CN116265088A - Preparation of magnetic bifunctional catalyst NiCoAl and research method for hydrodeoxygenation of lignin phenol derivatives - Google Patents
Preparation of magnetic bifunctional catalyst NiCoAl and research method for hydrodeoxygenation of lignin phenol derivatives Download PDFInfo
- Publication number
- CN116265088A CN116265088A CN202111558475.9A CN202111558475A CN116265088A CN 116265088 A CN116265088 A CN 116265088A CN 202111558475 A CN202111558475 A CN 202111558475A CN 116265088 A CN116265088 A CN 116265088A
- Authority
- CN
- China
- Prior art keywords
- catalyst
- nicoal
- bifunctional
- reaction
- hydrodeoxygenation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000003054 catalyst Substances 0.000 title claims abstract description 73
- 230000001588 bifunctional effect Effects 0.000 title claims abstract description 30
- 229920005610 lignin Polymers 0.000 title claims abstract description 26
- 229910006020 NiCoAl Inorganic materials 0.000 title claims abstract description 25
- 238000000034 method Methods 0.000 title claims abstract description 11
- 238000002360 preparation method Methods 0.000 title claims abstract description 10
- 238000011160 research Methods 0.000 title claims abstract description 6
- 150000002989 phenols Chemical class 0.000 title abstract description 7
- 238000006243 chemical reaction Methods 0.000 claims abstract description 61
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 claims abstract description 15
- 239000002904 solvent Substances 0.000 claims abstract description 15
- 239000002184 metal Substances 0.000 claims abstract description 14
- 229910052751 metal Inorganic materials 0.000 claims abstract description 14
- 230000002378 acidificating effect Effects 0.000 claims abstract description 9
- 230000000694 effects Effects 0.000 claims abstract description 6
- 238000005984 hydrogenation reaction Methods 0.000 claims abstract description 6
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 6
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims abstract description 4
- 238000001354 calcination Methods 0.000 claims abstract description 4
- 238000001027 hydrothermal synthesis Methods 0.000 claims abstract description 3
- 239000000047 product Substances 0.000 claims description 14
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 12
- 238000003756 stirring Methods 0.000 claims description 11
- 239000007787 solid Substances 0.000 claims description 10
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 9
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 claims description 8
- 239000012018 catalyst precursor Substances 0.000 claims description 6
- -1 polytetrafluoroethylene Polymers 0.000 claims description 4
- 229920001343 polytetrafluoroethylene Polymers 0.000 claims description 4
- 239000004810 polytetrafluoroethylene Substances 0.000 claims description 4
- 238000001291 vacuum drying Methods 0.000 claims description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 3
- 229910052782 aluminium Inorganic materials 0.000 claims description 3
- 239000001257 hydrogen Substances 0.000 claims description 3
- 229910052739 hydrogen Inorganic materials 0.000 claims description 3
- 229910052760 oxygen Inorganic materials 0.000 claims description 3
- 229910021094 Co(NO3)2-6H2O Inorganic materials 0.000 claims description 2
- 229910018590 Ni(NO3)2-6H2O Inorganic materials 0.000 claims description 2
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 claims description 2
- 239000004202 carbamide Substances 0.000 claims description 2
- 238000005119 centrifugation Methods 0.000 claims description 2
- 239000008367 deionised water Substances 0.000 claims description 2
- 229910021641 deionized water Inorganic materials 0.000 claims description 2
- 125000000532 dioxanyl group Chemical group 0.000 claims description 2
- 238000001035 drying Methods 0.000 claims description 2
- 238000002474 experimental method Methods 0.000 claims description 2
- 239000000843 powder Substances 0.000 claims description 2
- 239000002243 precursor Substances 0.000 claims description 2
- 230000035484 reaction time Effects 0.000 claims description 2
- 239000006228 supernatant Substances 0.000 claims description 2
- 238000005406 washing Methods 0.000 claims description 2
- 150000001875 compounds Chemical class 0.000 claims 1
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 abstract description 8
- 239000012075 bio-oil Substances 0.000 abstract description 7
- 230000003197 catalytic effect Effects 0.000 abstract description 4
- 238000006392 deoxygenation reaction Methods 0.000 abstract description 3
- LHGVFZTZFXWLCP-UHFFFAOYSA-N guaiacol Chemical compound COC1=CC=CC=C1O LHGVFZTZFXWLCP-UHFFFAOYSA-N 0.000 description 18
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 9
- 229960001867 guaiacol Drugs 0.000 description 9
- HPXRVTGHNJAIIH-UHFFFAOYSA-N cyclohexanol Chemical compound OC1CCCCC1 HPXRVTGHNJAIIH-UHFFFAOYSA-N 0.000 description 7
- 239000007789 gas Substances 0.000 description 7
- 239000000446 fuel Substances 0.000 description 6
- KLIDCXVFHGNTTM-UHFFFAOYSA-N 2,6-dimethoxyphenol Chemical compound COC1=CC=CC(OC)=C1O KLIDCXVFHGNTTM-UHFFFAOYSA-N 0.000 description 4
- PETRWTHZSKVLRE-UHFFFAOYSA-N 2-Methoxy-4-methylphenol Chemical compound COC1=CC(C)=CC=C1O PETRWTHZSKVLRE-UHFFFAOYSA-N 0.000 description 4
- ASHGTJPOSUFTGB-UHFFFAOYSA-N 3-methoxyphenol Chemical compound COC1=CC=CC(O)=C1 ASHGTJPOSUFTGB-UHFFFAOYSA-N 0.000 description 4
- CHWNEIVBYREQRF-UHFFFAOYSA-N 4-Ethyl-2-methoxyphenol Chemical compound CCC1=CC=C(O)C(OC)=C1 CHWNEIVBYREQRF-UHFFFAOYSA-N 0.000 description 4
- RRAFCDWBNXTKKO-UHFFFAOYSA-N eugenol Chemical compound COC1=CC(CC=C)=CC=C1O RRAFCDWBNXTKKO-UHFFFAOYSA-N 0.000 description 4
- 239000007788 liquid Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- MQWCXKGKQLNYQG-UHFFFAOYSA-N 4-methylcyclohexan-1-ol Chemical compound CC1CCC(O)CC1 MQWCXKGKQLNYQG-UHFFFAOYSA-N 0.000 description 2
- 239000002028 Biomass Substances 0.000 description 2
- NPBVQXIMTZKSBA-UHFFFAOYSA-N Chavibetol Natural products COC1=CC=C(CC=C)C=C1O NPBVQXIMTZKSBA-UHFFFAOYSA-N 0.000 description 2
- 239000005770 Eugenol Substances 0.000 description 2
- 229920002488 Hemicellulose Polymers 0.000 description 2
- UVMRYBDEERADNV-UHFFFAOYSA-N Pseudoeugenol Natural products COC1=CC(C(C)=C)=CC=C1O UVMRYBDEERADNV-UHFFFAOYSA-N 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 229920002678 cellulose Polymers 0.000 description 2
- 239000001913 cellulose Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 229960002217 eugenol Drugs 0.000 description 2
- 239000002803 fossil fuel Substances 0.000 description 2
- 239000012263 liquid product Substances 0.000 description 2
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 231100000252 nontoxic Toxicity 0.000 description 2
- 230000003000 nontoxic effect Effects 0.000 description 2
- RVTKUJWGFBADIN-UHFFFAOYSA-N 4-ethylcyclohexan-1-ol Chemical compound CCC1CCC(O)CC1 RVTKUJWGFBADIN-UHFFFAOYSA-N 0.000 description 1
- YVPZFPKENDZQEJ-UHFFFAOYSA-N 4-propylcyclohexan-1-ol Chemical compound CCCC1CCC(O)CC1 YVPZFPKENDZQEJ-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 239000002841 Lewis acid Substances 0.000 description 1
- 229910021536 Zeolite Inorganic materials 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 239000007810 chemical reaction solvent Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 150000004676 glycans Chemical class 0.000 description 1
- 239000005431 greenhouse gas Substances 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 150000007517 lewis acids Chemical class 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- 230000005389 magnetism Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- GRVDJDISBSALJP-UHFFFAOYSA-N methyloxidanyl Chemical group [O]C GRVDJDISBSALJP-UHFFFAOYSA-N 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 238000002161 passivation Methods 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 238000000197 pyrolysis Methods 0.000 description 1
- 238000004445 quantitative analysis Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000011973 solid acid Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/74—Iron group metals
- B01J23/755—Nickel
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/30—Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
- B01J35/33—Electric or magnetic properties
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C29/00—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
- C07C29/17—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by hydrogenation of carbon-to-carbon double or triple bonds
- C07C29/19—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by hydrogenation of carbon-to-carbon double or triple bonds in six-membered aromatic rings
- C07C29/20—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by hydrogenation of carbon-to-carbon double or triple bonds in six-membered aromatic rings in a non-condensed rings substituted with hydroxy groups
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2601/00—Systems containing only non-condensed rings
- C07C2601/12—Systems containing only non-condensed rings with a six-membered ring
- C07C2601/14—The ring being saturated
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Catalysts (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Abstract
本发明公开了一种磁性双功能催化剂NiCoAl的制备及在木质素酚类衍生物加氢脱氧的研究方法。该双功能催化剂的制备方法为以Al2O3为酸性位点的基础上引入具有金属活性组分的Ni、Co,通过水热合成,并煅烧还原合成具有磁性的NiCoAl催化剂,然后将该双功能催化剂应用于木质素酚类衍生物加氢脱氧的反应中。本发明利用酸性位点,并且在此基础上引入双金属活性位点,既能提升加氢活性也能有效提升目标产物选择性,实现了木质素酚类衍生物的加氢脱氧。该催化剂制备简单,经济,催化活性高,金属位点不易流失等特点,可以在绿色溶剂二氧六环(Dio)中实现木质素酚类衍生物的高效转化。木质素酚类衍生物是生物油中重要成分,将其高值化转化是有良好的应用前景。
The invention discloses a preparation of a magnetic bifunctional catalyst NiCoAl and a research method for hydrogenation and deoxygenation of lignin phenolic derivatives. The preparation method of the bifunctional catalyst is to introduce Ni and Co with metal active components on the basis of Al 2 O 3 as the acidic site, through hydrothermal synthesis, and calcining and reducing to synthesize a magnetic NiCoAl catalyst, and then the bifunctional The functional catalyst is applied in the reaction of hydrodeoxygenation of lignin phenolic derivatives. The invention utilizes acidic sites and introduces bimetallic active sites on this basis, which can not only improve the hydrogenation activity but also effectively improve the selectivity of target products, and realize the hydrodeoxygenation of lignin phenolic derivatives. The catalyst is simple to prepare, economical, has high catalytic activity, and metal sites are not easily lost, and can realize efficient conversion of lignin phenol derivatives in the green solvent dioxane (Dio). Lignin phenolic derivatives are important components in bio-oil, and their high-value conversion has a good application prospect.
Description
技术领域technical field
本发明属于木质素酚类衍生物催化升级的制备技术领域,涉及一种磁性双功能催化剂NiCoAl的制备及在木质素酚类衍生物加氢脱氧的研究方法。The invention belongs to the technical field of preparation of catalytic upgrading of lignin phenol derivatives, and relates to the preparation of a magnetic bifunctional catalyst NiCoAl and a research method for hydrogenation and deoxygenation of lignin phenol derivatives.
背景技术Background technique
石油基燃料的逐渐枯竭导致了全球能源危机。燃烧化石燃料引入的温室气体排放使全球变暖成为人类历史上最大的环境挑战之一。生物质作为地球上最重要的可再生资源之一,也是唯一可转化为液体燃料的可再生资源,近年来人们在寻找化石燃料的替代品时,受到了相当大的关注。生物质的主要成分是纤维素、半纤维素和木质素。纤维素和半纤维素由复杂的多糖组成。木质素独特的芳香结构使其成为一种可行的化学品原料,适用于生产增值化学品和燃料,可以缓解能源需求增加带来的各种问题。在转化路线中,快速热解是一种高效且有前景的方法,因为可以获得高产量和质量的液体燃料,并且木质素中的大部分能量可以保存在液体产品中,但木质素衍生的生物油是劣质燃料,不稳定且物理性质不理想,因此需要升级。The gradual depletion of petroleum-based fuels has led to a global energy crisis. Greenhouse gas emissions introduced by burning fossil fuels have made global warming one of the greatest environmental challenges in human history. Biomass, as one of the most important renewable resources on earth and the only renewable resource that can be converted into liquid fuels, has received considerable attention in recent years when people are looking for alternatives to fossil fuels. The main components of biomass are cellulose, hemicellulose and lignin. Cellulose and hemicellulose are composed of complex polysaccharides. The unique aromatic structure of lignin makes it a viable chemical feedstock for the production of value-added chemicals and fuels, which can alleviate various problems caused by increasing energy demand. In the conversion route, fast pyrolysis is an efficient and promising method, because high yield and quality liquid fuels can be obtained, and most of the energy in lignin can be preserved in liquid products, but lignin-derived bio Oil is poor quality fuel, unstable and has suboptimal physical properties, so it needs to be upgraded.
生物油本身具有一些非理想的特性,包括低热值、高粘度、不完全挥发性和化学不稳定性,这是由于液体中的氧含量高(35-40wt%)。将生物油升级为常规运输燃料需要大量脱氧,这可以通过两条主要途径完成:加氢脱氧和沸石升级。特别是加氢脱氧被认为是生物油升级的有效方法。木质素酚类衍生物主要有两种类型的C-O键(羟基(Csp2-OH)和甲氧基(Csp2-OCH3))。双功能催化剂包含金属位点和酸性位点,通常用于HDO反应。酸性催化剂主要有固体酸、金属氧化物、磷化物和路易斯酸等。发现Al2O3更适合作为由于其总酸度更高,合适的酸性位点更有利于木质素大分子的转移。贵金属在生物油的HDO有良好的活性,然而因为其成本较高阻碍了其在商业运营中的应用。镍金属相对便宜,也显示出较高的氢化活性,但是由于易钝化、烧结、积碳等缺点,很难获得理想的产物,相反,钴金属对产物有较高的选择性,但是Co的加氢活性一般。Bio-oil itself has some non-ideal properties, including low calorific value, high viscosity, incomplete volatility and chemical instability due to the high oxygen content (35-40 wt%) in the liquid. Upgrading bio-oils to conventional transportation fuels requires extensive deoxygenation, which can be accomplished through two main routes: hydrodeoxygenation and zeolite upgrading. Especially hydrodeoxygenation is considered as an effective method for bio-oil upgrading. There are mainly two types of CO bonds (hydroxyl (C sp2 -OH) and methoxyl (C sp2 -OCH 3 )) in lignophenolic derivatives. Bifunctional catalysts contain metal sites and acidic sites and are commonly used in HDO reactions. Acidic catalysts mainly include solid acids, metal oxides, phosphides, and Lewis acids. It was found that Al 2 O 3 was more suitable as a suitable acid site due to its higher total acidity, which is more conducive to the transfer of lignin macromolecules. Noble metals have good activity in HDO of bio-oils, however, their high cost hinders their application in commercial operations. Nickel metal is relatively cheap and also shows high hydrogenation activity, but due to the disadvantages of easy passivation, sintering, carbon deposition, etc., it is difficult to obtain ideal products. On the contrary, cobalt metal has higher selectivity to products, but Co Hydrogenation activity is average.
本发明针对现有技术的不足,提供了一种新的用于木质素酚类衍生物加氢脱氧的反应方法,所述的催化剂能够有效完成木质素酚类衍生物的加氢脱氧,其中转化率可以达到100%,相应醇的选择性可以达到80~91%。Aiming at the deficiencies of the prior art, the present invention provides a new reaction method for hydrodeoxygenation of lignin phenolic derivatives. The catalyst can effectively complete the hydrodeoxygenation of lignin phenolic derivatives, wherein the conversion The efficiency can reach 100%, and the selectivity of the corresponding alcohol can reach 80-91%.
附图说明Description of drawings
图1催化剂X射线衍射图(XRD)Figure 1 Catalyst X-ray Diffraction Pattern (XRD)
图2催化剂透射电镜图(SEM&TEM)分布图Figure 2 Catalyst transmission electron microscope (SEM&TEM) distribution map
图3催化剂Ni1Co3Al2-600的循环图Fig.3 Cycle diagram of catalyst Ni 1 Co 3 Al 2 -600
图4催化剂与反应产物的分离图Figure 4 Separation diagram of catalyst and reaction product
表1催化剂在愈创木酚加氢脱氧反应中的性能Table 1 Catalyst performance in guaiacol hydrodeoxygenation reaction
发明内容Contents of the invention
本发明是一种磁性双功能催化剂NiCoAl的制备及在木质素酚类衍生物加氢脱氧的研究方法,其目的是针对现有技术中存在的问题,制备了一种既能提供较强的加氢活性也能获得理想中的产物的催化剂,并且产物与催化剂易于分离,稳定性高,可循环利用。The present invention is a preparation of a magnetic bifunctional catalyst NiCoAl and a research method on hydrodeoxygenation of lignin phenolic derivatives. The hydrogen activity can also obtain the catalyst of the ideal product, and the product and the catalyst are easy to separate, have high stability, and can be recycled.
本发明的技术解决方案:一种磁性双功能催化剂NiCoAl的制备及在木质素酚类衍生物加氢脱氧的研究方法,其特征包括如下步骤:Technical solution of the present invention: a preparation of a magnetic bifunctional catalyst NiCoAl and a research method for hydrodeoxygenation of lignin phenolic derivatives, which are characterized by the following steps:
1)取一定量的Al(NO3)3·9H2O,Co(NO3)2·6H2O,Ni(NO3)2·6H2O和尿素置于聚四氟乙烯内衬中,随后加入去离子水,在室温条件下,磁力搅拌10~20min;1) Take a certain amount of Al(NO 3 ) 3 9H 2 O, Co(NO 3 ) 2 6H 2 O, Ni(NO 3 ) 2 6H 2 O and urea in the PTFE lining, Then add deionized water, and stir magnetically for 10-20 minutes at room temperature;
2)将步骤1中的聚四氟乙烯内衬放置到水热反应釜中,将其在一定温度的烘箱中老化一段时间。2) Place the polytetrafluoroethylene lining in
3)待步骤2反应完成后,倒掉上清液,将固体通过离心洗涤2~6次,洗涤完成后在真空干燥箱除去水分,得到固体;3) After the reaction in
4)将步骤3中得到的固体至于坩埚中,经高温煅烧一定时间,最终得到催化剂前体。4) putting the solid obtained in
5)将步骤4中得到的催化剂前体,在经过高温还原一定时间,得到最终的催化剂。5) The catalyst precursor obtained in step 4 is reduced at high temperature for a certain period of time to obtain the final catalyst.
6)将木质素酚类衍生物,溶剂,催化剂加入高压反应釜中形成反应体系,所加入木质素酚类衍生物的量为1~5mmol,催化剂的用量为0.05g~0.1g。6) Adding lignin phenol derivatives, solvent and catalyst into the autoclave to form a reaction system, the amount of lignin phenol derivatives added is 1-5 mmol, and the amount of catalyst is 0.05 g-0.1 g.
2.根据权利要求1所述的双功能NiCoAl催化剂,其特征在于:所述双功能催化剂,催化剂的酸性组分为铝的化合物,金属活性组分为Ni、Co金属。2. The bifunctional NiCoAl catalyst according to
3.根据权利要求1所述的双功能NiCoAl催化剂,其特征在于:所述的金属活性组分和酸性组分的摩尔比的比值为2~5。3. The bifunctional NiCoAl catalyst according to
4.根据权利要求1所述的双功能NiCoAl催化剂,其特征在于:步骤1)中,搅拌速度为600-800rpm。4. The bifunctional NiCoAl catalyst according to
5.根据权利要求1所述的双功能NiCoAl催化剂,其特征在于:步骤2)中,烘箱的温度为100~150℃,反应时间为24-30h。5. The bifunctional NiCoAl catalyst according to
6.根据权利要求1所述的双功能NiCoAl催化剂,其特征在于:步骤3)中,真空干燥时间为6-12h,干燥温度为50-80℃,所得固体为浅红色粉末。6. The bifunctional NiCoAl catalyst according to
7.根据权利要求1所述的双功能NiCoAl催化剂,其特征在于:步骤3)中,固体在450-600℃下空气条件下煅烧,煅烧时间为2-6h,得到前体,命名为NixCoyAlz-C(x,y,z分别为相应的摩尔数,C为煅烧温度)。7. The bifunctional NiCoAl catalyst according to
8.根据权利要求1所述的双功能NiCoAl催化剂,其特征在于:步骤4)中,将催化剂前体450-700℃下无氧条件下煅烧,煅烧时间为2-6h,得到催化剂。8. The bifunctional NiCoAl catalyst according to
9.将权利要求1中所述制备的双功能NiCoAl催化剂用于愈创木酚加氢脱氧制备环己醇的实验,其特征包括如下步骤。9. The bifunctional NiCoAl catalyst prepared as claimed in
10.权利要求1所述的双功能NiCoAl催化剂,木质素酚类衍生物,溶剂加入高压反应釜中,形成反应体系,所加入木质素酚类衍生物的量为1~5mmol,催化剂的用量为0.05g~0.1g。10. The bifunctional NiCoAl catalyst according to
11.在温度为150-250℃,在氢气气氛下,进行反应0.01-8h,反应结束后再经过与催化剂分离,即可得到目标产物。11. At a temperature of 150-250°C, under a hydrogen atmosphere, carry out the reaction for 0.01-8h, and then separate from the catalyst after the reaction to obtain the target product.
12.所述的溶剂为二氧六环(Dio),异丙醇(IPA),乙醇(EtOH),甲醇(MeOH)等。12. The solvent is dioxane (Dio), isopropanol (IPA), ethanol (EtOH), methanol (MeOH) and the like.
13.所述的催化剂含Ni、Co、Al的摩尔数分别为0-5mmol、0~10mmol、2-10mmol,并根据催化剂制备加入不同的金属盐,将催化剂命名为NixCoyAlz-T(T为还原温度)。13. The molar numbers of Ni, Co, and Al contained in the catalyst are 0-5mmol, 0-10mmol, and 2-10mmol respectively, and different metal salts are added according to the preparation of the catalyst, and the catalyst is named Ni x Co y Al z - T (T is the reduction temperature).
14.本发明的优点:本发明使用的催化剂,廉价易得,无毒性,绿色环保,可多次重复使用,反应体系优选溶剂绿色可再生,无毒,且获得产物的选择性高。14. Advantages of the present invention: the catalyst used in the present invention is cheap and easy to obtain, non-toxic, green and environmentally friendly, and can be reused many times. The reaction system is preferably green and reproducible with solvents, non-toxic, and has high selectivity for obtaining products.
具体实施方式Detailed ways
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合具体实施例对本发明的具体实施方式做详细的说明。在下面的描述中阐述了很多具体细节以便于充分理解本发明,应理解,这些实例仅用于说明本发明而不用于限制本发明的范围。此外,应理解,在阅读了本发明讲授的内容后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。In order to make the above objects, features and advantages of the present invention more comprehensible, the specific implementation of the present invention will be described in detail below in conjunction with specific examples. In the following description, many specific details are set forth in order to fully understand the present invention, and it should be understood that these examples are only used to illustrate the present invention and are not intended to limit the scope of the present invention. In addition, it should be understood that after reading the content taught by the present invention, those skilled in the art can make various changes or modifications to the present invention, and these equivalent forms also fall within the scope defined by the appended claims of the present application.
实施案例1
高压反应釜中加入0.05g~0.1g催化剂、1~5mmol愈创木酚和20mL溶剂,将反应釜中通入一定量的压力,然后将高压反应釜设置到一定的反应温度,反应过程中持续搅拌。待反应结束后,冷却至室温,用气相对液体产物进行分析,并通过定量分析计算愈创木酚的转化率和环己醇的选择性。Add 0.05g ~ 0.1g catalyst, 1 ~ 5mmol guaiacol and 20mL solvent into the autoclave, put a certain amount of pressure into the autoclave, and then set the autoclave to a certain reaction temperature. Stir. After the reaction is finished, cool to room temperature, analyze the liquid product by gas phase, and calculate the conversion rate of guaiacol and the selectivity of cyclohexanol through quantitative analysis.
(1)催化剂性能对比(1) Catalyst performance comparison
表1[a] Table 1 [a]
[a]反应条件:1~5mmol愈创木酚,0.05g~0.1g催化剂,20mL溶剂,180℃,2MPaH2。以二氧六环(Dio)作为反应溶剂时,在Ni1Co3Al2-600催化剂在催化愈创木酚加氢脱氧制备环己醇的反应中表现出较高的催化反应活性。愈创木酚的转化率为100%,环己醇的选择性为91%。故在下面的测试中我们选择了以Ni1Co3Al2-600催化剂为例进行探究。[a] Reaction conditions: 1-5 mmol guaiacol, 0.05 g-0.1 g catalyst, 20 mL solvent, 180° C., 2 MPaH 2 . When dioxane (Dio) was used as the reaction solvent, Ni 1 Co 3 Al 2 -600 catalyst exhibited higher catalytic activity in the reaction of catalyzing the hydrodeoxygenation of guaiacol to prepare cyclohexanol. The conversion rate of guaiacol was 100%, and the selectivity of cyclohexanol was 91%. Therefore, in the following tests, we chose to take Ni 1 Co 3 Al 2 -600 catalyst as an example for exploration.
实施案例2
取0.05g~0.1g催化剂、1~5mmol愈创木酚和20mL二氧六环为溶剂加入反应釜中,然后将反应釜中通入的1~2MPa H2,而后将反应釜的温度设置到180℃,在反应过程中持续搅拌,待反应结束后,反应一定的时间,冷却至室温,气相对产物进行分析,得到愈创木酚的转化率为100%,环己醇的选择性为90~91%,并重复5次,记录如图3所示,该催化剂的保持着较好的稳定性。由图4可以看出,该反应完成后,由于磁性较强,通过磁铁就可以让其快速分离,操作简单方便。Take 0.05g~0.1g of catalyst, 1~5mmol of guaiacol and 20mL of dioxane as solvent and put them into the reaction kettle, then feed 1~2MPa H2 into the reaction kettle, and then set the temperature of the reaction kettle to 180°C, keep stirring during the reaction process, after the reaction is finished, react for a certain period of time, cool to room temperature, and analyze the gas phase product, the conversion rate of guaiacol is 100%, and the selectivity of cyclohexanol is 90%. ~91%, and repeated 5 times, as shown in Figure 3, the catalyst maintained good stability. It can be seen from Figure 4 that after the reaction is completed, due to the strong magnetism, it can be quickly separated by a magnet, and the operation is simple and convenient.
实施案例3
取0.05g~0.1g催化剂、1~5mmol 3-甲氧基苯酚和20mL二氧六环为溶剂加入反应釜中,然后将反应釜中通入的1~2MPa H2,而后将反应釜的温度设置到180℃,在反应过程中持续搅拌,反应一定的时间,待反应结束后,冷却至室温,气相对产物进行分析,得到3-甲氧基苯酚的转化率为100%,环己醇的选择性为83%。Take 0.05g~0.1g of catalyst, 1~5mmol of 3-methoxyphenol and 20mL of dioxane as solvent and add it into the reaction kettle, then feed 1~2MPa H2 into the reaction kettle, and then control the temperature of the reaction kettle Set it to 180°C, keep stirring during the reaction, and react for a certain period of time. After the reaction is over, cool to room temperature, and analyze the gas phase product. The conversion rate of 3-methoxyphenol is 100%, and that of cyclohexanol is 100%. The selectivity was 83%.
实施案例4Implementation Case 4
取0.05g~0.1g催化剂、1~5mmol 2,6-二甲氧基苯酚和20mL二氧六环为溶剂加入反应釜中,然后将反应釜中通入的1~2MPa H2,而后将反应釜的温度设置到180℃,在反应过程中持续搅拌,反应一定的时间,待反应结束后,冷却至室温,气相对产物进行分析,得到2,6-二甲氧基苯酚的转化率为100%,环己醇的选择性为90%。Take 0.05g~0.1g catalyst, 1~
实施案例5Implementation Case 5
取0.05g~0.1g催化剂、1~5mmol 2-甲氧基4-甲基苯酚和20mL二氧六环为溶剂加入反应釜中,然后将反应釜中通入的1~2MPa H2,而后将反应釜的温度设置到180℃,在反应过程中持续搅拌,反应一定的时间,待反应结束后,冷却至室温,气相对产物进行分析,得到2-甲氧基4-甲基苯酚的转化率为100%,4-甲基环己醇的选择性为85%。Take 0.05g~0.1g catalyst, 1~5mmol 2-methoxy 4-methylphenol and 20mL dioxane as solvent and add it into the reaction kettle, then feed 1~2MPa H 2 into the reaction kettle, and then put Set the temperature of the reaction kettle to 180°C, keep stirring during the reaction, and react for a certain period of time. After the reaction is completed, cool to room temperature and analyze the gas phase product to obtain the conversion rate of 2-methoxy 4-methylphenol is 100%, and the selectivity of 4-methylcyclohexanol is 85%.
实施案例6Implementation Case 6
取0.05g~0.1g催化剂、1~5mmol丁香油酚和20mL二氧六环为溶剂加入反应釜中,然后将反应釜中通入的1~2MPa H2,而后将反应釜的温度设置到180℃,在反应过程中持续搅拌,反应一定的时间,待反应结束后,冷却至室温,气相对产物进行分析,得到丁香油酚的转化率为100%,4-丙基环己醇的选择性为85%。Take 0.05g~0.1g of catalyst, 1~5mmol of eugenol and 20mL of dioxane as solvent and add it into the reaction kettle, then feed 1~2MPa H 2 into the reaction kettle, and then set the temperature of the reaction kettle to 180 ℃, keep stirring during the reaction, react for a certain period of time, after the reaction is finished, cool to room temperature, and analyze the gas phase product, the conversion rate of eugenol is 100%, and the selectivity of 4-propylcyclohexanol is 100%. 85%.
实施案例7Implementation Case 7
取0.05g~0.1g催化剂、1~5mmol 2-甲氧基4-乙基苯酚和20mL二氧六环为溶剂加入反应釜中,然后将反应釜中通入的1~2MPa H2,而后将反应釜的温度设置到180℃,在反应过程中持续搅拌,反应一定的时间,待反应结束后,冷却至室温,气相对产物进行分析,得到2-甲氧基4-乙基苯酚的转化率为100%,4-乙基环己醇的选择性为88%。Take 0.05g~0.1g catalyst, 1~5mmol 2-methoxy 4-ethylphenol and 20mL dioxane as solvent and add it into the reaction kettle, then feed 1~2MPa H 2 into the reaction kettle, and then put Set the temperature of the reaction kettle to 180°C, keep stirring during the reaction, and react for a certain period of time. After the reaction is completed, cool to room temperature and analyze the gas phase product to obtain the conversion rate of 2-methoxy 4-ethylphenol was 100%, and the selectivity of 4-ethylcyclohexanol was 88%.
双功能催化剂适用于其他的类似的酚类衍生物,从上述的案例中,该催化剂对脱除甲氧基官能团有较好的催化活性,相对应的选择性较高,可以认为此类催化剂在含有甲氧基的苯酚类衍生物都能表现出良好的选择性,对木质素衍生生物油的高值化有良好的应用前景。The bifunctional catalyst is suitable for other similar phenolic derivatives. From the above cases, the catalyst has good catalytic activity for the removal of methoxy functional groups, and the corresponding selectivity is high. It can be considered that this type of catalyst is in the Phenol derivatives containing methoxy groups can show good selectivity, and have good application prospects for high-value lignin-derived bio-oils.
最后说明的是,对所公开的实施例的上述说明,是本领域技术人员能够实现或者使用本发明。对于这些实施例的多种修改对本领域技术人员来说将是显而易见的,本文所定义的一般原理可以在不脱离本发明的精神或者范围的情况下,在其他实施例中实现。因此,本发明将不会被限制于本文所示的这写实施例,而是要符合于本文所公开的原理和新颖点相一致的最宽的范围。Finally, it should be noted that the above description of the disclosed embodiments enables those skilled in the art to implement or use the present invention. Various modifications to these embodiments will be readily apparent to those skilled in the art, and the general principles defined herein may be implemented in other embodiments without departing from the spirit or scope of the invention. Therefore, the present invention will not be limited to the embodiments shown herein, but will conform to the widest scope consistent with the principles and novel points disclosed herein.
Claims (13)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111558475.9A CN116265088A (en) | 2021-12-17 | 2021-12-17 | Preparation of magnetic bifunctional catalyst NiCoAl and research method for hydrodeoxygenation of lignin phenol derivatives |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111558475.9A CN116265088A (en) | 2021-12-17 | 2021-12-17 | Preparation of magnetic bifunctional catalyst NiCoAl and research method for hydrodeoxygenation of lignin phenol derivatives |
Publications (1)
Publication Number | Publication Date |
---|---|
CN116265088A true CN116265088A (en) | 2023-06-20 |
Family
ID=86744038
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111558475.9A Pending CN116265088A (en) | 2021-12-17 | 2021-12-17 | Preparation of magnetic bifunctional catalyst NiCoAl and research method for hydrodeoxygenation of lignin phenol derivatives |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN116265088A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118719132A (en) * | 2024-06-19 | 2024-10-01 | 中国矿业大学 | A high-activity modified molecular sieve catalyst and its preparation method and application in the preparation of cyclohexane |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150057475A1 (en) * | 2013-08-23 | 2015-02-26 | Battelle Memorial Institute | Bi-functional catalyst and processes for conversion of biomass to fuel-range hydrocarbons |
CN107649169A (en) * | 2017-09-06 | 2018-02-02 | 中国林业科学研究院林产化学工业研究所 | A kind of catalyst of hydrogenation deoxidation reaction and its preparation method and application |
CN110563051A (en) * | 2019-08-26 | 2019-12-13 | 江苏大学 | Preparation method and application of NiCoAl-LDH/N-GO composite material |
-
2021
- 2021-12-17 CN CN202111558475.9A patent/CN116265088A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150057475A1 (en) * | 2013-08-23 | 2015-02-26 | Battelle Memorial Institute | Bi-functional catalyst and processes for conversion of biomass to fuel-range hydrocarbons |
CN107649169A (en) * | 2017-09-06 | 2018-02-02 | 中国林业科学研究院林产化学工业研究所 | A kind of catalyst of hydrogenation deoxidation reaction and its preparation method and application |
CN110563051A (en) * | 2019-08-26 | 2019-12-13 | 江苏大学 | Preparation method and application of NiCoAl-LDH/N-GO composite material |
Non-Patent Citations (3)
Title |
---|
L.H.CHAGAS, ET AL: "MgCoAl and NiCoAl LDHs synthesized by the hydrothermal urea hydrolysis method: Structural characterization and thermal decomposition", MATERIALS RESEARCH BULLETIN, vol. 64, 27 December 2014 (2014-12-27), pages 208 * |
MINGHAO ZHOU, ET AL: "Water-assisted selective hydrodeoxygenation of guaiacol to cyclohexanol over supported Ni and Co bimetallic catalysts", ACS SUSTAINABLE CHEMISTRY & ENGINEERING, vol. 5, no. 10, 8 September 2017 (2017-09-08), pages 8825 * |
XIAOKANG YUE, ET AL: "Highly efficient hydrodeoxygenation of lignin-derivatives over Ni-based catalyst", APPLIED CATALYSIS B: ENVIRONMENTAL, vol. 293, 19 April 2021 (2021-04-19), pages 120243, XP086572752, DOI: 10.1016/j.apcatb.2021.120243 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118719132A (en) * | 2024-06-19 | 2024-10-01 | 中国矿业大学 | A high-activity modified molecular sieve catalyst and its preparation method and application in the preparation of cyclohexane |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104707636B (en) | Pt/α‑MoC1‑x Supported Catalyst and Its Synthesis and Application | |
Wang et al. | Anchoring Co on CeO2 nanoflower as an efficient catalyst for hydrogenolysis of 5-hydroxymethylfurfural | |
CN108435230B (en) | Heteroatom-doped ordered mesoporous carbon-supported ruthenium catalyst for efficiently catalyzing 5-hydroxymethylfurfural to prepare 2, 5-furandicarboxaldehyde | |
CN108745333B (en) | A kind of porous carbon aerogel catalyst and its preparation method and application | |
CN106215953B (en) | The synthesis of controllable number of plies molybdenum sulfide and its application in fragrant phenol and ethers reaction | |
CN104152171B (en) | A kind of Catalytic lignin derives the method that aryl oxide prepares alkane liquid fuel | |
CN108048125B (en) | A kind of high-selective catalytic transfer hydrogenation of lignin derivatives to produce aromatics method | |
CN113649007B (en) | Nano-structure NiCo spinel catalyst material and preparation method and application thereof | |
CN108246322A (en) | A kind of CoNiP/SiO2Catalyst and preparation method and application | |
CN104923233B (en) | Core-shell structured catalyst for preparation of cyclohexanol by selective hydrodeoxygenation of catalytic guaiacol | |
CN113117688A (en) | MOF precursor molybdenum-nickel catalyst, preparation method thereof and application thereof in lignin degradation | |
CN108671960A (en) | A kind of high hydrothermal stability MOFs catalyst, the method for preparing and preparing chemicals for cellulose conversion | |
CN104388110B (en) | Method for preparing chain alkane from lignin | |
CN113441140A (en) | Hydrodeoxygenation catalyst and preparation method and application thereof | |
CN114177930A (en) | A kind of method for hydrogenation and depolymerization of lignin catalyzed by molecular sieve-supported ruthenium-nickel catalyst | |
CN116265088A (en) | Preparation of magnetic bifunctional catalyst NiCoAl and research method for hydrodeoxygenation of lignin phenol derivatives | |
CN110354857A (en) | A kind of preparation method and applications of Ni-based heterogeneous catalyst are in catalysis aldehyde compound hydrogenation deoxidation reaction | |
CN114672337A (en) | Method for catalyzing biological oil hydrodeoxygenation by using bimetal nitride | |
CN109535108B (en) | Preparation method of 2, 5-dimethylfuran | |
CN110862873A (en) | Method for preparing hydrogenated biodiesel by catalyzing grease directional hydrodeoxygenation | |
CN111203224A (en) | A kind of method and application of using biomass tar to prepare green catalyst | |
Li et al. | Lignin-tailored fabrication of Ni single atom catalyst with Ni-N3 active site for efficient and selective catalytic transfer hydrogenation of lignin-derived aldehydes | |
CN102757807B (en) | Method for increasing tar yield in hydropyrolysis of coal by using ferric ammonium salt | |
CN111253216B (en) | Synthetic method of cyclohexanol derivative 1-methyl-1, 2-cyclohexanediol | |
CN115414960A (en) | Preparation method of hydrodeoxygenation catalyst |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |