CN116225148A - Current mirror circuit, chip and electronic equipment - Google Patents
Current mirror circuit, chip and electronic equipment Download PDFInfo
- Publication number
- CN116225148A CN116225148A CN202211722845.2A CN202211722845A CN116225148A CN 116225148 A CN116225148 A CN 116225148A CN 202211722845 A CN202211722845 A CN 202211722845A CN 116225148 A CN116225148 A CN 116225148A
- Authority
- CN
- China
- Prior art keywords
- transistor
- circuit
- current
- output
- current mirror
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000008859 change Effects 0.000 claims abstract description 25
- 238000010586 diagram Methods 0.000 description 12
- 230000000694 effects Effects 0.000 description 5
- 238000000034 method Methods 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05F—SYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
- G05F3/00—Non-retroactive systems for regulating electric variables by using an uncontrolled element, or an uncontrolled combination of elements, such element or such combination having self-regulating properties
- G05F3/02—Regulating voltage or current
- G05F3/08—Regulating voltage or current wherein the variable is DC
- G05F3/10—Regulating voltage or current wherein the variable is DC using uncontrolled devices with non-linear characteristics
- G05F3/16—Regulating voltage or current wherein the variable is DC using uncontrolled devices with non-linear characteristics being semiconductor devices
- G05F3/20—Regulating voltage or current wherein the variable is DC using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations
- G05F3/26—Current mirrors
- G05F3/262—Current mirrors using field-effect transistors only
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Automation & Control Theory (AREA)
- Amplifiers (AREA)
Abstract
Description
技术领域technical field
本公开的实施例涉及集成电路技术领域,具体地,涉及电流镜电路、芯片及电子设备。Embodiments of the present disclosure relate to the technical field of integrated circuits, and in particular, to current mirror circuits, chips and electronic devices.
背景技术Background technique
目前电流镜在各种模拟电路的设计中应用非常普遍,其特点是输出电流是对输入电流按一定比例的“复制”,用来接提供多个恒定电流。通常在电流镜电路确定时,输出电流和输入电流的比值是固定的,即镜像电流比例是固定的。因此,如果需要得到可变的输出电流时,需要通过不同的电路来实现。比如,对于图1中的常用的电流镜电路,镜像比例与Mn1和Mn2的宽长比是对应的,若Mn1和Mn2的宽长比为1:1,则输入电流Iref与输出电流Io的比也为1:1,即Io=Iref,即,镜像比例为1;若Mn1和Mn2的宽长比为1:10,则输入电流Iref与输出电流Io的比也为1:10,即Io=10*Iref,即镜像比例为10。根据图1的电流镜电路,可以看到,如果想要改变镜像电流的比例,需要改变Mn1和Mn2的宽长比,即需要进行电路的改变,非常的不方便。另外,如果对于镜像比例大的电流镜电路,由于需要设置更大的宽长比,因此会大大的增加电路的面积。At present, the current mirror is widely used in the design of various analog circuits. Its characteristic is that the output current is a "copy" of the input current in a certain proportion, and is used to provide multiple constant currents. Usually, when the current mirror circuit is determined, the ratio of the output current to the input current is fixed, that is, the ratio of the mirror current is fixed. Therefore, if a variable output current needs to be obtained, it needs to be realized through different circuits. For example, for the commonly used current mirror circuit in Figure 1, the mirror ratio corresponds to the width-to-length ratio of Mn1 and Mn2. If the width-to-length ratio of Mn1 and Mn2 is 1:1, the ratio of the input current Iref to the output current Io It is also 1:1, that is, Io=Iref, that is, the mirror image ratio is 1; if the width-to-length ratio of Mn1 and Mn2 is 1:10, the ratio of the input current Iref to the output current Io is also 1:10, that is, Io= 10*Iref, that is, the mirror ratio is 10. According to the current mirror circuit in Figure 1, it can be seen that if you want to change the ratio of the mirror current, you need to change the width-to-length ratio of Mn1 and Mn2, that is, you need to change the circuit, which is very inconvenient. In addition, for a current mirror circuit with a large mirror ratio, since a larger aspect ratio needs to be set, the area of the circuit will be greatly increased.
综上,现有的电流镜电路在电流镜电路确定且需要得到可变的输出电流时,存在的操作不便、电路面积大的问题是亟需解决的。To sum up, when the existing current mirror circuit is determined and needs to obtain a variable output current, the problems of inconvenient operation and large circuit area need to be solved urgently.
发明内容Contents of the invention
本文中描述的实施例提供了一种电流镜电路、芯片及电子设备,为了提供一种镜像比例可调的电流镜电路。The embodiments described herein provide a current mirror circuit, a chip and an electronic device, in order to provide a current mirror circuit with an adjustable mirror ratio.
根据本公开的第一方面,提供了一种电流镜电路,包括:基准电流产生电路、输入级晶体管电路、输出级晶体管电路,所述输入级晶体管电路与所述输出级晶体管电路组成共源共栅的电流镜结构,其中,所述基准电流产生电路,被配置为产生基准电流;所述输入级晶体管电路,被配置为根据所述基准电流的变化调节输入级的等效跨导,从而调节镜像比例;所述输出级晶体管电路,被配置为根据不同的镜像比例输出不同的输出电流。According to the first aspect of the present disclosure, a current mirror circuit is provided, including: a reference current generating circuit, an input-stage transistor circuit, and an output-stage transistor circuit, the input-stage transistor circuit and the output-stage transistor circuit form a common-source common A gate current mirror structure, wherein the reference current generation circuit is configured to generate a reference current; the input stage transistor circuit is configured to adjust the equivalent transconductance of the input stage according to the change of the reference current, thereby adjusting Mirror ratio: the output stage transistor circuit is configured to output different output currents according to different mirror ratios.
可选的,所述输入级晶体管电路包括:第一晶体管、第二晶体管、第三晶体管、电阻,其中,所述第一晶体管的第一极分别耦接所述第一晶体管的控制极、所述第三晶体管的第一极、所述基准电流产生电路的输出端,所述第一晶体管的第二极耦接接地端;所述第二晶体管的第一极耦接所述第三晶体管的第二极,所述第二晶体管的第二极耦接所述电阻的一端,所述第二晶体管的控制极分别耦接所述第三晶体管的第一极、所述输出级晶体管电路的输入端;所述第三晶体管的控制极耦接控制电压;所述电阻的另一端耦接接地端。Optionally, the input stage transistor circuit includes: a first transistor, a second transistor, a third transistor, and a resistor, wherein the first pole of the first transistor is respectively coupled to the control pole of the first transistor, the The first pole of the third transistor, the output terminal of the reference current generating circuit, the second pole of the first transistor is coupled to the ground terminal; the first pole of the second transistor is coupled to the third transistor The second pole, the second pole of the second transistor is coupled to one end of the resistor, and the control pole of the second transistor is respectively coupled to the first pole of the third transistor and the input of the output stage transistor circuit terminal; the control electrode of the third transistor is coupled to the control voltage; the other end of the resistor is coupled to the ground terminal.
可选的,所述输出级晶体管电路包括:第四晶体管,其中,所述第四晶体管的第一极输出所述输出电流,所述第四晶体管的第二极耦接接地端,所述第四晶体管的控制极作为所述输出级晶体管电路的输入端耦接所述输入级晶体管电路。Optionally, the output stage transistor circuit includes: a fourth transistor, wherein a first pole of the fourth transistor outputs the output current, a second pole of the fourth transistor is coupled to a ground terminal, and the first The control electrodes of the four transistors are used as the input terminals of the output-stage transistor circuit and are coupled to the input-stage transistor circuit.
可选的,所述基准电流产生电路包括:电流源,其中,所述电流源的一端连接电源电压,所述电流源的另一端作为所述基准电流产生电路的输出端耦接所述输入级晶体管电路。Optionally, the reference current generating circuit includes: a current source, wherein one end of the current source is connected to a power supply voltage, and the other end of the current source is coupled to the input stage as an output end of the reference current generating circuit transistor circuit.
可选的,所述控制电压大于或等于所述第三晶体管的栅源电压和所述第二晶体管的过驱动电压之和。Optionally, the control voltage is greater than or equal to the sum of the gate-source voltage of the third transistor and the overdrive voltage of the second transistor.
可选的,所述第二晶体管的宽长比是所述第一晶体管的宽长比的N倍,其中N大于或等于80。Optionally, the aspect ratio of the second transistor is N times that of the first transistor, where N is greater than or equal to 80.
可选的,所述第二晶体管的宽长比等于所述第四晶体管的宽长比。Optionally, the width-to-length ratio of the second transistor is equal to the width-to-length ratio of the fourth transistor.
可选的,所述第一晶体管、所述第二晶体管、所述第三晶体管、所述第四晶体管为N型晶体管。Optionally, the first transistor, the second transistor, the third transistor, and the fourth transistor are N-type transistors.
根据本公开的第二方面,提供了一种芯片,包括根据第一方面中任一项所述的电流镜电路。According to a second aspect of the present disclosure, there is provided a chip comprising the current mirror circuit according to any one of the first aspects.
根据本公开的第三方面,提供了一种电子设备,包括第二方面所述的芯片。According to a third aspect of the present disclosure, an electronic device is provided, including the chip described in the second aspect.
本公开的实施例的电流镜电路、芯片及电子设备中的电流镜电路,包括基准电流产生电路、输入级晶体管电路、输出级晶体管电路,输入级晶体管电路与输出级晶体管电路组成共源共栅的电流镜结构,其中,基准电流产生电路,被配置为产生基准电流;输入级晶体管电路,被配置为根据基准电流的变化调节输入级的等效跨导,从而调节镜像比例;输出级晶体管电路,被配置为根据不同的镜像比例输出不同的输出电流。可以看到,本公开实施例的电流镜电路中输入级晶体管电路可以根据基准电流的变化调节输入级的等效跨导,在输出级的等效跨导确定的前提下,输入级的等效跨导的变化,相当于改变了输入级与输出级的等效跨导的比,等效跨导的比改变,对应的输出电流与输入电流的比会改变,即镜像比例会改变,从而得到镜像比例可调的电流镜电路,进而可以在不改变电路结构的基础上基于可调的镜像比例得到可变的输出电流。The current mirror circuit in the embodiment of the present disclosure, the chip and the current mirror circuit in the electronic device include a reference current generation circuit, an input-level transistor circuit, and an output-level transistor circuit, and the input-level transistor circuit and the output-level transistor circuit form a cascode The current mirror structure, wherein, the reference current generation circuit is configured to generate a reference current; the input stage transistor circuit is configured to adjust the equivalent transconductance of the input stage according to the change of the reference current, thereby adjusting the mirror ratio; the output stage transistor circuit , are configured to output different output currents according to different mirror ratios. It can be seen that the input stage transistor circuit in the current mirror circuit of the embodiment of the present disclosure can adjust the equivalent transconductance of the input stage according to the change of the reference current. Under the premise that the equivalent transconductance of the output stage is determined, the equivalent transconductance of the input stage The change of the transconductance is equivalent to changing the ratio of the equivalent transconductance of the input stage to the output stage. If the ratio of the equivalent transconductance changes, the ratio of the corresponding output current to the input current will change, that is, the mirror ratio will change, so that The current mirror circuit with adjustable mirror ratio can obtain variable output current based on the adjustable mirror ratio without changing the circuit structure.
附图说明Description of drawings
为了更清楚地说明本公开的实施例的技术方案,下面将对实施例的附图进行简要说明,应当知道,以下描述的附图仅仅涉及本公开的一些实施例,而非对本公开的限制,其中:In order to more clearly illustrate the technical solutions of the embodiments of the present disclosure, the drawings of the embodiments will be briefly described below. It should be known that the drawings described below only relate to some embodiments of the present disclosure, rather than limiting the present disclosure. in:
图1是现有的一种电流镜电路的示例性电路图;Fig. 1 is an exemplary circuit diagram of an existing current mirror circuit;
图2是本公开实施例的一种电流镜电路的示意性框图Fig. 2 is a schematic block diagram of a current mirror circuit according to an embodiment of the present disclosure
图3是本公开实施例的一种电流镜电路的示例性电路图;3 is an exemplary circuit diagram of a current mirror circuit according to an embodiment of the present disclosure;
图4是本公开实施例的一种输出电流与基准电流Iref的比值随基准电流Iref变化的曲线示意图;4 is a schematic diagram of a curve showing the ratio of the output current to the reference current Iref as the reference current Iref varies according to an embodiment of the present disclosure;
附图中的元素是示意性的,没有按比例绘制。Elements in the drawings are schematic and not drawn to scale.
具体实施方式Detailed ways
为了使本公开的实施例的目的、技术方案和优点更加清楚,下面将结合附图,对本公开的实施例的技术方案进行清楚、完整的描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域技术人员在无需创造性劳动的前提下所获得的所有其它实施例,也都属于本公开保护的范围。In order to make the purpose, technical solutions and advantages of the embodiments of the present disclosure clearer, the technical solutions of the embodiments of the present disclosure will be clearly and completely described below in conjunction with the accompanying drawings. Apparently, the described embodiments are some of the embodiments of the present disclosure, not all of them. Based on the described embodiments of the present disclosure, all other embodiments obtained by those skilled in the art without creative efforts also fall within the protection scope of the present disclosure.
除非另外定义,否则在此使用的所有术语(包括技术和科学术语)具有与本公开主题所属领域的技术人员所通常理解的相同含义。进一步将理解的是,诸如在通常使用的词典中定义的那些的术语应解释为具有与说明书上下文和相关技术中它们的含义一致的含义,并且将不以理想化或过于正式的形式来解释,除非在此另外明确定义。如在此所使用的,将两个或更多部分“连接”或“耦接”到一起的陈述应指这些部分直接结合到一起或通过一个或多个中间部件结合。Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this disclosed subject matter belongs. It will be further understood that terms such as those defined in commonly used dictionaries should be interpreted as having meanings consistent with their meanings in the context of the specification and related technologies, and will not be interpreted in an idealized or overly formal manner, Unless otherwise expressly defined herein. As used herein, the statement that two or more parts are "connected" or "coupled" together shall mean that the parts are joined together directly or through one or more intermediate components.
在本公开的所有实施例中,由于金属氧化物半导体(MOS)晶体管的源极和漏极是对称的,并且N型晶体管和P型晶体管的源极和漏极之间的导通电流方向相反,因此在本公开的实施例中,将MOS晶体管的受控中间端称为控制极,将MOS晶体管的其余两端分别称为第一极和第二极。另外,诸如“第一”和“第二”的术语仅用于将一个部件(或部件的一部分)与另一个部件(或部件的另一部分)区分开。In all the embodiments of the present disclosure, since the source and the drain of the metal oxide semiconductor (MOS) transistor are symmetrical, and the conduction current direction between the source and the drain of the N-type transistor and the P-type transistor is opposite , therefore, in the embodiments of the present disclosure, the controlled intermediate terminal of the MOS transistor is called the control pole, and the remaining two ends of the MOS transistor are respectively called the first pole and the second pole. In addition, terms such as "first" and "second" are only used to distinguish one element (or a part of a element) from another element (or another part of a element).
为了解决现有的电流镜电路在电流镜电路确定且需要得到可变的输出电流时,存在的操作不便、电路面积大的问题,提出了一种新的电流镜电路。本公开实施例的电流镜电路是使输入级晶体管电路可以根据基准电流Iref的变化调节输入级的等效跨导,从而得到镜像比例可调的电流镜电路,进而可以在不改变电路结构的基础上基于可调的镜像比例得到可变的输出电流。下面对本公开的电流镜电路进行详细的说明。In order to solve the problems of inconvenient operation and large circuit area in the existing current mirror circuit when the current mirror circuit is determined and needs to obtain a variable output current, a new current mirror circuit is proposed. The current mirror circuit of the embodiment of the present disclosure enables the input stage transistor circuit to adjust the equivalent transconductance of the input stage according to the change of the reference current Iref, thereby obtaining a current mirror circuit with an adjustable mirror ratio, and furthermore, without changing the circuit structure. A variable output current is obtained based on an adjustable mirror ratio. The current mirror circuit of the present disclosure will be described in detail below.
如图2所示为本公开实施例的一种电流镜电路100的示意性框图,包括:基准电流产生电路110、输入级晶体管电路120、输出级晶体管电路130,输入级晶体管电路120与输出级晶体管电路130组成共源共栅的电流镜结构。具体的共源共栅的电流镜结构是指输入级晶体管电路120与输出级晶体管电路130中的晶体管为共源共栅的结构,共源共栅结构是电流镜电路中常用的结构。2 is a schematic block diagram of a
图2中,基准电流产生电路110,被配置为产生基准电流Iref。基准电流Iref在电流镜电路中为输入电流,产生基准电流Iref的方式不做限制,即基准电流产生电路110的结构不做限制,比如可以为电流源,也可以为电压源和阻抗的组合结构。In FIG. 2 , the reference
输入级晶体管电路120分别与基准电流产生电路110和输出级晶体管电路130耦接,输入级晶体管电路120是由晶体管组成的。具体的输入级晶体管电路120被配置为根据基准电流Iref的变化调节输入级的等效跨导,从而调节镜像比例。输入级的等效跨导即电流镜结构中输入电流(基准电流Iref)所在支路对应的等效跨导,也即输入级晶体管电路120的等效跨导。在输出级的等效跨导确定的前提下,调节输入级的等效跨导相当于改变了输入级与输出级的等效跨导的比,等效跨导的比改变,对应的输出电流I4与输入电流的比会改变,即镜像比例会改变,从而得到镜像比例可调的电流镜电路。The input-
输出级晶体管电路130,被配置为根据不同的镜像比例输出不同的输出电流I4。输出电流I4与输入电流(基准电流Iref)的比为镜像比例,因此根据不同的镜像比例可以输出对应的输出电流I4。在实际应用中,输出级晶体管电路130既可以为一个输出电流支路;也可以为相互并联的多个输出电流支路,每个输出电流支路分别与所述输入级晶体管电路120构成共源共栅的电流镜结构。The output stage transistor circuit 130 is configured to output different output currents I4 according to different mirror ratios. The ratio of the output current I4 to the input current (reference current Iref) is a mirror ratio, so the corresponding output current I4 can be output according to different mirror ratios. In practical applications, the output stage transistor circuit 130 can be one output current branch; it can also be a plurality of output current branches connected in parallel, and each output current branch forms a common source with the input
根据以上描述,本公开实施例的电流镜电路中输入级晶体管电路120可以根据基准电流Iref的变化调节输入级的等效跨导,在输出级的等效跨导确定的前提下,输入级的等效跨导的变化,相当于改变了输入级与输出级的等效跨导的比,等效跨导的比改变,对应的输出电流I4与输入电流(基准电流Iref)的比会改变,即镜像比例会改变,从而得到镜像比例可调的电流镜电路。According to the above description, the input
进一步的,如图3所示,本公开实施例提供了一种电流镜电路的示例性电路图。图3中,输入级晶体管电路120包括:第一晶体管Mn1、第二晶体管Mn2、第三晶体管Mn3、电阻R,其中,所述第一晶体管Mn1的第一极分别耦接所述第一晶体管Mn1的控制极、所述第三晶体管Mn3的第一极、所述基准电流产生电路110的输出端,所述第一晶体管Mn1的第二极耦接接地端;所述第二晶体管Mn2的第一极耦接所述第三晶体管Mn3的第二极,所述第二晶体管Mn2的第二极耦接所述电阻R的一端,所述第二晶体管Mn2的控制极分别耦接所述第三晶体管Mn3的第一极、所述输出级晶体管电路130的输入端;所述第三晶体管Mn3的控制极耦接控制电压;所述电阻R的另一端耦接接地端。其中,控制电压大于或等于所述第三晶体管Mn3的栅源电压和所述第二晶体管Mn2的过驱动电压之和。第二晶体管Mn2的宽长比是所述第一晶体管Mn1的宽长比的N倍,其中N大于或等于80。将N设置为大于或等于80,是为了满足第二晶体管Mn2的等效跨导在一定程度上远小于第二晶体管Mn2的等效跨导。当然,在实际应用中N值可以适应性的调整。另外,第一晶体管Mn1、所述第二晶体管Mn2、所述第三晶体管Mn3为N型晶体管。Further, as shown in FIG. 3 , the embodiment of the present disclosure provides an exemplary circuit diagram of a current mirror circuit. In FIG. 3 , the input
如图3所示,输出级晶体管电路130包括:第四晶体管Mn4,其中,所述第四晶体管Mn4的第一极输出所述输出电流I4,所述第四晶体管Mn4的第二极耦接接地端,所述第四晶体管Mn4的控制极作为所述输出级晶体管电路130的输入端耦接所述输入级晶体管电路120。另外,所述第四晶体管Mn4为N型晶体管As shown in FIG. 3 , the output stage transistor circuit 130 includes: a fourth transistor Mn4, wherein the first pole of the fourth transistor Mn4 outputs the output current I4, and the second pole of the fourth transistor Mn4 is coupled to ground terminal, the control electrode of the fourth transistor Mn4 is coupled to the input-
如图3所示,基准电流产生电路110包括:电流源111,其中,所述电流源111的一端连接电源电压Vdd,所述电流源111的另一端作为所述基准电流产生电路110的输出端耦接所述输入级晶体管电路120。As shown in Figure 3, the reference
结合图3中的电路图对本公开实施例的电流镜电路100的工作原理进行说明:根据基准电流Iref的变化,可以将镜像比例的变化分为四个区间段,下面对这四个区间段进行原理描述。The working principle of the
区间段1:基准电流Iref与电阻R的乘积远小于第二晶体管Mn2的栅源电压,即Iref*R<<Vgs2,此处的远小于具体可以为小于50倍及以上,即Iref*R≤(Vgs2)/50。由于Iref*R<<Vgs2,电阻R对第二晶体管Mn2形成的源极负反馈作用可忽略不计,Mn2与R组合的等效跨导Gm≈gm2,又由第二晶体管Mn2的宽长比至少为第一晶体管Mn1的宽长比的80倍可知gm1<<gm2,因此gm1<<Gm,所以基准电流Iref几乎全部流入Mn2。又因为Iref*R<<Vgs2,所以电阻R上的压降远小于Vgs2,所以A点电压Vgs2≈VA=Vgs4,若第二晶体管Mn2的宽长比与第四晶体管Mn4的宽长比的比例为1:a(a大于或等于1),则可以得到I2:I4=1:a,又因为基准电流Iref几乎全部流入Mn2,因此Iref≈I2,所以Iref:I4≈1:a,镜像比例I4/Iref≈a:1。比如,通常的在第二晶体管Mn2的宽长比与第四晶体管Mn4的宽长比相等时,即a=1时,可以得到I4/Iref≈1:1。Section 1: The product of the reference current Iref and the resistance R is much smaller than the gate-source voltage of the second transistor Mn2, that is, Iref*R<<Vgs2, where the much smaller value can be less than 50 times or more, that is, Iref*R≤ (Vgs2)/50. Since Iref*R<<Vgs2, the source negative feedback effect of the resistance R on the second transistor Mn2 is negligible, the equivalent transconductance Gm≈gm2 of the combination of Mn2 and R, and the width-to-length ratio of the second transistor Mn2 is at least The aspect ratio of the first transistor Mn1 is 80 times. It can be seen that gm1<<gm2, therefore gm1<<Gm, so almost all of the reference current Iref flows into Mn2. And because Iref*R<<Vgs2, the voltage drop on the resistor R is much smaller than Vgs2, so the voltage at point A is Vgs2≈VA=Vgs4, if the ratio of the width to length ratio of the second transistor Mn2 to the width to length ratio of the fourth transistor Mn4 is 1:a (a is greater than or equal to 1), you can get I2:I4=1:a, and because the reference current Iref almost all flows into Mn2, so Iref≈I2, so Iref:I4≈1:a, the mirror image ratio I4 /Iref≈a:1. For example, generally when the width-to-length ratio of the second transistor Mn2 is equal to the width-to-length ratio of the fourth transistor Mn4 , that is, when a=1, I4/Iref≈1:1 can be obtained.
区间段2,Iref超出区间段1后逐渐增大直至Iref=(VB-Vgs3)/R,以区间段1为Iref*R≤Vgs2/50为例,区间段2可以表示为Vgs2/R*50<Iref≤(VB-Vgs3)/R,Vgs3为第三晶体管Mn3的栅源电压。该区间段中随着Iref的逐渐升高,电阻R上的压降不断升高,R对Mn2形成的源极负反馈作用逐渐增强,则Mn2与R组合的等效跨导Gm=gm2/(1+gm2*R),即Gm<gm2。由第二晶体管Mn2的宽长比至少为第一晶体管Mn1的宽长比的80倍可知gm1<<gm2,虽然Mn2与R组合的等效跨导Gm<gm2,但Gm的数值仍远大于gm1,故在此区间段内Iref仍然保持几乎全部流入Mn2的状态。由电路连接关系可知,虽然Mn4仍和Mn2+R的组合构成镜像关系,但由于电阻R的源极负反馈作用导致等效跨导Gm相比之前减小(相比区间段1减小),故Mn4与该组合的镜像比例在先前a:1的基础上有所增大,即镜像比例I4/Iref>a:1。比如,通常的在第二晶体管Mn2的宽长比与第四晶体管Mn4的宽长比相等时,即a=1时,可以得到镜像比例I4/Iref>1。In section 2, Iref gradually increases after exceeding section 1 until Iref=(VB-Vgs3)/R. Taking section 1 as Iref*R≤Vgs2/50 as an example, section 2 can be expressed as Vgs2/R*50 <Iref≤(VB-Vgs3)/R, Vgs3 is the gate-source voltage of the third transistor Mn3. With the gradual increase of Iref in this interval section, the voltage drop on the resistance R continues to increase, and the negative feedback effect of the source electrode formed by R on Mn2 is gradually strengthened, then the equivalent transconductance Gm of Mn2 and R combined = gm2/( 1+gm2*R), that is, Gm<gm2. From the fact that the aspect ratio of the second transistor Mn2 is at least 80 times that of the first transistor Mn1, it can be seen that gm1<<gm2, although the equivalent transconductance Gm<gm2 of the combination of Mn2 and R, the value of Gm is still much larger than gm1 , so in this interval, Iref still maintains the state that almost all of it flows into Mn2. It can be seen from the circuit connection relationship that although Mn4 still forms a mirror image relationship with the combination of Mn2+R, the equivalent transconductance Gm is reduced compared with the previous one due to the negative feedback effect of the source of the resistor R (compared to the decrease in section 1), Therefore, the mirror image ratio between Mn4 and this combination is increased on the basis of the previous a:1, that is, the mirror image ratio I4/Iref>a:1. For example, generally when the aspect ratio of the second transistor Mn2 is equal to the aspect ratio of the fourth transistor Mn4, that is, when a=1, the mirror image ratio I4/Iref>1 can be obtained.
区间段3,Iref>(VB-Vgs3)/R。当Iref>(VB-Vgs3)/R时,Mn2的漏源电压Vds几乎为0,Mn2工作在线性区,则Mn2流过的电流I2如下式所示:I2=(VB-Vgs3)/R。随着Iref继续增大,Mn2流过的电流也将保持上式的数值不变。此时I2与流经Mn1电流I1的总和与Iref相等,即I1=Iref-I1=Iref-(VB-Vgs3)/R,又由于Mn2此时工作在线性区导致Mn2与R组合失去了对电流的放大作用,此时Mn4的电流将镜像Mn1流过的电流I1,由Mn1与Mn4的宽长比的比例关系可知,I4=a*N*I1=a*N*[Iref-(VB-Vgs3)/R],又因为[Iref-(VB-Vgs3)/R]<Iref,因此I4<a*N*Iref,即I4/Iref<a*N。比如,通常的在第二晶体管Mn2的宽长比与第四晶体管Mn4的宽长比相等时,即a=1时,可以得到镜像比例I4/Iref<N。Interval segment 3, Iref>(VB-Vgs3)/R. When Iref>(VB-Vgs3)/R, the drain-source voltage Vds of Mn2 is almost 0, and Mn2 works in the linear region, then the current I2 flowing through Mn2 is as follows: I2=(VB-Vgs3)/R. As Iref continues to increase, the current flowing through Mn2 will also keep the value of the above formula unchanged. At this time, the sum of I2 and the current I1 flowing through Mn1 is equal to Iref, that is, I1=Iref-I1=Iref-(VB-Vgs3)/R, and because Mn2 works in the linear region at this time, the combination of Mn2 and R loses the pair current At this time, the current of Mn4 will mirror the current I1 flowing through Mn1. From the proportional relationship between the width and length ratio of Mn1 and Mn4, I4=a*N*I1=a*N*[Iref-(VB-Vgs3 )/R], and because [Iref-(VB-Vgs3)/R]<Iref, so I4<a*N*Iref, that is, I4/Iref<a*N. For example, generally when the width-to-length ratio of the second transistor Mn2 is equal to the width-to-length ratio of the fourth transistor Mn4, that is, when a=1, the mirror image ratio I4/Iref<N can be obtained.
区间段4,Iref>>(VB-Vgs3)/R,此处的远大于可以为至少大于50倍。此时Iref几乎全部流经Mn1,则I1=Iref,由Mn1与Mn4的镜像关系(即Mn1与Mn4的宽长比的比例关系)可知I4=a*N*I1=a*N*Iref,即I4/Iref=a*N。比如,通常的在第二晶体管Mn2的宽长比与第四晶体管Mn4的宽长比相等时,即a=1时,可以得到镜像比例I4/Iref=N。Interval segment 4, Iref>>(VB-Vgs3)/R, where the much larger value may be at least 50 times larger. Now Iref almost all flows through Mn1, then I1=Iref, from the mirror image relationship between Mn1 and Mn4 (i.e. the ratio of the width to length ratio of Mn1 and Mn4), it can be seen that I4=a*N*I1=a*N*Iref, that is I4/Iref=a*N. For example, generally when the aspect ratio of the second transistor Mn2 is equal to the aspect ratio of the fourth transistor Mn4, that is, when a=1, the mirror image ratio I4/Iref=N can be obtained.
综上所述,随着基准电流Iref的变化,该电流镜结构实现了电流镜像比例从a~a*N的变化效果,a是Mn4与Mn2的宽长比的比例,N是Mn2与Mn1的宽长比的比例。从上述的工作原理的描述可以看到,相比于现有的电流镜电路,本公开的电流镜电路不需要进行电路结构的改变就可以进行镜像比例的大范围调节,操作更简便,还能够节省电路面积。In summary, with the change of the reference current Iref, the current mirror structure realizes the change effect of the current mirror ratio from a to a*N, where a is the ratio of the width to length ratio of Mn4 and Mn2, and N is the ratio of Mn2 to Mn1 The ratio of width to length. From the above description of the working principle, it can be seen that compared with the existing current mirror circuit, the current mirror circuit of the present disclosure can adjust the mirror ratio in a large range without changing the circuit structure, and the operation is simpler and can also Save circuit area.
进一步的,为了更直观的表示随着基准电流Iref的变化电流镜像比例变化的效果,图4示出了镜像电流(输出电流I4)与基准电流Iref的比值随基准电流Iref变化的曲线,图4的曲线是在a=1,N=100时对应的曲线的示意图。从图4中可以看到:在区间段1,镜像比例几乎为1;在区间段2,镜像比例开始上升,但是上升的速度不快;在区间段3,镜像比例开始快速上升;在区间段4,镜像比例几乎不再上升,几乎为100。Further, in order to more intuitively represent the effect of changing the current mirror ratio with the change of the reference current Iref, Fig. 4 shows the curve of the ratio of the mirror current (output current I4) to the reference current Iref as the reference current Iref changes, Fig. 4 The curve in is a schematic diagram of the corresponding curve when a=1, N=100. It can be seen from Figure 4 that: in interval 1, the mirror image ratio is almost 1; in interval 2, the mirror image ratio begins to rise, but the speed of increase is not fast; , the mirror ratio barely rises to almost 100.
本公开的实施例还提供了一种芯片。该芯片包括根据本公开的实施例的电流镜电路。该芯片例如是需要调节镜像比例的电源管理芯片。The embodiment of the present disclosure also provides a chip. The chip includes a current mirror circuit according to an embodiment of the present disclosure. The chip is, for example, a power management chip that needs to adjust the mirror image ratio.
本公开的实施例还提供了一种电子设备。该电子设备包括根据本公开的实施例的芯片。该电子设备例如是智能移动终端、智能家居等智能设备。The embodiment of the present disclosure also provides an electronic device. The electronic device includes a chip according to an embodiment of the present disclosure. The electronic device is, for example, a smart mobile terminal, a smart home and other smart devices.
综上,本公开实施例中的电流镜电路能够根据基准电流的变化得到不同的镜像比例,进而可以在不改变电路结构的基础上基于可调的镜像比例得到可变的输出电流。To sum up, the current mirror circuit in the embodiment of the present disclosure can obtain different mirror ratios according to the change of the reference current, and then can obtain variable output current based on the adjustable mirror ratio without changing the circuit structure.
附图中的流程图和框图显示了根据本公开的多个实施例的装置和方法的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段或指令的一部分,所述模块、程序段或指令的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。在有些作为替换的实现中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个连续的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这依所涉及的功能而定。也要注意的是,框图和/或流程图中的每个方框、以及框图和/或流程图中的方框的组合,可以用执行规定的功能或动作的专用的基于硬件的系统来实现,或者可以用专用硬件与计算机指令的组合来实现。The flowcharts and block diagrams in the figures show the architecture, functions and operations of possible implementations of devices and methods according to various embodiments of the present disclosure. In this regard, each block in a flowchart or block diagram may represent a module, a portion of a program segment, or an instruction that includes one or more Executable instructions. In some alternative implementations, the functions noted in the block may occur out of the order noted in the figures. For example, two blocks in succession may, in fact, be executed substantially concurrently, or they may sometimes be executed in the reverse order, depending upon the functionality involved. It should also be noted that each block of the block diagrams and/or flowchart illustrations, and combinations of blocks in the block diagrams and/or flowchart illustrations, can be implemented by a dedicated hardware-based system that performs the specified function or action , or may be implemented by a combination of dedicated hardware and computer instructions.
除非上下文中另外明确地指出,否则在本文和所附权利要求中所使用的词语的单数形式包括复数,反之亦然。因而,当提及单数时,通常包括相应术语的复数。相似地,措辞“包含”和“包括”将解释为包含在内而不是独占性地。同样地,术语“包括”和“或”应当解释为包括在内的,除非本文中明确禁止这样的解释。在本文中使用术语“示例”之处,特别是当其位于一组术语之后时,所述“示例”仅仅是示例性的和阐述性的,且不应当被认为是独占性的或广泛性的。Unless the context clearly dictates otherwise, as used herein and in the appended claims, the singular includes the plural and vice versa. Thus, when referring to the singular, the plural of the corresponding term will generally be included. Similarly, the words "comprise" and "include" are to be interpreted as being inclusive and not exclusive. Likewise, the terms "include" and "or" should be construed as inclusive, unless such an interpretation is expressly prohibited herein. Where the term "example" is used herein, particularly when it follows a group of terms, said "example" is exemplary and explanatory only, and should not be considered to be exclusive or inclusive .
适应性的进一步的方面和范围从本文中提供的描述变得明显。应当理解,本公开的各个方面可以单独或者与一个或多个其它方面组合实施。还应当理解,本文中的描述和特定实施例旨在仅说明的目的并不旨在限制本公开的范围。Further aspects and ranges of adaptations will become apparent from the description provided herein. It should be understood that various aspects of the present disclosure can be implemented alone or in combination with one or more other aspects. It should also be understood that the description and specific examples are intended for purposes of illustration only and are not intended to limit the scope of the present disclosure.
以上对本公开的若干实施例进行了详细描述,但显然,本领域技术人员可以在不脱离本公开的精神和范围的情况下对本公开的实施例进行各种修改和变型。本公开的保护范围由所附的权利要求限定。Several embodiments of the present disclosure have been described in detail above, but obviously, those skilled in the art can make various modifications and variations to the embodiments of the present disclosure without departing from the spirit and scope of the present disclosure. The protection scope of the present disclosure is defined by the appended claims.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211722845.2A CN116225148A (en) | 2022-12-30 | 2022-12-30 | Current mirror circuit, chip and electronic equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211722845.2A CN116225148A (en) | 2022-12-30 | 2022-12-30 | Current mirror circuit, chip and electronic equipment |
Publications (1)
Publication Number | Publication Date |
---|---|
CN116225148A true CN116225148A (en) | 2023-06-06 |
Family
ID=86579667
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211722845.2A Pending CN116225148A (en) | 2022-12-30 | 2022-12-30 | Current mirror circuit, chip and electronic equipment |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN116225148A (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060055454A1 (en) * | 2004-09-14 | 2006-03-16 | Dialog Semiconductor Gmbh | Dynamic transconductance boosting technique for current mirrors |
CN103645771A (en) * | 2013-12-17 | 2014-03-19 | 电子科技大学 | Current mirror |
CN107666312A (en) * | 2017-11-09 | 2018-02-06 | 苏州大学 | A kind of wide input voltage range high linearity CMOS transconductance cell circuit |
US20200201373A1 (en) * | 2018-12-21 | 2020-06-25 | Qualcomm Incorporated | Low dropout regulator with non-linear biasing and current clamping circuit |
CN112423436A (en) * | 2020-12-17 | 2021-02-26 | 北京集创北方科技股份有限公司 | Power supply circuit and display device |
CN115525096A (en) * | 2022-10-27 | 2022-12-27 | 深圳市芯波微电子有限公司 | Current mirror circuit, amplifier and electronic device |
-
2022
- 2022-12-30 CN CN202211722845.2A patent/CN116225148A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060055454A1 (en) * | 2004-09-14 | 2006-03-16 | Dialog Semiconductor Gmbh | Dynamic transconductance boosting technique for current mirrors |
CN103645771A (en) * | 2013-12-17 | 2014-03-19 | 电子科技大学 | Current mirror |
CN107666312A (en) * | 2017-11-09 | 2018-02-06 | 苏州大学 | A kind of wide input voltage range high linearity CMOS transconductance cell circuit |
US20200201373A1 (en) * | 2018-12-21 | 2020-06-25 | Qualcomm Incorporated | Low dropout regulator with non-linear biasing and current clamping circuit |
CN112423436A (en) * | 2020-12-17 | 2021-02-26 | 北京集创北方科技股份有限公司 | Power supply circuit and display device |
CN115525096A (en) * | 2022-10-27 | 2022-12-27 | 深圳市芯波微电子有限公司 | Current mirror circuit, amplifier and electronic device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101241378B1 (en) | Reference bias generating apparatus | |
WO2019104467A1 (en) | Voltage regulator and power supply | |
CN111176358B (en) | Low-power-consumption low-dropout linear voltage regulator | |
CN108599728A (en) | A kind of error amplifier with current limliting and clamper function | |
US11086348B2 (en) | Bandgap reference circuit | |
JP2015061294A (en) | Cascode amplifier | |
CN111506146B (en) | Constant current source circuit and power supply | |
CN111897391B (en) | Current mirror circuit, bias circuit structure, integrated circuit, and electronic device | |
US20090184752A1 (en) | Bias circuit | |
CN106896857B (en) | Load transient response applied to linear voltage regulator strengthens circuit | |
WO2021073305A1 (en) | Low dropout-voltage linear voltage regulator having high power supply rejection ratio | |
CN118413202A (en) | Charge sensitive amplifier and electronic device | |
CN116225148A (en) | Current mirror circuit, chip and electronic equipment | |
CN117251017A (en) | A buck voltage source circuit inside a chip | |
TWI641215B (en) | Variable gain amplifier | |
CN101859160A (en) | A Bandgap Reference Source for Ultra-Low Supply Voltage | |
CN212112265U (en) | Linear voltage stabilizing circuit | |
CN111399580B (en) | A linear voltage regulator circuit | |
CN116455339A (en) | Operational amplifier | |
CN115378381A (en) | Output stage circuit and operational amplifier | |
CN114094947A (en) | Cascode amplifier biasing method, device and biasing circuit | |
CN103138704A (en) | Voltage control variable resistor suitable for application of large-scale signals | |
JP4238106B2 (en) | Logic circuit | |
CN114184829B (en) | Output overvoltage detection circuit | |
CN115220516B (en) | Voltage reference circuit, component and equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |