[go: up one dir, main page]

CN116247518A - Epitaxial wafers and semiconductor lasers - Google Patents

Epitaxial wafers and semiconductor lasers Download PDF

Info

Publication number
CN116247518A
CN116247518A CN202310304148.3A CN202310304148A CN116247518A CN 116247518 A CN116247518 A CN 116247518A CN 202310304148 A CN202310304148 A CN 202310304148A CN 116247518 A CN116247518 A CN 116247518A
Authority
CN
China
Prior art keywords
layer
confinement
functional
light
doped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310304148.3A
Other languages
Chinese (zh)
Inventor
陈长安
郑兆祯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YLX Inc
Original Assignee
Shenzhen Zhongguang Industrial Technology Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Zhongguang Industrial Technology Research Institute filed Critical Shenzhen Zhongguang Industrial Technology Research Institute
Priority to CN202310304148.3A priority Critical patent/CN116247518A/en
Publication of CN116247518A publication Critical patent/CN116247518A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34326Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer based on InGa(Al)P, e.g. red laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34346Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser characterised by the materials of the barrier layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Led Devices (AREA)
  • Semiconductor Lasers (AREA)

Abstract

本发明涉及半导体技术领域,公开了一种外延晶片以及半导体激光器。该外延晶片包括:衬底;功能层,功能层位于衬底上;其中,功能层中的至少部分层体掺杂有Mg;发光层,发光层位于功能层中,功能层用于驱动发光层发光。通过上述方式,本发明能够提高应用本发明外延晶片的激光器的特征温度,进而提高其电光转换效率。

Figure 202310304148

The invention relates to the technical field of semiconductors, and discloses an epitaxial wafer and a semiconductor laser. The epitaxial wafer includes: a substrate; a functional layer, the functional layer is located on the substrate; wherein, at least part of the layer body in the functional layer is doped with Mg; a light emitting layer, the light emitting layer is located in the functional layer, and the functional layer is used to drive the light emitting layer glow. Through the above method, the present invention can increase the characteristic temperature of the laser using the epitaxial wafer of the present invention, and further improve its electro-optical conversion efficiency.

Figure 202310304148

Description

外延晶片以及半导体激光器Epitaxial wafers and semiconductor lasers

本申请为对申请号为201910009078.2、申请日为2019年01月04日、发明名称为“外延晶片以及半导体激光器”进行的分案申请。This application is a divisional application for the application number 201910009078.2, the application date is January 04, 2019, and the invention title is "Epitaxial Wafer and Semiconductor Laser".

技术领域technical field

本发明涉及半导体技术领域,特别是涉及一种外延晶片以及半导体激光器。The invention relates to the technical field of semiconductors, in particular to an epitaxial wafer and a semiconductor laser.

背景技术Background technique

AlGaInP四元化合物材料广泛应用于高亮度红光发光二极管及半导体激光器,已经成为红光发光器件的主流材料。但是相比于早期使用的AlGaAs材料,AlGaInP材料体系本身也有其缺点:AlGaInP/GaInP异质结的导带带阶很小,最大值约270meV,小于AlGaAs材料的350meV,因此电子势垒相对较低,容易形成泄露电流,使得激光器阈值电流加大,尤其是在高温及大电流工作中更为明显。并且AlGaInP材料由于合金散射,其热阻远高于AlGaAs材料,因此工作中产热较多,容易导致结温及腔面温度过高。同时,AlGaInP材料载流子的有效质量及态密度高于AlGaAs材料,激射时需要更高的透明电流密度。上述原因使得应用AlGaInP材料体系的激光器的特征温度较低,连续工作时电光转换效率较低。AlGaInP quaternary compound materials are widely used in high-brightness red light-emitting diodes and semiconductor lasers, and have become the mainstream materials for red light-emitting devices. However, compared with the AlGaAs material used in the early stage, the AlGaInP material system itself also has its disadvantages: the conduction band step of the AlGaInP/GaInP heterojunction is very small, with a maximum value of about 270meV, which is less than 350meV of the AlGaAs material, so the electronic barrier is relatively low , it is easy to form a leakage current, which increases the threshold current of the laser, especially in high temperature and high current operation. Moreover, due to alloy scattering, the thermal resistance of AlGaInP material is much higher than that of AlGaAs material, so more heat is generated during operation, which easily leads to excessively high junction temperature and cavity surface temperature. At the same time, the effective mass and density of states of carriers in AlGaInP materials are higher than those in AlGaAs materials, and a higher transparent current density is required for lasing. For the above reasons, the characteristic temperature of the laser using the AlGaInP material system is low, and the electro-optic conversion efficiency is low during continuous operation.

发明内容Contents of the invention

有鉴于此,本发明主要解决的技术问题是提供一种外延晶片以及半导体激光器,能够提高应用本发明外延晶片的激光器的特征温度,进而提高其电光转换效率。In view of this, the main technical problem to be solved by the present invention is to provide an epitaxial wafer and a semiconductor laser, which can increase the characteristic temperature of the laser using the epitaxial wafer of the present invention, and then improve its electro-optic conversion efficiency.

为解决上述技术问题,本发明采用的一个技术方案是:提供一种外延晶片,该外延晶片包括:衬底;功能层,功能层位于衬底上;其中,功能层中的至少部分层体掺杂有Mg;发光层,发光层位于功能层中,功能层用于驱动发光层发光,功能层包括第一功能层和第二功能层,第一功能层、发光层以及第二功能层沿靠近衬底的方向依次层叠于衬底上,第一功能层包括第一波导层和第一限制层,第一波导层位于发光层远离第二功能层的一侧,第一限制层位于第一波导层远离发光层的一侧,并且第一波导层和第一限制层掺杂有Mg,第一限制层包括第一子限制层和第二子限制层,第一子限制层位于第一波导层远离发光层的一侧,第二子限制层位于第一子限制层远离第一波导层的一侧;其中,第一子限制层掺杂有Mg,第二子限制层掺杂有Zn。In order to solve the above-mentioned technical problems, a technical solution adopted by the present invention is: provide an epitaxial wafer, the epitaxial wafer includes: a substrate; a functional layer, the functional layer is located on the substrate; wherein, at least part of the functional layers are doped Doped with Mg; light-emitting layer, the light-emitting layer is located in the functional layer, the functional layer is used to drive the light-emitting layer to emit light, the functional layer includes a first functional layer and a second functional layer, the first functional layer, the light-emitting layer and the second functional layer are close to each other The direction of the substrate is stacked on the substrate in sequence. The first functional layer includes a first waveguide layer and a first confinement layer. The first waveguide layer is located on the side of the light-emitting layer away from the second functional layer. layer away from the side of the light-emitting layer, and the first waveguide layer and the first confinement layer are doped with Mg, the first confinement layer includes a first sub-confinement layer and a second sub-confinement layer, and the first sub-confinement layer is located in the first waveguide layer On the side away from the light-emitting layer, the second sub-confinement layer is located on the side of the first sub-confinement layer away from the first waveguide layer; wherein, the first sub-confinement layer is doped with Mg, and the second sub-confinement layer is doped with Zn.

在本发明的一实施例中,第一波导层中的Mg浓度小于第一限制层中的Mg浓度。In an embodiment of the invention, the Mg concentration in the first waveguide layer is smaller than the Mg concentration in the first confinement layer.

在本发明的一实施例中,第一限制层还包括阻隔层,阻隔层位于第一子限制层和第二子限制层之间。In an embodiment of the present invention, the first confinement layer further includes a barrier layer, and the barrier layer is located between the first sub-constraint layer and the second sub-constraint layer.

在本发明的一实施例中,阻隔层包括第一阻隔层和第二阻隔层,第一阻隔层掺杂有Mg,第二阻隔层掺杂有Zn,阻隔层为至少一层第一阻隔层和至少一层第二阻隔层交替层叠并且成对的超晶格结构。In one embodiment of the present invention, the barrier layer includes a first barrier layer and a second barrier layer, the first barrier layer is doped with Mg, the second barrier layer is doped with Zn, and the barrier layer is at least one layer of the first barrier layer A paired superlattice structure alternately stacked with at least one second barrier layer.

在本发明的一实施例中,第一功能层还包括接触层,接触层位于第二子限制层远离第一子限制层的一侧,接触层和第二子限制层之间设置有过渡层,阻隔层和过渡层用于增大接触层与发光层之间的距离;其中,接触层掺杂有Zn。In an embodiment of the present invention, the first functional layer further includes a contact layer, the contact layer is located on the side of the second sub-constraint layer away from the first sub-constraint layer, and a transition layer is arranged between the contact layer and the second sub-constraint layer , the barrier layer and the transition layer are used to increase the distance between the contact layer and the light emitting layer; wherein the contact layer is doped with Zn.

在本发明的一实施例中,阻隔层由无掺杂的AlGaInP材料构成。In an embodiment of the invention, the barrier layer is made of undoped AlGaInP material.

在本发明的一实施例中,第一功能层为N型半导体层,第二功能层为P型半导体层;或第一功能层为P型半导体层,第二功能层为N型半导体层。In an embodiment of the present invention, the first functional layer is an N-type semiconductor layer, and the second functional layer is a P-type semiconductor layer; or the first functional layer is a P-type semiconductor layer, and the second functional layer is an N-type semiconductor layer.

为解决上述技术问题,本发明采用的又一个技术方案是:提供一种半导体激光器,该半导体激光器包括如上述实施例所阐述的外延晶片。In order to solve the above technical problems, another technical solution adopted by the present invention is to provide a semiconductor laser, which includes the epitaxial wafer as described in the above embodiments.

本发明的有益效果是:区别于现有技术,本发明提供一种外延晶片,该外延晶片包括衬底以及位于衬底上的功能层。该外延晶片还包括发光层,发光层位于功能层中,功能层用于驱动发光层发光。其中,功能层中的至少部分层体掺杂有Mg,以提高该至少部分层体的准费米能级位置,从而提高阻挡电流泄露的有效势垒,因此能够提高应用本发明外延晶片的激光器的特征温度,进而提高其电光转换效率。The beneficial effects of the present invention are: different from the prior art, the present invention provides an epitaxial wafer, and the epitaxial wafer includes a substrate and a functional layer on the substrate. The epitaxial wafer also includes a light-emitting layer, the light-emitting layer is located in the functional layer, and the functional layer is used to drive the light-emitting layer to emit light. Wherein, at least part of the layer body in the functional layer is doped with Mg to increase the quasi-Fermi level position of the at least part of the layer body, thereby improving the effective barrier to block current leakage, so the laser device using the epitaxial wafer of the present invention can be improved. characteristic temperature, thereby improving its electro-optical conversion efficiency.

附图说明Description of drawings

图1是本发明外延晶片一实施例的结构示意图;Fig. 1 is a schematic structural view of an embodiment of an epitaxial wafer of the present invention;

图2是图1所示外延晶片的导带结构示意图;Fig. 2 is a schematic diagram of the conduction band structure of the epitaxial wafer shown in Fig. 1;

图3是本发明外延晶片另一实施例的结构示意图;3 is a schematic structural view of another embodiment of the epitaxial wafer of the present invention;

图4是图3所示外延晶片的导带结构示意图;Fig. 4 is a schematic diagram of the conduction band structure of the epitaxial wafer shown in Fig. 3;

图5是本发明第一限制层一实施例的结构示意图;5 is a schematic structural view of an embodiment of the first confinement layer of the present invention;

图6是本发明阻隔层一实施例的结构示意图;Figure 6 is a schematic structural view of an embodiment of the barrier layer of the present invention;

图7是本发明外延晶片导带结构一实施例的示意图;7 is a schematic diagram of an embodiment of the conduction band structure of the epitaxial wafer of the present invention;

图8是本发明半导体激光器一实施例的结构示意图。Fig. 8 is a schematic structural diagram of an embodiment of the semiconductor laser of the present invention.

具体实施方式Detailed ways

下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。The following will clearly and completely describe the technical solutions in the embodiments of the present invention with reference to the drawings in the embodiments of the present invention.

为解决现有技术中激光器的特征温度较低以及电光转换效率较低的技术问题,本发明的一实施例提供一种外延晶片,该外延晶片包括:衬底;功能层,功能层位于衬底上;其中,功能层中的至少部分层体掺杂有Mg;发光层,发光层位于功能层中,功能层用于驱动发光层发光。以下进行详细阐述。In order to solve the technical problems of low characteristic temperature and low electro-optic conversion efficiency of lasers in the prior art, an embodiment of the present invention provides an epitaxial wafer, which includes: a substrate; a functional layer, the functional layer is located on the substrate above; wherein, at least part of the functional layer is doped with Mg; the light-emitting layer, the light-emitting layer is located in the functional layer, and the functional layer is used to drive the light-emitting layer to emit light. The details are described below.

请参阅图1,图1是本发明外延晶片一实施例的结构示意图。Please refer to FIG. 1 . FIG. 1 is a schematic structural diagram of an embodiment of an epitaxial wafer of the present invention.

在一实施例中,外延晶片包括衬底1以及位于衬底1上的功能层2,并且外延晶片还包括发光层3,发光层3位于功能层2中,功能层2用于驱动发光层3发光,以满足使用需求。例如外延晶片应用于激光器中,发光层3用于产生足够的光增益,并发光能够实现激光器输出所需的激光出射波长。In one embodiment, the epitaxial wafer includes a substrate 1 and a functional layer 2 on the substrate 1, and the epitaxial wafer further includes a light emitting layer 3, the light emitting layer 3 is located in the functional layer 2, and the functional layer 2 is used to drive the light emitting layer 3 Luminous to meet the needs of use. For example, the epitaxial wafer is used in a laser, and the light-emitting layer 3 is used to generate sufficient optical gain and emit light at a laser output wavelength required by the laser output.

外延晶片的功能层2中至少部分层体掺杂有Mg,以提高该至少部分层体的准费米能级位置,从而提高阻挡电流泄露的有效势垒,减小电流泄露,进而提高其电光转换效率,降低产热。At least part of the layer body in the functional layer 2 of the epitaxial wafer is doped with Mg to increase the quasi-Fermi level position of the at least part of the layer body, thereby increasing the effective barrier to block current leakage, reducing current leakage, and then improving its electro-optical energy. Conversion efficiency, reduce heat production.

在一实施例中,功能层2包括第一功能层21和第二功能层22。第一功能层21、发光层3以及第二功能层22沿靠近衬底1的方向依次层叠于衬底1上,即第二功能层22位于衬底1上,发光层3位于第二功能层22上,第一功能层21位于发光层3上。In an embodiment, the functional layer 2 includes a first functional layer 21 and a second functional layer 22 . The first functional layer 21, the luminescent layer 3 and the second functional layer 22 are sequentially stacked on the substrate 1 along the direction close to the substrate 1, that is, the second functional layer 22 is located on the substrate 1, and the luminescent layer 3 is located on the second functional layer. 22 , the first functional layer 21 is located on the light emitting layer 3 .

进一步地,第一功能层21包括第一波导层211和第一限制层212。第一波导层211位于发光层3远离第二功能层22的一侧,第一限制层212位于第一波导层211远离发光层3的一侧,并且第一波导层211和第一限制层212掺杂有Mg,用于提高第一波导层211和第一限制层212的准费米能级位置,从而提高阻挡电流泄露的有效势垒。Further, the first functional layer 21 includes a first waveguide layer 211 and a first confinement layer 212 . The first waveguide layer 211 is located on the side of the light-emitting layer 3 away from the second functional layer 22, the first confinement layer 212 is located on the side of the first waveguide layer 211 away from the light-emitting layer 3, and the first waveguide layer 211 and the first confinement layer 212 Doping with Mg is used to increase the quasi-Fermi level position of the first waveguide layer 211 and the first confinement layer 212, thereby increasing the effective potential barrier against current leakage.

需要说明的是,第一波导层211中所掺杂的Mg浓度小于第一限制层212中的Mg浓度。发明人发现,第一波导层211和第一限制层212中所掺杂的Mg浓度如是设置,能够最大限度地提高第一波导层211和第一限制层212的有效势垒,从而最大限度地减小泄露电流。另外高掺杂的第一限制层212,可进一步提高材料的电导率,降低激光器的串联电阻,提高激光器电光转换效率,降低产热。It should be noted that the concentration of Mg doped in the first waveguide layer 211 is smaller than the concentration of Mg in the first confinement layer 212 . The inventors have found that the Mg concentration doped in the first waveguide layer 211 and the first confinement layer 212 is set in such a way that the effective barriers of the first waveguide layer 211 and the first confinement layer 212 can be maximized, thereby maximizing reduce leakage current. In addition, the highly doped first confinement layer 212 can further increase the electrical conductivity of the material, reduce the series resistance of the laser, improve the electro-optical conversion efficiency of the laser, and reduce heat generation.

进一步地,第二功能层22包括第二波导层221和第二限制层222。第二波导层221位于发光层3远离第一功能层21的一侧,第二限制层222位于第二波导层221远离发光层3的一侧。其中,第二限制层222位于衬底1上。Further, the second functional layer 22 includes a second waveguide layer 221 and a second confinement layer 222 . The second waveguide layer 221 is located on a side of the light emitting layer 3 away from the first functional layer 21 , and the second confinement layer 222 is located on a side of the second waveguide layer 221 away from the light emitting layer 3 . Wherein, the second confinement layer 222 is located on the substrate 1 .

需要说明的是,第一波导层211和第二波导层221用于向发光层3传输电子或空穴,电子和空穴在发光层3相遇并配对,成键后的电子和空穴释放能量并被发光层3吸收,从而使得发光层3辐射激光。第一限制层212和第二限制层222的折射率小于第一波导层211和第二波导层221。发光层3辐射的激光经过第一波导层211和第二波导层221,在第一波导层211、第二波导层221与第一限制层212、第二限制层222的交界面上发生全反射,使得发光层3辐射的激光光场限制在发光层3、第一波导层211以及第二波导层221中。It should be noted that the first waveguide layer 211 and the second waveguide layer 221 are used to transport electrons or holes to the light-emitting layer 3, where the electrons and holes meet and pair up in the light-emitting layer 3, and the bonded electrons and holes release energy And is absorbed by the light-emitting layer 3, so that the light-emitting layer 3 radiates laser light. The first confinement layer 212 and the second confinement layer 222 have a lower refractive index than the first waveguide layer 211 and the second waveguide layer 221 . The laser light radiated by the light-emitting layer 3 passes through the first waveguide layer 211 and the second waveguide layer 221, and is totally reflected at the interface between the first waveguide layer 211, the second waveguide layer 221, the first confinement layer 212, and the second confinement layer 222 , so that the laser light field radiated by the light-emitting layer 3 is confined in the light-emitting layer 3 , the first waveguide layer 211 and the second waveguide layer 221 .

第一功能层21还包括过渡层213和接触层214。过渡层213位于第一限制层212远离第一波导层211的一侧,接触层214位于过渡层213远离第一限制层212的一侧。接触层214作为外延晶片与外部电源结构或起到电源功能的结构连接的媒介,用于导入驱动发光层3发光的电信号(电子或空穴)。而过渡层213则作为第一限制层212与接触层214的过渡媒介。The first functional layer 21 also includes a transition layer 213 and a contact layer 214 . The transition layer 213 is located on a side of the first confinement layer 212 away from the first waveguide layer 211 , and the contact layer 214 is located on a side of the transition layer 213 away from the first confinement layer 212 . The contact layer 214 serves as a medium for connecting the epitaxial wafer to an external power supply structure or a structure functioning as a power supply, and is used to introduce electrical signals (electrons or holes) that drive the light emitting layer 3 to emit light. The transition layer 213 serves as a transition medium between the first confinement layer 212 and the contact layer 214 .

可以理解的是,第一功能层21可以为N型半导体层;对应地,第二功能层22为P型半导体层。或第一功能层21为P型半导体层;对应地,第二功能层22为N型半导体层。It can be understood that the first functional layer 21 may be an N-type semiconductor layer; correspondingly, the second functional layer 22 is a P-type semiconductor layer. Or the first functional layer 21 is a P-type semiconductor layer; correspondingly, the second functional layer 22 is an N-type semiconductor layer.

以下以第一功能层21为P型半导体层,第二功能层22为N型半导体层为例,阐述外延晶片的具体结构:Taking the first functional layer 21 as a P-type semiconductor layer and the second functional layer 22 as an N-type semiconductor layer as an example, the specific structure of the epitaxial wafer is described below:

由于第二功能层22位于衬底1与发光层3之间,衬底1也需为与第二功能层22匹配的N型半导体。具体地,衬底1可以为N型的GaA s单晶片,其作为外延晶片上层结构的基底。Since the second functional layer 22 is located between the substrate 1 and the light-emitting layer 3 , the substrate 1 also needs to be an N-type semiconductor that matches the second functional layer 22 . Specifically, the substrate 1 may be an N-type GaAs single wafer, which serves as the base of the upper layer structure of the epitaxial wafer.

第二功能层22的第二限制层222为与N型GaAs匹配的N型非掺杂AlxIn1-xP,厚度为500~5000nm。第二波导层221为N型非掺杂(Aly Ga1-y)xIn1-xP,厚度为50~250nm。The second confinement layer 222 of the second functional layer 22 is N-type non-doped Al x In 1-x P matched with N-type GaAs, and has a thickness of 500-5000 nm. The second waveguide layer 221 is N-type non-doped ( AlyGa 1-y ) x In 1-x P with a thickness of 50-250 nm.

发光层3,即量子阱层,其为GazIn1-zP,厚度为2~200nm。发光层3所辐射激光的波长为620~670nm。The light-emitting layer 3, that is, the quantum well layer, is GazIn1 -zP , with a thickness of 2-200nm. The wavelength of the laser light irradiated by the light emitting layer 3 is 620-670 nm.

第一功能层21的第一波导层211为P型(AlyGa1-y)xIn1-xP,其厚度为50~250nm。第一波导层211中掺杂有Mg,其中Mg的掺杂浓度为5×1017cm-3。第一限制层212为P型AlxIn1-xP,其厚度为500~5000nm。第一限制层212中掺杂有Mg,其中Mg的掺杂浓度为3×1018cm-3。可见,第一波导层211中所掺杂的Mg浓度小于第一限制层212中的Mg浓度。The first waveguide layer 211 of the first functional layer 21 is P-type ( AlyGa 1-y ) x In 1-x P with a thickness of 50-250 nm. The first waveguide layer 211 is doped with Mg, wherein the doping concentration of Mg is 5×10 17 cm −3 . The first confinement layer 212 is P-type Al x In 1-x P with a thickness of 500-5000 nm. The first confinement layer 212 is doped with Mg, wherein the doping concentration of Mg is 3×10 18 cm −3 . It can be seen that the concentration of Mg doped in the first waveguide layer 211 is smaller than the concentration of Mg in the first confinement layer 212 .

过渡层213、接触层214与第一功能层21对应,当第一功能层21为P型半导体层时,过渡层213、接触层214对应为P型半导体层,而当第一功能层21为N型半导体层时,过渡层213、接触层214对应为N型半导体层。在本实施例中,过渡层213为P型非掺杂(AlyGa1-y)xIn1-xP,其厚度为50~250nm。接触层214为P型非掺杂GaAs,其厚度为100~500nm。接触层214可以进行掺杂,例如掺杂Mg、Zn等,以改善接触层214的导电性能。The transition layer 213 and the contact layer 214 correspond to the first functional layer 21. When the first functional layer 21 is a P-type semiconductor layer, the transition layer 213 and the contact layer 214 correspond to a P-type semiconductor layer, and when the first functional layer 21 is For an N-type semiconductor layer, the transition layer 213 and the contact layer 214 correspond to an N-type semiconductor layer. In this embodiment, the transition layer 213 is P-type non-doped ( AlyGa 1-y ) x In 1-x P with a thickness of 50-250 nm. The contact layer 214 is P-type non-doped GaAs with a thickness of 100-500 nm. The contact layer 214 can be doped, for example doped with Mg, Zn, etc., to improve the conductivity of the contact layer 214 .

其中,0<x<0.52,0<y<0.8,0.3<z<0.7(下文也同样适用)。发明人发现上文所涉及的AlGaInP系材料采用如是元素配比,能够使得由相应AlGaInP系材料构成的功能膜层具备良好的物理或化学性能,以满足外延晶片的实际使用需求。Wherein, 0<x<0.52, 0<y<0.8, 0.3<z<0.7 (the same applies below). The inventors found that the above-mentioned AlGaInP-based materials adopt such an element ratio, which can make the functional film layer composed of the corresponding AlGaInP-based materials have good physical or chemical properties, so as to meet the actual use requirements of epitaxial wafers.

图2展示了本实施例所阐述外延晶片的导带结构,其中A段表示第一波导层211中掺杂Mg的浓度,B段表示第一限制层212中掺杂Mg的浓度。可见,通过在第一波导层211和第一限制层212掺杂不同浓度的Mg,其中,第一波导层211中所掺杂的Mg浓度小于第一限制层212中的Mg浓度,能够有效提高第一波导层211和第一限制层212的导带带阶,减少电流泄露,提高外延晶片的电光转换效率。FIG. 2 shows the conduction band structure of the epitaxial wafer described in this embodiment, where section A indicates the concentration of doped Mg in the first waveguide layer 211 , and section B indicates the concentration of doped Mg in the first confinement layer 212 . It can be seen that by doping the first waveguide layer 211 and the first confinement layer 212 with different concentrations of Mg, wherein the Mg concentration doped in the first waveguide layer 211 is smaller than the Mg concentration in the first confinement layer 212, the Mg concentration in the first confinement layer 212 can be effectively improved. The conduction bands of the first waveguide layer 211 and the first confinement layer 212 are stepped to reduce current leakage and improve the electro-optic conversion efficiency of the epitaxial wafer.

请参阅图3,图3是本发明外延晶片另一实施例的结构示意图。Please refer to FIG. 3 . FIG. 3 is a schematic structural diagram of another embodiment of the epitaxial wafer of the present invention.

由于Mg的活化能(190meV)较高,掺杂Mg的功能层2部分产生电子或空穴载流子的效率不高,通过掺杂Mg来提高外延晶片的电光转换效率的提高效果有限。而Zn的活化能(100~125meV)小于Mg的活化能,因此掺杂Zn的功能层2部分产生电子或空穴载流子的效率较高,其提高外延晶片的电光转换效率的提高效果要优于Mg。Due to the high activation energy (190meV) of Mg, the efficiency of generating electrons or hole carriers in the Mg-doped functional layer 2 is not high, and the effect of improving the electro-optical conversion efficiency of the epitaxial wafer by doping Mg is limited. And the activation energy of Zn (100 ~ 125meV) is less than the activation energy of Mg, so the efficiency of electron or hole carrier generation in the functional layer 2 part doped with Zn is higher, it improves the electro-optic conversion efficiency of the epitaxial wafer to improve the effect of Better than Mg.

有鉴于此,本实施例与上述实施例的不同之处在于,第一限制层212包括第一子限制层2121和第二子限制层2122。第一子限制层2121位于第一波导层211远离发光层3的一侧,第二子限制层2122位于第一子限制层2121远离第一波导层211的一侧。In view of this, the difference between this embodiment and the foregoing embodiments is that the first confinement layer 212 includes a first sub-constraint layer 2121 and a second sub-constraint layer 2122 . The first sub-confinement layer 2121 is located on a side of the first waveguide layer 211 away from the light-emitting layer 3 , and the second sub-confinement layer 2122 is located on a side of the first sub-confinement layer 2121 away from the first waveguide layer 211 .

由于较Mg而言,Zn在AlGaInP系材料中的扩散系数较大,其容易扩散进入发光层3,产生光吸收,致使对外延晶片辐射激光的性能造成不良影响。有鉴于此,本实施例中相对靠近第一波导层211的第一子限制层2121中掺杂Mg,而相对远离第一波导层211的第二子限制层2122中掺杂有Zn。如此一来,在利用掺杂Mg、Zn提高外延晶片电光转换效率的同时,能够有效防止Zn扩散进入发光层3,影响发光层3的性能。Compared with Mg, the diffusion coefficient of Zn in AlGaInP-based materials is larger, and it is easy to diffuse into the light-emitting layer 3, resulting in light absorption, resulting in adverse effects on the performance of the epitaxial wafer radiating laser light. In view of this, in this embodiment, the first sub-confinement layer 2121 relatively close to the first waveguide layer 211 is doped with Mg, and the second sub-confinement layer 2122 relatively far away from the first waveguide layer 211 is doped with Zn. In this way, while doping Mg and Zn to improve the electro-optic conversion efficiency of the epitaxial wafer, it can effectively prevent Zn from diffusing into the light-emitting layer 3 and affecting the performance of the light-emitting layer 3 .

正如上述实施例所述,第一功能层21可以为N型半导体层;对应地,第二功能层22为P型半导体层。或第一功能层21为P型半导体层;对应地,第二功能层22为N型半导体层。As described in the above embodiments, the first functional layer 21 may be an N-type semiconductor layer; correspondingly, the second functional layer 22 is a P-type semiconductor layer. Or the first functional layer 21 is a P-type semiconductor layer; correspondingly, the second functional layer 22 is an N-type semiconductor layer.

以下以第一功能层21为P型半导体层,第二功能层22为N型半导体层为例,阐述外延晶片的具体结构:Taking the first functional layer 21 as a P-type semiconductor layer and the second functional layer 22 as an N-type semiconductor layer as an example, the specific structure of the epitaxial wafer is described below:

由于第二功能层22位于衬底1与发光层3之间,衬底1也需为与第二功能层22匹配的N型半导体。具体地,衬底1可以为N型的GaA s单晶片,其作为外延晶片上层结构的基底。Since the second functional layer 22 is located between the substrate 1 and the light-emitting layer 3 , the substrate 1 also needs to be an N-type semiconductor that matches the second functional layer 22 . Specifically, the substrate 1 may be an N-type GaAs single wafer, which serves as the base of the upper layer structure of the epitaxial wafer.

第二功能层22的第二限制层222为与N型GaAs匹配的N型非掺杂AlxIn1-xP,厚度为500~5000nm。第二波导层221为N型非掺杂(Aly Ga1-y)xIn1-xP,厚度为50~250nm。The second confinement layer 222 of the second functional layer 22 is N-type non-doped Al x In 1-x P matched with N-type GaAs, and has a thickness of 500-5000 nm. The second waveguide layer 221 is N-type non-doped ( AlyGa 1-y ) x In 1-x P with a thickness of 50-250 nm.

发光层3,即量子阱层,其为GazIn1-zP,厚度为2~200nm。发光层3所辐射激光的波长为620~670nm。The light-emitting layer 3, that is, the quantum well layer, is GazIn1 -zP , with a thickness of 2-200nm. The wavelength of the laser light irradiated by the light emitting layer 3 is 620-670 nm.

第一功能层21的第一波导层211为P型(AlyGa1-y)xIn1-xP,其厚度为50~250nm。第一波导层211中掺杂有Mg,其中Mg的掺杂浓度为5×1017cm-3。第一限制层212的第一子限制层2121为P型AlxIn1-xP,其厚度为10~500nm。第一子限制层2121中掺杂有Mg,并且掺杂浓度为3×1018cm-3。第二子限制层2122为P型AlxIn1-xP,其厚度为1000~7000nm。第二子限制层2122中掺杂有Zn,并且掺杂浓度为3×1018cm-3The first waveguide layer 211 of the first functional layer 21 is P-type ( AlyGa 1-y ) x In 1-x P with a thickness of 50-250 nm. The first waveguide layer 211 is doped with Mg, wherein the doping concentration of Mg is 5×10 17 cm −3 . The first sub-constraint layer 2121 of the first confinement layer 212 is P-type AlxIn1 -xP , and its thickness is 10-500nm. The first sub-confinement layer 2121 is doped with Mg, and the doping concentration is 3×10 18 cm −3 . The second sub-constraint layer 2122 is P-type AlxIn1 -xP , and its thickness is 1000-7000nm. The second sub-confinement layer 2122 is doped with Zn, and the doping concentration is 3×10 18 cm −3 .

需要说明的是,本实施例中第一子限制层2121所掺杂的Mg浓度与第二子限制层2122所掺杂的Zn浓度相等,并且等于上述实施例中第一限制层212中掺杂的Mg浓度。其为的是使第一限制层212所掺杂的原子浓度大于第一波导层211所掺杂原子浓度,对应的技术效果已在上述实施例中详细阐述,在此就不再赘述。It should be noted that the concentration of Mg doped in the first sub-confinement layer 2121 in this embodiment is equal to the concentration of Zn doped in the second sub-confinement layer 2122, and is equal to the concentration of Zn doped in the first confinement layer 212 in the above-mentioned embodiment. The Mg concentration. The purpose is to make the concentration of atoms doped in the first confinement layer 212 greater than the concentration of atoms doped in the first waveguide layer 211 . The corresponding technical effects have been described in detail in the above-mentioned embodiments and will not be repeated here.

过渡层213、接触层214与第一功能层21对应,当第一功能层21为P型半导体层时,过渡层213、接触层214对应为P型半导体层,而当第一功能层21为N型半导体层时,过渡层213、接触层214对应为N型半导体层。在本实施例中,过渡层213为P型非掺杂(AlyGa1-y)xIn1-xP,其厚度为50~250nm。接触层214为P型非掺杂GaAs,其厚度为100~500nm。当然,接触层214也可以进行掺杂,例如掺杂Mg、Zn等,以改善接触层214的导电性能。The transition layer 213 and the contact layer 214 correspond to the first functional layer 21. When the first functional layer 21 is a P-type semiconductor layer, the transition layer 213 and the contact layer 214 correspond to a P-type semiconductor layer, and when the first functional layer 21 is For an N-type semiconductor layer, the transition layer 213 and the contact layer 214 correspond to an N-type semiconductor layer. In this embodiment, the transition layer 213 is P-type non-doped ( AlyGa 1-y ) x In 1-x P with a thickness of 50-250 nm. The contact layer 214 is P-type non-doped GaAs with a thickness of 100-500 nm. Of course, the contact layer 214 can also be doped, for example doped with Mg, Zn, etc., to improve the conductivity of the contact layer 214 .

图4展示了本实施例所阐述外延晶片的导带结构,其中A段表示第一波导层211中掺杂Mg的浓度,C段表示第一子限制层2121掺杂的M g浓度与第二子限制层2122掺杂的Zn浓度。可见,通过在第一限制层212的第一子限制层2121中掺杂Mg,第二子限制层2122中掺杂有Z n,利用Zn提高外延晶片中产生载流子的效率,从而提高外延晶片的电光转换效率,同时还能有效防止Zn扩散进入发光层3,影响发光层3的性能。Fig. 4 shows the conduction band structure of the epitaxial wafer described in this embodiment, wherein section A represents the concentration of doped Mg in the first waveguide layer 211, and section C represents the concentration of Mg doped in the first sub-confinement layer 2121 and the concentration of the second The concentration of Zn doped in the sub-confinement layer 2122. It can be seen that by doping Mg in the first sub-confinement layer 2121 of the first confinement layer 212, Zn is doped in the second sub-confinement layer 2122, and Zn is used to improve the efficiency of generating carriers in the epitaxial wafer, thereby improving the epitaxy efficiency. The electro-optical conversion efficiency of the wafer can be improved, and at the same time, it can effectively prevent Zn from diffusing into the light-emitting layer 3 and affect the performance of the light-emitting layer 3 .

请参阅图5,图5是本发明第一限制层一实施例的结构示意图。Please refer to FIG. 5 . FIG. 5 is a schematic structural diagram of an embodiment of the first confinement layer of the present invention.

在替代实施例中,第一限制层212还包括阻隔层4。阻隔层4位于第一子限制层2121和第二子限制层2122之间,用于防止第二子限制层2122中的Zn扩散进入发光层3。同时,在接触层214掺杂有Zn的情况下,阻隔层4也能够防止接触层214中的Zn扩散进入发光层3。In an alternative embodiment, the first confinement layer 212 also includes a barrier layer 4 . The barrier layer 4 is located between the first sub-constraint layer 2121 and the second sub-constraint layer 2122 to prevent Zn in the second sub-constraint layer 2122 from diffusing into the light-emitting layer 3 . At the same time, when the contact layer 214 is doped with Zn, the barrier layer 4 can also prevent Zn in the contact layer 214 from diffusing into the light emitting layer 3 .

进一步地,第一功能层21的接触层214位于第二子限制层2122远离第一子限制层2121的一侧,接触层214和第二子限制层2122之间设置有过渡层213,阻隔层4和过渡层213用于增大接触层214与发光层3之间的距离。在接触层214掺杂有Zn的情况下,接触层214与发光层3之间的距离增大,能够使得Zn较难扩散进入发光层3,也就避免了接触层214中掺杂的Zn对发光层3激光性能的影响。Further, the contact layer 214 of the first functional layer 21 is located on the side of the second sub-constraint layer 2122 away from the first sub-constraint layer 2121, and a transition layer 213 and a barrier layer are arranged between the contact layer 214 and the second sub-constraint layer 2122. 4 and the transition layer 213 are used to increase the distance between the contact layer 214 and the light emitting layer 3 . In the case that the contact layer 214 is doped with Zn, the distance between the contact layer 214 and the light-emitting layer 3 increases, which can make it difficult for Zn to diffuse into the light-emitting layer 3, and avoid the Zn doped in the contact layer 214 from Influence of luminescent layer 3 on laser properties.

优选地,阻隔层4可以采用AlGaInP系材料等,阻隔层4可以由无掺杂的AlGaInP材料构成。发明人通过大量实验发现,与其他材料相比,选用AlGaInP系材料的阻隔层4其防止Zn扩散进入发光层3的效果更佳。Preferably, the barrier layer 4 can be made of AlGaInP-based materials, etc., and the barrier layer 4 can be made of undoped AlGaInP material. The inventors have found through a large number of experiments that, compared with other materials, the barrier layer 4 made of AlGaInP-based materials is more effective in preventing Zn from diffusing into the light-emitting layer 3 .

请参阅图6,图6是本发明阻隔层一实施例的结构示意图。Please refer to FIG. 6 . FIG. 6 is a schematic structural diagram of an embodiment of the barrier layer of the present invention.

在替代实施例中,与上述实施例不同的是:阻隔层4包括第一阻隔层41和第二阻隔层42。第一阻隔层41掺杂有Mg,第二阻隔层42掺杂有Zn。并且,阻隔层4为至少一层的第一阻隔层41和至少一层的第二阻隔层42交替层叠并且成对的超晶格结构。In an alternative embodiment, different from the above embodiments, the barrier layer 4 comprises a first barrier layer 41 and a second barrier layer 42 . The first barrier layer 41 is doped with Mg, and the second barrier layer 42 is doped with Zn. Moreover, the barrier layer 4 is a superlattice structure in which at least one first barrier layer 41 and at least one second barrier layer 42 are alternately stacked and paired.

也就是说,阻隔层4包括至少一层第一阻隔层41和至少一层第二阻隔层42,一层第一阻隔层41和一层第二阻隔层42为一对,即第一阻隔层41和第二阻隔层42的层数相等。阻隔层4还呈现第一阻隔层41和第二阻隔层42交替层叠的形式,即同一对的第一阻隔层41和第二阻隔层42相互层叠,并与其他对的第一阻隔层41和第二阻隔层42相互层叠,整体上呈现第一阻隔层41、第二阻隔层42、第一阻隔层41、第二阻隔层42、第一阻隔层41……如是依次层叠的形式。That is to say, the barrier layer 4 includes at least one first barrier layer 41 and at least one second barrier layer 42, one layer of the first barrier layer 41 and one layer of the second barrier layer 42 are a pair, that is, the first barrier layer 41 and the number of layers of the second barrier layer 42 are equal. The barrier layer 4 also presents the form of first barrier layers 41 and second barrier layers 42 being alternately stacked, that is, the same pair of first barrier layers 41 and second barrier layers 42 are stacked with each other, and are combined with other pairs of first barrier layers 41 and 42. The second barrier layer 42 is stacked on top of each other, and generally presents the first barrier layer 41 , the second barrier layer 42 , the first barrier layer 41 , the second barrier layer 42 , the first barrier layer 41 . . . are stacked sequentially.

进一步地,第一阻隔层41为掺杂有Mg的AlGaInP的超晶格结构,第二阻隔层42为掺杂有Zn的AlGaInP的超晶格结构,其中Mg或Zn的掺杂浓度为1×1017~5×1018cm-3。第一阻隔层41和第二阻隔层42的厚度相等且为0.5~20nm。阻隔层4一共包括1~20对成对的第一阻隔层41和第二阻隔层42。其中,超晶格结构的具体结构形式在本领域技术人员的理解范畴之内,在此就不再赘述。Further, the first barrier layer 41 is a superlattice structure of AlGaInP doped with Mg, and the second barrier layer 42 is a superlattice structure of AlGaInP doped with Zn, wherein the doping concentration of Mg or Zn is 1× 10 17 ~5×10 18 cm -3 . The thicknesses of the first barrier layer 41 and the second barrier layer 42 are equal and range from 0.5 to 20 nm. The barrier layer 4 includes 1 to 20 pairs of the first barrier layer 41 and the second barrier layer 42 in total. Wherein, the specific structural form of the superlattice structure is within the comprehension scope of those skilled in the art, and will not be repeated here.

由于Mg或Zn在超晶格结构的AlGaInP材料中的扩散系数相对较低,拥有比较陡峭的掺杂边,能够减少扩散进入发光层3的掺杂原子,从而降低掺杂原子扩散进入发光层3所带来的对发光层3性能的影响。并且,为进一步减少扩散进入发光层3的掺杂原子,例如Zn,第一层的第一阻隔层41位于第一子限制层2121上,后续其他阻隔层4的层体依次层叠于该第一阻隔层41上,以增大Zn扩散进入发光层3的距离,从而减少Zn扩散进入发光层3。Since the diffusion coefficient of Mg or Zn in the AlGaInP material of the superlattice structure is relatively low, it has a relatively steep doping edge, which can reduce the diffusion of dopant atoms into the light-emitting layer 3, thereby reducing the diffusion of dopant atoms into the light-emitting layer 3 The resulting impact on the performance of the light-emitting layer 3. Moreover, in order to further reduce the dopant atoms, such as Zn, that diffuse into the light-emitting layer 3, the first barrier layer 41 of the first layer is located on the first sub-confinement layer 2121, and subsequent layers of other barrier layers 4 are sequentially stacked on the first sub-confinement layer 2121. on the barrier layer 41 to increase the distance for Zn to diffuse into the light-emitting layer 3 , thereby reducing the diffusion of Zn into the light-emitting layer 3 .

图7展示了本实施例所阐述外延晶片的导带结构,其中A段表示第一波导层211中掺杂Mg的浓度,D段表示阻隔层4的第一阻隔层41、第二阻隔层42成对的超晶格结构以减少掺杂原子Zn扩散的情况。可见,本实施例通过增设阻隔层4,能够有效防止掺杂原子扩散进入发光层3。同时,阻隔层4采用第一阻隔层41、第二阻隔层42成对的超晶格结构,使得超晶格结构中的掺杂原子扩散系数相对较低,进一步地防止掺杂原子扩散进入发光层3,以降低掺杂原子扩散进入发光层3所带来的对发光层3性能的影响。Fig. 7 shows the conduction band structure of the epitaxial wafer described in this embodiment, wherein segment A represents the concentration of doped Mg in the first waveguide layer 211, segment D represents the first barrier layer 41 and the second barrier layer 42 of the barrier layer 4 Paired superlattice structure to reduce the diffusion of Zn dopant atoms. It can be seen that in this embodiment, by adding the barrier layer 4 , it can effectively prevent dopant atoms from diffusing into the light emitting layer 3 . At the same time, the barrier layer 4 adopts a superlattice structure in which the first barrier layer 41 and the second barrier layer 42 are paired, so that the diffusion coefficient of the dopant atoms in the superlattice structure is relatively low, further preventing the dopant atoms from diffusing into the luminous Layer 3, so as to reduce the impact on the performance of the light-emitting layer 3 caused by the diffusion of dopant atoms into the light-emitting layer 3.

请参阅图8,图8是本发明半导体激光器一实施例的结构示意图。Please refer to FIG. 8 . FIG. 8 is a schematic structural diagram of an embodiment of the semiconductor laser of the present invention.

在一实施例中,半导体激光器5包括外延晶片51,外延晶片51受激辐射激光,以实现半导体激光器5输出激光的功能。其中,外延晶片51的具体结构形式已在上述实施例中详细阐述,在此就不再赘述。In one embodiment, the semiconductor laser 5 includes an epitaxial wafer 51 , and the epitaxial wafer 51 is stimulated to radiate laser light, so as to realize the function of the semiconductor laser 5 to output laser light. Wherein, the specific structural form of the epitaxial wafer 51 has been described in detail in the above-mentioned embodiments, and will not be repeated here.

以上所述仅为本发明的实施方式,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。The above is only the embodiment of the present invention, and does not limit the patent scope of the present invention. Any equivalent structure or equivalent process conversion made by using the description of the present invention and the contents of the accompanying drawings, or directly or indirectly used in other related technologies fields, are all included in the scope of patent protection of the present invention in the same way.

Claims (8)

1.一种外延晶片,其特征在于,所述外延晶片包括:1. an epitaxial wafer, is characterized in that, described epitaxial wafer comprises: 衬底;Substrate; 功能层,所述功能层位于所述衬底上;其中,所述功能层中的至少部分层体掺杂有Mg;A functional layer, the functional layer is located on the substrate; wherein at least part of the functional layer is doped with Mg; 发光层,所述发光层位于所述功能层中,所述功能层用于驱动所述发光层发光,所述功能层包括第一功能层和第二功能层,所述第一功能层、所述发光层以及所述第二功能层沿靠近所述衬底的方向依次层叠于所述衬底上;A light-emitting layer, the light-emitting layer is located in the functional layer, the functional layer is used to drive the light-emitting layer to emit light, the functional layer includes a first functional layer and a second functional layer, the first functional layer, the The light-emitting layer and the second functional layer are sequentially stacked on the substrate along a direction close to the substrate; 所述第一功能层包括第一波导层和第一限制层,所述第一波导层位于所述发光层远离所述第二功能层的一侧,所述第一限制层位于所述第一波导层远离所述发光层的一侧,并且所述第一波导层和所述第一限制层掺杂有Mg;The first functional layer includes a first waveguide layer and a first confinement layer, the first waveguide layer is located on the side of the light-emitting layer away from the second functional layer, and the first confinement layer is located on the first confinement layer. The side of the waveguide layer away from the light-emitting layer, and the first waveguide layer and the first confinement layer are doped with Mg; 所述第一限制层包括第一子限制层和第二子限制层,所述第一子限制层位于所述第一波导层远离所述发光层的一侧,所述第二子限制层位于所述第一子限制层远离所述第一波导层的一侧;其中,所述第一子限制层掺杂有Mg,所述第二子限制层掺杂有Zn。The first confinement layer includes a first sub-confinement layer and a second sub-confinement layer, the first sub-confinement layer is located on the side of the first waveguide layer away from the light-emitting layer, and the second sub-confinement layer is located on the A side of the first sub-confinement layer away from the first waveguide layer; wherein, the first sub-confinement layer is doped with Mg, and the second sub-confinement layer is doped with Zn. 2.根据权利要求1所述的外延晶片,其特征在于,所述第一波导层中的Mg浓度小于所述第一限制层中的Mg浓度。2. The epitaxial wafer according to claim 1, wherein the Mg concentration in the first waveguide layer is smaller than the Mg concentration in the first confinement layer. 3.根据权利要求1所述的外延晶片,其特征在于,所述第一限制层还包括阻隔层,所述阻隔层位于所述第一子限制层和所述第二子限制层之间。3 . The epitaxial wafer according to claim 1 , wherein the first confinement layer further comprises a barrier layer, and the barrier layer is located between the first sub-constraint layer and the second sub-constraint layer. 4 . 4.根据权利要求3所述的外延晶片,其特征在于,所述阻隔层包括第一阻隔层和第二阻隔层,所述第一阻隔层掺杂有Mg,所述第二阻隔层掺杂有Zn,所述阻隔层为至少一层所述第一阻隔层和至少一层所述第二阻隔层交替层叠并且成对的超晶格结构。4. The epitaxial wafer according to claim 3, wherein the barrier layer comprises a first barrier layer and a second barrier layer, the first barrier layer is doped with Mg, and the second barrier layer is doped with There is Zn, and the barrier layer is a superlattice structure in which at least one layer of the first barrier layer and at least one layer of the second barrier layer are alternately stacked and paired. 5.根据权利要求3所述的外延晶片,其特征在于,所述第一功能层还包括接触层,所述接触层位于所述第二子限制层远离所述第一子限制层的一侧,所述接触层和所述第二子限制层之间设置有过渡层,所述阻隔层和所述过渡层用于增大所述接触层与所述发光层之间的距离;其中,所述接触层掺杂有Zn。5. The epitaxial wafer according to claim 3, wherein the first functional layer further comprises a contact layer, and the contact layer is located on a side of the second sub-constraint layer away from the first sub-constraint layer , a transition layer is provided between the contact layer and the second sub-constraining layer, and the barrier layer and the transition layer are used to increase the distance between the contact layer and the light-emitting layer; wherein, the The contact layer is doped with Zn. 6.根据权利要求3所述的外延晶片,其特征在于,所述阻隔层由无掺杂的AlGaInP材料构成。6. The epitaxial wafer according to claim 3, wherein the barrier layer is made of undoped AlGaInP material. 7.根据权利要求1至6任一项所述的外延晶片,其特征在于,所述第一功能层为N型半导体层,所述第二功能层为P型半导体层;或所述第一功能层为P型半导体层,所述第二功能层为N型半导体层。7. The epitaxial wafer according to any one of claims 1 to 6, wherein the first functional layer is an N-type semiconductor layer, and the second functional layer is a P-type semiconductor layer; or the first The functional layer is a P-type semiconductor layer, and the second functional layer is an N-type semiconductor layer. 8.一种半导体激光器,其特征在于,所述半导体激光器包括如权利要求1至7任一项所述的外延晶片。8. A semiconductor laser, characterized in that the semiconductor laser comprises the epitaxial wafer according to any one of claims 1 to 7.
CN202310304148.3A 2019-01-04 2019-01-04 Epitaxial wafers and semiconductor lasers Pending CN116247518A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310304148.3A CN116247518A (en) 2019-01-04 2019-01-04 Epitaxial wafers and semiconductor lasers

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202310304148.3A CN116247518A (en) 2019-01-04 2019-01-04 Epitaxial wafers and semiconductor lasers
CN201910009078.2A CN111416278B (en) 2019-01-04 2019-01-04 Epitaxial wafers and semiconductor lasers

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN201910009078.2A Division CN111416278B (en) 2019-01-04 2019-01-04 Epitaxial wafers and semiconductor lasers

Publications (1)

Publication Number Publication Date
CN116247518A true CN116247518A (en) 2023-06-09

Family

ID=71406888

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201910009078.2A Active CN111416278B (en) 2019-01-04 2019-01-04 Epitaxial wafers and semiconductor lasers
CN202310304148.3A Pending CN116247518A (en) 2019-01-04 2019-01-04 Epitaxial wafers and semiconductor lasers

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN201910009078.2A Active CN111416278B (en) 2019-01-04 2019-01-04 Epitaxial wafers and semiconductor lasers

Country Status (2)

Country Link
CN (2) CN111416278B (en)
WO (1) WO2020140701A1 (en)

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0918384B1 (en) * 1995-01-20 2002-12-11 Matsushita Electric Industrial Co., Ltd. Semiconductor light emitting device and method for fabricating the same
KR100377792B1 (en) * 1995-09-26 2003-06-11 삼성전자주식회사 semiconductor laser diode and manufasturing method thereof
JP3754120B2 (en) * 1996-02-27 2006-03-08 株式会社東芝 Semiconductor light emitting device
US6834068B2 (en) * 2001-06-29 2004-12-21 Matsushita Electric Industrial Co., Ltd. Semiconductor laser device and method for fabricating the same
CN1705143A (en) * 2004-06-03 2005-12-07 日立电线株式会社 Epitaxial wafer for semiconductor light-emitting device and semiconductor light-emitting device
CN103579447B (en) * 2012-08-03 2016-12-21 同方光电科技有限公司 A kind of inverted structure light emitting diode and preparation method thereof
CN104269741A (en) * 2014-09-22 2015-01-07 山东华光光电子有限公司 Red light semiconductor laser with high reliability
CN104795729B (en) * 2015-02-14 2018-04-24 太原理工大学 Strain balances active field gradient potential well layer semiconductor laser structure
CN106602404A (en) * 2016-12-30 2017-04-26 中国工程物理研究院应用电子学研究所 Semiconductor laser and manufacturing method thereof
CN108346972B (en) * 2017-01-24 2020-09-18 山东华光光电子股份有限公司 AlGaInP semiconductor laser with superlattice limiting layer
CN107742825A (en) * 2017-08-25 2018-02-27 华南师范大学 GaN-based novel structure laser and its manufacturing method

Also Published As

Publication number Publication date
CN111416278B (en) 2023-05-05
CN111416278A (en) 2020-07-14
WO2020140701A1 (en) 2020-07-09

Similar Documents

Publication Publication Date Title
US5488233A (en) Semiconductor light-emitting device with compound semiconductor layer
CN100499190C (en) Semiconductor device
US8679876B2 (en) Laser diode and method for fabricating same
CN101771120B (en) Semiconductor light emitting element
JP4505147B2 (en) Semiconductor structure and processing method using group III nitride quaternary material system with little phase separation
KR19990037429A (en) Light emitting diode device and manufacturing method thereof
CN107069433A (en) GaN base ultraviolet laser wafer, chip of laser and laser and preparation method thereof
JP3872398B2 (en) Light emitting device manufacturing method and light emitting device
US7821019B2 (en) Triple heterostructure incorporating a strained zinc oxide layer for emitting light at high temperatures
JP4288030B2 (en) Semiconductor structure using group III nitride quaternary material system
Hung et al. 830-nm AlGaAs-InGaAs graded index double barrier separate confinement heterostructures laser diodes with improved temperature and divergence characteristics
US6903364B1 (en) Semiconductor structures using a group III-nitride material system with reduced phase separation and method of fabrication
JP4836382B2 (en) Light emitting element
CN111416278B (en) Epitaxial wafers and semiconductor lasers
CN116646822A (en) Semiconductor laser element with fermi surface topological layer
CN216794241U (en) Gallium nitride-based laser for improving hole injection
CN116191200A (en) Semiconductor laser element with phonon scattering regulation and control layer
CN113851563B (en) Thin film type semiconductor chip structure and photoelectric device using same
JP2003282946A (en) Light emitting diode unit and its manufacturing method
JP2011205148A (en) Semiconductor device
Rajan et al. III-nitride tunnel junctions and their applications
JP3674410B2 (en) Compound semiconductor light emitting device and light emitting diode array
Wang et al. Increased Radiative Recombination in Nitride Laser Diodes with Inverse Tapered Electron Blocking Layer
CN116316070A (en) Semiconductor laser element with current-induced spin polarization layer
CN116154615A (en) Semiconductor laser element with quantum spin electron layer

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20250219

Address after: 518000 Science and Technology Building 6A-1155, Haijing Second Road, Pengwan Community, Haishan Street, Yantian District, Shenzhen City, Guangdong Province

Applicant after: YLX Inc.

Country or region after: China

Address before: 23 / F, 24 / F, joint headquarters building, high tech Zone, 63 Xuefu Road, Nanshan District, Shenzhen City, Guangdong Province

Applicant before: Shenzhen Zhongguang Industrial Technology Research Institute

Country or region before: China

TA01 Transfer of patent application right