CN116266469A - Data latch circuit and semiconductor memory device - Google Patents
Data latch circuit and semiconductor memory device Download PDFInfo
- Publication number
- CN116266469A CN116266469A CN202211626052.0A CN202211626052A CN116266469A CN 116266469 A CN116266469 A CN 116266469A CN 202211626052 A CN202211626052 A CN 202211626052A CN 116266469 A CN116266469 A CN 116266469A
- Authority
- CN
- China
- Prior art keywords
- transistor
- diffusion region
- gate
- data
- data latch
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 33
- 238000009792 diffusion process Methods 0.000 claims description 184
- 230000015654 memory Effects 0.000 claims description 46
- 238000003475 lamination Methods 0.000 claims description 17
- 238000013500 data storage Methods 0.000 claims description 14
- 239000000758 substrate Substances 0.000 claims description 7
- 238000010586 diagram Methods 0.000 description 49
- 229910052751 metal Inorganic materials 0.000 description 21
- 239000002184 metal Substances 0.000 description 21
- 238000012986 modification Methods 0.000 description 11
- 230000004048 modification Effects 0.000 description 11
- 230000002093 peripheral effect Effects 0.000 description 10
- 230000000052 comparative effect Effects 0.000 description 8
- 238000012545 processing Methods 0.000 description 7
- 238000006243 chemical reaction Methods 0.000 description 4
- 239000010949 copper Substances 0.000 description 4
- 238000012546 transfer Methods 0.000 description 4
- 230000006870 function Effects 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 239000010937 tungsten Substances 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- -1 boron (B) Chemical class 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C16/00—Erasable programmable read-only memories
- G11C16/02—Erasable programmable read-only memories electrically programmable
- G11C16/06—Auxiliary circuits, e.g. for writing into memory
- G11C16/26—Sensing or reading circuits; Data output circuits
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C16/00—Erasable programmable read-only memories
- G11C16/02—Erasable programmable read-only memories electrically programmable
- G11C16/06—Auxiliary circuits, e.g. for writing into memory
- G11C16/10—Programming or data input circuits
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K3/00—Circuits for generating electric pulses; Monostable, bistable or multistable circuits
- H03K3/02—Generators characterised by the type of circuit or by the means used for producing pulses
- H03K3/353—Generators characterised by the type of circuit or by the means used for producing pulses by the use, as active elements, of field-effect transistors with internal or external positive feedback
- H03K3/356—Bistable circuits
- H03K3/356017—Bistable circuits using additional transistors in the input circuit
- H03K3/356034—Bistable circuits using additional transistors in the input circuit the input circuit having a differential configuration
Landscapes
- Semiconductor Memories (AREA)
- Static Random-Access Memory (AREA)
Abstract
实施方式提供了一种能够小型化的数据锁存电路和半导体存储器件。总体上,根据一个实施方式,数据锁存电路包括第一导电型的第一晶体管和第一导电型的第二晶体管、以及第二导电型的第三晶体管和第二导电型的第四晶体管。对第三晶体管和第四晶体管进行控制,以执行第一控制动作以将数据存储在数据锁存电路中,并执行第二控制动作以读取所存储的数据。
Embodiments provide a data latch circuit and a semiconductor memory device capable of miniaturization. In general, according to one embodiment, the data latch circuit includes a first transistor of the first conductivity type, a second transistor of the first conductivity type, a third transistor of the second conductivity type, and a fourth transistor of the second conductivity type. The third transistor and the fourth transistor are controlled to perform a first control action to store data in the data latch circuit, and to perform a second control action to read the stored data.
Description
相关申请的交叉引用Cross References to Related Applications
本申请基于2021年12月16日提交的日本专利申请No.2021-204613和2022年8月30日提交的美国专利申请No.17/898868并要求享受这些申请的优先权,故以引用方式将这些申请的全部内容并入本文。This application is based on Japanese Patent Application No. 2021-204613 filed on December 16, 2021 and U.S. Patent Application No. 17/898868 filed on August 30, 2022 and claims priority from these applications, and is hereby incorporated by reference The entire contents of these applications are incorporated herein.
技术领域technical field
概括地说,本文所描述的实施方式涉及数据锁存电路和半导体存储器件。In summary, the embodiments described herein relate to data latch circuits and semiconductor memory devices.
背景技术Background technique
通过使用多层单元(MLC)和三维堆叠,闪存的比特密度不断增加。随着其比特密度的增加,外围电路的面积也增加。在外围电路中,数据锁存电路(也称为页缓冲器:pagebuffer)占据了最大的面积。当不能使数据锁存电路变小时,很难减小闪存芯片的尺寸。The bit density of flash memory continues to increase through the use of multi-level cells (MLC) and three-dimensional stacking. As its bit density increases, the area of peripheral circuits also increases. Among peripheral circuits, a data latch circuit (also called a page buffer: pagebuffer) occupies the largest area. When the data latch circuit cannot be made small, it is difficult to reduce the size of the flash memory chip.
发明内容Contents of the invention
实施方式提供了一种能够小型化的数据锁存电路和半导体存储器件。Embodiments provide a data latch circuit and a semiconductor memory device capable of miniaturization.
总体上,根据一个实施方式,数据锁存电路包括第一导电型的第一晶体管和第一导电型的第二晶体管、以及第二导电型的第三晶体管和第二导电型的第四晶体管。对第三晶体管和第四晶体管进行控制,以执行第一控制动作以将数据存储在数据锁存电路中,并执行第二控制动作以读取所存储的数据。In general, according to one embodiment, the data latch circuit includes a first transistor of the first conductivity type, a second transistor of the first conductivity type, a third transistor of the second conductivity type, and a fourth transistor of the second conductivity type. The third transistor and the fourth transistor are controlled to perform a first control action to store data in the data latch circuit, and to perform a second control action to read the stored data.
附图说明Description of drawings
图1是示出根据第一实施方式的包括数据锁存电路的半导体存储器件的示意性配置的框图。1 is a block diagram showing a schematic configuration of a semiconductor memory device including a data latch circuit according to a first embodiment.
图2是根据比较例的数据锁存电路的电路图。FIG. 2 is a circuit diagram of a data latch circuit according to a comparative example.
图3A是示出根据第一实施方式的数据锁存电路的特征的图。FIG. 3A is a diagram showing features of a data latch circuit according to the first embodiment.
图3B是根据第一实施方式的数据锁存电路的电路图。FIG. 3B is a circuit diagram of a data latch circuit according to the first embodiment.
图4A是示出根据第一实施方式的数据锁存电路的动作的图。FIG. 4A is a diagram showing the operation of the data latch circuit according to the first embodiment.
图4B是示出当图4A中的数据锁存电路读取数据、写入数据和存储数据时的字线和位线的电压的图。FIG. 4B is a graph showing voltages of word lines and bit lines when the data latch circuit in FIG. 4A reads data, writes data, and stores data.
图5是示出根据第一实施方式的半导体存储器件的存储特性的图。FIG. 5 is a graph showing memory characteristics of the semiconductor memory device according to the first embodiment.
图6是根据第一实施方式的数据锁存电路的布局图。FIG. 6 is a layout diagram of a data latch circuit according to the first embodiment.
图7是示出图6中的每一个层的堆叠位置的横截面图。FIG. 7 is a cross-sectional view showing a stacked position of each layer in FIG. 6 .
图8是具有图6中的布局布置的多个数据锁存电路位于二维方向的布局图。FIG. 8 is a layout view in which a plurality of data latch circuits having the layout arrangement in FIG. 6 are located in a two-dimensional direction.
图9A是根据第一实施方式的数据锁存电路的第一变形例的布局图。9A is a layout diagram of a first modified example of the data latch circuit according to the first embodiment.
图9B是示出将图9A中的布局布置向左或向右移动半个周期的配置的图。FIG. 9B is a diagram showing a configuration in which the layout arrangement in FIG. 9A is shifted left or right by half a period.
图10A是在第一方向和第二方向各配置多个具有图9A中的布局布置的数据锁存电路的布局图。FIG. 10A is a layout diagram in which a plurality of data latch circuits having the layout arrangement in FIG. 9A are arranged in each of a first direction and a second direction.
图10B是在第一方向和第二方向各配置多个具有图9B中的布局布置的数据锁存电路的布局图。FIG. 10B is a layout diagram in which a plurality of data latch circuits having the layout arrangement in FIG. 9B are arranged in each of a first direction and a second direction.
图11A是示出根据第二实施方式的数据锁存电路的特征的图。FIG. 11A is a diagram showing features of a data latch circuit according to the second embodiment.
图11B是根据第二实施方式的数据锁存电路的电路图。FIG. 11B is a circuit diagram of a data latch circuit according to the second embodiment.
图11C是示出当图11B中的数据锁存电路读取数据、写入数据和存储数据时的字线和位线的电压的图。FIG. 11C is a graph showing voltages of word lines and bit lines when the data latch circuit in FIG. 11B reads data, writes data, and stores data.
图12是根据第二实施方式的数据锁存电路的布局图。FIG. 12 is a layout diagram of a data latch circuit according to the second embodiment.
图13是具有图12中的布局布置的多个数据锁存电路位于二维方向的布局图。FIG. 13 is a layout view in which a plurality of data latch circuits having the layout arrangement in FIG. 12 are located in a two-dimensional direction.
图14A是根据第二实施方式的数据锁存电路的第一变形例的布局图。14A is a layout diagram of a first modification example of the data latch circuit according to the second embodiment.
图14B是第二种变形例的布局图。Fig. 14B is a layout diagram of a second modification.
图15A是在第一方向和第二方向各配置多个具有图14A中的布局布置的数据锁存电路的布局图。FIG. 15A is a layout diagram in which a plurality of data latch circuits having the layout arrangement in FIG. 14A are arranged in each of a first direction and a second direction.
图15B是在第一方向和第二方向各配置多个具有图14B中的布局布置的数据锁存电路的布局图。FIG. 15B is a layout diagram in which a plurality of data latch circuits having the layout arrangement in FIG. 14B are arranged in each of the first direction and the second direction.
图16A是示出根据第三实施方式的数据锁存电路的特征的图。FIG. 16A is a diagram showing features of a data latch circuit according to the third embodiment.
图16B是根据第三实施方式的数据锁存电路的电路图。FIG. 16B is a circuit diagram of a data latch circuit according to the third embodiment.
图16C是示出当图16B中的数据锁存电路读取数据、写入数据和存储数据时的字线、位线和控制信号的电压的图。FIG. 16C is a graph showing voltages of word lines, bit lines, and control signals when the data latch circuit in FIG. 16B reads data, writes data, and stores data.
图17是根据第三实施方式的数据锁存电路的布局图。FIG. 17 is a layout diagram of a data latch circuit according to the third embodiment.
图18是具有图17中的布局布置的多个数据锁存电路位于二维方向的布局图。FIG. 18 is a layout view in which a plurality of data latch circuits having the layout arrangement in FIG. 17 are located in a two-dimensional direction.
图19A是示出根据第四实施方式的数据锁存电路的特征的图。FIG. 19A is a diagram showing features of a data latch circuit according to the fourth embodiment.
图19B是根据第四实施方式的数据锁存电路的电路图。FIG. 19B is a circuit diagram of a data latch circuit according to the fourth embodiment.
图19C是示出当图16B中的数据锁存电路读取数据、写入数据和存储数据时的字线、位线和控制信号的电压的图。FIG. 19C is a graph showing voltages of word lines, bit lines, and control signals when the data latch circuit in FIG. 16B reads data, writes data, and stores data.
图20是根据第四实施方式的数据锁存电路的布局图。FIG. 20 is a layout diagram of a data latch circuit according to a fourth embodiment.
图21是具有图20中的布局布置的多个数据锁存电路位于二维方向的布局图。FIG. 21 is a layout view in which a plurality of data latch circuits having the layout arrangement in FIG. 20 are located in a two-dimensional direction.
具体实施方式Detailed ways
下文将参考附图,详细地描述数据锁存电路和半导体存储器件的实施方式。在以下的描述中,将主要描述数据锁存电路和半导体存储器件的主要部件。数据锁存电路和半导体存储器件可以具有附图中没有示出或本说明书中没有描述的部件和功能。以下描述并不排除附图中没有示出或本说明书中没有描述的部件或功能。Hereinafter, embodiments of a data latch circuit and a semiconductor memory device will be described in detail with reference to the accompanying drawings. In the following description, the main components of the data latch circuit and the semiconductor memory device will be mainly described. The data latch circuit and the semiconductor memory device may have components and functions not shown in the drawings or described in this specification. The following description does not exclude components or functions not shown in the drawings or described in this specification.
第一实施方式first embodiment
图1是示出根据第一实施方式的包括数据锁存电路10的半导体存储器件1的示意性配置的框图。图1中的半导体存储器件1显示了闪存的示意性配置。根据本实施方式的半导体存储器件1可以应用于除闪存之外的各种类型的半导体存储器。具体地说,根据本实施方式的半导体存储器件1可应用于诸如MRAM(磁阻随机存取存储器)之类的非易失性存储器,并且还可应用于诸如DRAM(动态随机存取存储器)和SRAM(静态随机存取存储器)之类的易失性存储器。此外,闪速存储器可以是NAND闪速存储器或NOR闪速存储器,并且根据本实施方式的半导体存储器件1可应用于NAND闪速存储器和NOR闪速存储器两者。在以下的描述中,将主要描述将根据本实施方式的半导体存储器件1应用于闪存的示例。1 is a block diagram showing a schematic configuration of a
图1中的半导体存储器件1包括多个存储器模块2、串行转换部3、I/O信号处理部4、高电压生成电路5、低电压生成电路6、同步控制部7、行控制部8和列控制部9。A
存储器模块2中的每一个包括存储单元阵列11、行解码器12、读出放大器&数据锁存部13、传输数据锁存部14和列解码器15。Each of the
存储单元阵列11具有以二维配置来布置多个串(string)的配置,其中所述多个串具有以共源共栅(cascode)连接的形式设置在其中的多个NAND闪存单元。行解码器12对行地址信号进行解码并驱动相应的字线。The
读出放大器&数据锁存部13通过位线BL将数据写入存储单元阵列11,并从存储单元阵列11中读取数据。根据本实施方式,读出放大器&数据锁存部13包括数据锁存电路(DL)10,其被配置为存储要写入存储单元阵列11的数据并存储从存储单元阵列11中读取的数据。The sense amplifier & data latch
传输数据锁存部14临时地存储要写入存储单元阵列11的数据或从存储单元阵列11中读取的数据。传输数据锁存部14还包括根据本实施方式的数据锁存电路10。The transfer data latch
列解码器15执行规定的运算处理,其包括对要写入存储单元阵列11的数据或者要从存储单元阵列11中读取的数据的解码处理。The
串行转换部3将从存储单元阵列11读取的数据转换为串行数据,并将转换后的数据提供给I/O信号处理部4。此外,串行转换部3将要写入的、从I/O信号处理部4发送的串行数据转换为并行数据,并发送给列解码器15。The
I/O信号处理部4与控制器16进行高速串行通信。高电压生成电路5提升从外部提供的电源电压VDD,从而产生高电压VPGM、VERA、VPASS等等,以便在向存储单元写入数据或者从中擦除数据时使用。The I/O
低电压生成电路6生成要在半导体存储器件1中使用的基准电压、时钟信号、低电源电压等等。The low
同步控制部7对半导体存储器件1中的每个块执行定时控制、定序控制和参数控制。The
行控制部8控制驱动每个存储单元阵列11中的字线的定时。列控制部9控制驱动每个内存单元阵列11的位线的定时。The
如上所述,根据本实施方式的数据锁存电路10设置在图1中的半导体存储器件1里的读出放大器&数据锁存部13和传输数据锁存部14中。根据本实施方式的数据锁存电路10可以设置在读出放大器&数据锁存部13和传输数据锁存部14以外的位置。As described above, the
具有图1所示的块配置的闪存是目前成本最低的非易失性存储器,通常用作各种应用中的大容量存储器。在图1所示的块配置中,除了存储单元阵列11之外的部件可以称为外围电路。数据锁存电路10占据外围电路的大部分面积。用作临时保管场所的数据锁存电路10被配置为临时地存储要写入存储单元阵列11的数据和从存储单元阵列11中读取的数据。Flash memory with the block configuration shown in Figure 1 is currently the lowest cost non-volatile memory and is commonly used as mass storage in a variety of applications. In the block configuration shown in FIG. 1, components other than the
在被配置为从平面结构改变为三维结构的闪速存储器中,通过增加每个单元的比特数量、实现多层单元(MLC)以及增加堆叠字线的数量,来提高其比特密度。这里,随着其比特密度的增加,外围电路的面积增加。In a flash memory configured to change from a planar structure to a three-dimensional structure, its bit density is increased by increasing the number of bits per cell, implementing a multi-level cell (MLC), and increasing the number of stacked word lines. Here, as its bit density increases, the area of peripheral circuits increases.
当外围电路的面积与闪存芯片的总面积之比变大时,每片晶圆的比特数减少,比特成本增加。作为减小闪存芯片面积的解决方案,提出了外围电路设置在存储单元阵列11的下方的CUA(CMOS under array:阵列下CMOS)结构和CBA(CMOS bonded array:阵列键合CMOS)结构,在CBA结构中,将设置有存储单元阵列的晶圆和设置有外围电路的晶圆键合在一起。在CUA结构和CBA结构中,当外围电路的面积大于存储单元阵列11的面积时,闪存芯片的面积也将增加。When the ratio of the area of the peripheral circuit to the total area of the flash memory chip becomes larger, the number of bits per wafer decreases and the bit cost increases. As a solution to reduce the area of the flash memory chip, a CUA (CMOS under array: CMOS under the array) structure and a CBA (CMOS bonded array: array bonded CMOS) structure in which the peripheral circuit is arranged under the
因此,根据本实施方式的半导体存储器件1的特征在于,减小了外围电路中的数据锁存电路10的面积。以下,首先,将描述根据比较例的通用数据锁存电路100的电路配置。Therefore, the
图2是根据比较例的数据锁存电路100的电路图。图2中的数据锁存电路100包括八个晶体管Q1至Q8。在这八个晶体管Q1至Q8中,四个晶体管为NMOS晶体管Q1至Q4,其余四个晶体管为PMOS晶体管Q5至Q8。FIG. 2 is a circuit diagram of a
晶体管Q1的漏极连接到晶体管Q2的栅极、晶体管Q3的漏极、晶体管Q7的漏极和晶体管Q8的栅极。晶体管Q2的漏极连接到晶体管Q1的栅极、晶体管Q4的漏极、晶体管Q7的栅极和晶体管Q8的漏极。晶体管Q1和Q2的源极连接到基准电压节点VSS(例如,接地节点)。The drain of transistor Q1 is connected to the gate of transistor Q2, the drain of transistor Q3, the drain of transistor Q7 and the gate of transistor Q8. The drain of transistor Q2 is connected to the gate of transistor Q1, the drain of transistor Q4, the gate of transistor Q7, and the drain of transistor Q8. The sources of transistors Q1 and Q2 are connected to a reference voltage node VSS (eg, a ground node).
字线WL1连接到晶体管Q3的栅极,字线WL2连接到晶体管Q4的栅极。字线WL1和WL2中只有一条变为高电平。晶体管Q3和Q4的源极连接到位线BL。Word line WL1 is connected to the gate of transistor Q3, and word line WL2 is connected to the gate of transistor Q4. Only one of the word lines WL1 and WL2 becomes high level. The sources of transistors Q3 and Q4 are connected to bit line BL.
以此方式,图2中的数据锁存电路100包括两条字线WL1和WL2以及一条位线BL。In this way, the
晶体管Q5的源极连接到电源电压节点VDD,晶体管Q5的漏极连接到晶体管Q7的源极,控制信号Vctl输入到晶体管Q5栅极。晶体管Q6的源极连接到电源电压节点VDD,晶体管Q6的漏极连接到晶体管Q8的源极,并且控制信号Vctl输入到晶体管Q7的栅极。当控制信号Vctl为低电平时,晶体管Q5和Q6都接通。在这种情况下,当字线WL1或WL2变为高电平时,节点n1和n2存储位线BL上的数据。The source of the transistor Q5 is connected to the power supply voltage node VDD, the drain of the transistor Q5 is connected to the source of the transistor Q7, and the control signal Vctl is input to the gate of the transistor Q5. The source of the transistor Q6 is connected to the power supply voltage node VDD, the drain of the transistor Q6 is connected to the source of the transistor Q8, and the control signal Vctl is input to the gate of the transistor Q7. When the control signal Vctl is at low level, both transistors Q5 and Q6 are turned on. In this case, when the word line WL1 or WL2 goes high, the nodes n1 and n2 store data on the bit line BL.
如图2中所示,根据比较例的数据锁存电路100由八个晶体管Q1至Q8形成。因此,随着数据锁存电路100的数量增加,晶体管的数量增加8的倍数,这导致半导体存储器件1的面积增加。As shown in FIG. 2, the
图3A是示出根据第一实施方式的数据锁存电路10的特征的图,图3B是根据第一实施方式的数据锁存电路10的电路图。FIG. 3A is a diagram showing features of the
如图3A中所示,根据第一实施方式的数据锁存电路10具有以下的配置:其中,从根据图2的比较例的数据锁存电路100中省略了包括晶体管Q5和Q6的第一晶体管组21、包括晶体管Q7和Q8的第二晶体管组22以及VDD。此外,根据第一实施方式的数据锁存电路10包括PMOS晶体管Q3a和Q4a,取代图2中的NMOS晶体管Q3和Q4。As shown in FIG. 3A , the
如上所述,根据第一实施方式的数据锁存电路10包括两个NMOS晶体管Q1和Q2以及两个PMOS晶体管Q3a和Q4a。As described above, the
如图3B中所示,晶体管Q1的漏极连接到晶体管Q2的栅极和晶体管Q3a的源极。该连接节点称为节点n1。晶体管Q2的漏极连接到晶体管Q1的栅极和晶体管Q4a的源极。该连接节点称为节点n2。As shown in FIG. 3B, the drain of transistor Q1 is connected to the gate of transistor Q2 and the source of transistor Q3a. This connected node is referred to as node n1. The drain of transistor Q2 is connected to the gate of transistor Q1 and the source of transistor Q4a. This connected node is referred to as node n2.
晶体管Q1和Q2的源极连接到接地节点。晶体管Q3a的栅极连接到字线WL1,晶体管Q4a的栅极连接到字线WL2。晶体管Q3a和Q4a的漏极连接到位线。The sources of transistors Q1 and Q2 are connected to the ground node. The gate of transistor Q3a is connected to word line WL1, and the gate of transistor Q4a is connected to word line WL2. The drains of transistors Q3a and Q4a are connected to the bit line.
图4A是示出根据第一实施方式的数据锁存电路10的动作的图。根据第一实施方式的数据锁存电路10执行数据写入动作、数据存储动作和数据读取动作。两条字线WL1和WL2不同时变为低电平。当字线WL1和WL2之一变为高电平时,执行数据写入动作。例如,当字线WL1为低电平时,字线WL2为高电平时,晶体管Q3a接通,晶体管Q4a关断。因此,位线BL的电压经由晶体管Q3a传输到节点n1。例如,当位线BL具有低电压时,节点n1也变为低电压,而当位线BL具有高电压时,节点n1也变高电压。节点n2变成节点n1的反相逻辑电压。晶体管Q1和Q2执行存储节点n1和n2的电位的动作。FIG. 4A is a diagram showing the operation of the
在数据存储动作中,将两条字线WL1和WL2都设置为略低于电源电压VDD的电压电平。将位线BL设置为VDD。稍低于电源电压VDD的电压电平是例如比电源电压VDD低5%至30%的电压电平。具体地说,在将数据存储在节点n1和n2期间,将晶体管Q3a和Q4a的栅极的电压电平降低以下百分比:在数据写入节点n1和n2时,晶体管Q3a和Q4a的栅极的电压电平中的较高一方的电压电平的5%至30%范围内的任何百分比。在数据存储期间将字线WL1和WL2设置为略低于电源电压VDD的电压电平的原因,是允许漏电流流过栅极分别连接到字线WL1和WL2的晶体管Q3a和Q4a。In the data storage operation, both word lines WL1 and WL2 are set to a voltage level slightly lower than the power supply voltage VDD. Set bit line BL to VDD. The voltage level slightly lower than the power supply voltage VDD is, for example, a
例如,当节点n1具有低电压时,晶体管Q1接通,节点n1的电压经由晶体管Q1存储在来自接地电压节点VSS的低电压,如图4A中的虚线箭头线y1所示。另一方面,晶体管Q2关断,从位线BL流过晶体管Q4a的漏电流将节点n2的电压存储在高电压,如图4A中的虚线箭头线y2所示。For example, when the node n1 has a low voltage, the transistor Q1 is turned on, and the voltage of the node n1 is stored in the low voltage from the ground voltage node VSS via the transistor Q1, as shown by the dotted arrow line y1 in FIG. 4A . On the other hand, the transistor Q2 is turned off, and the leakage current flowing from the bit line BL through the transistor Q4a stores the voltage of the node n2 at a high voltage, as indicated by the dotted arrow line y2 in FIG. 4A.
以此方式,将字线WL1和WL2设置为略低于电源电压VDD的电压电平,并且将位线BL设置为VDD。这里,当节点n1具有高电压时,从位线BL流过晶体管Q3a的漏电流保持节点n1的电压电平。此外,当节点n2具有高电压时,从位线BL流过晶体管Q4a的漏电流保持节点n2的电压电平。In this way, the word lines WL1 and WL2 are set to a voltage level slightly lower than the power supply voltage VDD, and the bit line BL is set to VDD. Here, when the node n1 has a high voltage, the leakage current flowing from the bit line BL through the transistor Q3a maintains the voltage level of the node n1. In addition, when the node n2 has a high voltage, the leakage current flowing from the bit line BL through the transistor Q4a maintains the voltage level of the node n2.
图4B是示出当图4A中的数据锁存电路10读取数据、写入数据和存储数据时,字线WL1和WL2以及位线BL的电压的图。图4B显示了访问字线WL1的示例。这里,当访问字线WL2时,图4B中的字线WL1和WL2之间的电压关系反转。FIG. 4B is a graph showing voltages of the word lines WL1 and WL2 and the bit line BL when the
当数据锁存电路10经由晶体管Q3a读取存储在节点n1和n2中的数据时,将字线WL1设置为接地电压VSS(例如,0V),并且将字线WL2设置为略低于电源电压VDD的电压(例如,VDD×0.95-0.7V)。此外,将位线BL预先充电到电源电压VDD。因此,经由晶体管Q3a,在位线BL中读取存储在节点n1和n2中的数据。When the
当数据锁存电路10经由晶体管Q3a将数据写入节点n1和n2时,将字线WL1设置为接地电压VSS(例如,0V),并且将字线WL2设置为电源电压VDD。当要写入的数据为0时,将位线BL设置为接地电压VSS(例如,0V)。因此,通过晶体管Q3a,将“0”的数据存储在节点n1和n2中。同时,当要写入的数据为1时,将位线BL设置为电源电压VDD。When the
当数据锁存电路10将数据存储在节点n1和n2中时,将字线WL1和WL2设置为略低于电源电压VDD的电压(例如,VDD×0.95-0.7V),并且将位线BL设置为电源电压VDD。When the
图5是示出根据第一实施方式的半导体存储器件1的存储特性的图。图5中的横轴是节点n2的电压电平,图5中的纵轴是节点n1的电压电平。图5中的曲线w1显示了节点n1电压电平相对于节点n2电压的变化,曲线w2显示了节点n2电压电平相对于节点n1电压的变化。如图5中所示,可以看出节点n1和n2稳定在两个点p1和p2,并且具有良好的存储特性。在点p1,节点n1的电压电平是电源电压VDD。在点p2,节点n2的电压电平是电源电压VDD。FIG. 5 is a graph showing memory characteristics of the
图6是根据第一实施方式的数据锁存电路10的布局图,而图7是显示图6中的每一层的堆叠位置的截面图。如图7中所示,根据第一实施方式的数据锁存电路10通过堆叠具有不同层高度的多个层而形成,并且包括被配置为电连接各个层的多个触点CT0和CT1。图6显示了在层叠方向上观察具有不同层高度的多个层的平面结构。根据第一实施方式的数据锁存电路10的布局图和截面图,不一定限于图6和图7中所示的那样。图6中的黑色和灰色圆圈表示触点。FIG. 6 is a layout view of the
在图6和图7的例子中,第一扩散区D1和第二扩散区D2位于最下层。第一扩散区D1和第二扩散区D2可以称为有源区。第一扩散区D1和第二扩散区D2在第一方向X上彼此分开。在第一扩散区D1中形成晶体管Q1和Q2的源极区和漏极区。在第二扩散区D2中形成晶体管Q3a和Q4a的源极区和漏极区。通过将诸如硼(B)、磷(P)和砷(As)之类的杂质离子注入到半导体衬底中并在其中热扩散,而形成第一扩散区D1和第二扩散区D2。In the examples of FIGS. 6 and 7 , the first diffusion region D1 and the second diffusion region D2 are located in the lowermost layer. The first diffusion area D1 and the second diffusion area D2 may be referred to as active areas. The first diffusion area D1 and the second diffusion area D2 are separated from each other in the first direction X. Source and drain regions of the transistors Q1 and Q2 are formed in the first diffusion region D1. Source and drain regions of the transistors Q3a and Q4a are formed in the second diffusion region D2. The first diffusion region D1 and the second diffusion region D2 are formed by implanting impurity ions such as boron (B), phosphorus (P), and arsenic (As) into a semiconductor substrate and thermally diffusing therein.
连接到晶体管Q3a的栅极的第一栅极层G1和连接到晶体管Q4a的栅极的第二栅极层G2隔着绝缘层位于第二扩散区D2上。连接到晶体管Q1的栅极的第三栅极层G3和连接到晶体管Q2的栅极的第四栅极层G4隔着绝缘层位于第一扩散区D1上。A first gate layer G1 connected to the gate of the transistor Q3a and a second gate layer G2 connected to the gate of the transistor Q4a are located on the second diffusion region D2 via an insulating layer. A third gate layer G3 connected to the gate of the transistor Q1 and a fourth gate layer G4 connected to the gate of the transistor Q2 are located on the first diffusion region D1 through an insulating layer.
第一栅极层G1至第四栅极层G4位于相同的层高度。具体地说,第一栅极层G1至第四栅极层G4中的每一个在第二方向Y上延伸。此外,第一栅极层G1至第四栅极层G4在第一方向X上彼此分开。The first to fourth gate layers G1 to G4 are located at the same layer height. Specifically, each of the first to fourth gate layers G1 to G4 extends in the second direction Y. Referring to FIG. In addition, the first to fourth gate layers G1 to G4 are separated from each other in the first direction X. Referring to FIG.
第一金属层M1隔着绝缘层位于第一栅极层G1至第四栅极层G4上。第一金属层M1由钨(W)、铜(Cu)、铝(A1)等等制成。第一金属层M1包括第一布线层WR1、第二布线层WR2、第三布线层WR3和第四布线层WR4,每个布线层在第一方向X上延伸。这里,第一布线层WR1至第四布线层WR4在第二方向Y上彼此分开。The first metal layer M1 is located on the first to fourth gate layers G1 to G4 via an insulating layer. The first metal layer M1 is made of tungsten (W), copper (Cu), aluminum (A1), or the like. The first metal layer M1 includes a first wiring layer WR1 , a second wiring layer WR2 , a third wiring layer WR3 , and a fourth wiring layer WR4 each extending in the first direction X. Here, the first to fourth wiring layers WR1 to WR4 are separated from each other in the second direction Y. Referring to FIG.
第一布线层WR1是连接到晶体管Q3a的漏极和晶体管Q4a的漏极的位线BL。第二布线层WR2连接到晶体管Q1的漏极、第四栅极层G4和晶体管Q3a的源极。第三布线层WR3连接到晶体管Q2的漏极、第三栅极层G3和晶体管Q4a的源极。The first wiring layer WR1 is the bit line BL connected to the drain of the transistor Q3a and the drain of the transistor Q4a. The second wiring layer WR2 is connected to the drain of the transistor Q1, the fourth gate layer G4, and the source of the transistor Q3a. The third wiring layer WR3 is connected to the drain of the transistor Q2, the third gate layer G3, and the source of the transistor Q4a.
第四布线层WR4连接到第一扩散区D1中的晶体管Q1和Q2的源极区域。The fourth wiring layer WR4 is connected to source regions of the transistors Q1 and Q2 in the first diffusion region D1.
第二金属层M2隔着绝缘层位于第一金属层M1上。第二金属层M2由钨(W)、铜(Cu)、铝(A1)等等制成。The second metal layer M2 is located on the first metal layer M1 via an insulating layer. The second metal layer M2 is made of tungsten (W), copper (Cu), aluminum (Al) or the like.
第二金属层M2具有第五布线层WR5。将第五布线层WR5设置为接地电压VSS(第一基准电压)。第五布线层WR5位于第一扩散区D1上方,并在第二方向Y上延伸。第五布线层WR5连接到第四布线层WR4。因此,将第四布线层WR4设置为接地电压VSS。此外,由于第四布线层WR4连接到第一扩散区D1中的晶体管Q1和Q2的源极区,所以这些源极区也被设置为接地电压VSS。The second metal layer M2 has a fifth wiring layer WR5. The fifth wiring layer WR5 is set to the ground voltage VSS (first reference voltage). The fifth wiring layer WR5 is located over the first diffusion region D1 and extends in the second direction Y. The fifth wiring layer WR5 is connected to the fourth wiring layer WR4. Therefore, the fourth wiring layer WR4 is set to the ground voltage VSS. In addition, since the fourth wiring layer WR4 is connected to the source regions of the transistors Q1 and Q2 in the first diffusion region D1, these source regions are also set to the ground voltage VSS.
图6中的第一扩散区D1、第二扩散区D2、第一栅极层G1至第四栅极层G4、以及第一布线层WR1至第二布线层WR4线对称地布置。The first diffusion region D1, the second diffusion region D2, the first gate layer G1 to the fourth gate layer G4, and the first wiring layer WR1 to the second wiring layer WR4 in FIG. 6 are line-symmetrically arranged.
图8是具有图6中的布局布置的多个数据锁存电路10位于二维方向的布局图。在图8中,具有图6中的布局布置的数据锁存电路10在第一方向X和第二方向Y上各布置多个。位于第二方向Y上的多个数据锁存电路共享字线WL1和WL2。位于第一方向X上的多个数据锁存电路10共享位线BL。FIG. 8 is a layout diagram of a plurality of data latch
图6和图8中所示的布局布置仅仅是示例,可以考虑其各种变形例。例如,可以采用点对称布局配置。The layout arrangements shown in FIGS. 6 and 8 are merely examples, and various modifications thereof are conceivable. For example, a point-symmetrical layout configuration may be adopted.
图9A是根据第一实施方式的数据锁存电路10的第一变形例的布局图,图9B是其第二变形例的布局图。图9A和9B都具有关于布局区域的中心位置的点对称布局布置。在图9B的配置中,将图9A中的布局布置向左或向右错开半个周期。在以下描述中,将描述图9A中的布局布置的细节,并省略图9B中的布局布置的描述。图9A和图9B中示出的多个层之间的分层关系与图7相同。FIG. 9A is a layout diagram of a first modification example of the
在图9A中的布局布置中,第一扩散区D1、第二扩散区D2、第三扩散区D3和第四扩散区D4在最低层中的第二方向Y上彼此分开。第一扩散区D1至第四扩散区D4中的每一个在第一方向X上延伸。第一栅极层G1、第二栅极层G2、第三栅极层G3和第四栅极层G4在第一扩散区D1至第二扩散区D4上方沿第二方向Y彼此分开。In the layout arrangement in FIG. 9A , the first diffusion region D1 , the second diffusion region D2 , the third diffusion region D3 and the fourth diffusion region D4 are separated from each other in the second direction Y in the lowest layer. Each of the first to fourth diffusion regions D1 to D4 extends in the first direction X. Referring to FIG. The first gate layer G1, the second gate layer G2, the third gate layer G3, and the fourth gate layer G4 are separated from each other along the second direction Y above the first to second diffusion regions D1 to D4.
第一栅极层G1在层叠方向上与第二扩散区D2重叠。第二栅极层G2在层叠方向上与第三扩散区D3重叠。第三栅极层G3在层叠方向上与第一扩散区D1重叠。第四栅极层G4在层叠方向上与第四扩散区D4重叠。The first gate layer G1 overlaps the second diffusion region D2 in the stacking direction. The second gate layer G2 overlaps the third diffusion region D3 in the lamination direction. The third gate layer G3 overlaps the first diffusion region D1 in the stacking direction. The fourth gate layer G4 overlaps the fourth diffusion region D4 in the lamination direction.
第一金属层M1位于第一栅极层G1至第四栅极层G4的上方。在第一金属层M1中,第二布线层WR2至第九布线层WR9在第一方向X上彼此分开。第二布线层WR2至第五布线层WR5中的每一个在第二方向Y上延伸。The first metal layer M1 is located above the first gate layer G1 to the fourth gate layer G4. In the first metal layer M1, the second to ninth wiring layers WR2 to WR9 are separated from each other in the first direction X. Referring to FIG. Each of the second to fifth wiring layers WR2 to WR5 extends in the second direction Y.
第二布线层WR2是字线WL1,连接到第一栅极层G1。第三布线层WR3是字线WL2,连接到第二栅极层G2。第四布线层WR4连接到第一扩散区D1中的晶体管Q1的漏极区、第二扩散区D2中的晶体管Q3a的源极区和第四栅极层G4。第五布线层WR5连接到第三栅极层G3、第三扩散区D3中的晶体管Q4a的源极区、以及第四扩散区D4中的晶体管Q2的漏极区。第六布线层WR6连接到第一扩散区D1中的晶体管Q1的源极区。第七布线层WR7连接到第二扩散区D2中的晶体管Q3a的漏极区。第八布线层WR8连接到第四扩散区D4中的晶体管Q2的漏极区。第九布线层WR9连接到第三扩散区D3中的晶体管Q4a的漏极区。The second wiring layer WR2 is a word line WL1 connected to the first gate layer G1. The third wiring layer WR3 is a word line WL2 connected to the second gate layer G2. The fourth wiring layer WR4 is connected to the drain region of the transistor Q1 in the first diffusion region D1, the source region of the transistor Q3a in the second diffusion region D2, and the fourth gate layer G4. The fifth wiring layer WR5 is connected to the third gate layer G3, the source region of the transistor Q4a in the third diffusion region D3, and the drain region of the transistor Q2 in the fourth diffusion region D4. The sixth wiring layer WR6 is connected to the source region of the transistor Q1 in the first diffusion region D1. The seventh wiring layer WR7 is connected to the drain region of the transistor Q3a in the second diffusion region D2. The eighth wiring layer WR8 is connected to the drain region of the transistor Q2 in the fourth diffusion region D4. The ninth wiring layer WR9 is connected to the drain region of the transistor Q4a in the third diffusion region D3.
第二金属层M2位于包括第二布线层WR2至第五布线层WR5的第一金属层M1上方。第二金属层M2包括第一布线层WR1、第十布线层WR10和第十一布线层WR11。第一布线层WR1是位线BL,第十布线层WR10和第十一布线层WR11是设置为接地电压VSS的布线层。The second metal layer M2 is located over the first metal layer M1 including the second to fifth wiring layers WR2 to WR5 . The second metal layer M2 includes a first wiring layer WR1, a tenth wiring layer WR10, and an eleventh wiring layer WR11. The first wiring layer WR1 is the bit line BL, and the tenth wiring layer WR10 and the eleventh wiring layer WR11 are wiring layers set to the ground voltage VSS.
第一布线层WR1位于第二扩散区D2和第三扩散区D3之间。第十布线层WR10位于第一扩散区D1附近。第十一布线层WR11位于第四扩散区D4附近。The first wiring layer WR1 is located between the second diffusion region D2 and the third diffusion region D3. The tenth wiring layer WR10 is located near the first diffusion region D1. The eleventh wiring layer WR11 is located near the fourth diffusion region D4.
第一布线层WR1连接到第七布线层WR7,并且还连接到第九布线层WR9。第十布线层WR10连接到第六布线层WR6。第十一布线层WR11连接到第八布线层WR8。The first wiring layer WR1 is connected to the seventh wiring layer WR7, and is also connected to the ninth wiring layer WR9. The tenth wiring layer WR10 is connected to the sixth wiring layer WR6. The eleventh wiring layer WR11 is connected to the eighth wiring layer WR8.
图10A是具有图9A中的布局布置的多个数据锁存电路10位于第一方向X和第二方向Y的布局图。图10B是在第一方向X和第二方向Y上分别配置多个具有图9B中的布局的多个数据锁存电路10的布局图。FIG. 10A is a layout diagram of a plurality of data latch
图10A和10B都具有图9A和9B的单元的点对称布局布置,并且具有相对于沿第二方向Y延伸的轴线对称的布局布置。10A and 10B both have a point-symmetrical layout arrangement of the cells of FIGS. 9A and 9B , and have a symmetrical layout arrangement with respect to an axis extending in the second direction Y.
如上所述,根据第一实施方式的数据锁存电路10由四个晶体管Q1、Q2、Q3a和Q4a形成,从而与根据图2所示的比较例的数据锁存电路100相比,显著减小了电路面积。将数据存储在节点n1和n2中,并且在数据存储期间,将略低于电源电压VDD的电压施加到字线WL1和WL2,因此可以使用来自位线BL的漏电流将数据稳定地存储在节点n1和n2中。根据第一实施方式的数据锁存电路10可以位于如图6所示的线对称布局中,也可以采用如图9A或图9B所示的点对称布局。As described above, the
第二实施方式second embodiment
尽管根据第一实施方式的数据锁存电路10包括两条字线WL1和WL2以及一条位线BL,每一条都连接到其对应的部件,但是该数据锁存电路10也可以具有包括一条字线BL以及两条位线BL和bBL的配置,每一个都连接到对应的部件。Although the
图11A是示出根据第二实施方式的数据锁存电路10a的特征的图,图11B是根据第二实施方式的数据锁存电路10a的电路图。FIG. 11A is a diagram showing features of a
在根据第二实施方式的数据锁存电路10a中设置了一条字线WL和两条位线BL和bBL,其中每一条都连接到数据锁存电路10a的对应部件。公共字线WL连接到晶体管Q3a和Q4a的栅极。位线BL连接到晶体管Q3a的漏极,并且位线bBL连接到晶体管Q4a的漏极。位线BL和bBL具有相对于彼此相反的逻辑电平。其它晶体管Q1至Q4a之间的连接关系与图3A和3B相同。In the
图11C是示出当图11B中的数据锁存电路10a读取数据、写入数据和存储数据时字线WL、位线BL和bBL的电压的图。FIG. 11C is a graph showing the voltages of the word line WL, the bit lines BL and bBL when the
当数据锁存电路10a读取存储在节点n1和n2中的数据时,将字线WL设置为接地电压VSS(例如,0V)。将位线BL和bBL预先充电到电源电压VDD。因此,存储在节点n1和n2中的数据经由晶体管Q3a和Q4a,以相反逻辑被读取至位线BL和bBL中。When the
当将数据写入节点n1和n2时,将字线WL设置为接地电压VSS(例如,0V)。当要写入的数据为0时,将位线BL设置为接地电压VSS(例如,0V),并且将位线bBL设置成电源电压VDD。因此,晶体管Q1和Q2执行存储“0”数据的动作。同时,当要写入的数据为1时,位线BL和bBL的电压电平与图11C中的电压电平相反。When data is written to the nodes n1 and n2, the word line WL is set to the ground voltage VSS (for example, 0V). When the data to be written is 0, the bit line BL is set to the ground voltage VSS (for example, 0V), and the bit line bBL is set to the power supply voltage VDD. Therefore, transistors Q1 and Q2 perform an action of storing "0" data. Meanwhile, when the data to be written is 1, the voltage levels of the bit lines BL and bBL are opposite to those in FIG. 11C.
当将数据存储在节点n1和n2中时,将字线WL设置为略低于电源电压VDD的电压(例如,VDD×0.95-0.7V),并且将位线BL和bBL设置为电源电压VDB。When storing data in the nodes n1 and n2, the word line WL is set to a voltage slightly lower than the power supply voltage VDD (for example, VDD×0.95-0.7V), and the bit lines BL and bBL are set to the power supply voltage VDB.
图12是根据第二实施方式的数据锁存电路10a的布局图。图12所示的多个层之间的层次关系与图7相同。FIG. 12 is a layout diagram of a
在图12的布局布置中,第一扩散区D1、第二扩散区D2和第三扩散区D3位于最低层。第一扩散区D1和第二扩散区D2在第二方向Y上彼此分开。第三扩散区D3在第一方向X上与第一扩散区D1和第二扩散区D2分开。In the layout arrangement of FIG. 12 , the first diffusion region D1 , the second diffusion region D2 and the third diffusion region D3 are located at the lowest layer. The first diffusion area D1 and the second diffusion area D2 are separated from each other in the second direction Y. The third diffusion area D3 is separated from the first diffusion area D1 and the second diffusion area D2 in the first direction X.
第一栅极层G1、第二栅极层G2和第三栅极层G3位于第一扩散区D1至第三扩散区D3上。第一栅极层G1至第三栅极层G3位于相同的层高度。第一栅极层G1是字线。第一栅极层G1在层叠方向上与第一扩散区D1和第二扩散区D2重叠。第一栅极层G1是连接到晶体管Q3a和Q4a的栅极的层。The first gate layer G1, the second gate layer G2 and the third gate layer G3 are located on the first to third diffusion regions D1 to D3. The first gate layer G1 to the third gate layer G3 are located at the same layer height. The first gate layer G1 is a word line. The first gate layer G1 overlaps the first diffusion region D1 and the second diffusion region D2 in the stacking direction. The first gate layer G1 is a layer connected to the gates of the transistors Q3a and Q4a.
第二栅极层G2和第三栅极层G3在层叠方向上与第三扩散区D3重叠。第二栅极层G2是与晶体管Q1的栅极连接的层。第三栅极层G3是与晶体管Q2的栅极相连的层。The second gate layer G2 and the third gate layer G3 overlap the third diffusion region D3 in the lamination direction. The second gate layer G2 is a layer connected to the gate of the transistor Q1. The third gate layer G3 is a layer connected to the gate of the transistor Q2.
第一金属层M1位于第一栅极层G1至第三栅极层G3上。第一金属层M1包括第一布线层WR1、第二布线层WR2、第三布线层WR3、第四布线层WR4和第五布线层WR5。这里,第一布线层WR1至第五布线层WR5分别在第一方向X上延伸,并且在第二方向Y上彼此分开。The first metal layer M1 is located on the first gate layer G1 to the third gate layer G3. The first metal layer M1 includes a first wiring layer WR1, a second wiring layer WR2, a third wiring layer WR3, a fourth wiring layer WR4, and a fifth wiring layer WR5. Here, the first to fifth wiring layers WR1 to WR5 extend in the first direction X, respectively, and are separated from each other in the second direction Y.
第一布线层WR1是位线BL,第二布线层WR2是位线bBL。第一布线层WR1在层叠方向上与第一扩散区D1和第三扩散区D3重叠。第一布线层WR1连接到第一扩散区D1中的晶体管Q3a的漏极区。第二布线层WR2在层叠方向上与第二扩散区域D2和第三扩散区域D3重叠。第二布线层WR2连接到第二扩散区域D2中的晶体管Q4a的漏极区。The first wiring layer WR1 is a bit line BL, and the second wiring layer WR2 is a bit line bBL. The first wiring layer WR1 overlaps the first diffusion region D1 and the third diffusion region D3 in the stacking direction. The first wiring layer WR1 is connected to the drain region of the transistor Q3a in the first diffusion region D1. The second wiring layer WR2 overlaps the second diffusion region D2 and the third diffusion region D3 in the stacking direction. The second wiring layer WR2 is connected to the drain region of the transistor Q4a in the second diffusion region D2.
第三布线层WR3在层叠方向上与第一扩散区D1和第三扩散区D3重叠。第三布线层WR3连接到第一扩散区D1中的晶体管Q3a的源极区、第三扩散区D3中的晶体管Q1的漏极区和第三栅极层G3。The third wiring layer WR3 overlaps the first diffusion region D1 and the third diffusion region D3 in the stacking direction. The third wiring layer WR3 is connected to the source region of the transistor Q3a in the first diffusion region D1, the drain region of the transistor Q1 in the third diffusion region D3, and the third gate layer G3.
第四布线层WR4在层叠方向上与第二扩散区D2和第三扩散区D3重叠。第四布线层WR4连接到第二扩散区D2中的晶体管Q4a的源极区、第三扩散区D3中的第二栅极层G2、以及第三扩散区D3中的晶体管Q2的漏极区。The fourth wiring layer WR4 overlaps the second diffusion region D2 and the third diffusion region D3 in the stacking direction. The fourth wiring layer WR4 is connected to the source region of the transistor Q4a in the second diffusion region D2, the second gate layer G2 in the third diffusion region D3, and the drain region of the transistor Q2 in the third diffusion region D3.
第五布线层WR5在层叠方向上与第三扩散区D3重叠。第五布线层WR5连接到第三扩散区D3中的晶体管Q1和Q2的源极区。The fifth wiring layer WR5 overlaps the third diffusion region D3 in the stacking direction. The fifth wiring layer WR5 is connected to the source regions of the transistors Q1 and Q2 in the third diffusion region D3.
第二金属层M2位于第一布线层WR1至第五布线层WR5上。第二金属层M2包括第六布线层WR6。将第六布线层WR6设置为接地电压VSS。第六布线层WR6连接到第五布线层WR5。The second metal layer M2 is located on the first to fifth wiring layers WR1 to WR5. The second metal layer M2 includes a sixth wiring layer WR6. The sixth wiring layer WR6 is set to the ground voltage VSS. The sixth wiring layer WR6 is connected to the fifth wiring layer WR5.
图13是具有图12中的布局布置的多个数据锁存电路10a位于二维方向的布局图。在图13中,相对于沿第二方向Y延伸的轴ax1和ax2,线对称地布置多个数据锁存电路10a。FIG. 13 is a layout diagram in which a plurality of
图12中所示的布局布置只是一个示例,可以考虑对其进行各种变形例。例如,可以采用点对称布局布置。The layout arrangement shown in FIG. 12 is just an example, and various modifications thereof are conceivable. For example, a point-symmetrical layout arrangement may be adopted.
图14A是根据第二实施方式的数据锁存电路10a的第一变形例的布局图,图14B是其第二变形例的布局图。图14A和图14B具有关于布局区域的中心位置的点对称布局布置。在下文中,将描述图14A中的布局布置的细节,并省略图14B中的布局布置的描述。图14A和14B中所示的多个层之间的层次关系与图7相同。14A is a layout diagram of a first modification example of the
在图14A的布局布置中,第一扩散区D1、第二扩散区D2、第三扩散区D3和第四扩散区D4在最低层中的第二方向Y上彼此分开。第一扩散区D1至第四扩散区D4中的每一个在第一方向X上延伸。第一栅极层G1、第二栅极层G2、第三栅极层G3和第四栅极层G4在第一扩散区D1至第二扩散区D4上,沿第二方向Y彼此分开。In the layout arrangement of FIG. 14A, the first diffusion region D1, the second diffusion region D2, the third diffusion region D3, and the fourth diffusion region D4 are separated from each other in the second direction Y in the lowest layer. Each of the first to fourth diffusion regions D1 to D4 extends in the first direction X. Referring to FIG. The first gate layer G1, the second gate layer G2, the third gate layer G3, and the fourth gate layer G4 are separated from each other along the second direction Y on the first to second diffusion regions D1 to D4.
第一栅极层G1在层叠方向上与第二扩散区D2重叠。第二栅极层G2在层叠方向上与第三扩散区D3重叠。第三栅极层G3在层叠方向上与第一扩散区D1重叠。第四栅极层G4在层叠方向上与第四扩散区D4重叠。The first gate layer G1 overlaps the second diffusion region D2 in the stacking direction. The second gate layer G2 overlaps the third diffusion region D3 in the lamination direction. The third gate layer G3 overlaps the first diffusion region D1 in the stacking direction. The fourth gate layer G4 overlaps the fourth diffusion region D4 in the lamination direction.
第一金属层M1位于第一栅极层G1至第四栅极层G4上。在第一金属层M2中,第三布线层WR3至第九布线层WR9在第一方向X上彼此分开。第三布线层WR3至第九布线层WR9中的每一个在第二方向Y上延伸。The first metal layer M1 is located on the first gate layer G1 to the fourth gate layer G4. In the first metal layer M2, the third to ninth wiring layers WR3 to WR9 are separated from each other in the first direction X. As shown in FIG. Each of the third to ninth wiring layers WR3 to WR9 extends in the second direction Y.
第三布线层WR3连接到第一栅极层G1和第二栅极层G2。第四布线层WR4连接到第一扩散区D1、第二扩散区D2和第四扩散区D4。第五布线层WR5连接到第一扩散区D1、第三扩散区D3和第四扩散区D4。第六布线层WR6连接到第一扩散区D1。第七布线层WR7连接到第二扩散区D2。第八布线层WR8连接到第四扩散区D4。第九布线层WR9连接到第三扩散区D3。The third wiring layer WR3 is connected to the first gate layer G1 and the second gate layer G2. The fourth wiring layer WR4 is connected to the first diffusion region D1, the second diffusion region D2, and the fourth diffusion region D4. The fifth wiring layer WR5 is connected to the first diffusion region D1, the third diffusion region D3 and the fourth diffusion region D4. The sixth wiring layer WR6 is connected to the first diffusion region D1. The seventh wiring layer WR7 is connected to the second diffusion region D2. The eighth wiring layer WR8 is connected to the fourth diffusion region D4. The ninth wiring layer WR9 is connected to the third diffusion region D3.
第二金属层M2位于包括第三布线层WR3至第九布线层WR9的第一金属层M1上。在第二金属层M2中,第一布线层WR1、第二布线层WR2、第十布线层WR10和第十一布线层WR11在第二方向Y上彼此分开。第一布线层WR1是位线BL,第二布线层WR2是位线bBL。第十布线层WR10和第十一布线层WR11是设置为接地电压VSS的层。The second metal layer M2 is located on the first metal layer M1 including the third to ninth wiring layers WR3 to WR9 . In the second metal layer M2, the first wiring layer WR1, the second wiring layer WR2, the tenth wiring layer WR10, and the eleventh wiring layer WR11 are separated from each other in the second direction Y. The first wiring layer WR1 is a bit line BL, and the second wiring layer WR2 is a bit line bBL. The tenth wiring layer WR10 and the eleventh wiring layer WR11 are layers set to the ground voltage VSS.
第十布线层WR10连接到第六布线层WR6。第一布线层WR1连接到第七布线层WR7。第十一布线层WR11连接到第八布线层WR8。第二布线层WR2连接到第九布线层WR9。The tenth wiring layer WR10 is connected to the sixth wiring layer WR6. The first wiring layer WR1 is connected to the seventh wiring layer WR7. The eleventh wiring layer WR11 is connected to the eighth wiring layer WR8. The second wiring layer WR2 is connected to the ninth wiring layer WR9.
图15A是具有图14A中的布局布置的多个数据锁存电路10a位于第一方向X和第二方向Y的布局图。图15B是在第一方向X和第二方向Y上各配置多个具有图14B中的布局布置的数据锁存电路10a的布局图。FIG. 15A is a layout diagram in which a plurality of
图15A和15B都具有图14A和14B的单元中的点对称布局布置,并且还具有关于沿第二方向Y延伸的轴的线对称布局布置。Both Figures 15A and 15B have a point-symmetrical layout arrangement in the cells of Figures 14A and 14B, and also have a line-symmetrical layout arrangement about an axis extending in the second direction Y.
如上所述,以与第一实施方式相同的方式,根据第二实施方式的数据锁存电路10a由四个晶体管Q1至Q4a形成,从而与根据图2所示的比较例的数据锁存电路100相比,显著减小了电路面积。根据第二实施方式的数据锁存电路10a可以具有图12所示的点对称布局布置,也可以具有图14A或图14B所示的线对称布局布置。As described above, in the same manner as the first embodiment, the
第三实施方式third embodiment
在上面描述的第一和第二实施方式中,描述了包括四个晶体管Q1至Q4a的数据锁存电路10。这里,还可以提供包括六个晶体管的数据锁存电路10b。两个附加晶体管判断是否向数据锁存电路10b提供电源电压VDD。也就是说,两个附加晶体管使得可以判断数据锁存电路10b是执行数据存储动作还是执行数据读取动作。In the first and second embodiments described above, the
图16A是示出根据第三实施方式的数据锁存电路10b的特征的图,图16B是根据第三实施方式的数据锁存电路10a的电路图。根据第三实施方式的数据锁存电路10b具有以下的配置:其中,从根据图2中的比较例的数据锁存电路100中,省略包括晶体管Q7和Q8的第二晶体管组22。晶体管Q1至Q4是NMOS晶体管,晶体管Q5和Q6是PMOS晶体管。FIG. 16A is a diagram showing features of a
如图16B中所示,晶体管Q5的源极连接到电源电压节点VDD。晶体管Q5的漏极连接到晶体管Q1的漏极、晶体管Q2的栅极和晶体管Q3的漏极。晶体管Q6的源极连接到电源电压节点VDD,晶体管Q6的漏极连接到晶体管Q2的漏极、晶体管Q1的栅极和晶体管Q4的漏极。As shown in FIG. 16B, the source of transistor Q5 is connected to power supply voltage node VDD. The drain of transistor Q5 is connected to the drain of transistor Q1, the gate of transistor Q2 and the drain of transistor Q3. The source of transistor Q6 is connected to the supply voltage node VDD, and the drain of transistor Q6 is connected to the drain of transistor Q2, the gate of transistor Q1, and the drain of transistor Q4.
公共控制信号Vct1输入到晶体管Q5和Q6的栅极。在数据存储动作中,将Vct1设置为略低于电源电压VDD的电压电平。例如,稍低于电源电压VDD的电压电平是比电源电压VDA低5%至30%的电压电平。在数据存储期间将晶体管Q5和Q6的栅极电压Vctl设置为略低于电源电压VDD的电压电平的原因,是允许漏电流流过晶体管Q5和Q6。A common control signal Vct1 is input to the gates of transistors Q5 and Q6. In the data storage operation, Vct1 is set to a voltage level slightly lower than the power supply voltage VDD. For example, a voltage level slightly lower than the power supply voltage VDD is a voltage level that is 5% to 30% lower than the power supply voltage VDA. The reason for setting the gate voltage Vctl of the transistors Q5 and Q6 to a voltage level slightly lower than the power supply voltage VDD during data storage is to allow leakage current to flow through the transistors Q5 and Q6.
从数据存储状态,将字线WL1和WL2之一设置为高电平,而将另一个设置为低电平,从而使得可以接通晶体管Q3和Q4之一,并在位线中读取节点n1或节点n2的状态。From the data storage state, one of the word lines WL1 and WL2 is set high and the other is set low, so that one of the transistors Q3 and Q4 can be turned on and node n1 can be read in the bit line or the state of node n2.
当将高电平控制信号输入到晶体管Q5和Q6的栅极时,晶体管Q5、Q6关断。在这种状态下,将字线WL1、WL2之一设置为高电平,将另一条设置为低电平,从而使晶体管Q3和Q4之一接通,并将位线的数据写入到节点n1和节点n2。When a high-level control signal is input to the gates of the transistors Q5 and Q6, the transistors Q5 and Q6 are turned off. In this state, setting one of the word lines WL1, WL2 to a high level and the other to a low level turns on one of the transistors Q3 and Q4 and writes the data from the bit line to node n1 and node n2.
当将低电平控制信号输入到晶体管Q5和Q6的栅极时,晶体管Q5、Q6接通,晶体管Q1、Q2的漏极成为电源电压VDD。该动作还可以用作初始化节点n1和节点n2的状态的功能。When a low-level control signal is input to the gates of the transistors Q5 and Q6, the transistors Q5 and Q6 are turned on, and the drains of the transistors Q1 and Q2 become the power supply voltage VDD. This action can also be used as a function to initialize the state of node n1 and node n2.
图16C是示出当图16B中的数据锁存电路10b读取数据、写入数据和存储数据时字线WL1和WL2、位线BL和控制信号Vct1的电压的图。图16C显示了访问字线WL1的示例。当访问字线WL2时,图16C中的字线WL1和WL2之间的电压关系发生反转。FIG. 16C is a graph showing voltages of word lines WL1 and WL2, bit line BL, and control signal Vct1 when data latch
当数据锁存电路10b经由晶体管Q3读取存储在节点n1和n2中的数据时,将字线WL1设置为电源电压VDD,并且将字线WL2设置为接地电压VSS。此外,将位线BL预先充电到电源电压VDD。此外,将控制信号Vct1设置为略低于电源电压VDD的电压(例如,VDD×0.95-0.7)。因此,经由晶体管Q3,存储在节点n1和n2中的数据被读取至位线BL。When the
当数据锁存电路10b经由晶体管Q3将数据写入节点n1和n2时,将字线WL1设置为电源电压VDD,并且将字线WL2设置为接地电压VSS(例如,0V)。当要写入的数据为0时,将位线BL设置为接地电压VSS(例如,0V)。此外,将控制信号Vct1设置为电源电压VDD。因此,通过晶体管Q3,将“0”的数据存储在节点n1和n2中。同时,当要写入的数据为1时,将位线BL设置为电源电压VDD。When the
当数据锁存电路10b将数据存储在节点n1和n2中时,将字线WL1和WL2设置为略低于电源电压VDD的电压(例如,VDD×0.95-0.7V),并且将位线BL设置为电源电压VDD。此外,将控制信号Vctl设置为略低于电源电压VDD的电压(例如,VDD×0.95-0.7V)。When the
图17是根据第三实施方式的数据锁存电路10b的布局图。第三实施方式具有以下的配置:其中,具有不同层高度的多个层彼此堆叠,并且设置被配置为电连接各个层的多个触点。在图17中形成数据锁存电路10b的各个层之间的分层关系与图7中的相同。FIG. 17 is a layout diagram of a
在图17的布局布置中,第一扩散区D1、第二扩散区D2和第三扩散区D3位于最低层。第一扩散区D1和第二扩散区D2在第二方向Y上彼此分开。第三扩散区D3在第一方向X上与第一扩散区D1和第二扩散区D2分开。In the layout arrangement of FIG. 17 , the first diffusion region D1 , the second diffusion region D2 and the third diffusion region D3 are located at the lowest layer. The first diffusion area D1 and the second diffusion area D2 are separated from each other in the second direction Y. The third diffusion area D3 is separated from the first diffusion area D1 and the second diffusion area D2 in the first direction X.
第一栅极层G1、第二栅极层G2、第三栅极层G3、第四栅极层G4和第五栅极层G5位于第一扩散区D1至第三扩散区D3上。第一栅极层G1至第五栅极层G5在第二方向Y上延伸,在第一方向X上彼此分开,并且位于相同的层高度。The first gate layer G1, the second gate layer G2, the third gate layer G3, the fourth gate layer G4, and the fifth gate layer G5 are located on the first to third diffusion regions D1 to D3. The first to fifth gate layers G1 to G5 extend in the second direction Y, are separated from each other in the first direction X, and are located at the same layer height.
第一栅极层G1是字线WL1,并且连接到晶体管Q3的栅极。第一栅极层G1在层叠方向上与第三扩散区D3重叠。第二栅极层G2是字线WL2,并且连接到晶体管Q4的栅极。第二栅极层G2在层叠方向上与第三扩散区D3重叠。The first gate layer G1 is a word line WL1, and is connected to the gate of the transistor Q3. The first gate layer G1 overlaps the third diffusion region D3 in the stacking direction. The second gate layer G2 is a word line WL2, and is connected to the gate of the transistor Q4. The second gate layer G2 overlaps the third diffusion region D3 in the lamination direction.
第三栅极层G3连接到晶体管Q1的栅极。第四栅极层G4连接到晶体管Q2的栅极。第五栅极层G5连接到晶体管Q5和Q6的栅极。The third gate layer G3 is connected to the gate of the transistor Q1. The fourth gate layer G4 is connected to the gate of the transistor Q2. The fifth gate layer G5 is connected to the gates of the transistors Q5 and Q6.
第二布线层WR2至第十一布线层WR11位于第一栅极层G1至第五栅极层G5上。第二布线层WR2至第十一布线层WR11在第二方向Y上延伸,并且在第一方向X上彼此分开。The second to eleventh wiring layers WR2 to WR11 are located on the first to fifth gate layers G1 to G5. The second wiring layer WR2 to the eleventh wiring layer WR11 extend in the second direction Y, and are separated from each other in the first direction X.
第二布线层WR2是设置为电源电压(第二基准电压)VDD的层。第三布线层WR3连接到第一扩散区D1中的晶体管Q5的漏极区。第四布线层WR4连接到第二扩散区D2中的晶体管Q6的漏极。第三布线层WR3和第四布线层WR4在第二方向Y上彼此分开。The second wiring layer WR2 is a layer set to a power supply voltage (second reference voltage) VDD. The third wiring layer WR3 is connected to the drain region of the transistor Q5 in the first diffusion region D1. The fourth wiring layer WR4 is connected to the drain of the transistor Q6 in the second diffusion region D2. The third wiring layer WR3 and the fourth wiring layer WR4 are separated from each other in the second direction Y.
第五布线层WR5是设置为接地电压VSS的层。第六布线层WR6连接到晶体管Q1的栅极。第七布线层WR7连接到第三扩散区D3中的晶体管Q3的源极区。第八布线层WR8连接到第一布线层WR1。第九布线层WR9连接到第三扩散区D3中的第二晶体管的漏极区。第十布线层WR10连接到第十二布线层WR12。第十一布线层WR11是设置为接地电压VSS的层。The fifth wiring layer WR5 is a layer set to the ground voltage VSS. The sixth wiring layer WR6 is connected to the gate of the transistor Q1. The seventh wiring layer WR7 is connected to the source region of the transistor Q3 in the third diffusion region D3. The eighth wiring layer WR8 is connected to the first wiring layer WR1. The ninth wiring layer WR9 is connected to the drain region of the second transistor in the third diffusion region D3. The tenth wiring layer WR10 is connected to the twelfth wiring layer WR12 . The eleventh wiring layer WR11 is a layer set to the ground voltage VSS.
第一布线层WR1、第十二布线层WR12和第十三布线层WR13位于第二布线层WR2至第十一布线层WR11上。第一布线层WR1、第十二布线层WR12和第十三布线层WR13在第一方向X上延伸,并且在第二方向Y上彼此分开。The first wiring layer WR1 , the twelfth wiring layer WR12 , and the thirteenth wiring layer WR13 are located on the second wiring layer WR2 to the eleventh wiring layer WR11 . The first wiring layer WR1 , the twelfth wiring layer WR12 , and the thirteenth wiring layer WR13 extend in the first direction X and are separated from each other in the second direction Y.
第一布线层WR1是位线BL,并且连接到第八布线层WR8。第十二布线层WR12连接到第三布线层WR3、第七布线层WR7和第十布线层WR10。第十三布线层WR13连接到第四布线层WR4、第六布线层WR6和第九布线层WR9。The first wiring layer WR1 is a bit line BL, and is connected to the eighth wiring layer WR8. The twelfth wiring layer WR12 is connected to the third wiring layer WR3 , the seventh wiring layer WR7 , and the tenth wiring layer WR10 . The thirteenth wiring layer WR13 is connected to the fourth wiring layer WR4 , the sixth wiring layer WR6 , and the ninth wiring layer WR9 .
图18是具有图17中的布局布置的多个数据锁存电路10b位于二维方向的布局图。在图18中,多个数据锁存电路10b相对于沿第二方向Y延伸的轴进行线对称地布置。FIG. 18 is a layout diagram in which a plurality of data latch
图17所示的布局布置只是一个示例,可以考虑对其进行各种变形例。例如,也可以采用点对称布局布置。The layout arrangement shown in FIG. 17 is only an example, and various modifications are conceivable. For example, a point-symmetrical layout arrangement may also be adopted.
如上所述,根据第三实施方式的数据锁存电路10b由六个晶体管Q1至Q6形成,从而与根据图2所示的比较例的数据锁存电路100相比,可以减小电路面积。此外,与第一和第二实施方式不同,在数据存储期间,不需要将字线的电压设置为略低于电源电压VDD的电压,因此,字线的控制变得容易。As described above, the
第四实施方式Fourth Embodiment
尽管根据第三实施方式的数据锁存电路10b包括两条字线WL1和WL2以及一条位线BL,其每一条都连接到其对应的部件,但是该数据锁存电路10b也可以具有包括一条字线BL以及两条位线BL-bBL的配置,其每一条都连接到其对应的部件。Although the
图19A是示出根据第四实施方式的数据锁存电路10c的特征的图,图19B是根据第四实施方式的数据锁存电路10c的电路图。FIG. 19A is a diagram showing features of a
根据第四实施方式的数据锁存电路10c包括一条字线WL和两条位线BL和bBL,其每一条线连接到其对应的部件。公共字线WL连接到晶体管Q3和Q4的栅极。位线BL连接到晶体管Q3的漏极,位线bBL连接到晶体管Q4的漏极。位线BL和bBL是相互相反的逻辑。其它晶体管Q1至Q4之间的连接关系与图3A和3B的相同。The
图19C是示出当图19B中的数据锁存电路10c读取数据、写入数据和存储数据时字线WL、位线BL和bBL以及控制信号Vct1的电压的图。FIG. 19C is a graph showing the voltages of the word line WL, the bit lines BL and bBL, and the control signal Vct1 when the
当数据锁存电路10c读取存储在节点n1和n2中的数据时,将字线WL设置为电源电压VDD。将位线BL和bBL预先充电到电源电压VDD。此外,将控制信号Vctl设置为略低于电源电压VDD的电压(例如,VDD×0.95-0.7V)。因此,存储在节点n1和n2中的数据经由晶体管Q3和Q4,以相反逻辑被读取至位线BL和bBL。When the
当数据锁存电路10c将数据写入节点n1和n2时,将字线WL设置为电源电压VDD。当要写入的数据为0时,将位线BL设置为接地电压VSS(例如,0V),并且将位线bBL设置成电源电压VDD。将控制信号Vct1设置为电源电压VDD。因此,晶体管Q1和Q2执行存储“0”数据的动作。同时,当要写入的数据为1时,位线BL和bBL的电压电平与图19C中的电压电平相反。When the
当数据锁存电路10c将数据存储在节点n1和n2中时,将字线WL设置为接地电压VSS(例如,0V),将位线BL和bBL设置为电源电压VDD。此外,将控制信号Vct1设置为略低于电源电压VDD的电压(例如,VDD×0.95-0.7V)。When the
图20是根据第四实施方式的数据锁存电路10c的布局图。图20所示的多个层之间的层次关系与图7中的相同。FIG. 20 is a layout diagram of a
在图20的布局布置中,第一扩散区D1、第二扩散区D2和第三扩散区D3位于最低层。第一扩散区D1和第二扩散区D2在第二方向Y上彼此分开。第三扩散区D3在第一方向X上与第一扩散区D1和第二扩散区D2分开。In the layout arrangement of FIG. 20 , the first diffusion region D1 , the second diffusion region D2 and the third diffusion region D3 are located at the lowest layer. The first diffusion area D1 and the second diffusion area D2 are separated from each other in the second direction Y. The third diffusion area D3 is separated from the first diffusion area D1 and the second diffusion area D2 in the first direction X.
第一栅极层G1、第二栅极层G2、第三栅极层G3、第四栅极层G4和第五栅极层G5位于第一扩散区D1至第三扩散区D3上。第一栅极层G1至第五栅极层G5在第二方向Y上延伸,并且在相同的层高度处在第一方向X上彼此分开。The first gate layer G1, the second gate layer G2, the third gate layer G3, the fourth gate layer G4, and the fifth gate layer G5 are located on the first to third diffusion regions D1 to D3. The first to fifth gate layers G1 to G5 extend in the second direction Y and are separated from each other in the first direction X at the same layer height.
第一栅极层G1是字线WL,并且连接到晶体管Q3的栅极。第一栅极层G1在层叠方向上与第三扩散区D3重叠。第二栅极层G2也是字线WL,并且连接到晶体管Q4的栅极。第二栅极层G2是字线WL,并且在层叠方向上与第三扩散区D3重叠。由于第一栅极层G1和第二栅极层G2具有相同的字线WL,因此可以将第一栅极层G1和第二栅极层G2集成到一个栅极层中。The first gate layer G1 is a word line WL, and is connected to the gate of the transistor Q3. The first gate layer G1 overlaps the third diffusion region D3 in the stacking direction. The second gate layer G2 is also the word line WL, and is connected to the gate of the transistor Q4. The second gate layer G2 is a word line WL, and overlaps the third diffusion region D3 in the stacking direction. Since the first gate layer G1 and the second gate layer G2 have the same word line WL, the first gate layer G1 and the second gate layer G2 can be integrated into one gate layer.
第三栅极层G3连接到晶体管Q1的栅极。第四栅极层G4连接到晶体管Q2的栅极。第五栅极层G5连接到晶体管Q5和Q6的栅极。The third gate layer G3 is connected to the gate of the transistor Q1. The fourth gate layer G4 is connected to the gate of the transistor Q2. The fifth gate layer G5 is connected to the gates of the transistors Q5 and Q6.
第三布线层WR3至第十二布线层WR12位于第一栅极层G1至第五栅极层G5上。第三布线层WR3至第十二布线层WR12在第二方向Y上延伸,并且在第一方向X上彼此分开。The third to twelfth wiring layers WR3 to WR12 are located on the first to fifth gate layers G1 to G5. The third to twelfth wiring layers WR3 to WR12 extend in the second direction Y and are separated from each other in the first direction X.
第三布线层WR3是设置为电源电压VDD的层。第四布线层WR4连接到第一扩散区D1中的晶体管Q5的漏极区。第五布线层WR5连接到第二扩散区D2中的晶体管Q6的漏极。第四布线层WR4和第五布线层WR5在第二方向Y上彼此分开。The third wiring layer WR3 is a layer set to the power supply voltage VDD. The fourth wiring layer WR4 is connected to the drain region of the transistor Q5 in the first diffusion region D1. The fifth wiring layer WR5 is connected to the drain of the transistor Q6 in the second diffusion region D2. The fourth wiring layer WR4 and the fifth wiring layer WR5 are separated from each other in the second direction Y.
第六布线层WR6连接到第三扩散区D3中的晶体管Q3的源极区。第七布线层WR7连接到第三扩散区D3中的晶体管Q3的漏极区。第八布线层WR8连接到晶体管Q1的栅极。第九布线层WR9是设置为接地电压VSS的层。第十布线层WR10连接到晶体管Q2的栅极。第十一布线层WR11连接到第三扩散区D3中的晶体管Q4的漏极区。第十二布线层WR12连接到第三扩散区D3中的晶体管Q4的源极区。The sixth wiring layer WR6 is connected to the source region of the transistor Q3 in the third diffusion region D3. The seventh wiring layer WR7 is connected to the drain region of the transistor Q3 in the third diffusion region D3. The eighth wiring layer WR8 is connected to the gate of the transistor Q1. The ninth wiring layer WR9 is a layer set to the ground voltage VSS. The tenth wiring layer WR10 is connected to the gate of the transistor Q2. The eleventh wiring layer WR11 is connected to the drain region of the transistor Q4 in the third diffusion region D3. The twelfth wiring layer WR12 is connected to the source region of the transistor Q4 in the third diffusion region D3.
第一布线层WR1、第二布线层WR2、第十三布线层WR13和第十四布线层WR14位于第三布线层WR3至第十二布线层WR12上。第一布线层WR1、第二布线层WR2、第十三布线层WR13和第十四布线层WR14在第一方向X上延伸,并且在第二方向Y上彼此分开。The first wiring layer WR1 , the second wiring layer WR2 , the thirteenth wiring layer WR13 , and the fourteenth wiring layer WR14 are located on the third to twelfth wiring layers WR3 to WR12 . The first wiring layer WR1 , the second wiring layer WR2 , the thirteenth wiring layer WR13 , and the fourteenth wiring layer WR14 extend in the first direction X and are separated from each other in the second direction Y.
第一布线层WR1是位线BL并连接到第六布线层WR6。第二布线层WR2是位线bBL,并且连接到第十二布线层WR12。第十三布线层WR13连接到第四布线层WR4、第七布线层WR7和第十布线层WR10。第十四布线层WR14连接到第五布线层WR5、第八布线层WR8和第十一布线层WR11。The first wiring layer WR1 is a bit line BL and is connected to the sixth wiring layer WR6. The second wiring layer WR2 is the bit line bBL, and is connected to the twelfth wiring layer WR12. The thirteenth wiring layer WR13 is connected to the fourth wiring layer WR4 , the seventh wiring layer WR7 , and the tenth wiring layer WR10 . The fourteenth wiring layer WR14 is connected to the fifth wiring layer WR5 , the eighth wiring layer WR8 , and the eleventh wiring layer WR11 .
图21是具有图20中的布局布置的多个数据锁存电路10c位于二维方向的布局图。图21所示的多个数据锁存电路10c相对于沿第二方向Y延伸的轴进行线对称地布置。FIG. 21 is a layout diagram in which a plurality of data latch
图21所示的布局布置只是一个示例,可以考虑对其进行各种变形例。例如,可以采用点对称布局布置。The layout arrangement shown in FIG. 21 is just an example, and various modifications are conceivable. For example, a point-symmetrical layout arrangement may be adopted.
如上所述,由于根据第四实施方式的数据锁存电路10c由六个晶体管Q1至Q6形成,因此可以获得与第三实施方式相同的效果。As described above, since the
此外,甚至在温度为50℃或更低、室温、或通过使用浸没等方法而低于该温度的环境中,都可以应用和使用上面所描述的实施方式中的每一个。还可以在-40℃或更低至-196℃的液氮温度的极低温环境中,应用和使用这些实施方式中的每一个。In addition, each of the above-described embodiments can be applied and used even in an environment where the temperature is 50° C. or lower, room temperature, or lower than the temperature by using immersion or the like. Each of these embodiments can also be applied and used in an extremely low temperature environment of -40°C or lower down to liquid nitrogen temperature of -196°C.
虽然已经描述了某些实施方式,但仅通过示例的方式呈现这些实施方式,而并不旨在限制本公开内容的范围。实际上,本文描述的新颖实施方式可以以各种其它形式体现;此外,在不脱离本公开内容的精神的情况下,可以对本文描述的实施方式的形式进行各种省略、替换和改变。所附权利要求及其等同物旨在涵盖落入本公开内容的保护范围和精神内的这些形式或变形例。While certain implementations have been described, these implementations have been presented by way of example only, and are not intended to limit the scope of the disclosure. Indeed, the novel embodiments described herein may be embodied in various other forms; moreover, various omissions, substitutions and changes in the form of the embodiments described herein may be made without departing from the spirit of the disclosure. The appended claims and their equivalents are intended to cover such forms or modifications as fall within the scope and spirit of the disclosure.
标号说明Label description
1:半导体存储器件1: Semiconductor memory device
2:存储器模块2: Memory module
3:串行转换部3: Serial conversion unit
4:I/O信号处理部4: I/O signal processing unit
5:高压发生电路5: High voltage generating circuit
6:低压发生电路6: Low voltage generating circuit
7:同步控制部7: Synchronous control department
8:行控制部8: row control department
9:列控制部9: column control section
10、10a,10b,10c:数据锁存电路10, 10a, 10b, 10c: data latch circuit
11:存储单元阵列11: memory cell array
12:行解码器12: row decoder
13:读出放大器&数据锁存部13: Sense amplifier & data latch section
14:传输数据锁存部14: Transmission data latch unit
15:列解码器15: column decoder
16:控制器16: Controller
21:第一晶体管组21: First transistor group
22:第二晶体管组22: Second transistor group
100:数据锁存电路100: data latch circuit
Claims (20)
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021-204613 | 2021-12-16 | ||
JP2021204613A JP2023089857A (en) | 2021-12-16 | 2021-12-16 | DATA LATCH CIRCUIT AND SEMICONDUCTOR MEMORY DEVICE |
US17/898868 | 2022-08-30 | ||
US17/898,868 US20230197160A1 (en) | 2021-12-16 | 2022-08-30 | Data latch circuit and semiconductor storage device |
Publications (1)
Publication Number | Publication Date |
---|---|
CN116266469A true CN116266469A (en) | 2023-06-20 |
Family
ID=86744398
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211626052.0A Pending CN116266469A (en) | 2021-12-16 | 2022-12-15 | Data latch circuit and semiconductor memory device |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN116266469A (en) |
TW (1) | TWI843310B (en) |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4504405B2 (en) * | 2007-09-12 | 2010-07-14 | 株式会社東芝 | Semiconductor memory device |
TWI820090B (en) * | 2018-09-14 | 2023-11-01 | 日商鎧俠股份有限公司 | semiconductor memory device |
-
2022
- 2022-11-30 TW TW111146018A patent/TWI843310B/en active
- 2022-12-15 CN CN202211626052.0A patent/CN116266469A/en active Pending
Also Published As
Publication number | Publication date |
---|---|
TWI843310B (en) | 2024-05-21 |
TW202329419A (en) | 2023-07-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10783955B2 (en) | Memory circuit having shared word line | |
US8305836B2 (en) | Semiconductor memory device highly integrated in direction of columns | |
JP4885365B2 (en) | Semiconductor device | |
JP4630879B2 (en) | Semiconductor memory device | |
US9905290B2 (en) | Multiple-port SRAM device | |
KR101491193B1 (en) | SRAM word-line coupling noise restriction | |
KR100461888B1 (en) | Semiconductor storage device | |
JP2002074964A (en) | Semiconductor memory | |
US20080031029A1 (en) | Semiconductor memory device with split bit-line structure | |
TWI720237B (en) | Static random access memory cell, layout pattern and operation method thereof | |
US7259977B2 (en) | Semiconductor device having hierarchized bit lines | |
US20150085567A1 (en) | Three-dimensional two-port bit cell | |
JP2010109232A (en) | Semiconductor integrated circuit device | |
TWI843310B (en) | Data latch circuit and semiconductor storage device | |
JP2007242700A (en) | Semiconductor memory | |
US20230197160A1 (en) | Data latch circuit and semiconductor storage device | |
US8411479B2 (en) | Memory circuits, systems, and methods for routing the memory circuits | |
TW202309902A (en) | Memory circuits | |
JP6522186B2 (en) | Semiconductor memory device | |
JP6096271B2 (en) | Semiconductor device | |
CN117995243A (en) | Eflash bit line driving circuit and memory chip | |
TW202503739A (en) | Memory circuit | |
TW202439919A (en) | Memory device | |
JP2008065863A (en) | Semiconductor memory device | |
JP2009163797A (en) | Semiconductor memory device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |