFJUSX-UHFFFAOYSA-M sodium;dodecane-1-sulfonate Chemical compound [Na+].CCCCCCCCCCCCS([O-])(=O)=O DAJSVUQLFFJUSX-UHFFFAOYSA-M 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 125000000472 sulfonyl group Chemical group *S(*)(=O)=O 0.000 description 2
- 238000000108 ultra-filtration Methods 0.000 description 2
- 125000000217 alkyl group Chemical group 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000005660 chlorination reaction Methods 0.000 description 1
- 238000010502 deborylation reaction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 239000013505 freshwater Substances 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000009830 intercalation Methods 0.000 description 1
- 230000002687 intercalation Effects 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 239000003621 irrigation water Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000013341 scale-up Methods 0.000 description 1
- 239000010865 sewage Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000002351 wastewater Substances 0.000 description 1
- 230000003313 weakening effect Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D61/00—Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
- B01D61/02—Reverse osmosis; Hyperfiltration ; Nanofiltration
- B01D61/025—Reverse osmosis; Hyperfiltration
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D67/00—Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
- B01D67/0002—Organic membrane manufacture
- B01D67/0006—Organic membrane manufacture by chemical reactions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D69/00—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
- B01D69/12—Composite membranes; Ultra-thin membranes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D71/00—Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
- B01D71/06—Organic material
- B01D71/66—Polymers having sulfur in the main chain, with or without nitrogen, oxygen or carbon only
- B01D71/68—Polysulfones; Polyethersulfones
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D71/00—Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
- B01D71/06—Organic material
- B01D71/76—Macromolecular material not specifically provided for in a single one of groups B01D71/08 - B01D71/74
- B01D71/78—Graft polymers
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/44—Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
- C02F1/441—Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2323/00—Details relating to membrane preparation
- B01D2323/34—Use of radiation
- B01D2323/345—UV-treatment
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/10—Inorganic compounds
- C02F2101/108—Boron compounds
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/10—Inorganic compounds
- C02F2101/12—Halogens or halogen-containing compounds
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2103/00—Nature of the water, waste water, sewage or sludge to be treated
- C02F2103/08—Seawater, e.g. for desalination
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A20/00—Water conservation; Efficient water supply; Efficient water use
- Y02A20/124—Water desalination
- Y02A20/131—Reverse-osmosis
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Water Supply & Treatment (AREA)
- Nanotechnology (AREA)
- Manufacturing & Machinery (AREA)
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Environmental & Geological Engineering (AREA)
- Organic Chemistry (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
本发明涉及一种紫外光改性工艺制备高硼酸截留率反渗透膜的方法,将支撑膜浸润于含有2‑磺乙基甲基丙烯酸酯添加剂和紫外光引发剂的水相溶液中;将膜浸润于油相溶液中进行界面聚合反应,过程中将膜置于紫外灯下辐照;使用含有甲基丙烯酸正己酯的溶液润洗膜面,之后施加紫外光辐照;将膜置于70~90℃下热处理,制得含2‑磺乙基甲基丙烯酸酯紫外聚合反应产物以及甲基丙烯酸正己酯化学接枝的反渗透膜。此方法所制反渗透膜的H3BO3截留率从83.82%提升至92.47%,NaCl截留率从98.89%提升至99.19%。本发明的制备方法简单高效,易于实施,且能够在保证水通量的前提下,大幅提升所制膜的硼酸截留率。
The invention relates to a method for preparing a reverse osmosis membrane with a high boric acid rejection rate by an ultraviolet light modification process. The supporting membrane is soaked in an aqueous phase solution containing 2-sulfoethyl methacrylate additive and an ultraviolet photoinitiator; Immerse in the oil phase solution for interfacial polymerization reaction. During the process, place the film under ultraviolet light for irradiation; use a solution containing n-hexyl methacrylate to rinse the surface of the film, and then apply ultraviolet light irradiation; place the film at 70~ Heat treatment at 90°C to prepare a reverse osmosis membrane containing 2-sulfoethyl methacrylate ultraviolet polymerization reaction product and n-hexyl methacrylate chemically grafted. The H 3 BO 3 rejection rate of the reverse osmosis membrane prepared by this method is increased from 83.82% to 92.47%, and the NaCl rejection rate is increased from 98.89% to 99.19%. The preparation method of the invention is simple, efficient, easy to implement, and can greatly increase the boric acid rejection rate of the prepared membrane under the premise of ensuring water flux.
Description
技术领域technical field
本发明涉及一种利用紫外光改性工艺制备高硼酸截留率反渗透膜的方法,联合紫外强化界面聚合过程与紫外接枝改性两种工艺,对反渗透膜分离层主体部分与表面区域分别进行有针对性的的优化,提升反渗透膜的硼酸截留性能,属于复合反渗透膜制备领域。The invention relates to a method for preparing a reverse osmosis membrane with a high boric acid rejection rate by using an ultraviolet light modification process, combining two processes of ultraviolet enhanced interfacial polymerization and ultraviolet grafting modification, respectively for the main part and the surface area of the separation layer of the reverse osmosis membrane Targeted optimization is carried out to improve the boric acid interception performance of the reverse osmosis membrane, which belongs to the field of composite reverse osmosis membrane preparation.
背景技术Background technique
反渗透膜技术因具有稳定高效、操作条件温和以及易于集成放大的特点,已在海水淡化、废水/污水处理、食品加工、饮用水纯化等领域有着广泛的应用。其中海水淡化是反渗透膜技术最常见的应用领域。一般情况下盐水无法直接被用于人类生产生活中,需要借助适当的脱盐手段,将不可被直接利用的盐水变成可被直接利用的淡水。近年来大量研究者致力于提升反渗透膜的水渗透系数和氯化钠截留率。而对于以反渗透膜为核心的膜法海水淡化技术,为使淡化产水的水质满足我国及一些其他国家对饮用水中硼元素含量上限的规定和部分农作物灌溉用水的水质要求,反渗透膜需脱除海水中约90%以上的硼元素。因此,制备兼具高盐截留率和高硼酸截留率的反渗透膜具有重要意义。海水中,硼元素主要以硼酸(H3BO3)形式存在,然而,由于H3BO3较弱的水解能力以及较小的分子尺寸,目前常见的反渗透膜难以通过静电排斥效应与空间位阻效应实现H3BO3的有效截留,这阻碍了反渗透膜技术的进一步推广与应用。Reverse osmosis membrane technology has been widely used in seawater desalination, wastewater/sewage treatment, food processing, drinking water purification and other fields due to its characteristics of stability and high efficiency, mild operating conditions and easy integration and scale-up. Seawater desalination is the most common application field of reverse osmosis membrane technology. Under normal circumstances, salt water cannot be directly used in human production and life. It is necessary to use appropriate desalination methods to turn salt water that cannot be directly used into fresh water that can be directly used. In recent years, a large number of researchers have devoted themselves to improving the water permeability coefficient and sodium chloride rejection rate of reverse osmosis membranes. For the membrane seawater desalination technology with reverse osmosis membrane as the core, in order to make the water quality of the desalinated water meet the regulations of my country and some other countries on the upper limit of boron content in drinking water and the water quality requirements of some crop irrigation water, reverse osmosis membrane More than 90% of boron in seawater needs to be removed. Therefore, it is of great significance to prepare reverse osmosis membranes with high salt rejection and high boric acid rejection. In seawater, boron mainly exists in the form of boric acid (H 3 BO 3 ). However, due to the weak hydrolysis ability and small molecular size of H 3 BO 3 , it is difficult for the common reverse osmosis membranes to pass through the electrostatic repulsion effect and steric potential. The effective interception of H 3 BO 3 is achieved by the resistance effect, which hinders the further popularization and application of reverse osmosis membrane technology.
目前,提升反渗透膜硼酸截留率的常见方法可分为两类。一是强化反渗透膜的致密程度,从而增强硼酸分子的跨膜传质阻力;二是合理地调控硼酸分子与反渗透膜之间的相互作用。二者均能在一定程度提升反渗透膜的H3BO3截留性能,因此,将上述两种方法结合,有望能够更有效地提升反渗透膜的H3BO3截留性能。研究发现,理想的高H3BO3截留性能反渗透膜的主体除应具有致密的结构外,还应与H3BO3具有较强的相互作用,以减缓H3BO3在膜内的传递速度。同时理想的高H3BO3截留性能反渗透膜应具有非极性或弱极性的表面,以降低膜表面与原料液中含有极性基团的H3BO3的相互作用,防止H3BO3在膜面富集。Li等人利用“溶胀-嵌入-收缩”策略,将含有磺酸基团的4-硝基苯磺酰氯(NBS)嵌入到了反渗透膜的聚酰胺(PA)分离层中。首先将溶有NBS的乙醇溶液倾倒于反渗透膜表面,乙醇对PA材料具有较强的亲和力,因此能够溶胀反渗透膜PA分离层,增大分离层内PA链间隙的尺寸,在NBS进入到溶胀的分离层中后,乙醇逐渐挥发,PA链发生收缩,最终将NBS固定于膜分离层中。NBS的嵌入减小了膜分离层内PA链间隙的尺寸。此外,膜内的磺酸基团能够通过较强的分子间相互作用抑制H3BO3在膜内的快速扩散。在上述两种因素的作用下,向反渗透膜PA分离层内嵌入NBS后,反渗透膜的H3BO3截留率从82.12%提升至93.10%,NaCl截留率从99.20%提升至99.57%。(Li Y.,Wang S.,Song X.,Zhou Y.,Shen H.,Cao X.,Zhang P.,Gao C.,Highboron removal polyamide reverse osmosis membranes by swelling inducedembedding of a sulfonyl molecular plug,Journal of Membrane Science[J],2020,597:117716.)。然而,含有刚性苯环结构的NBS容易堵塞膜内部分的水传递通道,因此反渗透膜的水通量从~33.8L·m-2·h-1下降至~16.9L·m-2·h-1(原料液为32000mg/L氯化钠、5mg/L硼酸的水溶液,测试压力为5.5MPa)。Li等人利用与“溶胀-嵌入-收缩”相似的策略将含有非极性烷基链的葵酸分子嵌入到反渗透膜的PA分离层内,制备了具有高H3BO3截留性能的反渗透膜。非极性的葵酸分子嵌入反渗透膜后,膜面的极性显著降低,分离层的致密程度有所提高,从而提升了反渗透膜的H3BO3截留率(李韵浩,李艾艾,杨斌斌,余俊杰,王开珍,周勇,高从堦,溶胀嵌入脂肪酸分子制备高脱硼反渗透膜,化工学报[J],2020,71:1343-1351+1896)。在最优的制膜工艺条件下,所制反渗透膜的H3BO3截留率从47.85%提升至77.32%,NaCl截留率从90.36%提升至96.46%。然而,由于嵌入了非极性的葵酸分子,膜面的亲水性有所下降。因此,反渗透膜的水通量则从~37.6L·m-2·h-1降低至~28.0L·m-2·h-1(原料液为2000mg/L氯化钠、5mg/L硼酸的水溶液,测试压力为1.55MPa)。值得注意的是,对反渗透膜PA分离层进行溶胀可能会导致一些分子量较低的PA材料从膜分离层内溶出,进而易对膜结构造成不可修复的破坏。综上,在不损害反渗透膜产水通量的前提下,提升反渗透膜的硼酸截留率具有较大的难度。然而,本发明提供的一联合紫外光强化界面聚合过程与紫外接枝改性工艺制备高硼酸截留率反渗透膜的方法,能够在保证所制膜产水通量的同时,实现硼酸截留率的大幅提升。At present, the common methods to improve the boric acid rejection rate of reverse osmosis membrane can be divided into two categories. One is to strengthen the compactness of the reverse osmosis membrane, thereby enhancing the transmembrane mass transfer resistance of boric acid molecules; the other is to reasonably regulate the interaction between boric acid molecules and the reverse osmosis membrane. Both of them can improve the H 3 BO 3 interception performance of the reverse osmosis membrane to a certain extent. Therefore, combining the above two methods is expected to improve the H 3 BO 3 interception performance of the reverse osmosis membrane more effectively. Studies have found that the main body of an ideal reverse osmosis membrane with high H 3 BO 3 rejection performance should not only have a dense structure, but also have a strong interaction with H 3 BO 3 to slow down the transfer of H 3 BO 3 in the membrane speed. At the same time, the ideal reverse osmosis membrane with high H 3 BO 3 rejection performance should have a non-polar or weakly polar surface to reduce the interaction between the membrane surface and H 3 BO 3 containing polar groups in the raw material solution and prevent H 3 BO 3 is enriched on the membrane surface. Li et al. used the "swelling-embedding-shrinking" strategy to embed 4-nitrobenzenesulfonyl chloride (NBS) containing sulfonic acid groups into the polyamide (PA) separation layer of the reverse osmosis membrane. First, the ethanol solution dissolved in NBS is poured on the surface of the reverse osmosis membrane. Ethanol has a strong affinity for the PA material, so it can swell the PA separation layer of the reverse osmosis membrane and increase the size of the PA chain gap in the separation layer. After entering the swollen separation layer, the ethanol gradually volatilized, and the PA chains shrank, and finally the NBS was fixed in the membrane separation layer. The embedding of NBS reduces the size of the PA chain gaps within the membrane separation layer. In addition, the sulfonic acid groups in the membrane can inhibit the rapid diffusion of H 3 BO 3 in the membrane through strong intermolecular interactions. Under the influence of the above two factors, after embedding NBS into the PA separation layer of the reverse osmosis membrane, the H 3 BO 3 rejection rate of the reverse osmosis membrane increased from 82.12% to 93.10%, and the NaCl rejection rate increased from 99.20% to 99.57%. (Li Y.,Wang S.,Song X.,Zhou Y.,Shen H.,Cao X.,Zhang P.,Gao C.,Highboron removal polyamide reverse osmosis membranes by swelling induced embedding of a sulfonyl molecular plug,Journal of Membrane Science [J], 2020, 597: 117716.). However, NBS containing a rigid benzene ring structure easily blocked the water transfer channels in the inner part of the membrane, so the water flux of the reverse osmosis membrane decreased from ∼33.8 L·m −2 ·h −1 to ∼16.9 L·m −2 ·h -1 (The raw material solution is an aqueous solution of 32000mg/L sodium chloride and 5mg/L boric acid, and the test pressure is 5.5MPa). Li et al. used a strategy similar to "swelling-embedding-shrinking" to embed capric acid molecules containing non-polar alkyl chains into the PA separation layer of reverse osmosis membranes to prepare reverse osmosis membranes with high H 3 BO 3 interception performance. permeable membrane. After non-polar capric acid molecules are embedded in the reverse osmosis membrane, the polarity of the membrane surface is significantly reduced, and the density of the separation layer is improved, thereby improving the H 3 BO 3 rejection rate of the reverse osmosis membrane (Li Yunhao, Li Aiai, Yang Binbin, Yu Junjie, Wang Kaizhen, Zhou Yong, Gao Congjie, High deboronation reverse osmosis membrane prepared by swelling and embedding fatty acid molecules, Chinese Journal of Chemical Industry [J], 2020, 71:1343-1351+1896). Under the optimal membrane process conditions, the H 3 BO 3 rejection rate of the prepared reverse osmosis membrane increased from 47.85% to 77.32%, and the NaCl rejection rate increased from 90.36% to 96.46%. However, the hydrophilicity of the membrane surface decreased due to the intercalation of nonpolar capric acid molecules. Therefore, the water flux of the reverse osmosis membrane is reduced from ~37.6L·m -2 ·h -1 to ~28.0L·m -2 ·h -1 (the raw material solution is 2000mg/L sodium chloride, 5mg/L boric acid aqueous solution, the test pressure is 1.55MPa). It is worth noting that swelling the PA separation layer of the reverse osmosis membrane may cause some PA materials with low molecular weight to dissolve from the membrane separation layer, which may cause irreparable damage to the membrane structure. In summary, it is difficult to increase the boric acid rejection rate of the reverse osmosis membrane without compromising the water flux of the reverse osmosis membrane. However, the present invention provides a method for preparing a reverse osmosis membrane with a high boric acid rejection rate combined with an ultraviolet light-enhanced interfacial polymerization process and an ultraviolet grafting modification process, which can achieve a high boric acid rejection rate while ensuring the water flux of the membrane. Substantially improved.
发明内容Contents of the invention
本发明提供一种利用紫外光改性工艺制备高硼酸截留率反渗透膜的方法。该方法可在提升反渗透膜致密程度的同时,优化膜材料与硼酸分子之间的相互作用。该方法可在保证所制膜产水通量的同时提升反渗透膜的硼酸截留率和氯化钠截留率。本发明是通过下述技术方案加以实现的如图2所示:The invention provides a method for preparing a reverse osmosis membrane with a high boric acid rejection rate by using an ultraviolet light modification process. This method can optimize the interaction between the membrane material and boric acid molecules while improving the compactness of the reverse osmosis membrane. The method can improve the boric acid rejection rate and the sodium chloride rejection rate of the reverse osmosis membrane while ensuring the produced water flux of the prepared membrane. The present invention is realized through the following technical solutions as shown in Figure 2:
本发明的一种利用紫外光改性工艺制备高硼酸截留率反渗透膜的方法,包括如下过程:A method for preparing a reverse osmosis membrane with a high boric acid rejection rate using an ultraviolet light modification process of the present invention comprises the following process:
1)将支撑膜浸润于含有2-磺乙基甲基丙烯酸酯添加剂和紫外光引发剂的水相溶液中;1) soaking the supporting membrane in an aqueous phase solution containing 2-sulfoethyl methacrylate additive and ultraviolet photoinitiator;
2)将膜浸润于油相溶液中进行界面聚合反应,过程中将膜置于紫外灯下辐照;2) Immerse the membrane in the oil phase solution to carry out interfacial polymerization reaction, and irradiate the membrane under ultraviolet lamp during the process;
3)使用含有甲基丙烯酸正己酯的溶液润洗膜面,之后施加紫外光辐照;3) Rinse the film surface with a solution containing n-hexyl methacrylate, and then apply ultraviolet light irradiation;
4)将膜置于70~90℃下热处理,制得含2-磺乙基甲基丙烯酸酯紫外聚合反应产物以及甲基丙烯酸正己酯化学接枝的反渗透膜。4) heat-treating the membrane at 70-90° C. to prepare a reverse osmosis membrane containing 2-sulfoethyl methacrylate ultraviolet polymerization reaction product and n-hexyl methacrylate chemically grafted.
所述步骤1)的水相溶液中2-磺乙基甲基丙烯酸酯的质量分数为0.1%~1.5%。The mass fraction of 2-sulfoethyl methacrylate in the aqueous phase solution in the step 1) is 0.1%-1.5%.
所述步骤1)将膜浸润于水相溶液中10~90s。The step 1) soaking the membrane in the aqueous solution for 10-90s.
所述步骤1)的紫外光引发剂为2,2-二乙氧基苯乙酮,其质量分数为0.02%~0.5%。The ultraviolet photoinitiator in the step 1) is 2,2-diethoxyacetophenone, and its mass fraction is 0.02%-0.5%.
所述步骤2)的油相溶液为含有均苯三甲酰氯的正庚烷溶液,均苯三甲酰氯的质量分数为0.15%。The oil phase solution in the step 2) is a n-heptane solution containing trimesoyl chloride, and the mass fraction of trimesoyl chloride is 0.15%.
所述步骤2)将膜浸润于油相溶液中10~90s进行界面聚合反应。The step 2) immersing the membrane in the oil phase solution for 10-90s to carry out the interfacial polymerization reaction.
所述步骤3)紫外光辐照10~90s。Said step 3) irradiating with ultraviolet light for 10-90s.
所述步骤3)的含有甲基丙烯酸正己酯的溶液中甲基丙烯酸正己酯的质量分数为0.1%~8.0%。The mass fraction of n-hexyl methacrylate in the solution containing n-hexyl methacrylate in step 3) is 0.1%-8.0%.
所述步骤4)热处理3~10min。The step 4) heat treatment for 3-10 minutes.
采用上述技术方案,以聚砜超滤膜作为基底,通过含有间苯二胺的水相溶液和含有均苯三甲酰氯的正庚烷油相溶液之间的界面聚合工艺制备反渗透膜。界面聚合过程中使用的水相溶液包2-磺乙基甲基丙烯酸酯、间苯二胺、(±)-樟脑-10-磺酸、三乙胺、十二烷基磺酸钠及2,2-二乙氧基苯乙酮;油相溶液均为只含有质量浓度0.15%均苯三甲酰氯的正庚烷溶液。选用具有紫外光引发聚合活性的2-磺乙基甲基丙烯酸酯(SMA)作为水相添加剂,在紫外光强化的界面聚合过程中,利用含有磺酸基团的SMA难以扩散到油相中的界面聚合反应区深处的特点,成功将SMA聚合产物富集于PA分离层的主体部分。此方法在提升分离层主体致密程度的同时,利用磺酸基团与H3BO3较强的分子间相互作用力,强化分离层主体部分对膜内H3BO3的相互作用,减缓了H3BO3在膜内的传递速度,实现了对PA分离层主体部分的优化。By adopting the above-mentioned technical scheme, the polysulfone ultrafiltration membrane is used as a substrate, and the reverse osmosis membrane is prepared through an interfacial polymerization process between an aqueous phase solution containing m-phenylenediamine and an n-heptane oil phase solution containing trimesoyl chloride. The aqueous phase solution used in the interfacial polymerization process includes 2-sulfoethyl methacrylate, m-phenylenediamine, (±)-camphor-10-sulfonic acid, triethylamine, sodium dodecylsulfonate and 2, 2-diethoxyacetophenone; the oil phase solution is n-heptane solution containing only 0.15% trimesoyl chloride in mass concentration. 2-sulfoethyl methacrylate (SMA) with ultraviolet light-induced polymerization activity is selected as the water phase additive. During the process of ultraviolet light-enhanced interfacial polymerization, it is difficult to diffuse into the oil phase by using SMA containing sulfonic acid groups. The characteristics of the deep part of the interfacial polymerization reaction zone successfully enriched the SMA polymerization product in the main part of the PA separation layer. This method not only improves the density of the main part of the separation layer, but also utilizes the strong intermolecular interaction force between the sulfonic acid group and H 3 BO 3 to strengthen the interaction between the main part of the separation layer and the H 3 BO 3 in the membrane, and slow down the H 3 BO 3 in the membrane. 3 The transmission speed of BO 3 in the membrane realizes the optimization of the main part of the PA separation layer.
在界面聚合反应后,向润洗反渗透膜面的正己烷溶剂中添加具有紫外光引发聚合活性的甲基丙烯酸正己酯(HMA),通过紫外接枝改性工艺将含有非极性烷基链的HMA接枝到PA分离层的表面区域。此方法显著弱化了分离层表面的极性,抑制了含有极性基团的H3BO3在膜表面富集,实现了对PA分离层表面区域的优化。After the interfacial polymerization reaction, add n-hexyl methacrylate (HMA) with ultraviolet light-induced polymerization activity to the n-hexane solvent that rinses the surface of the reverse osmosis membrane. The HMA is grafted onto the surface area of the PA separation layer. This method significantly weakens the polarity of the surface of the separation layer, inhibits the enrichment of H 3 BO 3 containing polar groups on the membrane surface, and realizes the optimization of the surface area of the PA separation layer.
联合上述策略,制备出了主体与表面均得到优化的反渗透膜,此方法所制反渗透膜的H3BO3截留率从83.82%提升至92.47%,NaCl截留率从98.89%提升至99.19%。(原料液为含有32000mg/L的氯化钠和5mg/L硼的水溶液,操作压力为5.50MPa,测试温度为25℃)。本发明的一种利用紫外光改性工艺制备高硼酸截留率反渗透膜的方法能够在不损害反渗透膜产水通量和氯化钠截留率的情况下,提升所制膜的硼酸截留率。本发明的优点在于:操作简单,省时高效,改性条件温和,不易对反渗透膜的分离层结构造成损害。另外,所制备的高硼酸截留率反渗透膜兼具高产水通量和高氯化钠截留率的特点。本发明不仅适用于反渗透膜的制备,也适用于开发其他基于界面聚合工艺和接枝改性工艺制备的分离膜。Combined with the above strategies, a reverse osmosis membrane with optimized body and surface was prepared. The H 3 BO 3 rejection rate of the reverse osmosis membrane prepared by this method increased from 83.82% to 92.47%, and the NaCl rejection rate increased from 98.89% to 99.19%. . (The raw material solution is an aqueous solution containing 32000mg/L of sodium chloride and 5mg/L of boron, the operating pressure is 5.50MPa, and the test temperature is 25°C). A method for preparing a reverse osmosis membrane with a high boric acid rejection rate using an ultraviolet light modification process of the present invention can improve the boric acid rejection rate of the prepared membrane without damaging the reverse osmosis membrane product water flux and sodium chloride rejection rate . The invention has the advantages of simple operation, time-saving and high-efficiency, mild modification conditions, and no damage to the separation layer structure of the reverse osmosis membrane. In addition, the prepared reverse osmosis membrane with high boric acid rejection rate has the characteristics of high product water flux and high sodium chloride rejection rate. The invention is not only applicable to the preparation of the reverse osmosis membrane, but also applicable to the development of other separation membranes prepared based on the interface polymerization process and the graft modification process.
附图说明:Description of drawings:
图1为实施例4制得的反渗透膜的表面结构扫描电镜图。FIG. 1 is a scanning electron microscope image of the surface structure of the reverse osmosis membrane prepared in Example 4.
图2为本发明中的高硼酸截留率反渗透膜的制膜流程示意图。Fig. 2 is a schematic diagram of the membrane-making process of the reverse osmosis membrane with high boric acid rejection rate in the present invention.
具体实施方式Detailed ways
下面结合具体实施例对本发明进行更进一步的详细说明,以聚砜超滤膜作为基底,通过含有间苯二胺的水相溶液和含有均苯三甲酰氯的正庚烷油相溶液之间的界面聚合工艺制备反渗透膜。界面聚合过程中使用的水相溶液包2-磺乙基甲基丙烯酸酯、间苯二胺、(±)-樟脑-10-磺酸、三乙胺、十二烷基磺酸钠及2,2-二乙氧基苯乙酮;油相溶液均为只含有质量浓度0.15%均苯三甲酰氯的正庚烷溶液。选用具有紫外光引发聚合活性的2-磺乙基甲基丙烯酸酯(SMA)作为水相添加剂,在紫外光强化的界面聚合过程中,利用含有磺酸基团的SMA难以扩散到油相中的界面聚合反应区深处的特点,将SMA聚合产物富集于PA分离层的主体部分;之后,通过紫外接枝改性工艺,将HMA化学接枝到反渗透膜分离层表面,从而弱化膜表面的极性,降低膜表面对H3BO3的吸引力,实现对分离层表面区域的优化;期望通过联合紫外强化界面聚合过程与紫外接枝改性工艺,对反渗透膜分离层主体部分与表面区域分别进行有针对性的优化,提升反渗透膜的H3BO3截留性能。The present invention is further described in detail below in conjunction with specific examples, with the polysulfone ultrafiltration membrane as the substrate, through the interface between the aqueous phase solution containing m-phenylenediamine and the n-heptane oil phase solution containing trimesoyl chloride Polymerization process to prepare reverse osmosis membrane. The aqueous phase solution used in the interfacial polymerization process includes 2-sulfoethyl methacrylate, m-phenylenediamine, (±)-camphor-10-sulfonic acid, triethylamine, sodium dodecylsulfonate and 2, 2-diethoxyacetophenone; the oil phase solution is n-heptane solution containing only 0.15% trimesoyl chloride in mass concentration. 2-sulfoethyl methacrylate (SMA) with ultraviolet light-induced polymerization activity is selected as the water phase additive. During the process of ultraviolet light-enhanced interfacial polymerization, it is difficult to diffuse into the oil phase by using SMA containing sulfonic acid groups. The characteristics of the deep part of the interfacial polymerization reaction zone enrich the SMA polymerization product in the main part of the PA separation layer; after that, through the ultraviolet grafting modification process, HMA is chemically grafted to the surface of the reverse osmosis membrane separation layer, thereby weakening the membrane surface The polarity of the membrane surface reduces the attraction of H 3 BO 3 on the surface of the membrane to optimize the surface area of the separation layer; it is expected that the main part of the separation layer of the reverse osmosis membrane and the The surface area is optimized separately to improve the H 3 BO 3 interception performance of the reverse osmosis membrane.
实施例1Example 1
1)配制含有质量分数为0.20%2-磺乙基甲基丙烯酸酯、3.0%间苯二胺、3.9%(±)-樟脑-10-磺酸、1.9%三乙胺、0.15%十二烷基磺酸钠及0.02%2,2-二乙氧基苯乙酮的水相溶液,将支撑膜浸润于水相溶液中10s后去除水相溶液,干燥;1) The preparation contains 0.20% 2-sulfoethyl methacrylate, 3.0% m-phenylenediamine, 3.9% (±)-camphor-10-sulfonic acid, 1.9% triethylamine, 0.15% dodecane An aqueous phase solution of sodium sulfonate and 0.02% 2,2-diethoxyacetophenone, soak the support membrane in the aqueous phase solution for 10 seconds, remove the aqueous phase solution, and dry;
2)配制含有质量浓度0.15%均苯三甲酰氯的正庚烷油相溶液,再将步骤1)得到的膜浸润于油相溶液中10s进行界面聚合反应,此过程中将膜置于紫外灯下辐照;2) Prepare a n-heptane oil phase solution containing a mass concentration of 0.15% trimesoyl chloride, then immerse the film obtained in step 1) in the oil phase solution for 10s to carry out interfacial polymerization reaction, during which the film is placed under a UV lamp irradiation;
3)配制含有质量浓度0.1%甲基丙烯酸正己酯的正己烷溶液,然后使用0.1wt%甲基丙烯酸正己酯的正己烷溶液润洗膜面,之后施加10s的紫外光辐照;3) Prepare a n-hexane solution containing 0.1% n-hexyl methacrylate in mass concentration, then use 0.1 wt% n-hexyl methacrylate n-hexane solution to rinse the membrane surface, and then apply 10s of ultraviolet light irradiation;
4)将步骤3)得到的膜置于70℃下热处理3min,制得有高硼酸截留率的复合反渗透膜。4) heat-treat the membrane obtained in step 3) at 70° C. for 3 minutes to prepare a composite reverse osmosis membrane with high boric acid rejection.
在5.50MPa、25℃下利用含有5mg/L的硼酸分子和32000mg/L的氯化钠水溶液测试,得到所制反渗透膜的产水通量低于44.69L/(m2·h),氯化钠截留率超过98.89%,硼酸截留率超过83.82%。Tested at 5.50MPa and 25°C by using 5mg/L boric acid molecules and 32000mg/L sodium chloride aqueous solution, the product water flux of the prepared reverse osmosis membrane was lower than 44.69L/(m 2 ·h), chlorine The sodium chloride rejection rate exceeds 98.89%, and the boric acid rejection rate exceeds 83.82%.
实施例2Example 2
1)配制含有质量分数为1.5%2-磺乙基甲基丙烯酸酯、3.0%间苯二胺、3.9%(±)-樟脑-10-磺酸、1.9%三乙胺、0.15%十二烷基磺酸钠及0.5%2,2-二乙氧基苯乙酮的水相溶液,将支撑膜浸润于水相溶液中90s后去除水相溶液,干燥;1) The preparation contains 1.5% 2-sulfoethyl methacrylate, 3.0% m-phenylenediamine, 3.9% (±)-camphor-10-sulfonic acid, 1.9% triethylamine, 0.15% dodecane An aqueous phase solution of sodium sulfonate and 0.5% 2,2-diethoxyacetophenone, soak the support membrane in the aqueous phase solution for 90 seconds, remove the aqueous phase solution, and dry;
2)配制含有质量浓度0.15%均苯三甲酰氯的正庚烷油相溶液,再将步骤1)得到的膜浸润于油相溶液中90s进行界面聚合反应,此过程中将膜置于紫外灯下辐照;2) Prepare an n-heptane oil phase solution containing a mass concentration of 0.15% trimesoyl chloride, then immerse the film obtained in step 1) in the oil phase solution for 90 seconds to carry out interfacial polymerization, during which the film is placed under a UV lamp irradiation;
3)配制含有质量浓度8%甲基丙烯酸正己酯的正己烷溶液,然后使用8wt%甲基丙烯酸正己酯的正己烷溶液润洗膜面,之后施加90s的紫外光辐照;3) Prepare a n-hexane solution containing 8% n-hexyl methacrylate in mass concentration, then use 8wt% n-hexyl methacrylate n-hexane solution to rinse the film surface, and then apply 90s of ultraviolet light irradiation;
4)将步骤3)得到的膜置于90℃下热处理10min,制得有高硼酸截留率的复合反渗透膜。4) heat-treat the membrane obtained in step 3) at 90° C. for 10 minutes to prepare a composite reverse osmosis membrane with high boric acid rejection.
在5.50MPa、25℃下利用含有5mg/L的硼酸分子和32000mg/L的氯化钠水溶液测试,得到所制反渗透膜的产水通量低于40.95L/(m2·h),氯化钠截留率低于99.19%,硼酸截留率低于92.47%。Tested at 5.50MPa and 25°C by using 5mg/L boric acid molecules and 32000mg/L sodium chloride aqueous solution, the product water flux of the prepared reverse osmosis membrane was lower than 40.95L/(m 2 ·h), chlorine The sodium chloride rejection rate is lower than 99.19%, and the boric acid rejection rate is lower than 92.47%.
实施例3Example 3
1)配制含有质量分数为0.10%2-磺乙基甲基丙烯酸酯、3.0%间苯二胺、3.9%(±)-樟脑-10-磺酸、1.9%三乙胺、0.15%十二烷基磺酸钠及0.04%2,2-二乙氧基苯乙酮的水相溶液,将支撑膜浸润于水相溶液中60s后去除水相溶液,干燥;1) Preparation containing 0.10% 2-sulfoethyl methacrylate, 3.0% m-phenylenediamine, 3.9% (±)-camphor-10-sulfonic acid, 1.9% triethylamine, 0.15% dodecane An aqueous phase solution of sodium sulfonate and 0.04% 2,2-diethoxyacetophenone, soak the support membrane in the aqueous phase solution for 60 seconds, remove the aqueous phase solution, and dry;
2)配制含有质量浓度0.15%均苯三甲酰氯的正庚烷油相溶液,再将步骤1)得到的膜浸润于油相溶液中60s进行界面聚合反应,此过程中将膜置于紫外灯下辐照;2) Prepare a n-heptane oil phase solution containing a mass concentration of 0.15% trimesoyl chloride, then immerse the film obtained in step 1) in the oil phase solution for 60 seconds to carry out interfacial polymerization reaction, during which the film is placed under a UV lamp irradiation;
3)配制含有质量浓度6%甲基丙烯酸正己酯的正己烷溶液,然后使用6wt%甲基丙烯酸正己酯的正己烷溶液润洗膜面,之后施加60s的紫外光辐照;3) Prepare a n-hexane solution containing 6% n-hexyl methacrylate in mass concentration, then use 6wt% n-hexyl methacrylate n-hexane solution to rinse the film surface, and then apply 60s of ultraviolet light irradiation;
4)将步骤3)得到的膜置于80℃下热处理5min,制得有高硼酸截留率的复合反渗透膜。4) heat-treat the membrane obtained in step 3) at 80° C. for 5 minutes to prepare a composite reverse osmosis membrane with high boric acid rejection.
在5.50MPa、25℃下利用含有5mg/L的硼酸分子和32000mg/L的氯化钠水溶液测试,得到所制反渗透膜的产水通量超过38.64L/(m2·h),氯化钠截留率超过98.89%,硼酸截留率超过83.82%。At 5.50MPa and 25°C, using 5mg/L boric acid molecules and 32000mg/L sodium chloride aqueous solution to test, the product water flux of the prepared reverse osmosis membrane is more than 38.64L/(m 2 ·h), chlorination The sodium rejection rate exceeds 98.89%, and the boric acid rejection rate exceeds 83.82%.
实施例4Example 4
1)配制含有质量分数为0.20%2-磺乙基甲基丙烯酸酯、3.0%间苯二胺、3.9%(±)-樟脑-10-磺酸、1.9%三乙胺、0.15%十二烷基磺酸钠及0.02%2,2-二乙氧基苯乙酮的水相溶液;将支撑膜浸润于水相溶液中60s后去除水相溶液,干燥;1) The preparation contains 0.20% 2-sulfoethyl methacrylate, 3.0% m-phenylenediamine, 3.9% (±)-camphor-10-sulfonic acid, 1.9% triethylamine, 0.15% dodecane An aqueous phase solution of sodium sulfonate and 0.02% 2,2-diethoxyacetophenone; soak the support membrane in the aqueous phase solution for 60 seconds, remove the aqueous phase solution, and dry;
2)配制含有质量浓度0.15%均苯三甲酰氯的正庚烷油相溶液,再将步骤1)得到的膜浸润于油相溶液中60s进行界面聚合反应,此过程中将膜置于紫外灯下辐照;2) Prepare a n-heptane oil phase solution containing a mass concentration of 0.15% trimesoyl chloride, then immerse the film obtained in step 1) in the oil phase solution for 60 seconds to carry out interfacial polymerization reaction, during which the film is placed under a UV lamp irradiation;
3)配制含有质量浓度6%甲基丙烯酸正己酯的正己烷溶液,然后使用6wt%甲基丙烯酸正己酯的正己烷溶液润洗膜面,之后施加60s的紫外光辐照;3) Prepare a n-hexane solution containing 6% n-hexyl methacrylate in mass concentration, then use 6wt% n-hexyl methacrylate n-hexane solution to rinse the film surface, and then apply 60s of ultraviolet light irradiation;
4)将步骤3)得到的膜置于80℃下热处理5min,制得有高硼酸截留率的复合反渗透膜。所制膜表面的电镜图片如图1所示。4) heat-treat the membrane obtained in step 3) at 80° C. for 5 minutes to prepare a composite reverse osmosis membrane with high boric acid rejection. The electron microscope pictures of the prepared film surface are shown in Fig. 1 .
在5.50MPa、25℃下利用含有5mg/L的硼酸分子和32000mg/L的氯化钠水溶液测试,得到所制反渗透膜的产水通量、氯化钠截留率和硼酸截留率分别为40.95L/(m2·h)、99.19%和92.47%。Tested at 5.50MPa and 25°C by using 5mg/L boric acid molecules and 32000mg/L sodium chloride aqueous solution, the product water flux, sodium chloride rejection rate and boric acid rejection rate of the prepared reverse osmosis membrane were respectively 40.95 L/(m 2 ·h), 99.19% and 92.47%.
对比例comparative example
Li等人(Li Y.,Wang S.,Song X.,Zhou Y.,Shen H.,Cao X.,Zhang P.,Gao C.,High boron removal polyamide reverse osmosis membranes by swelling inducedembedding of a sulfonyl molecular plug,Journal of Membrane Science[J],2020,597:117716.)所制备的反渗透膜在5.50MPa、25℃下利用含有5mg/L的硼酸分子和32000mg/L的氯化钠水溶液测试,得到所制反渗透膜的产水通量、氯化钠截留率和硼酸截留率分别为16.90L/(m2·h)、99.57%和93.10%。Li et al. (Li Y., Wang S., Song X., Zhou Y., Shen H., Cao X., Zhang P., Gao C., High boron removal polyamide reverse osmosis membranes by swelling induced embedding of a sulfonyl molecular plug, Journal of Membrane Science[J],2020,597:117716.) The prepared reverse osmosis membrane was tested at 5.50MPa and 25°C with an aqueous sodium chloride solution containing 5mg/L of boric acid molecules and 32000mg/L, and obtained The product water flux, sodium chloride rejection rate and boric acid rejection rate of the prepared reverse osmosis membrane were 16.90L/(m 2 ·h), 99.57% and 93.10%, respectively.
实施例1~4采用本发明的方法,制备出了主体与表面均得到优化的反渗透膜,在小幅度损失水通量的前提下,氯化钠截留率和硼酸截留率均得到提高;其中添加剂的最优浓度为0.2wt%,甲基丙烯酸正己酯在正己烷溶液中的最优浓度为6.0wt%,如实施例4所示,该条件下所制反渗透膜的产水通量、氯化钠截留率和硼酸截留率分别为40.95L/(m2·h)、99.19%和92.47%。与对比例相比,两者均具有较高的氯化钠截留率和硼酸截留率,但实验例4具有更优异的水通量。综上所述,本发明联合紫外光强化界面聚合过程与紫外接枝改性工艺所制备的高硼酸截留率复合反渗透膜具有更优异的水通量、氯化钠截留率和硼酸截留率。Embodiments 1 to 4 adopt the method of the present invention to prepare a reverse osmosis membrane whose main body and surface are optimized, and under the premise of a small loss of water flux, the retention rate of sodium chloride and the retention rate of boric acid are all improved; wherein The optimum concentration of additive is 0.2wt%, and the optimum concentration of n-hexyl methacrylate in n-hexane solution is 6.0wt%, as shown in Example 4, the produced water flux of the prepared reverse osmosis membrane under this condition, The rejection rates of sodium chloride and boric acid were 40.95L/(m 2 ·h), 99.19% and 92.47%, respectively. Compared with the comparative example, both have higher sodium chloride rejection rate and boric acid rejection rate, but Experimental Example 4 has more excellent water flux. In summary, the composite reverse osmosis membrane with high boric acid rejection rate prepared by the combination of ultraviolet light-enhanced interfacial polymerization process and ultraviolet grafting modification process has more excellent water flux, sodium chloride rejection rate and boric acid rejection rate.
本发明涉及一种紫外光改性工艺制备高硼酸截留率反渗透膜的方法,联合紫外强化界面聚合过程与紫外接枝改性两种工艺,对反渗透膜分离层主体部分与表面区域分别进行有针对性的的优化;配制同时含有2-磺乙基甲基丙烯酸酯添加剂和紫外光引发剂的水相溶液;将支撑膜浸润于上述水相溶液以使支撑膜被充分浸润;除去膜面多余水相溶液后,将膜浸润于油相溶液以进行界面聚合反应,并对膜面施加紫外光辐照;除去膜面多余的油相溶液,使用含有甲基丙烯酸正己酯的溶液润洗膜面,并在润洗后对膜面施加紫外光辐照。对膜进行干燥后,制得具有高硼酸截留率的反渗透膜。本发明的制备方法简单高效,易于实施,且能够在保证水通量的前提下,大幅提升所制膜的硼酸截留率。The invention relates to a method for preparing a reverse osmosis membrane with a high boric acid rejection rate by an ultraviolet light modification process, which combines two processes of ultraviolet enhanced interfacial polymerization and ultraviolet graft modification to separately carry out the main part and the surface area of the separation layer of the reverse osmosis membrane Targeted optimization; preparation of an aqueous phase solution containing both 2-sulfoethyl methacrylate additive and UV photoinitiator; soaking the support membrane in the above aqueous phase solution to fully infiltrate the support membrane; remove the membrane surface After the excess water phase solution, soak the membrane in the oil phase solution for interfacial polymerization, and apply ultraviolet light to the membrane surface; remove the excess oil phase solution on the membrane surface, and rinse the membrane with a solution containing n-hexyl methacrylate After rinsing, UV radiation was applied to the membrane surface. After the membrane is dried, a reverse osmosis membrane with high boric acid rejection is obtained. The preparation method of the invention is simple, efficient, easy to implement, and can greatly improve the boric acid rejection rate of the prepared membrane under the premise of ensuring water flux.
本发明公开和提出的一种利用紫外光改性工艺制备高硼酸截留率反渗透膜的方法,本领域技术人员可通过借鉴本文内容,适当改变条件路线等环节实现,尽管本发明的方法和制备技术已通过较佳实施例子进行了描述,相关技术人员明显能在不脱离本发明内容、精神和范围内对本文所述的方法和技术路线进行改动或重新组合,来实现最终的制备技术。特别需要指出的是,所有相类似的替换和改动对本领域技术人员来说是显而易见的,他们都被视为包括在本发明精神、范围和内容中。A method for preparing a reverse osmosis membrane with a high boric acid rejection rate disclosed and proposed by the present invention can be realized by those skilled in the art by referring to the content of this article and appropriately changing the conditions and routes. Although the method and preparation of the present invention The technology has been described through preferred implementation examples, and it is obvious that those skilled in the art can modify or recombine the methods and technical routes described herein without departing from the content, spirit and scope of the present invention to realize the final preparation technology. In particular, it should be pointed out that all similar substitutions and modifications will be obvious to those skilled in the art, and they are all considered to be included in the spirit, scope and content of the present invention.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310251281.7A CN116272371A (en) | 2023-03-15 | 2023-03-15 | Method for preparing reverse osmosis membrane with high boric acid rejection rate by utilizing ultraviolet light modification process |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310251281.7A CN116272371A (en) | 2023-03-15 | 2023-03-15 | Method for preparing reverse osmosis membrane with high boric acid rejection rate by utilizing ultraviolet light modification process |
Publications (1)
Publication Number | Publication Date |
---|---|
CN116272371A true CN116272371A (en) | 2023-06-23 |
Family
ID=86800947
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202310251281.7A Pending CN116272371A (en) | 2023-03-15 | 2023-03-15 | Method for preparing reverse osmosis membrane with high boric acid rejection rate by utilizing ultraviolet light modification process |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN116272371A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117244414A (en) * | 2023-09-21 | 2023-12-19 | 苏州苏瑞膜纳米科技有限公司 | Preparation method for preparing separation membrane by utilizing radiation curing to realize rapid drying |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102127242A (en) * | 2010-01-13 | 2011-07-20 | 武少禹 | Method for improving performance of composite antiosmosis membrane |
CN106471405A (en) * | 2014-06-30 | 2017-03-01 | 株式会社钟化 | Optical resin compositionss and film |
CN106823865A (en) * | 2017-02-23 | 2017-06-13 | 天津大学 | A kind of aromatic polyamide composite reverse osmosis membrane and preparation method for being grafted carbon fluorine class material and aminoglycoside antibiotics |
CN107983175A (en) * | 2017-12-01 | 2018-05-04 | 天津大学 | Use the high throughput aromatic polyamides reverse osmosis membrane and preparation method of additive |
US20210261445A1 (en) * | 2018-06-20 | 2021-08-26 | Organo Corporation | Method of removing boron from water to be treated, boron-removing system, ultrapure water production system, and method of measuring concentration of boron |
CN114247302A (en) * | 2021-12-14 | 2022-03-29 | 天津大学 | Polyamide composite reverse osmosis membrane with high permeation selectivity and tolerance and preparation method thereof |
-
2023
- 2023-03-15 CN CN202310251281.7A patent/CN116272371A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102127242A (en) * | 2010-01-13 | 2011-07-20 | 武少禹 | Method for improving performance of composite antiosmosis membrane |
CN106471405A (en) * | 2014-06-30 | 2017-03-01 | 株式会社钟化 | Optical resin compositionss and film |
CN106823865A (en) * | 2017-02-23 | 2017-06-13 | 天津大学 | A kind of aromatic polyamide composite reverse osmosis membrane and preparation method for being grafted carbon fluorine class material and aminoglycoside antibiotics |
CN107983175A (en) * | 2017-12-01 | 2018-05-04 | 天津大学 | Use the high throughput aromatic polyamides reverse osmosis membrane and preparation method of additive |
US20210261445A1 (en) * | 2018-06-20 | 2021-08-26 | Organo Corporation | Method of removing boron from water to be treated, boron-removing system, ultrapure water production system, and method of measuring concentration of boron |
CN114247302A (en) * | 2021-12-14 | 2022-03-29 | 天津大学 | Polyamide composite reverse osmosis membrane with high permeation selectivity and tolerance and preparation method thereof |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117244414A (en) * | 2023-09-21 | 2023-12-19 | 苏州苏瑞膜纳米科技有限公司 | Preparation method for preparing separation membrane by utilizing radiation curing to realize rapid drying |
CN117244414B (en) * | 2023-09-21 | 2024-05-17 | 苏州苏瑞膜纳米科技有限公司 | Preparation method for preparing separation membrane by utilizing radiation curing to realize rapid drying |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100345616C (en) | Polymer microporous modification by corona induced grafting technology | |
CN108452684B (en) | Metal organic framework reverse osmosis membrane and preparation method thereof | |
CN103031298B (en) | Immobilized microorganism particle for degrading petroleum in water | |
CN100430118C (en) | A method for persistent hydrophilic modification of the surface of a polypropylene porous membrane | |
CN114042387B (en) | Photocatalytic degradation of dye wastewater separation multilayer composite membrane and its preparation method and application | |
CN113289498B (en) | Positively charged nanofiltration membrane and preparation method thereof | |
CN110773007B (en) | Calcium alginate hydrogel filtering membrane containing black phosphorus/graphene oxide and preparation method thereof | |
CN103418254A (en) | Method of hydrophilic modification of polyvinylidene fluoride membrane | |
CN116272371A (en) | Method for preparing reverse osmosis membrane with high boric acid rejection rate by utilizing ultraviolet light modification process | |
CN106823805A (en) | A kind of method that post processing prepares the positive impregnating polyamide composite membrane of antipollution | |
CN106348396A (en) | Method for deep treatment of antibiotics in drinking water based on multiwalled carbon nanotube modified ultrafiltration membrane | |
CN113101815B (en) | BILP-101 x-based composite membrane and preparation method and application thereof | |
CN112452159B (en) | A kind of preparation method of superhydrophilic-underwater superoleophobic microfiltration membrane | |
Yassari et al. | Nature based forward osmosis membranes: A novel approach for improved anti-fouling properties of thin film composite membranes | |
CN114259891B (en) | A kind of graphene oxide nanofiltration membrane and its preparation method and application | |
Wang et al. | Designing anti-fouling PVDF membranes by synergizing Cu2+ and sodium lignosulphonate additives | |
CN114887486A (en) | Mannitol-based polyester loose composite nanofiltration membrane and preparation method and application thereof | |
CN112619438B (en) | Methanol-resistant polyamide reverse osmosis membrane and preparation method thereof | |
CN103933878A (en) | High-flux composite reverse osmosis membrane | |
CN109304105B (en) | Forward osmosis membrane for efficient adsorption and removal of heavy metal ions, preparation method and application thereof | |
CN118454480A (en) | Virus removal membrane and preparation method thereof | |
CN114100379B (en) | Method for preparing high-flux reverse osmosis composite membrane by 4-dimethylaminopyridine-assisted cyclodextrin surface grafting | |
CN116143233B (en) | Preparation method of debrominated seawater desalination reverse osmosis membrane and reverse osmosis membrane prepared by same | |
CN110642354B (en) | Chitosan composite material, preparation method and application thereof in air floatation and collection and recovery of blue-green algae | |
CN115121232A (en) | Titanium dioxide self-cleaning film and preparation method and application thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |