CN116227373A - A DEM-CFD-based simulation optimization method and system for concrete manipulator operation - Google Patents
A DEM-CFD-based simulation optimization method and system for concrete manipulator operation Download PDFInfo
- Publication number
- CN116227373A CN116227373A CN202211519290.1A CN202211519290A CN116227373A CN 116227373 A CN116227373 A CN 116227373A CN 202211519290 A CN202211519290 A CN 202211519290A CN 116227373 A CN116227373 A CN 116227373A
- Authority
- CN
- China
- Prior art keywords
- concrete
- model
- manipulator
- dem
- cfd
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004567 concrete Substances 0.000 title claims abstract description 83
- 238000000034 method Methods 0.000 title claims abstract description 41
- 238000004088 simulation Methods 0.000 title claims abstract description 26
- 238000005457 optimization Methods 0.000 title claims abstract description 15
- 239000002245 particle Substances 0.000 claims abstract description 54
- 239000012530 fluid Substances 0.000 claims abstract description 48
- 238000004364 calculation method Methods 0.000 claims abstract description 43
- 238000005507 spraying Methods 0.000 claims abstract description 28
- 230000008569 process Effects 0.000 claims abstract description 15
- 230000008878 coupling Effects 0.000 claims abstract description 14
- 238000010168 coupling process Methods 0.000 claims abstract description 14
- 238000005859 coupling reaction Methods 0.000 claims abstract description 14
- 239000011378 shotcrete Substances 0.000 claims description 42
- 239000000463 material Substances 0.000 claims description 11
- 239000007921 spray Substances 0.000 claims description 9
- 230000008859 change Effects 0.000 claims description 8
- 238000004590 computer program Methods 0.000 claims description 4
- 238000010276 construction Methods 0.000 description 18
- 238000011160 research Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 230000003993 interaction Effects 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 230000016507 interphase Effects 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 238000011161 development Methods 0.000 description 2
- 230000001739 rebound effect Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000008358 core component Substances 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 238000004134 energy conservation Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 210000000245 forearm Anatomy 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 230000003116 impacting effect Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000012821 model calculation Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 239000011435 rock Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000004901 spalling Methods 0.000 description 1
- 238000012876 topography Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 210000000707 wrist Anatomy 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
- G06F30/28—Design optimisation, verification or simulation using fluid dynamics, e.g. using Navier-Stokes equations or computational fluid dynamics [CFD]
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21D—SHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
- E21D11/00—Lining tunnels, galleries or other underground cavities, e.g. large underground chambers; Linings therefor; Making such linings in situ, e.g. by assembling
- E21D11/04—Lining with building materials
- E21D11/10—Lining with building materials with concrete cast in situ; Shuttering also lost shutterings, e.g. made of blocks, of metal plates or other equipment adapted therefor
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
- G06F30/25—Design optimisation, verification or simulation using particle-based methods
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Mining & Mineral Resources (AREA)
- Evolutionary Computation (AREA)
- Structural Engineering (AREA)
- Architecture (AREA)
- General Engineering & Computer Science (AREA)
- Geometry (AREA)
- Computer Hardware Design (AREA)
- Pure & Applied Mathematics (AREA)
- Fluid Mechanics (AREA)
- Mathematical Physics (AREA)
- Computing Systems (AREA)
- Mathematical Optimization (AREA)
- Mathematical Analysis (AREA)
- Civil Engineering (AREA)
- Algebra (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Geology (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
本发明提供了一种基于DEM‑CFD的混凝土机械臂作业仿真优化方法及系统,采用离散元(DEM)与计算流体力学(CFD)耦合计算方法模拟湿喷机械臂作业过程,通过改变流体模型的初始条件,使得计算中颗粒回弹率最小,即表征不同的湿喷机械臂工作参数下的混凝土回弹率最小,以混凝土回弹率最小时的湿喷机械臂工作参数为指导,实现湿喷混凝土机械臂作业的优化控制。
The present invention provides a DEM-CFD-based concrete manipulator operation simulation optimization method and system, adopting discrete element (DEM) and computational fluid dynamics (CFD) coupling calculation method to simulate the wet spraying manipulator operation process, by changing the fluid model The initial conditions make the particle rebound rate the smallest in the calculation, that is, the concrete rebound rate under different wet spraying manipulator working parameters is the smallest. Guided by the wet spraying manipulator working parameters when the concrete rebound rate is the smallest, wet spraying can be realized. Optimal control of concrete manipulator operations.
Description
技术领域technical field
本发明属于混凝土机械臂作业相关技术领域,尤其涉及一种基于DEM-CFD的混凝土机械臂作业仿真优化方法及系统。The invention belongs to the related technical field of concrete manipulator operation, and in particular relates to a DEM-CFD-based concrete manipulator operation simulation optimization method and system.
背景技术Background technique
本部分的陈述仅仅是提供了与本发明相关的背景技术信息,不必然构成在先技术。The statements in this section merely provide background information related to the present invention and do not necessarily constitute prior art.
进入21世纪后,我国隧道工程迎来发展建设新阶段,近年来数据表明,我国隧道的数量和长度已成为世界隧道建设之首。随着各城市间高铁建设向地形地貌复杂多变地区推进,我国隧道工程建设逐渐呈现出标准高、长度大、断面大、埋深大、地质复杂等特点,人工施工受到环境条件限制,作业过程存在很多问题,已不满足当前隧道建设标准,推动隧道施工装备机械化、数字化、智能化方向发展势在必行。After entering the 21st century, my country's tunnel engineering has ushered in a new stage of development and construction. Statistics in recent years show that the number and length of tunnels in my country have become the first in the world's tunnel construction. As the construction of high-speed railways between cities advances to areas with complex and changeable topography, the tunnel engineering construction in my country gradually presents the characteristics of high standards, large length, large cross-section, large buried depth, and complex geology. Manual construction is limited by environmental conditions. There are many problems, which no longer meet the current tunnel construction standards. It is imperative to promote the development of tunnel construction equipment in the direction of mechanization, digitization, and intelligence.
随着湿喷台车在隧道工程中的应用越来越广泛,要求其施工质量和效率不断提高,以适应当今隧道建设要求,而湿喷混凝土机械臂是湿喷台车的核心部件,控制着湿喷台车的作业质量和效率。湿喷混凝土机械臂一般具有以下八个自由度:大臂俯仰、大臂伸缩、小臂俯仰、腰部转动、水平臂摆动、水平臂伸缩、枪杆姿态调整、手腕转动。机械臂通过上述八个自由度,协调完成喷射位置、喷射角度、喷射路径的确定,根据不同施工条件和情况达到“最佳工艺原则”:一是保证喷嘴和工作面垂直;二是喷嘴和工作面之间距离保持在1米左右。With the application of wet spraying trolley in tunnel engineering more and more widely, its construction quality and efficiency are required to be continuously improved to meet the requirements of today's tunnel construction, and the wet spraying concrete mechanical arm is the core component of the wet spraying trolley, controlling Working quality and efficiency of wet spray trolley. The wet shotcrete robotic arm generally has the following eight degrees of freedom: big arm pitch, big arm telescopic, small arm pitch, waist rotation, horizontal arm swing, horizontal arm telescopic, gun post attitude adjustment, and wrist rotation. Through the above eight degrees of freedom, the mechanical arm coordinates the determination of the spray position, spray angle, and spray path, and achieves the "best process principle" according to different construction conditions and situations: one is to ensure that the nozzle is perpendicular to the working surface; the other is that the nozzle and the work surface Keep the distance between the surfaces at about 1 meter.
相比人工喷射混凝土施工,机械臂能够全方向自由操作,可长时间保持最佳喷射角度和最佳喷射距离,施工时极大地缩短了作业时间,提高了作业效率,有效减小了混凝土回弹率,提升了现场作业效果。同时,混凝土回弹率的降低,减少了施工现场的粉尘产生,有效改善了施工环境,减轻了对工人健康的损害。Compared with manual sprayed concrete construction, the mechanical arm can operate freely in all directions, and can maintain the best spraying angle and spraying distance for a long time. During construction, the working time is greatly shortened, the working efficiency is improved, and the concrete rebound is effectively reduced. The efficiency improves the on-site operation effect. At the same time, the reduction of the rebound rate of concrete reduces the generation of dust on the construction site, effectively improves the construction environment, and reduces the damage to workers' health.
然而,我国对湿喷混凝土机械臂的相关研究起步比较晚,缺乏在湿喷机械臂中对混凝土喷射流场、入射角度、工作风压、喷射距离以及机械臂运动轨迹等方面深入机理的研究,无法准确描述上述因素对混凝土回弹率的影响,导致喷射质量不佳,存在回弹率高、材料浪费等问题,甚至当工作风压较大时,常出现冲击工作面后,软弱岩块掉落,混凝土剥落等情况。However, the relevant research on the wet spraying concrete manipulator in my country started relatively late, and there is a lack of in-depth mechanism research on the concrete spraying flow field, incident angle, working wind pressure, spraying distance and the trajectory of the manipulator in the wet spraying manipulator. It is impossible to accurately describe the influence of the above factors on the rebound rate of concrete, resulting in poor injection quality, high rebound rate, waste of materials, etc., and even when the working wind pressure is high, weak rocks often fall off after impacting the working face. falling, concrete spalling, etc.
发明内容Contents of the invention
为克服上述现有技术的不足,本发明提供了一种基于DEM-CFD的混凝土机械臂作业仿真优化方法,采用离散元(DEM)与计算流体力学(CFD)耦合计算方法模拟湿喷机械臂作业过程,通过改变流体模型的初始条件,使得计算中颗粒回弹率最小,即表征不同的湿喷机械臂工作参数下的混凝土回弹率最小,以混凝土回弹率最小时的湿喷机械臂工作参数为指导,实现湿喷混凝土机械臂作业的优化控制。In order to overcome the above-mentioned deficiencies in the prior art, the present invention provides a DEM-CFD-based concrete manipulator operation simulation optimization method, using discrete element (DEM) and computational fluid dynamics (CFD) coupling calculation method to simulate wet spraying manipulator operation In the process, by changing the initial conditions of the fluid model, the particle rebound rate in the calculation is minimized, that is, the concrete rebound rate is the smallest under different wet spraying manipulator working parameters, and the wet spraying manipulator works when the concrete rebound rate is the minimum The parameters are used as a guide to realize the optimal control of the operation of the wet shotcrete manipulator.
为实现上述目的,本发明的一个或多个实施例提供了如下技术方案:一种基于DEM-CFD的混凝土机械臂作业仿真优化方法,包括:In order to achieve the above object, one or more embodiments of the present invention provide the following technical solutions: a DEM-CFD-based concrete manipulator operation simulation optimization method, including:
获取湿喷混凝土的材料特性参数,基于离散元建立混凝土颗粒模型;Obtain the material characteristic parameters of wet sprayed concrete, and establish a concrete particle model based on discrete elements;
获取湿喷混凝土机械臂作业下的混凝土射流流场,基于计算流体力学建立高压空气计算流体模型;Obtain the concrete jet flow field under the operation of the wet shotcrete robot arm, and establish a high-pressure air computational fluid model based on computational fluid dynamics;
将混凝土颗粒模型与高压空气计算流体模型进行耦合计算;Coupling the concrete particle model with the high-pressure air calculation fluid model;
改变高压空气计算流体模型的初始条件,模拟不同工作参数下的湿喷混凝土机械臂作业过程。The initial conditions of the high-pressure air calculation fluid model were changed to simulate the operation process of the wet shotcrete manipulator under different working parameters.
本发明的第二个方面提供一种基于DEM-CFD的湿喷混凝土机械臂作业控制系统,包括:A second aspect of the present invention provides a DEM-CFD-based wet shotcrete manipulator operation control system, including:
混凝土颗粒模型建立模块:获取湿喷混凝土的材料特性参数,基于离散元建立混凝土颗粒模型;Concrete particle model building module: obtain the material characteristic parameters of wet sprayed concrete, and build a concrete particle model based on discrete elements;
高压空气计算流体模型建立模块:获取湿喷混凝土机械臂作业下的混凝土射流流场,基于计算流体力学建立高压空气计算流体模型;High-pressure air computational fluid model establishment module: obtain the concrete jet flow field under the operation of the wet shotcrete mechanical arm, and establish a high-pressure air computational fluid model based on computational fluid dynamics;
模型耦合模块:将混凝土颗粒模型与高压空气计算流体模型进行耦合计算;Model coupling module: Coupling the concrete particle model with the high-pressure air calculation fluid model;
机械臂作业模拟模块:改变高压空气计算流体模型的初始条件,模拟不同工作参数下的湿喷混凝土机械臂作业过程。Manipulator operation simulation module: change the initial conditions of the high-pressure air calculation fluid model, and simulate the operation process of the wet shotcrete manipulator under different working parameters.
本发明的第三个方面提供一种计算机可读存储介质,用于存储计算机指令,所述计算机指令被处理器执行时,完成上述方法所述的步骤。A third aspect of the present invention provides a computer-readable storage medium for storing computer instructions, and when the computer instructions are executed by a processor, the steps described in the above method are completed.
本发明的第四个方面提供一种电子设备,包括存储器和处理器以及存储在存储器上并在处理器上运行的计算机指令,所述计算机指令被处理器运行时,完成上述方法所述的步骤。A fourth aspect of the present invention provides an electronic device, including a memory, a processor, and computer instructions stored in the memory and run on the processor. When the computer instructions are executed by the processor, the steps described in the above method are completed. .
以上一个或多个技术方案存在以下有益效果:The above one or more technical solutions have the following beneficial effects:
(1)针对实际湿喷混凝土射流流场,建立了大规模颗粒-流体系统的高精度仿真模型,为研究湿喷混凝土机械臂作业提供了数值理论模型基础。(1) Aiming at the actual jet flow field of wet shotcrete, a high-precision simulation model of large-scale particle-fluid system is established, which provides a numerical theoretical model basis for studying the operation of wet shotcrete manipulators.
(2)通过改变流体计算模型的初始条件来模拟不同工作参数下的湿喷混凝土机械臂作业过程,为开展湿喷混凝土机械臂的数值模拟研究方法提供了一种思路。(2) By changing the initial conditions of the fluid calculation model to simulate the operation process of the wet shotcrete manipulator under different working parameters, it provides a way of thinking for the numerical simulation research method of the wet shotcrete manipulator.
(3)能够同步设定湿喷混凝土机械臂作业时的不同工作参数,同时考虑各项工作参数对混凝土回弹率的综合影响,克服传统试验仅考虑单一工作参数的弊端,降低试验试错成本,提高理论研究和设备研发效率。(3) Different working parameters can be set synchronously when the wet shotcrete robotic arm is working, and the comprehensive influence of various working parameters on the concrete rebound rate can be considered at the same time, so as to overcome the disadvantage of only considering a single working parameter in the traditional test and reduce the cost of trial and error , improve the efficiency of theoretical research and equipment research and development.
本发明附加方面的优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。Advantages of additional aspects of the invention will be set forth in the description which follows, and in part will be obvious from the description, or may be learned by practice of the invention.
附图说明Description of drawings
构成本发明的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。The accompanying drawings constituting a part of the present invention are used to provide a further understanding of the present invention, and the schematic embodiments of the present invention and their descriptions are used to explain the present invention and do not constitute improper limitations to the present invention.
图1为本发明实施例一中模拟湿喷混凝土机械臂作业过程的计算流程图;Fig. 1 is the calculation flow chart of simulating the operation process of the wet shotcrete mechanical arm in the first embodiment of the present invention;
图2为本发明实施例一中湿喷混凝土机械臂示意图;Fig. 2 is a schematic diagram of a wet shotcrete mechanical arm in Embodiment 1 of the present invention;
图3为本发明实施例一中湿喷机械臂施工运动轨迹示意图;Fig. 3 is a schematic diagram of the construction movement track of the wet spraying robot arm in Embodiment 1 of the present invention;
图4为本发明实施例一中喷枪施工的计算模型示意图;Fig. 4 is the calculation model schematic diagram of spray gun construction in the embodiment of the present invention;
图5为本发明实施例一中混凝土质量随时间变化拟合曲线。Fig. 5 is a fitting curve of concrete quality changing with time in Example 1 of the present invention.
附图说明,1、大臂,2、小臂,3、喷头,4、底座,5、连杆,6、回转马达,7、喷枪运动轨迹,8、喷嘴运动轨迹,9、工作面,10、喷枪,11、混凝土料束Description of drawings, 1. Boom, 2. Forearm, 3. Nozzle, 4. Base, 5. Connecting rod, 6. Rotary motor, 7. Spray gun movement track, 8. Nozzle movement track, 9. Working surface, 10 , spray gun, 11, concrete bundle
具体实施方式Detailed ways
应该指出,以下详细说明都是示例性的,旨在对本发明提供进一步的说明。除非另有指明,本文使用的所有技术和科学术语具有与本发明所属技术领域的普通技术人员通常理解的相同含义。It should be noted that the following detailed description is exemplary and intended to provide further explanation of the present invention. Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs.
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本发明的示例性实施方式。It should be noted that the terminology used here is only for describing specific embodiments, and is not intended to limit exemplary embodiments according to the present invention.
在不冲突的情况下,本发明中的实施例及实施例中的特征可以相互组合。In the case of no conflict, the embodiments and the features in the embodiments of the present invention can be combined with each other.
实施例一Embodiment one
如图1-图4所示,本实施例公开了一种基于DEM-CFD的混凝土机械臂作业仿真优化方法,包括:As shown in Figures 1-4, this embodiment discloses a DEM-CFD-based concrete manipulator operation simulation optimization method, including:
步骤1:获取湿喷混凝土的材料特性参数,基于离散元建立混凝土颗粒模型;Step 1: Obtain the material characteristic parameters of wet sprayed concrete, and establish a concrete particle model based on discrete elements;
步骤2:获取湿喷混凝土机械臂作业下的混凝土射流流场,基于计算流体力学建立高压空气计算流体模型;Step 2: Obtain the concrete jet flow field under the operation of the wet shotcrete robotic arm, and establish a high-pressure air computational fluid model based on computational fluid dynamics;
步骤3:将混凝土颗粒模型与高压空气计算流体模型进行耦合计算;Step 3: Coupling the concrete particle model with the high-pressure air calculation fluid model;
步骤4:改变高压空气计算流体模型的初始条件,模拟不同工作参数下的湿喷混凝土机械臂作业过程。Step 4: Change the initial conditions of the high-pressure air calculation fluid model to simulate the operation process of the wet shotcrete manipulator under different working parameters.
在本实施例步骤1中,开展室内混凝土特性试验,获取现场作业中所需湿喷混凝土材料的特性参数,其中特性参数包括:流动性、保水性、黏聚性、密度ρ、强度等,并记录混凝土的颗粒级配。根据所获取的混凝土特性参数,在DEM模块中生成混凝土颗粒模型,并标定宏观材料特性下所对应的颗粒间接触模型以及细观参数。In step 1 of this embodiment, the indoor concrete characteristic test is carried out to obtain the characteristic parameters of the wet shotcrete material required in the field operation, wherein the characteristic parameters include: fluidity, water retention, cohesion, density ρ, strength, etc., and Record the particle size distribution of the concrete. According to the obtained concrete characteristic parameters, the concrete particle model is generated in the DEM module, and the corresponding particle contact model and microscopic parameters under the macroscopic material characteristics are calibrated.
基于上述所获取的湿喷混凝土材料特性参数,确定混凝土计算模型中颗粒半径r、颗粒数量N,并标定混凝土颗粒模型的细观参数,其中包括:颗粒接触模型,颗粒间的摩擦系数μ、弹性模量E、刚度k、粘结强度σ等参数。Based on the material characteristic parameters of wet shotcrete obtained above, determine the particle radius r and particle number N in the concrete calculation model, and calibrate the mesoscopic parameters of the concrete particle model, including: particle contact model, friction coefficient μ between particles, elasticity Modulus E, stiffness k, bond strength σ and other parameters.
混凝土颗粒模型的细观参数的标定过程:通过DEM开展室内混凝土特性试验的数值模拟,首先选取合适的混凝土颗粒的接触模型,改变接触模型中的细观参数,使得模拟的混凝土颗粒表现出的流动性、黏聚性等性质与实际开展的室内混凝土特性试验所得性质保持一致,此时接触模型中的细观参数即为标定混凝土颗粒模型的细观参数。The calibration process of the mesoscopic parameters of the concrete particle model: carry out the numerical simulation of the indoor concrete characteristic test through DEM, first select the appropriate contact model of concrete particles, change the mesoscopic parameters in the contact model, so that the simulated concrete particles show the flow Properties such as property, cohesion, etc. are consistent with those obtained from the actual indoor concrete characteristic test. At this time, the mesoscopic parameters in the contact model are the mesoscopic parameters of the calibrated concrete particle model.
在本实施例中,还包括:在DEM模块中建立工作面,并标定颗粒与工作面的细观参数,其中参数包括:颗粒与工作面的接触模型、摩擦系数μball-facet、弹性模量Eball-facet、刚度kball-facet、粘结强度σball-facet等,使得颗粒模型能够产生粘结、回弹效果,且于工作面上的质量空间分布形态符合实际。In this embodiment, it also includes: establishing the working surface in the DEM module, and calibrating the microscopic parameters of the particles and the working surface, wherein the parameters include: the contact model between the particles and the working surface, the friction coefficient μ ball-facet , and the modulus of elasticity E ball-facet , stiffness k ball-facet , bond strength σ ball-facet , etc. enable the particle model to produce bonding and rebound effects, and the spatial distribution of mass on the working surface conforms to reality.
颗粒与工作面的细观参数的标定过程:通过DEM开展混凝土颗粒碰壁回弹的数值模拟,首先选取合适的混凝土颗粒与工作面的接触模型,改变接触模型中的细观参数,使得颗粒模型能够产生粘结、回弹效果,回弹率控制在20%以内,且于工作面上的质量空间分布形态符合实际,此时接触模型中的细观参数即为标定混凝土颗粒与工作面的的细观参数。The calibration process of the microscopic parameters of the particles and the working surface: the numerical simulation of the rebound of the concrete particles against the wall is carried out through DEM. Bonding and rebound effects are produced, and the rebound rate is controlled within 20%, and the mass space distribution on the working surface is in line with reality. At this time, the mesoscopic parameters in the contact model are the fineness of the calibrated concrete particles and the working surface. view parameters.
在本实施例步骤2中,获取湿喷台车及湿喷混凝土机械臂工作参数,记录湿喷作业时射流流场特征。In
开展现场调研,记录湿喷台车及湿喷混凝土机械臂工作参数,包括工作风压P,喷嘴至工作面的喷射距离L,喷射路径等;通过高速摄像设备记录湿喷作业时射流流场,分析获取混凝土颗粒初始速度v0、射流流场形态等。Carry out on-site research and record the working parameters of the wet spraying trolley and the wet spraying concrete mechanical arm, including the working wind pressure P, the spraying distance L from the nozzle to the working surface, the spraying path, etc.; record the jet flow field during the wet spraying operation through high-speed camera equipment, Analyze and obtain the initial velocity v0 of concrete particles, the shape of the jet flow field, etc.
根据实际混凝土射流流场,在CFD模块中生成高压空气计算流体模型,为保证混凝土颗粒喷射全过程受到流体作用,流体模型的长度应包含喷嘴的长度及喷嘴到工作面的距离,同时为确保喷嘴有足够的运动范围,流体模型的宽度与高度要略大于所建立工作面的宽度与高度,从而确定流体模型计算范围,综合考虑计算精度、计算时间、建模工作量等因素,对喷嘴内流体模型和喷嘴至工作面区域的射流流场模型分别采用不同尺寸的四面体网格,喷嘴内流场情况更加复杂,可采用较小尺寸的四面体网格以细化该处网格,提高计算精度。According to the actual concrete jet flow field, the high-pressure air calculation fluid model is generated in the CFD module. In order to ensure that the concrete particles are sprayed by the fluid during the whole process, the length of the fluid model should include the length of the nozzle and the distance from the nozzle to the working surface. At the same time, to ensure that the nozzle If there is enough range of motion, the width and height of the fluid model should be slightly larger than the width and height of the established working surface, so as to determine the calculation range of the fluid model. Considering the calculation accuracy, calculation time, modeling workload and other factors, the fluid model in the nozzle Tetrahedral grids of different sizes are used for the jet flow field model from the nozzle to the working surface area, and the flow field inside the nozzle is more complicated, so a smaller-sized tetrahedral grid can be used to refine the grid and improve the calculation accuracy .
在本实施例中,基于所记录的湿喷台车及湿喷混凝土机械臂工作参数,设定流体模型计算的边界条件,即设定高压空气流场入口风压大小为工作风压,设定流场出口压力为100kPa(1标准大气压)。In this embodiment, based on the recorded operating parameters of the wet spraying trolley and the wet spraying concrete manipulator, the boundary conditions for the calculation of the fluid model are set, that is, the inlet wind pressure of the high-pressure air flow field is set as the working wind pressure, and the The outlet pressure of the flow field is 100kPa (1 standard atmospheric pressure).
在本实施例中,采用粗粒化方法,修正所建立的喷射混凝土颗粒-流体系统,进一步放大模型颗粒尺寸,缩小计算模型规模,缩短计算时间,并保证粗粒化后的模型计算效果与原模型计算效果相同。粗粒化方法基于冲量定理能量守恒推导得出,修正后流固耦合模型的颗粒间作用力大小:In this example, the coarse-grained method is used to modify the established sprayed concrete particle-fluid system, further enlarge the particle size of the model, reduce the calculation model scale, shorten the calculation time, and ensure that the calculation effect of the coarse-grained model is consistent with the original model. The model calculations have the same effect. The coarse-grained method is derived based on the energy conservation of the impulse theorem, and the interparticle force of the modified fluid-solid coupling model is:
其中,为粗粒化后空气与颗粒间的相互作用力,/>为原系统(粗粒化之前的耦合模型)空气与颗粒间的相互作用力,α为粗粒化颗粒与原颗粒的粒径比。in, is the interaction force between air and particles after coarse-graining, /> is the interaction force between air and particles in the original system (coupling model before coarse-graining), and α is the particle size ratio of coarse-grained particles and original particles.
颗粒与流体间作用力大小:The magnitude of the force between particles and fluid:
其中,为粗粒化后颗粒间的相互作用力,/>为原系统颗粒间的相互作用力。in, is the interaction force between particles after coarse-graining, /> is the interaction force between particles in the original system.
在本实施例步骤3中,将CFD模块中的高压空气计算流体模型与DEM模块中生成混凝土颗粒模型进行耦合计算模拟,到达设定迭代步数停止计算,完成一次湿喷混凝土机械臂作业过程模拟,实现湿喷混凝土机械臂作业的高精度仿真模拟。In step 3 of this embodiment, the high-pressure air calculation fluid model in the CFD module and the concrete particle model generated in the DEM module are used for coupling calculation and simulation, and the calculation is stopped when the set iteration steps are reached, and a simulation of the operation process of the wet shotcrete manipulator is completed. , to realize the high-precision simulation of the operation of the wet shotcrete manipulator.
具体的,DEM模拟计算可以提供颗粒的位置、速度、角速度、体积等信息用于CFD计算,而CFD可以提供力、力矩等信息用于离散元部分计算。Specifically, DEM simulation calculations can provide information such as particle position, velocity, angular velocity, and volume for CFD calculations, while CFD can provide information such as force and torque for discrete element calculations.
CFD先进行一时间步的流场计算,DEM再开始当前时间步的迭代计算,该时间步内,DEM获取CFD流场信息,其中包括拖曳力等相间作用力,将相间作用力引入颗粒运动计算中,DEM完成一步计算后,将颗粒信息及相间作用力传递回CFD模块,CFD进行下一时间步的流场计算。CFD first calculates the flow field of one time step, and then DEM starts the iterative calculation of the current time step. In this time step, DEM obtains the CFD flow field information, including the drag force and other interphase forces, and introduces the interphase forces into the particle motion calculation. In , after the DEM completes one step of calculation, the particle information and interphase force are transmitted back to the CFD module, and CFD performs the flow field calculation of the next time step.
在本实施例中,通过改变流体计算模型的初始参数,其中,初始参数包括:喷嘴的运动速度、运动路线,喷嘴与工作面的距离、夹角大小,重复步骤3,得到不同初始条件下的混凝土的回弹率,并绘制变化曲线,该曲线能够反映湿喷混凝土机械臂在不同工作参数下的作业效果;根据所绘制的混凝土回弹率变化曲线,结合数字智能化方法,优化湿喷混凝土机械臂的控制系统,以适时根据复杂隧道施工现场条件控制调整湿喷混凝土机械臂作业,减小施工中的混凝土回弹率。In this embodiment, by changing the initial parameters of the fluid calculation model, wherein the initial parameters include: the speed of motion of the nozzle, the path of motion, the distance between the nozzle and the working surface, and the size of the included angle, and repeat step 3 to obtain the different initial conditions. The rebound rate of concrete, and draw a change curve, which can reflect the operating effect of the wet shotcrete manipulator under different working parameters; according to the drawn concrete rebound rate change curve, combined with digital intelligent methods, optimize the wet shotcrete The control system of the mechanical arm can control and adjust the operation of the wet shotcrete mechanical arm according to the complex tunnel construction site conditions in a timely manner, and reduce the concrete rebound rate during construction.
图5给出了混凝土质量随时间变化拟合曲线。其中,分别为喷枪喷出的混凝土质量随时间变化拟合曲线,以及工作面上所粘结的混凝土质量随时间变化拟合曲线。Figure 5 shows the fitting curve of concrete quality with time. Among them, are respectively the fitting curve of the concrete mass sprayed by the spray gun and the time-varying fitting curve of the bonded concrete mass on the working face.
实施例二Embodiment two
本实施例的目的是提供一种基于DEM-CFD的湿喷混凝土机械臂作业控制系统,包括:The purpose of this embodiment is to provide a DEM-CFD-based wet shotcrete manipulator operation control system, including:
混凝土颗粒模型建立模块:获取湿喷混凝土的材料特性参数,基于离散元建立混凝土颗粒模型;Concrete particle model building module: obtain the material characteristic parameters of wet sprayed concrete, and build a concrete particle model based on discrete elements;
高压空气计算流体模型建立模块:获取湿喷混凝土机械臂作业下的混凝土射流流场,基于计算流体力学建立高压空气计算流体模型;High-pressure air computational fluid model establishment module: obtain the concrete jet flow field under the operation of the wet shotcrete mechanical arm, and establish a high-pressure air computational fluid model based on computational fluid dynamics;
模型耦合模块:将混凝土颗粒模型与高压空气计算流体模型进行耦合计算;Model coupling module: Coupling the concrete particle model with the high-pressure air calculation fluid model;
机械臂作业模拟模块:改变高压空气计算流体模型的初始条件,模拟不同工作参数下的湿喷混凝土机械臂作业过程。Manipulator operation simulation module: change the initial conditions of the high-pressure air calculation fluid model, and simulate the operation process of the wet shotcrete manipulator under different working parameters.
实施例三Embodiment Three
本实施例的目的是提供一种计算机装置,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述程序时实现上述方法的步骤。The purpose of this embodiment is to provide a computer device, including a memory, a processor, and a computer program stored in the memory and operable on the processor, and the processor implements the steps of the above method when executing the program.
实施例四Embodiment Four
本实施例的目的是提供一种计算机可读存储介质。The purpose of this embodiment is to provide a computer-readable storage medium.
一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时执行上述方法的步骤。A computer-readable storage medium, on which a computer program is stored, and when the program is executed by a processor, the steps of the above-mentioned method are executed.
以上实施例二、三和四的装置中涉及的各步骤与方法实施例一相对应,具体实施方式可参见实施例一的相关说明部分。术语“计算机可读存储介质”应该理解为包括一个或多个指令集的单个介质或多个介质;还应当被理解为包括任何介质,所述任何介质能够存储、编码或承载用于由处理器执行的指令集并使处理器执行本发明中的任一方法。The steps involved in the devices of the
本领域技术人员应该明白,上述本发明的各模块或各步骤可以用通用的计算机装置来实现,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。本发明不限制于任何特定的硬件和软件的结合。Those skilled in the art should understand that each module or each step of the present invention described above can be realized by a general-purpose computer device, optionally, they can be realized by a program code executable by the computing device, thereby, they can be stored in a memory The device is executed by a computing device, or they are made into individual integrated circuit modules, or multiple modules or steps among them are made into a single integrated circuit module for realization. The invention is not limited to any specific combination of hardware and software.
上述虽然结合附图对本发明的具体实施方式进行了描述,但并非对本发明保护范围的限制,所属领域技术人员应该明白,在本发明的技术方案的基础上,本领域技术人员不需要付出创造性劳动即可做出的各种修改或变形仍在本发明的保护范围以内。Although the specific implementation of the present invention has been described above in conjunction with the accompanying drawings, it is not a limitation to the protection scope of the present invention. Those skilled in the art should understand that on the basis of the technical solution of the present invention, those skilled in the art do not need to pay creative work Various modifications or variations that can be made are still within the protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211519290.1A CN116227373A (en) | 2022-11-30 | 2022-11-30 | A DEM-CFD-based simulation optimization method and system for concrete manipulator operation |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211519290.1A CN116227373A (en) | 2022-11-30 | 2022-11-30 | A DEM-CFD-based simulation optimization method and system for concrete manipulator operation |
Publications (1)
Publication Number | Publication Date |
---|---|
CN116227373A true CN116227373A (en) | 2023-06-06 |
Family
ID=86570353
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211519290.1A Pending CN116227373A (en) | 2022-11-30 | 2022-11-30 | A DEM-CFD-based simulation optimization method and system for concrete manipulator operation |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN116227373A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117851749A (en) * | 2024-03-07 | 2024-04-09 | 西华大学 | A shotcrete rebound rate control method and system |
CN118136130A (en) * | 2024-05-10 | 2024-06-04 | 四川农业大学 | A molecular dynamics calculation method for nanocrystalline polymer shotcrete |
CN118551696A (en) * | 2024-07-25 | 2024-08-27 | 湖南军芃科技股份有限公司 | High-throughput multi-product ore separation simulation method |
-
2022
- 2022-11-30 CN CN202211519290.1A patent/CN116227373A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117851749A (en) * | 2024-03-07 | 2024-04-09 | 西华大学 | A shotcrete rebound rate control method and system |
CN117851749B (en) * | 2024-03-07 | 2024-05-14 | 西华大学 | Method and system for controlling rebound rate of sprayed concrete |
CN118136130A (en) * | 2024-05-10 | 2024-06-04 | 四川农业大学 | A molecular dynamics calculation method for nanocrystalline polymer shotcrete |
CN118136130B (en) * | 2024-05-10 | 2024-07-23 | 四川农业大学 | A molecular dynamics calculation method for nanocrystalline polymer shotcrete |
CN118551696A (en) * | 2024-07-25 | 2024-08-27 | 湖南军芃科技股份有限公司 | High-throughput multi-product ore separation simulation method |
CN118551696B (en) * | 2024-07-25 | 2024-10-18 | 湖南军芃科技股份有限公司 | High-throughput multi-product ore separation simulation method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN116227373A (en) | A DEM-CFD-based simulation optimization method and system for concrete manipulator operation | |
CN103331756A (en) | Mechanical arm motion control method | |
CN104850697B (en) | Large-scale antenna dynamic modeling method based on ANSYS and ADAMS | |
CN106777475B (en) | A kind of injection machine arm dynamics synergy emulation method of confined space constraint | |
CN108621158A (en) | A kind of time optimal trajectory planning control method and device about mechanical arm | |
CN116244782A (en) | An optimization method and system for sprayed concrete based on DEM-CFD coupling | |
CN106055522A (en) | Minimum base attitude disturbance track planning method for redundant space manipulator | |
CN105904462A (en) | Control method of six-degree-of-freedom intelligent robot body | |
CN109940613A (en) | A simulation method for calculating the dynamic response and control of a manipulator containing piezoelectric materials | |
CN106914904A (en) | A kind of complex-curved blade force-location mix control system of processing based on ROS | |
CN106346480A (en) | Multi-freedom-degree injection mold mechanical arm modeling method based on UG and MATLAB | |
CN109271689A (en) | Circular test down space envelope profiled envelope mould track Method for Accurate Calculation | |
CN104502128B (en) | A kind of space manipulator collision algorithm verification method based on microgravity simulation system | |
CN115609580A (en) | A flexible vibration suppression method for a space manipulator | |
CN115310380A (en) | Simulation method, device, equipment and medium for hose-active control taper sleeve | |
CN113505424B (en) | Interactive construction method for derived component of linear engineering | |
CN101739020B (en) | Virtual test method of large-scale transitional sprinkling machine and system thereof | |
CN105930568B (en) | The cluster of particle discrete element analysis construction method of arbitrary shape convex polyhedron aggregate | |
CN110315527A (en) | A kind of flexible mechanical arm control method of adaptive Dynamic Programming | |
CN102306220B (en) | Wind-resistant design method for cable-membrane structure based on loose coupling technology | |
CN117021076A (en) | Large redundant mechanical arm track planning method considering energy consumption and motion performance | |
Xu et al. | Trajectory planning of 7-degree-of-freedom manipulator based on ROS | |
CN113849993B (en) | Industrial robot dynamics modeling method based on flexible deformation of mechanical arm | |
CN103217924A (en) | Dynamics modeling method of over-constrained heavy parallel machine tool applied to real-time control | |
CN109358618B (en) | Path planning method of mobile robot |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |